
δ- and Quasi-Regularity for Polynomial Ideals1

Marcus Hausdorf, Mehdi Sahbi
Institut für Algorithmen und Kognitive Systeme, Universität Karlsruhe
76128 Karlsruhe, Germany
hausdorf@ira.uka.de, mehdi sahbi@yahoo.de

Werner M. Seiler
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Abstract

We consider the effective construction of δ-regular coordinates for polynomial ideals. Special
attention is given to quasi-stable ideals, i. e. monomial ideals possessing a Pommaret basis.
Finally, we show that δ-regularity for an ideal I is equivalent to quasi-regularity for P/I (in the
sense of Serre).
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1 Introduction

Involutive bases [3, 5, 9] are a special kind of Gröbner bases [1] with additional combina-
torial properties. The underlying ideas originated in the theory of differential equations.
In particular, Pommaret bases are closely related to the involution analysis of symbols in
the formal theory of differential equations [11]. It is a well-known problem that a poly-
nomial ideal I possesses only in suitable, so-called δ-regular, coordinates a Pommaret
basis (note, however, that generic coordinates are δ-regular). In [10] it is shown that
coordinates regular in this sense are very useful for a number of applications; e. g. regular
sequences or Noether normalisations of P/I take a particularly simple form.

The traditional approach to obtain δ-regular coordinates consists of applying a random
transformation (see e. g. [14] for a discussion in the context of differential equations).
This method has at least two disadvantages. While random coordinates are δ-regular
with probability 1, they still may be singular. More importantly, random transformations
usually destroy any sparsity present in a basis of the ideal I making any subsequent
computation much more expensive.

1 Work supported by NEST-Adventure contract 5006 (GIFT).
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In [8] we presented a deterministic solution for the related problem of δ-regularity in
partial differential equations based on a comparison of the Janet and Pommaret multi-
plicative variables. Here we first adapt this solution to polynomial ideals. Then we show
that our criterion for singular coordinates is closely related to the algebraic theory of
a class of monomial ideals studied by Bermejo and Gimenez [2]. Finally, we relate the
theory of Pommaret bases to Serre’s dual version of the Cartan test (see the letter by
Serre appended to [7]). We prove that Serre’s notion of quasi-regular coordinates for the
factor ring P/I coincides with δ-regularity for the ideal I.

2 Involutive Bases

Identifying the Abelian monoid (Nn
0 , +) with the set of power products xµ in a polynomial

ring P = k[x1, . . . , xn] over a field k, we have the usual divisibility relation: µ|ν if
ν ∈ C(µ) := µ + Nn

0 . An involutive division is a rule L (satisfying certain conditions,
see [5, 9] for details) restricting this relation by assigning to each member µ of every
finite subset N ∈ Nn

0 a set NL,N of allowed (multiplicative) indices, resulting in restricted
involutive cones CL,N (µ) := µ + {ν | νi = 0 for i 6∈ N}. For this new relation, we write
µ|L,Nν if ν ∈ CL,N (µ) (µ involutively divides ν). In this article, we only need the following
two involutive divisions which we denote by P and J , respectively:2

Pommaret division: NP,N (µ) := {i | i ≤ cls µ}, where cls µ := min{i | µi 6= 0}.3

Janet division: NJ,N (µ) := {i | µi ≥ νi for all ν ∈ N with µj = νj for j > i}.

The (involutive) span 〈N 〉 (resp. 〈N 〉L) of N is the union of the (involutive) cones of its
elements. N is (involutively) autoreduced, if no member is contained in the (involutive)
cone of another element. A finite subset N̂ ⊂ 〈N〉 is a weak involutive basis of 〈N 〉,
if 〈N̂ 〉L = 〈N 〉, and a (strong) involutive basis, if furthermore N̂ is autoreduced. We
refer to N̂ as a (weak/strong) involutive completion of the set N , if N ⊆ N̂ . One can
show that to every finite set N there exists a Janet basis of 〈N 〉, but not necessarily a
Pommaret basis. By contrast, a basis minimal among all the Pommaret bases of N is
unique, whereas the same does not hold for the Janet division.

While the definitions of the Pommaret and Janet division, respectively, look very dif-
ferent, the two divisions are actually closely related. The following result gives a first
indication of this fact; more will become evident in the next section.

Proposition 2.1 ([4]). Let the finite set N ⊂ Nn
0 be involutively autoreduced with respect

to the Pommaret division. Then NP (ν) ⊆ NJ,N (ν) for all ν ∈ N .

2 We follow here the original convention of Janet which are the usual ones in the theory of differential
equations; [5] uses a reverse ordering of the variables.
3 This is independent of the set N , so we will drop the reference to it in the sequel.
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An involutive basis N leads via the involutive cones to a disjoint decomposition of the
ideal I = 〈N 〉 as a k-linear space (a so-called Stanley decomposition [12, 13]). For many
applications it is also of interest to decompose the complement Ic := Nn

0 \ I; both Janet
and Pommaret bases induce such complementary Stanley decompositions. In the latter
case, we have the following result.

Proposition 2.2 ([10]). The monoid ideal I ⊆ Nn
0 possesses a weak Pommaret basis of

degree q, if and only if the sets N̄0 = {ν ∈ Ic | |ν| < q} and N̄1 = {ν ∈ Ic | |ν| = q}
define the complementary decomposition

Ic = N̄0 ∪
⋃

ν∈N̄1

CP (ν) . (1)

The notion of an involutive basis can now be easily lifted to polynomial ideals. Choosing
a term order ≺ determines for each f ∈ P its leading term lt≺f with leading exponent
vector le≺f . Let F ⊂ P be a finite set. Then we assign to each element f ∈ F the
multiplicative variables

XL,F ,≺(f) = {xi | i ∈ NL,le≺F(le≺f)} ; (2)

the involutive span of F is then the set

〈F〉L,≺ =
∑

f∈F

k[XL,F ,≺(f)] · f ⊆ 〈F〉 . (3)

A polynomial g ∈ P is involutively reducible with respect to F , if it contains a term xµ

such that le≺f |L,le≺F µ for some f ∈ F ; g is involutively head reducible, if xµ = lt≺g in
the previous definition. The set F is involutively autoreduced, if no polynomial f ∈ F
contains a term xµ such that another polynomial f ′ ∈ F \ {f} exists with le≺f ′ |L,le≺F µ;
the definition of involutively head autoreduced is similar. A finite set H ⊂ P is a weak
involutive basis of I for an involutive division L if le≺H is a weak involutive basis of
le≺I; it is a (strong) involutive basis, if le≺H is a strong involutive basis of le≺I and no
two elements of H have the same leading exponents. As above, any finite set F can be
completed to a Janet basis of 〈F〉, while this is not necessarily true for Pommaret bases.

For the remainder of the article, all ideals I considered will be homogeneous. If M
is a graded P-module, we write Mq for the homogeneous component of degree q and
M≥q :=

⊕

q′≥q Mq′ for the truncated module (similar for M<q). Let m = 〈x1, . . . , xn〉
denote the irrelevant ideal of P; as usual, we call Isat := I : m the saturation of I.

Remark 2.3. If a Pommaret basis H of the ideal I exists, then a number of important
invariants of the factor algebra P/I can be immediately read off of H [10]:

• If degH := maxh∈H deg h = q, then the dimension D of the algebra P/I is given
by D = min {i | 〈H, x1, . . . , xi〉q = Pq} and {x1, . . . , xD} is a maximal independent
set modulo I (in fact, the complementary Stanley decomposition of Proposition 2.2
yields at once the whole Hilbert series of P/I).
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• If clsH := minh∈H cls h = d (where cls h := cls le≺h), then depthP/I = d − 1
and (x1, . . . , xd−1) is a maximal regular sequence for P/I (combined with the result
above, this observation yields a simple proof of the well-known Hironaka criterion
for Cohen-Macaulay rings).

• If ≺ is the degree reverse lexicographic order 4, then degH equals the Castelnuovo-
Mumford regularity of I (this is a consequence of the interesting syzygy theory of
Pommaret bases leading to a free resolution of minimal length).

• The isomorphism P/I ∼=
⊕

ν∈N̄0
k ·xν ⊕⊕

ν∈N̄1
k[x1, . . . , xcls ν ] ·xν as k-linear spaces

is a Rees decomposition of P/I, where the sets N̄0 and N̄1 are defined for the
Pommaret basis of le≺H as in Proposition 2.2.

Together with Theorem 3.10 below, the first two items show that if a Pommaret basis
exists, then the chosen coordinates are particularly adapted to the ideal I and considerably
simplify the analysis of the algebra P/I. In the next section we will see how one can
systematically construct such coordinates for any ideal I.

3 δ-Regularity and Systems of Parameters

An ideal I ⊆ P may be interpreted as an ideal in the symmetric algebra SV over an
n-dimensional k-linear space V ∼= P1 after having chosen a basis (x1, . . . , xn) of V. As we
will show now, the existence of a Pommaret basis for I depends only on this choice.

Definition 3.1. The variables x = (x1, . . . , xn) are δ-regular for the ideal I ⊆ P and the
term order ≺, if I possesses a Pommaret basis for ≺.

As in practice one defines an ideal I ⊆ P by some finite generating set F ⊂ I, we
introduce a concept of δ-regularity for such sets. Assume that F is involutively head
autoreduced with respect to an involutive division L. We call the total number of multi-
plicative variables of its elements its involutive size and denote it by

|F|L,≺ =
∑

f∈F

|XL,≺,F(f)| . (4)

Let x̃ = Ax be a linear change of coordinates with a regular matrix A ∈ kn×n, i. e.
a change of basis in the vector space V. It transforms each polynomial f ∈ P into a
polynomial f̃ ∈ P̃ = k[x̃1, . . . , x̃n] of the same degree. Thus F is transformed into a
set F̃ ⊂ P̃ which generally is no longer involutively head autoreduced.5 Performing an
involutive head autoreduction yields a set F̃△. The leading exponents of F̃△ may be very
different from those of F and thus |F|L,≺ may differ from |F̃△|L,≺.

4 Note that we use the ordering xn > . . . > x1 on the variables.
5 We consider here the involutive division and the term order as being defined on the exponent vectors.
Thus after the transformation we can still use the same division and order as before.
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Definition 3.2. Let the finite set F ⊂ P be involutively head autoreduced with respect
to the Pommaret division. The coordinates x are δ-regular for F , if after any linear
change of coordinates x̃ = Ax the inequality |F|P,≺ ≥ |F̃△|P,≺ holds.

Note that generally δ-regularity of variables x for a set F according to Definition 3.2
and for the ideal I = 〈F〉 according to Definition 3.1 are independent properties. We will
see later that if F is actually a Gröbner basis of I, then the two definitions coincide.

Example 3.3. One of the simplest instances where the definitions differ is not for an
ideal but for a submodule of the free k[x, y]-module with basis {e1, e2}. Consider the
set F = {y2e1, xye1 + e2, xe2} and any term order for which xye1 ≻ e2. The used
coordinates are not δ-regular for F , as any transformation of the form x = x̄ + aȳ with
a 6= 0 will increase the involutive size. Nevertheless, the used coordinates are δ-regular
for the submodule 〈F〉. Indeed, adding the generator ye2 (the S-“polynomial” of the first
two generators) makes F to a reduced Gröbner basis which is simultaneously a minimal
Pommaret basis. Examples of this type are critical for the algorithmic determination
of Pommaret bases: although a finite basis exist, some completion algorithms may loop
infinitely in such a situation, as they implicitly try to construct a Pommaret basis for
〈le≺F〉 as an intermediate step.

It is, however, straightforward to prove the following statement.

Proposition 3.4. Let H be a Pommaret basis of an ideal I ⊆ P. Then the given
coordinates x are δ-regular for H.

Most coordinates are δ-regular for a given set F . Choosing an arbitrary reference
coordinate system, we may identify every system of coordinates with the regular matrix
A ∈ kn×n defining the linear transformation from our reference system to it.

Proposition 3.5. The coordinate systems that are δ-singular for a given finite involutively
head autoreduced set F ⊂ P form a Zariski closed set in kn×n.

Proof. We perform first a linear coordinate transformation with an undetermined matrix
A = (aij) ∈ kn×n, i. e. we treat its entries as parameters. This obviously leads to a
δ-regular coordinate system, as each polynomial in F̃△ will get its maximally possible
class. δ-singular coordinates are defined by the vanishing of certain (leading) coefficients.
Since these coefficients are polynomials in the entries aij of A, the set of all δ-singular
coordinate systems can be described as the zero set of an ideal of k[a11, . . . , ann].

Theorem 3.6. Let the finite set F ⊂ P be involutively head autoreduced for the Pommaret
division and a class respecting term order 6 ≺. Furthermore assume that the underlying
field k is infinite. If |F|J,≺ > |F|P,≺, then the coordinates x are δ-singular for F .

6 This means that for deg t1 = deg t2 and cls t1 < cls t2 we always have t1 ≺ t2. The degree reverse
lexicographic order has this property.
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Proof. By Proposition 2.1, we have XP (f) ⊆ XJ,F(f) for all f ∈ F . Assume that for a
polynomial h ∈ F the strict inclusion XP (h) ⊂ XJ,F(h) holds. Thus at least one variable
xℓ ∈ XJ,F(h) with ℓ > k = cls h exists. We perform the linear change of variables xi = x̃i

for i 6= k and xk = x̃k + ax̃ℓ with a yet arbitrary parameter a ∈ k \ {0}. This induces the
following transformation of the terms:

xµ =

µk∑

j=0

(
µk

j

)

aj x̃µ−jk+jℓ . (5)

Let le≺h = µ. Thus µ = [0, . . . , 0, µk, . . . , µn] with µk > 0. Consider the multi index
ν = µ − (µk)k + (µk)ℓ; obviously, cls ν > k. Applying our transformation to h leads to a
polynomial h̃ containing the term x̃ν . Note that ν cannot be an element of le≺F . Indeed,
if it was, it would be an element of the same set (µℓ+1, . . . , µn) as µ. But this contradicts
our assumption that ℓ is multiplicative for the multi index µ with respect to the Janet
division, as by construction νℓ > µℓ.

Transforming all polynomials f ∈ F yields the set F̃ on which we perform an involutive
head autoreduction in order to obtain the set F̃△. Since we assume that the ground fieldk is infinite, we can always choose the parameter a such that after the transformation each
polynomial f̃ ∈ F̃ has at least the same class as the corresponding polynomial f ∈ F , as
our term order respects classes. This is a simple consequence of (5): cancellations of terms
may occur only, if the parameter a is a zero of some polynomial (possibly one for each
member of F) with a degree not higher than degF . By the definition of the Pommaret
division, if le≺f2 |P le≺f1, then cls le≺f2 ≥ cls le≺f1. Hence even after the involutive head
autoreduction the involutive size of F̃△ cannot be smaller than that of F .

Consider again the polynomial h. The leading term of the transformed polynomial h̃
must be greater than or equal to x̃ν . Thus its class is greater than k. This remains true
even after an involutive head autoreduction with all those polynomials f̃ ∈ F̃ that are
of class greater than k, as xν /∈ lt≺F . Hence the only possibility to obtain a leading
term of class less than or equal to k consists of an involutive reduction with respect to a
polynomial f̃ ∈ F̃ with cls f ≤ k. But this implies that cls le≺f̃ > k. So we may conclude
that after the transformation we have at least one polynomial more whose class is greater
than k. So the coordinates x cannot be δ-regular.

Corollary 3.7. If the coordinates x are δ-regular for the finite Pommaret head autore-
duced set F , then 〈F〉J,≺ = 〈F〉P,≺ for any class respecting term order ≺.

It is important to note that this corollary provides us only with a necessary but not with
a sufficient criterion for δ-regularity. In other words, even if the Janet and the Pommaret
size are equal for a given set F ⊂ P, this fact does not imply that the used coordinates
are δ-regular for F .
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Example 3.8. Let F =
{
z2+y2−2x2, xz+xy, yz+y2+x2

}
. The underlined terms are the

leaders with respect to the degree reverse lexicographic order. One easily checks that the
Janet and the Pommaret division yield the same multiplicative variables. If we perform
the transformation x̃ = z, ỹ = y + z and z̃ = x, then we obtain after an autoreduction
the set F̃△ =

{
ỹ2, ỹz̃, z̃2 − ỹx̃

}
. Again the Janet and the Pommaret division yield the

same multiplicative variables, but |F̃△|P,≺ > |F|P,≺. Thus the coordinates (x, y, z) are
not δ-regular for F .

The explanation of this phenomenon is very simple. Obviously our criterion depends
only on the leading terms of the set F . In other words, it analyses the monomial ideal
〈lt≺F〉. Here we find 〈lt≺F〉 = 〈xz, yz, z2〉 and one easily verifies that the used generating
set is already a Pommaret basis. However, for I = 〈F〉 the leading ideal is lt≺I =
〈x3, xz, yz, z2〉 (one obtains a Janet basis for I by adding x3 to F) and obviously it does
not possess a Pommaret basis, as such a basis would have to contain all monomials x3yk

with k ∈ N (or we exploit our criterion noting that y is a Janet but not a Pommaret
multiplicative variable for x3). Obviously, we have here just the opposite situation to
Example 3.3: there lt≺I had a Pommaret basis but 〈lt≺F〉 not.

Theorem 3.9. In suitably chosen coordinates x every ideal I ⊆ P has a Pommaret basis.

Proof. We only sketch a proof here, as a rigorous demonstration requires the detailed
formulation of a completion algorithm for the construction of an involutive basis [5, 6],
which we omit here for lack of space.

Each iteration of the completion algorithm consists of selecting an element from the
current basis, multiplying it with one of its non-multiplicative variables, performing an
involutive reduction and then adding the result (if it is different from zero) to the basis.
Only if this action has enlarged the ideal spanned by the leading terms, a test for δ-
regularity and, if necessary, a coordinate change according to the proof of Theorem 3.6
are carried out. By regarding all the bases in a fixed reference coordinate system (or
alternatively the coordinate invariant form of the basis in the symmetric algebra SV),
the ideals spanned by the leading terms form an ascending chain that eventually becomes
stationary at lt≺I. On the other hand, if the ideal spanned by the leading terms remains
unchanged (which it does especially after we have reached lt≺I), we have performed
one step in the monomial completion of this ideal, which has to terminate under the
assumption that, after suitable transformations, we are in δ-regular coordinates.

Note that the considerations above imply that after performing a finite number of
coordinate transformations in the form used in the proof of Theorem 3.6, we obtain a
δ-regular coordinate system for the ideal I. Thus the effective construction of such a
system can be automatically done during the determination of a Pommaret basis for I.
As the following result shows, the search for δ-regular coordinates corresponds to putting
the ideal I into Noether position.
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Theorem 3.10. If the coordinates x are δ-regular for the ideal I ⊆ P, the restriction
of the canonical projection π : P → P/I to k[x1, . . . , xD] is a Noether normalisation of
P/I (or equivalently, x1, . . . , xD form a homogeneous system of parameters).

Proof. {x1, . . . , xD} is a maximal independent set modulo I, so the restriction of the
projection π to k[x1, . . . , xD] is injective. Proposition 2.2 gives the complementary de-
composition for le≺I which is defined by a finite set N ⊂ Nn

0 . As for each generator in
N the associated multiplicative indices form a subset of {1, . . . , D} and since the com-
plement of lt≺I is a basis of P/I as a vector space over k, the finite set {π(xν) | ν ∈ N}
generates P/I as a k[x1, . . . , xD]-module.

The converse of this theorem is generally not true: even if k[x1, . . . , xD] defines a
Noether normalisation of P/I, this is not sufficient to conclude that I possesses a Pom-
maret basis. In the next section, we will show for monomial ideals that the existence of
a Pommaret basis is equivalent to a stronger property.

4 Quasi-stable Ideals

Theorem 3.9 asserts that any polynomial ideal possesses a Pommaret basis after a suitable
coordinate transformation. However, this result is not really useful for monomial ideals, as
the transformed ideal is in general no longer monomial. Hence it is something particular,
if a monomial ideal has a Pommaret basis, and we give these ideals a special name.

Definition 4.1. A monomial ideal I ⊆ P is quasi-stable, if it has a Pommaret basis.

Remark 4.2. Recall that a (possibly infinite) set N ⊆ Nn
0 is called stable, if for each multi

index ν ∈ N all multi indices ν − 1k + 1j with k = cls ν < j ≤ n are also contained in N .
A monomial ideal I ⊆ P is stable, if the exponent vectors of the monomials contained in
it form a stable set. If I is a quasi-stable ideal in the sense of the definition above, then
one can easily show that for a sufficiently high degree q the truncated ideal I≥q is stable
(one may e. g. take q = degH with H the Pommaret basis of I).

Proposition 4.3. Let I ⊆ P be a monomial ideal with dimP/I = D. Then the following
five statements are equivalent.

(i) I is quasi-stable.
(ii) The variable x1 is not a zero divisor for P/Isat and for all 1 ≤ j < D the variable

xj+1 is not a zero divisor for P/〈I, x1, . . . , xj〉sat.
(iii) We have I : 〈x1〉∞ ⊆ I : 〈x2〉∞ ⊆ · · · ⊆ I : 〈xD〉∞ and for all D < j ≤ n an

exponent kj ≥ 1 exists such that x
kj

j ∈ I.
(iv) For all 1 ≤ j ≤ n the equality I : 〈xj〉∞ = I : 〈xj , . . . , xn〉∞ holds.
(v) For every associated prime ideal p ∈ Ass (P/I) an integer 1 ≤ j ≤ n exists such that

p = 〈xj , . . . , xn〉.
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Proof. The equivalence of the statements (ii)–(v) was proven by Bermejo and Gimenez
[2, Proposition 3.2] who called ideals satisfying one of these conditions monomial ideals of
nested type.7 We now show that this concept is identical with quasi-stability by proving
the equivalence of (i) and (iii).

Assume first that the ideal I is quasi-stable with Pommaret basis H. The existence of
a term x

kj

j ∈ I for all D < j ≤ n follows then immediately from Remark 2.3. Consider a

term xµ ∈ I : 〈xk〉∞ \ I for some 1 ≤ k ≤ n. There exists an integer ℓ such that xℓ
kx

µ ∈ I
and hence a generator xν ∈ H such that xν |P xℓ

kx
µ. If cls ν > k, then ν would also be an

involutive divisor of µ contradicting the assumption xµ /∈ I. Thus we find cls ν ≤ k and
νk > µk. Next we consider for arbitrary exponents m > 0 the terms xm

k+1x
ν ∈ I. For each

m a generator xρ(m) ∈ H exists which involutively divides xm
k+1x

ν . By the same reasoning

as above, cls xρ(m)
> k +1 is not possible for an involutively autoreduced basis H yielding

the estimate cls ν ≤ cls xρ(m) ≤ k + 1.
We claim now that there exists an integer m0 such that ρ(m) = ρ(m0) for all m ≥ m0 and

cls xρ(m0)
= k + 1. Indeed, if cls xρ(m)

< k + 1, then we must have ρ
(m)
k+1 = vk+1 + m, since

xk+1 is not multiplicative for xρ(m)
. Hence xρ(m)

cannot be an involutive divisor of xm+1
k+1 xν

and ρ(m+1) /∈ {ρ(1), . . . , ρ(m)}. As the Pommaret basis H is a finite set, cls xρ(m0)
= k+1 for

some value m0 > 0. But then xk+1 is multiplicative for xρ(m0)
and thus xρ(m0)

is trivially
an involutive divisor of xm

k+1x
ν for all values m ≥ m0.

By construction, the generator xρ(m0)
is also an involutive divisor of xm0

k+1x
µ, as xk is

multiplicative for it. Hence this term must lie in I and consequently xµ ∈ I : 〈xk+1〉∞.
Thus we can conclude that I : 〈xk〉∞ ⊆ I : 〈xk+1〉∞. This proves (iii).

For the converse assume that (iii) holds and let B be the minimal basis of the ideal I.
Let xµ ∈ B be an arbitrary term of class k. Then xµ/xk ∈ I : 〈xk〉∞. By assumption,
this means that also xµ/xk ∈ I : 〈xℓ〉∞ for any non-multiplicative index ℓ. Hence for
each term xµ ∈ B and for each value cls (xµ) < ℓ ≤ n there exists an integer qµ,ℓ such

that x
qµ,ℓ

ℓ xµ/xk /∈ I but x
qµ,ℓ+1
ℓ xµ/xk ∈ I. For the values 1 ≤ ℓ ≤ cls xµ we set qµ,ℓ = 0.

Observe that if xν ∈ B is a minimal generator dividing x
qµ,ℓ+1
ℓ xµ/xk, then xν ≺invlex xµ,

since cls (xν) ≥ cls (xµ) and νk < µk.
Consider now the set

H =
{
xµ+ρ | xµ ∈ B , ∀1 ≤ ℓ ≤ n : 0 ≤ ρℓ ≤ qµ,ℓ

}
. (6)

We claim that it is a weak involutive completion of B and thus a weak Pommaret basis
of I. In order to prove this assertion, we must show that each term xλ ∈ I lies in the
involutive cone of a member of H.

As xλ is assumed to be an element of I, we can factor it as xλ = xσ(1)
xρ(1)

xµ(1)
where

xµ(1) ∈ B is a minimal generator, xσ(1)
contains only multiplicative variables for xµ(1)

7 One must revert the ordering of the variables in order to recover the statements in [2].
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and xρ(1)
only non-multiplicative ones. If xµ(1)+ρ(1) ∈ H, then we are done, as obviously

cls
(
xµ(1)+ρ(1))

= cls
(
xµ(1))

and hence all variables contained in xσ(1)
are multiplicative for

xµ(1)+ρ(1)
, too.

Otherwise there exists a non-multiplicative variables xℓ such that ρ
(1)
ℓ > qµ(1),ℓ. Any

minimal generator xµ(2) ∈ H dividing x
q
µ(1),ℓ

+1

ℓ xµ(1)
/xk is also a divisor of xλ and we find

a second factorisation xλ = xσ(2)
xρ(2)

xµ(2)
where again xσ(2)

consists only of multiplicative
and xρ(2)

only of non-multiplicative variables for xµ(2)
. If xµ(2)+ρ(2) ∈ H, then we are done

by the same argument as above; otherwise we iterate.
According to the observation made above, the sequence xµ(1)

, xµ(2)
, . . . of minimal gener-

ators constructed this way is strictly descending with respect to the inverse lexicographic
order. However, the minimal basis B is a finite set and thus the iteration cannot go on
infinitely. As the iteration only stops, if there exists an involutive cone containing xλ, the
involutive span of H is indeed I and thus I quasi-stable.

Note that we actually proved that (iii) may be replaced by the equivalent statement
I : 〈x1〉∞ ⊆ I : 〈x2〉∞ ⊆ · · · ⊆ I : 〈xn〉∞ requiring no a priori knowledge of D (the
dimension D arises then obviously as the smallest value k such that I : 〈xk〉∞ = P). In
this formulation it is straightforward to verify (iii) effectively: bases of the colon ideals
I : 〈xk〉∞ are obtained by setting xk = 1 in a basis of I and for monomial ideals it is
trivial to check inclusion.

For the sequel, we make the convention that the formal expression I : x∞
0 equals I.

The following technical results will be useful later.

Lemma 4.4. For a quasi-stable ideal I and for all 0 ≤ i ≤ n, we have:

(i) I : 〈xi〉∞ can be minimally generated by elements having class at least i + 1.

(ii)
(
I : 〈xi〉∞

)
: 〈xj〉∞ = I : 〈xj〉∞ for all i < j ≤ n.

Proof. No element of a minimal basis of H of I : 〈x〉∞i can depend on xj . Now assume that
xν ∈ H satisfies cls ν = ℓ < k. Then xm

j xν is a minimal generator of I for some suitable
exponent m ∈ N0. This in turn implies that xm

j xν/xνℓ

ℓ ∈ I : 〈xℓ〉∞ ⊆ I : 〈xj〉∞ and hence
xν/xνℓ

ℓ ∈ I : 〈xj〉∞ which contradicts our assumption that xν was a minimal generator.
This proves Part (i); Part (ii) follows directly from the definition of the saturation and
Proposition 4.3 (iii).

From the next proposition it follows that for a monomial set H, equality of the Pom-
maret and the Janet size entails quasi-stability of the ideal 〈H〉; thus in this case a converse
to Theorem 3.6 can be obtained.

Proposition 4.5. Let I ⊆ P be a monomial ideal and H a finite, Pommaret autoreduced
monomial basis of it. If I is not quasi-stable, then |H|J > |H|P , i. e. for some generator
in H a variable exists which is Janet but not Pommaret multiplicative.

10
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Proof. By Proposition 2.1 we have |H|J ≥ |H|P . As I is not quasi-stable, there exists a
minimal value k such that I : 〈xk〉∞ * I : 〈xk+1〉∞. Let xµ be a minimal generator of
I : 〈xk〉∞ which is not contained in I : 〈xk+1〉∞. Then for a suitable exponent m ∈ N0

the term xµ̄ = xm
k xµ is a minimal generator of I and hence contained in H.

We claim now that H contains a generator for which xk+1 is Janet but not Pommaret
multiplicative. If xk+1 ∈ XJ,H(xµ̄), then we are done, since according to Lemma 4.4 (i)
cls µ̄ = k and hence xk+1 /∈ XP (xµ̄). Otherwise H contains a term xν such that νℓ = µℓ

for k + 1 < ℓ ≤ n and νk+1 > µk+1. If several generators with this property exist in H,
we choose one for which νk+1 takes a maximal value so that we have xk+1 ∈ XJ,H(xν) by
definition of the Janet division. If cls ν < k + 1, we are again done, since in this case
xk+1 /∈ XP (xν). Finally assume that cls ν = k + 1 and consider the term xρ = xν/x

νk+1

k+1 .
Obviously, xρ ∈ I : 〈xk+1〉∞ contradicting our assumption xµ /∈ I : 〈xk+1〉∞ since xρ | xµ.
Hence this case cannot arise.

From Condition (v) in Proposition 4.3 we see that (modulo a permutation of the vari-
ables) quasi-stable ideals are precisely those monomial ideals with a single minimal asso-
ciated prime ideal. Going one step further, one can even read off a primary decomposition
from the ascending chain of ideals in Condition (iii).

As above, let D denote the dimension of I. We restrict ourselves to the case that x1

(and hence each variable) occurs in some minimal generator of I; otherwise, we change P
accordingly. I contains pure powers of exactly the variables xD+1, . . . , xn; thus I : 〈xD〉∞
is 〈xD+1, . . . , xn〉-primary. For 1 ≤ i ≤ D, let si := min{s | I : 〈xi〉s = I : 〈xi〉s+1};
this is just the the maximal xi-degree of a minimal generating set of I. Furthermore,
let Si := I + 〈xsi+1

i+1 , . . . , xsD

D 〉 and qi := Si : 〈xi〉∞ = I : 〈xi〉∞ + 〈xsi+1

i+1 , . . . , xsD

D 〉 for
0 ≤ i ≤ D. Because of Lemma 4.4, qi is 〈xi+1, . . . , xn〉-primary. By repeatedly applying
the well-known identity I = I + 〈xs〉 ∩ I : 〈x〉s (provided that I : 〈x〉s = I : 〈x〉∞) and
Lemma 4.4 (ii), we can decompose each ideal I : 〈xi〉∞ (0 ≤ i ≤ D) as:

I : 〈xi〉∞ =
(
I : 〈xi〉∞ + 〈xsi+1

i+1 〉
)
∩ (I : 〈xi〉∞) : 〈xi+1〉∞

︸ ︷︷ ︸

=I:〈xi+1〉∞

=
(
I : 〈xi〉∞ + 〈xsi+1

i+1 , x
si+2

i+2 〉
)
∩

(
I : 〈xi〉∞ + 〈xsi+1

i+1 〉
)

: 〈xi+2〉∞
︸ ︷︷ ︸

=I:〈xi+2〉∞+〈x
si+1
i+1 〉

∩I : 〈xi+1〉∞

. . .

= qi ∩
(
I : 〈xD〉∞ + 〈xsi+1

i+1 , . . . , x
sD−1

D−1 〉
)
∩ . . . ∩ I : 〈xi+1〉∞

(7)

Because of the quasi-stability of I, the last ideal in this decomposition is always contained
in all the preceding ones except qi, so these can be dropped. Since qD = I : 〈xD〉∞, we thus
get a primary decomposition I =

⋂D

i=0 qi, where the radicals of the primary components
are pairwise different.

11
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Proposition 4.6. In the decomposition I =
⋂D

i=0 qi, the primary component qj is redun-
dant if and only if I : 〈xk〉∞ = I : 〈xk+1〉∞.

Proof. The above construction immediately yields I : x∞
k =

⋂D

i=k I : x∞
i . An ele-

mentary computation involving sums and intersection of ideals furthermore shows that
Sk =

⋂k

i=0 qi. Therefore, I = Sk−1 ∩ I : x∞
k (we set S−1 = P). From that, we see at

once that qk is redundant if I : x∞
k = I : x∞

k+1. For the other direction, assume that
I : x∞

k ( I : x∞
k+1. For k = 0, this immediately implies that q0 cannot be redundant.

For k > 0, take a minimal generator m of I : 〈xk+1〉∞ (having class at least k + 2)
which is not in I : 〈xk〉∞ and consider the monomial xsk

k m. It is obviously contained
both in Sk−1 and in I : 〈xk+1〉∞, but not in I : 〈xk〉 and thus also not in qk (since from
I : 〈xk〉∞ = qk ∩ I : 〈xk+1〉∞ we have that qk ∩ (I : 〈xk+1〉∞ \ I : 〈xk〉∞) = 0); therefore,
qk + q0 ∩ . . . ∩ qk−1 ∩ qk+1 ∩ . . . ∩ qD.

The following result on the Noether normalisation of a quasi-stable ideal is also due to
Bermejo and Gimenez [2, Proposition 3.6].

Corollary 4.7. Let I ⊆ P be a monomial ideal with dimP/I = D. Furthermore, let
I = q1 ∩ · · ·∩qr be an irredundant monomial primary decomposition with Dj = dimP/qj

for 1 ≤ j ≤ r. The ideal I is quasi-stable, if and only if k[x1, . . . , xD] defines a Noether
normalisation of P/I and k[x1, . . . , xDj

] one of P/qj for each primary component qj.

Proof. By assumption, each ideal qj is a monomial primary ideal. This implies thatk[x1, . . . , xDj
] defines a Noether normalisation of P/qj , if and only if the associated prime

ideal is
√

qj = 〈xDj+1, . . . , xn〉. Now the assertion follows from Condition (v) in Proposi-
tion 4.3.

5 δ-Regularity vs. Quasi-Regularity

Definition 5.1. A linear form v = a1x1 + . . . anxn ∈ P1 is quasi-regular at degree q for
the P-module M, if v · m = 0 entails m ∈ M<q. A finite sequence (v1, . . . , vk) of linear
forms in P is quasi-regular at degree q for M, if each vi is quasi-regular at degree q for
the factor module M/〈v1, . . . , vi−1〉M.

This generalisation of the classical notion of a regular sequence appears in the dual
formulation of Cartan’s test for an involutive polynomial module due to Serre (see his
letter appended to [7]). Recall that a polynomial module M is involutive at a degree q,
if no minimal generator of the Koszul homology H•(M) has a symmetric degree greater
than or equal to q.

Theorem 5.2 (Dual Cartan Test [7]). Let M be a polynomial module finitely generated
in degree less than q > 0. The module M is involutive at degree q, if and only if for

12
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generic coordinates {x1, . . . , xn} the maps

µk : Mr/〈x1, . . . , xk−1〉Mr−1 −→ Mr+1/〈x1, . . . , xk−1〉Mr (8)

induced by multiplication with xk are injective for all r ≥ q and 1 ≤ k ≤ n, i. e. if and
only if (x1, . . . , xn) is a quasi-regular sequence at degree q for M.

The goal of this section is to show that the notion of δ-regularity for an ideal I as
discussed in Section 3 is equivalent to the above introduced concept of quasi-regularity
for the polynomial module P/I.

Lemma 5.3. Let I ⊆ P be a homogeneous ideal and ≺ the degree reverse lexicographic
order. The sequence (x1, . . . , xn) is quasi-regular at degree q for the module M = P/I,
if and only if it is quasi-regular at degree q for M′ = P/lt≺I.

Proof. Let G be a Gröbner basis of I for ≺, so that the normal form with respect to G
defines an isomorphism between the vector spaces M and M′. One direction is trivial, as
an obvious necessary condition for m = [f ] ∈ M to satisfy x1 ·m = 0 is that x1 · [lt≺f ] = 0
in M′. Hence quasi-regularity of x1 for M′ implies quasi-regularity of x1 for M and by
iteration the same holds true for the whole sequence.

For the converse let r ≥ q be an arbitrary degree. We may choose for the vector space
Mr a basis where each member is represented by a monomial, i. e. the representatives
simultaneously induce a basis of M′

r. Let xµ be one of these monomials. As x1 is quasi-
regular for M, we have x1 · [xµ] 6= 0 in M. Suppose that x1 · [xµ] = 0 in M′ so that
x1 is not quasi-regular for M′. Thus xµ+11 ∈ lt≺I and G contains a polynomial g with
lt≺g | xµ+11 . Because of the assumption xµ /∈ lt≺I, we must have cls(lt≺g) = 1. By
definition of the reverse lexicographic order, this implies that every term in g is of class
1. Iteration of this argument shows that the normal form of xµ+11 with respect to G is
divisible by x1, i. e. it can be written as x1f with f ∈ Pr and lt≺f ≺ xµ. Consider now
the polynomial f̄ = xµ − f ∈ Pr \ {0}. As it consists entirely of terms not contained in
lt≺I, we have [f̄ ] 6= 0 in Mr. However, by construction x1 · [f̄ ] = 0 contradicting the
injectivity of multiplication by x1 on Mr.

For the remaining elements of the sequence (x1, . . . , xn) we note for each 1 ≤ k < n
the isomorphism M(k) = M/〈x1, . . . , xk〉M ∼= P(k)/I(k) where P(k) = k[xk+1, . . . , xn]
and I(k) = I ∩ P(k). It implies that we may iterate the arguments above so that indeed
quasi-regularity of (x1, . . . , xn) for M′ is equivalent to quasi-regularity for M′.

Theorem 5.4. The coordinates x are δ-regular for the homogeneous ideal I ⊆ P in the
sense that I possesses a Pommaret basis H for the degree reverse lexicographic term order
with degH = q, if and only if the sequence (x1, . . . , xn) is quasi-regular for the factor
algebra M = P/I at degree q but not at any lower degree.
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Proof. By the definition of a Pommaret basis and by Lemma 5.3, it suffices to consider
monomial ideals I. Assume first that the basis {x1, . . . , xn} is δ-regular. By Proposition
2.2, the leading terms lt≺H induce a complementary decomposition of M where all gen-
erators are of degree q = degH or less. Thus, if Mq 6= 0 (otherwise there is nothing to
show), then we can choose a vector space basis of it as part of the complementary decom-
position and the variable x1 is multiplicative for all its members. But this observation
immediately implies that multiplication with x1 is injective from degree q on, so that x1

is quasi-regular for M at degree q.
For the remaining elements of the basis {x1, . . . , xn} we proceed as in the proof of

Lemma 5.3 and use the isomorphism M(k) ∼= P(k)/I(k). A Pommaret basis of I(k) is
obtained by setting x1 = · · · = xk = 0 in the subset H(k) = {h ∈ H | cls h > k}. Thus we
can again iterate for each 1 < k ≤ n the argument above so that indeed (x1, . . . , xn) is a
quasi-regular sequence for M at degree q.

For the converse, we first show that quasi-regularity of (x1, . . . , xn) implies the existence
of a Rees decomposition for M. Exploiting again the isomorphism M(k) ∼= P(k)/I(k), one

easily sees that a vector space basis of M(k)
q is induced by all terms xµ /∈ I with |µ| = q

and cls µ ≥ k. By the definition of quasi-regularity, multiplication with xk is injective
on M(k), hence we take {x1, . . . , xk} as multiplicative variables for such a term (which
is exactly the assignment used in the Rees decomposition induced by a Pommaret basis
according to Remark 2.3).

We claim now that this assignment yields a Rees decomposition of M≥q (and hence one
of M, since we only have to add all terms xµ /∈ I with |µ| < q without any multiplicative
variables). The only thing to prove is that our decomposition covers all of M≥q. If xµ /∈ I
is an arbitrary term with |µ| = q + 1 and cls µ = k, then we can write xµ = xk · xµ−1k .
Obviously, xµ /∈ I implies xµ−1k /∈ I and cls(µ − 1k) ≥ k so that xk is multiplicative
for it. Hence all of Mq+1 is covered and an easy induction shows that we have indeed a
decomposition of M≥q.

Proposition 2.2 entails now that I has a weak Pommaret basis of degree q. As the
autoreduction of a weak basis to a strong one can only decrease the degree, I has a
strong Pommaret basis of degree at most q. However, if the degree of the basis actually
decreased, then, by the converse statement already proven, (x1, . . . , xn) would be a quasi-
regular sequence for M at a lower degree than q contradicting our assumptions.

The same “reverse” argument shows that if I has a Pommaret basis of degree q, then
the sequence (x1, . . . , xn) cannot be quasi-regular for M at a lower degree, as otherwise
a Pommaret basis of lower degree would exist which is not possible by the uniqueness of
strong Pommaret bases.

For monomial ideals I ⊆ P a much stronger statement is possible. Using again the
isomorphism M(k) ∼= P(k)/I(k), we identify elements of M(k) with linear combinations of
the terms xν /∈ I satisfying cls xν > k. Then we obtain the following simple relationship
between the Pommaret basis of I and the kernels of the maps µk in Theorem 5.2.
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Proposition 5.5. Let x1, . . . , xn be δ-regular coordinates for the quasi-stable ideal I.
Furthermore, let H be the Pommaret basis of I and set Hk = {xν ∈ H | cls ν = k} for
any 1 ≤ k ≤ n. Then the set {xµ−1k

| xµ ∈ Hk} is a basis of ker µk.

Proof. Assume that xν ∈ Hk. Then xν−1k
/∈ I, as otherwise the Pommaret basis H was

not involutively autoreduced, and hence we find xν−1k
∈ ker µk.

Conversely, suppose that xν ∈ ker µk. Obviously, this implies xν+1k
∈ I and the

Pommaret basis H must contain an involutive divisor of xν+1k
. If this divisor was not

xν+1k
itself, the term xν would have to be an element of I which is obviously not possible.

Since xν ∈ ker µk entails cls(ν + 1k) = k, we thus find xν+1k
∈ Hk.

Remark 5.6. These results also lead to a simple proof of the characterisation (ii) of a
quasi-stable ideal in Proposition 4.3. If I is quasi-stable, then the coordinates x1, . . . , xn

are δ-regular for it, hence by Theorem 5.4 they form a quasi-regular sequence for P/I at a
suitably chosen degree. By Proposition 4.3, Condition (iv), we have that Isat = I : 〈x1〉∞
and hence multiplication by x1 is injective on P/Isat. As obviously P/〈I, x1, . . . , xj〉sat ∼=
P(j)/(I(j))sat, we can apply the same argument also for all 1 ≤ j < D.

Conversely, if x1 · f ∈ I for a polynomial f ∈ P \ I, then f ∈ Isat \ I and hence
deg f < sat I. Thus x1 is quasi-regular for P/I at the degree sat I. Using again the
isomorphisms P/〈I, x1, . . . , xj〉sat ∼= P(j)/(I(j))sat, we can apply the same argument for
all 1 ≤ j < D, so that (x1, . . . , xD) is a quasi-regular sequence for P/I at a sufficiently
high degree.

The characterisation (ii) of Proposition 4.3 obviously implies that the set {x1, . . . , xD}
is maximally independent modulo Isat. Hence dimP/〈Isat, x1, . . . , xD〉 = 0 entailing that
(x1, . . . , xn) is a quasi-regular sequence for the algebra P/I at a sufficiently high degree.
By Theorem 5.4, the ideal I is thus quasi-stable.
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