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Abstract (<200 words)

The unique life cycle of diatoms with continuous decreasing and restoration of the cell size leads to 

periodic fluctuations in cell size distribution and has been regarded as a multi-annual clock.  For 

understanding the long-term behaviour of a population analytically, generic mathematical models 

are investigated algebraically and numerically for their capability of describing periodic 

oscillations. Whereas the generally accepted simple concepts for the proliferation dynamics do not 

sustain oscillating behaviour due to broadening of the size distribution, simulations show that a 

proposed limited lifetime of a newly synthesized cell wall slows down the relaxation towards a 

time-invariant equilibrium state to the order of hundred thousand generations. In combination with 

seasonal perturbation events, the proliferation scheme with limited lifetime is able to explain long-

lasting rhythms that are characteristic for diatom population dynamics. The life cycle thus 

resembles a pendulum clock that has to be wound up from time to time by seasonal perturbations 

rather than an oscillator represented by a limit cycle.
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1. Introduction

Phytoplankton plays an enormous role in the sequestration of carbon dioxide from the 

atmosphere.1,2 From the estimated 60 gigatons of carbon fixation per year in the oceans, 26 gigatons

are attributed to diatoms, both values being maximum estimates.3 Additional contributions come 

from freshwater in which diatoms are also abundant, leading to a total share of 20-25% of primary 

production worldwide. However, the productivity is subjected to periodic fluctuations in the form of

so-called algal blooms.4,5 Whereas a major part of these fluctuations can be attributed to seasonal 

changes in nutrient availability, temperature and photoperiod, diatoms possess an intrinsic 

oscillation mechanism in their population due to their peculiar life cycle that interferes with external

conditions. Thus, understanding the population dynamics of diatoms helps in understanding global 

carbon cycles.

In 1984, William M. Lewis of the University of Colorado described the unique life cycle of diatoms

(Bacillariophyta) as "diatom sex clock".6 Briefly, it comprises two alternating phases, a long mitotic

size diminution phase and a short sexual size restoration phase. The uniqueness in size reduction 

and restoration is a consequence of the specific cell wall structure consisting of two biomineralized 

silica halves with different size (epitheca and hypotheca) that are assembled like a Petri dish. Upon 

cell division, each half becomes an epitheca of the next generation, in which a new hypotheca is 

synthesized. By this mechanism, the mean cell size of a population decreases from generation to 

generation, and the distribution of sizes becomes larger (MacDonald-Pfitzer rule).7,8 Obviously, this 

process cannot proceed forever, so later generations undergo sexual reproduction and form haploid 

gametes which eventually fuse to diploid auxospores. Within these auxospores new large initial 

cells are produced, starting the cycle again. The variety of sexual mechanisms is large.9,10 In some 

cases, auxosporulation can occur within one single cell (uniparental), whereas in other cases 

gametes from different cells have to recombine (biparental). Within these two main types, several 

variants are observed. In uniparental auxosporulation such as automixis, sexuality is reduced to 

some degree. Biparental (allomictic) auxosporulation can occur in homothallic species (gametes of 

both sexes are formed within a single clonal strain) or heterothallic species (strains of different 

mating types are required).10 Von Stosch was able to show by experiments using artificial alteration 

of size that the threshold for sexual reproduction is determined by cell size rather than by age.11,12 

Therefore, a specific size range of cells that are capable of sexual reproduction can be assumed for 

each individual species. If the cell is larger than an upper sexual size threshold, auxosporulation is 

blocked.13,10 In some cases, also a lower size limit for auxosporulation exist, the life cycle is then 

referred to as “closed”. In any case there is a minimum size until which the cells are viable. 
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Together with the maximum size of the initial cells, this defines the possible range for the cell size. 

It should be noted that while the size reduction-restitution mechanism is wide-spread and 

distinguishes diatoms from other taxa, exceptions are described showing no decrease in size during 

the vegetative phase or even vegetative enlargement in order to produce larger cells.9,14 However, by

the standard mechanism, as William Lewis pointed out, the diatom life cycle (“sex clock” or 

generation clock) defines its own rhythm independent from environmental constraints. Cell size 

reduction- restitution cycles that can last many years in natural environments, apparently support 

this hypothesis.15

There is a caveat, however, for taking the diatom sex clock simply as a periodic process, and that is 

caused by the broadening of the cell size distribution. If the size distribution broadens continuously 

and larger cells are maintained in the system, it is difficult to close the cycle and return to a previous

state without any additional mechanisms that counteract this broadening. While this is certainly a 

challenge to the clock concept, field observations of diatom populations over many years confirm 

periodic fluctuations with the proposed periodicity of the life cycle.15,16,17 Mathematical models may 

help in understanding the possible mechanisms that cause a deviation from the simple step-by-step 

size reduction-restitution scheme. Simulations have been made with a large set of parameters aimed

at matching the experimental observations, notably in the work of Schwarz et al.,18 D’Alelio et al.,17 

and Hense & Beckmann.19 Schwarz et al.18 fitted experimental data for Pseudo-nitzschia 

delicatissima with a continuous-time Markov chain model and investigated the stationary 

distribution without oscillations. D’Alelio17 modelled the cell size dynamics of Pseudo-nitzschia 

multistriata over 11 years in an 8-parameter model with polynomial differential equations. The 14-

parameter model of Hense and Beckmann19 took the environment into account by modelling vertical

migration in a water column. In their study, multimodal size distributions were attributed to intra- 

and interspecific competition as a way to overcome the broadening of the size distribution. With 

this contribution, we address this issue from a different perspective and ask under which 

circumstances real periodicity can be obtained in a discrete minimum model derived from the 

generation-resolved MacDonald-Pfitzer scheme and what are the obstacles and conditions for 

maintaining the clock over many periods. 

2. Materials and Methods

We describe the state of a diatom population in the basic model (referred to as basic linear model) 

as a vector x of size n, in which each element represents the number of individuals of a distinct size 
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class per volume. The order of sizes is chosen such that higher indices characterize larger sizes and 

that we start with the index i=0 for the smallest size, leaving for the largest size (i.e. the initial cells)

the index n-1. We adopt this enumeration convention starting with 0 (rather than 1) in order to be 

compatible with the programming language and algorithms used in the simulations. 

Using different stages for a single species – a concept that we transfer here to the diatom life cycle –

is known as the Leslie model20 in biomathematical literature. Briefly, in the Leslie model a (female) 

animal population is divided into different age classes, typically 3, with separate transition rates to 

the next generation. Whereas the Leslie model and other models for population dynamics typically 

treat time as continuous variable, we account for the special proliferation mechanism with discrete 

size steps at discrete time points and model the system as a discrete dynamical system.21 This means

that we determine the population state at discrete points in time t, defining distinct generations in 

accordance with the MacDonald-Pfitzer rule. The transition from one generation to the next is thus 

expressed by a propagation matrix P applied to the current population state 

xt+1=P xt . (1)

The elements of this matrix are determined by the two states in the diatom life cycle. The vegetative

phase is represented by the diagonal elements denoting daughters derived from the epitheca, and the

upper side diagonal denoting daughters from the hypotheca. The probability of successful division 

and survival to the next generation is given as parameter p. In order to treat a possible bias between 

the two daughters in this probability, we multiply the diagonal elements by β. For size classes that 

are capable of auxosporulation, a different factor for remaining α is assigned. The sexual phase is 

represented by a parameter s, which defines the probability for the lower size classes to form 

auxospores and initial cells in the next step. With s in the lower left corner of the propagation 

matrix, the life cycle is closed. In order to be able to extract p from the propagation matrix and to 

simplify the resulting analytical expressions for general n, we write s=σnp and conveniently use σ 

instead of s as parameter. For reference, all parameters are compiled in Table 1.

For simplicity and parameter reduction, we assume that only the smallest size class can undergo 

auxosporulation, thus contracting the corresponding size range lower than the upper threshold for 

auxosporulation to one single class. The propagation matrix of the basic linear model is thus given 

as 
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P=(
α p p 0 ... 0 0 0
0 β p p ... 0 0 0
0 0 β p ... 0 0 0
... ... ... ... ... ... ...
0 0 0 ... β p p 0
0 0 0 ... 0 β p p
s 0 0 ... 0 0 β p

)=p(
α 1 0 ... 0 0 0
0 β 1 ... 0 0 0
0 0 β ... 0 0 0
... ... ... ... ... ... ...
0 0 0 ... β 1 0
0 0 0 ... 0 β 1

σn 0 0 ... 0 0 β
) (2)

Considering a whole size range and introducing an additional parameter as upper size threshold or 

even a distribution of initial sizes is possible and would give additional entries in the matrix. The 

corresponding expressions as shown in the Supplementary Information. We can safely ignore all 

classes smaller than a possible lower size threshold for auxosporulation, since they will not 

contribute further to the cycle and eventually die out. 

In the basic linear model, the auxosporulation probability is proportional to the number of possible 

parent cells.

Table 1. Parameters used in the models

Parameter Meaning Model
n number of size classes all models
i index for size class,  0 ≤ i < n all models
p survival probability of theca all models
s probability of auxosporulation all models
σ (s/p)1/n all models
α survival factor of smallest cell all models
β asymmetry factor between daughters all models
t generation as timescale all models
γ inverse carrying capacity saturation models, ageing models
m number of age classes ageing models
j index for age class,  0 ≤ j < m ageing models
z period of a zeitgeber in generations zeitgeber models

We note that a generation-resolved discrete matrix model without implementation of a sexual phase 

was used by Terzieva & Terziev,22 whereas other previous models were based on differential 

equations, the one of Schwarz et al.18 being also linear, others using polynomial or further nonlinear 

expressions.17,19

Four classes of variations of the basic linear model are considered: 

First, possible delays of one generation caused by short resting phases in epitheca, hypotheca or 

auxospores are treated. They could be modelled with second order difference equations (delay 

difference equations23). 
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xt +1=P0 xt+P1 xt−1 (3)

but we rewrite this expression using a single matrix and state vectors of double size containing both 

xt and xt-1 (see Supplementary Information 2). These variations are called delay models. In the 

Müller delay model, the smaller daughter is delayed by one generation, whereas in the Laney delay 

model, the larger daughter is delayed by one generation.

Second, a nonlinearity is introduced (nonlinear models). A biparental scheme for sexual 

reproduction was modelled by 

xn−1 , t+1=
s x0 , t

2

(1+2 s x0 , t)
(biparental nonlinear model) (4)

instead of

xn−1 , t+1=s x0 , t (5)

as in the basic linear model.

In an independent nonlinear model, overpopulation was avoided by introducing a saturation limit 

for the population according to a Ricker function.24 Extending the Ricker function to multiple size 

classes, p drops exponentially with the total number of cells according to

p=p0 e
−γ(∑i

x
i)t

(saturation nonlinear model). (6)

 Saturation nonlinearity was also used in the following two classes of models.

Third, for simulating a finite life span (ageing model) we coded the age of the epitheca of a cell as 

an additional dimension of size m, representing m different age classes (index j with 0 ≤ j < m). 

Hence, the state vector was replaced formally by a matrix of size n×m, and the propagation matrix 

formally by a tensor of forth rank. In the analytical treatment (Supplementary Information 3), the 

state matrix was rewritten to a simple vector as in the case of the delay model, so that P could still 

be treated as a matrix. For the computational treatment, a fast algorithm was devised 

(Supplementary Information 5), taking advantage of the fact that only some elements differ from 

zero. The new population was then calculated as the sum of only two contributions: (a) cells from 

the epithecae, formed by shifting the previous population matrix to the right (increase of age by 

one), removing aged cells and correcting the remaining ones by the appropriate factors α p and β p; 

and (b) cells from the hypothecae, formed by shifting the previous population matrix upwards 
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(decrease in size). The matrix multiplication was therefore reduced to two “roll” commands. 

Additionally, new large cells from auxospores were considered. This computational trick had been 

applied in most simulations, also in implementations of the other models in which only the second 

roll was needed. 

Forth, p or s are made variable in order to account for seasonal changes in growth and auxospore 

formation (zeitgeber models). A sinusoidal variation between a maximum and minimum value was 

assumed as basic mode. In the p-zeitgeber model, p is varied, whereas in the s-zeitgeber model, σ is 

varied.

For analysing all investigated cases, we used a combination of two methods, an analytical one and a

computational one. Whenever possible, we performed a mathematical analysis in order to find the 

contributing eigenvalues and eigenvectors. If the eigenvalues λk and corresponding eigenvectors ξk  

of P are known, then for arbitrary initial conditions, the temporal evolution of the population after t 

generations can be predicted as a sum of distinct relaxation modes according to

xt=P
t x0=∑

k

λk
t ck ξk . (7)

Here, the coefficients ci denote the decomposition of the initial vector x0 into contributing 

eigenvectors. 

This analytical treatment is supplemented by computer simulations, especially in the cases where 

analytical expressions for the eigenvalues are not easily possible (saturation models, ageing model, 

zeitgeber models). Programs containing the different model variations were written in Python. 

Source codes are provided in Supplementary Information 5 and 7. In the computer simulations, we 

sampled as suitable measures for the population state at a certain point in time 

the total number of cells N=∑
i=0

n−1

xi , (8)

the number of formed auxospores A=s x0 , (9)

the mean size (first moment of the distribution) M1=
1
N
∑

i

xi i , (10)

and the variance V=M2−M1
2 , derived from the second moment M2=

1
N
∑

i

xi i
2 . (11)
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3. Results and discussion

Using different models, it is analysed under which assumptions oscillations of the population state 

are obtained, and whether these oscillations can be self-sustained or need external input. A sustained

or driven oscillation with long periods would constitute a sex clock in the meaning attributed by 

Lewis to the diatom life cycle. We start with a linear model, then this model is extended 

systematically in order to demonstrate which changes have to be made in order to favour oscillatory

behaviour. In contrast to multi-parameter models aimed at ecosystem simulations for matching field

data,17-19 the number of parameters is kept as small as possible to show the principle logic behind the

mechanisms. The systematic approach of extracting analytical information from a linear model 

extended to delay and ageing processes, while being able to implement nonlinearities and zeitgeber 

by varying the parameters of the model computationally, is a unique feature that distinguishes our 

approach from previous reports.

3.1 Basic linear model

The basic linear model represents the original MacDonald-Pfitzer rule. With this model we can 

rigorously answer the question why the model needs a modification in order to explain sustained 

oscillations in the population distribution. The MacDonald-Pfitzer rule refers to distinct generations,

thus the application of a discrete model with distinct time steps is well justified. We note that 

diatom cultures can even be synchronized (with the help of nutrient starvation or blue light25) which

would allow an experimental verification of generation-resolved models. However, not enough data

are available at the moment.

As explained in the Materials and Methods section, the population state consists of the number of 

cells for each size. In real species, up to 500 different sizes can be achieved with an average 

generation time of one week, resulting in life cycles of several years (Mann, 1988).15 For 

understanding the generic behaviour of the model, the exact number of sizes is not important, 

though.

The main parameters used in the model are the vegetative proliferation probability p, the sexual 

proliferation probability s, an asymmetry factor between the daughter cells in the vegetative phase 

β, and a survival factor for the smallest cells α (see Table 1). In our basis model, all sizes that are 

capable of auxosporulation are contracted into this single size class. This approach seems to be a 

rough approximation, but we will show at the end of the section that the main conclusions also hold 

if we consider a distribution of sexual stages or initial cell sizes. By construction, the linear model 
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represents uniparental sexual schemes, but biparental schemes are covered as well in the limit of 

high cell density (see section 3.3). 

The “ideal” case in which there are no losses of cells and doubling in the vegetative phase is 

characterized by the parameters p = β = 1, α = 0 and s = 1. With one initial cell of largest size as the

usual initial condition, the occupation numbers of the different size classes follow directly from 

Pascal's triangle (see Fig. 1a) with a total number of 2t cells after t generations, up to the point 

where the smallest class is reached and new initial cells via auxosporulation are generated.

Figure 1. Three different models for the proliferation mechanism of diatoms a) simple binary fission (basic linear 

model) b) binary fission with a delay of one generation for the hypothecal daughter (Müller delay model). c) binary 

fission with a delay of one generation for the epithecal daughter (Laney delay model). Cells that cannot divide in the 

next generation are denoted with brackets. The total number of cells are counted in the columns on the right side (grey 

numbers).

The number of cells would be invariant if only half of the cells in the vegetative phase survived, i.e. 

p = 0.5, other parameters unchanged. For intermediate values of p, there is a value of s that on the 

long term balances the growth in the vegetative phase by loss in the sexual phase. In Fig. 2 a typical

result is plotted for the linear model with parameters near to this steady state. It reflects the general 

behaviour obtained for this model: Oscillations in the output variables occur, but they decay and 

approach an equilibrium in the long term.

This behaviour can be attributed the continuous broadening of the size distribution which prevents a

periodic transition of a narrow size peak through all size classes. In the physical language, such a 

transient wave without broadening would be described as a “soliton”. 

9



Figure 2. Results of the linear model with parameters near to a true steady state, characterized by a constant total cell

number (per unit volume) as well as a constant population distribution.

Next, it is shown how the problem of the relaxation behaviour can be transformed into 

mathematical language. Doing this, we can prove rigorously that oscillations in the linear model 

will always decay regardless of the parameters, and which concepts for the mechanism will not be 

able to change this behaviour. The temporal evolution of the system is described by equation (5) 

and thus depends on the eigenvalues of the matrix P. The leading (dominant) eigenvalue λmax, i.e. 

the one with largest absolute value, and its corresponding eigenvector will dominate the population 

in the long term, since contributions from all other eigenvalues are decaying faster (or not growing 

so fast). Oscillations in the population will be indicated by complex eigenvalues or negative real 

eigenvalues that indicate a cycle of two generations). Therefore, if the dominant eigenvalue is not 

real positive, we will find sustained oscillations. In all other cases intermediate oscillations will 

decay in the long term. 

An answer whether sustained oscillations are possible or not can be given quite elegantly by the 

application of the Perron-Frobenius theorem.26,27 It states that for non-negative irreducible matrices, 

the dominant eigenvector is always positive. Matrix P is non-negative because none of the matrix 

elements has a negative sign, and irreducible because it reflects a cyclic mapping of one row index 
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in the state vector to the next lower one and therefore exhibits a strong connectivity (for a  

mathematical proof see Supplementary Information 1). However, decaying oscillations exist and we

can analyse the decay parameters represented by the non-leading eigenvalues. 

For α=β, the eigenvalues of P can be easily calculated for general dimension n (see Supplementary 

Information 1). They are evenly distributed in the complex plane on a circle around p β with radius 

r=p σ. The dominant eigenvalue is located on the real axis. For odd n, this is the only real 

eigenvalue. For even n, there is a second one at p(β-σ). It should be remarked that eigenvectors with

negative eigenvalues may contribute but can never dominate, since for any non-negative initial 

vector a change of sign is prevented by the non-negative values in the matrix. An important case for

the dominating eigenvalue is λmax=p(β+σ)=1 that represents a stable population with zero growth. 

For each combination of β and σ there is exactly one corresponding value of p that leads to this 

condition. The number of cells is maintained with the eigenvalue of +1 and due to the symmetry, 

the eigenvector for this special case shows an equal distribution between all size classes. If σ<1, the 

dominant eigenvector represents an exponentially falling distribution from smallest to largest sizes, 

depending solely on σ irrespective of the value for β. The other eigenvalues with non-zero 

imaginary part describe oscillations. Since each trajectory starting from a certain initial state is a 

superposition of n possible relaxation modes, these oscillations are superposed to a decreasing, 

increasing or stable total population. Since the dominant eigenvector is always present in an initial 

vector with non-negative occupations, the contributions of these oscillations vanish in the long 

term.

The period T of the oscillations can be readily predicted. The eigenvalues have to applied T times to

reach their original phase, so T is given by 360° divided by the angle of the eigenvalue to the real 

axis in the complex plane. Since the n eigenvalues are distributed evenly on a circle displaced from 

the origin by p β, this angle is smaller than 360°/n. Thus, T is larger than n.

In the other limit for α, i.e. α = 0, the situation is more complex and an analytical solution cannot be

given easily. However, it is possible to find a relation between p, β and s such that a steady state 

with eigenvalue +1 results. For determining the generic case, we used the cofactor expansion 

method (see Supplementary Information 1) to obtain the determinant |Pn−λ I| (I is the unity 

matrix). In short, the characteristic polynomial is given by

|Pn−λ I|=( pα−λ)( pβ−λ)n−1−(−pσ)n . (12)

Setting α to 0 and λ to +1, we can solve the roots for p for a given s, or calculate s for a given p via
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s=(1−p β
p )

n−1

. (13)

For a given s, the population-balancing value of p can be calculated analytically for n=2 and 

numerically for n>2. Valid solutions are real roots in the interval [0,1]. For s=0.5, p values depend 

on the dimension as follows: p = 2-2√2 ≈ 0.586 (n=3), 0.557 (n=4), 0.543 (n=5) 0.535 (n=6) ... 

With these specific relations between s and p, the number of cells as well as parameters of the 

distribution are time-invariant, thus we obtain a true equilibrium state. 

The eigenvalues differ of course, but not too much from the eigenvalues in the case α=β, with the 

same statements on periodicity. Indeed, the simulation in Fig. 2 reflects the deviation of the period 

from n.

The Perron-Frobenius theorem allows predictions for variations of the model in which other matrix 

elements are filled. For instance, we can consider a range of auxosporulating sizes below an upper 

size threshold or also a size distribution of initial cells depending on the parent cell size as observed 

by Davidovich.28 The corresponding matrices still have only non-negative entries and retain their 

connectivity (see Supplementary information 1.3), so also in this case occurring oscillations will 

decay and are not self-sustained.

We can conclude that for a linear system oscillations occur but on the long term the trajectory 

spirals towards a stationary point, the population of which is represented by the dominant 

eigenvector. Therefore, the simple picture of the life cycle is not able to explain long-term 

oscillations in the population and size distribution.

3.2. Asymmetric delay

In this section we answer the question whether a delay in cell division between the daughter cells 

may cause sustained oscillations. Generally, delay processes are known to favour oscillatory 

behaviour in various contexts.23,29 A delay for the smaller daughter by exactly one generation before 

the next cell division was suggested by O. Müller30 in the early days of diatom research after careful

studies on chain-forming Melosira arenaria. This asymmetry in time is not uncommon for single-

celled organisms and is known for other species such as budding yeast31 in which there is also a 

difference in size of the two mitotically separated cells. Interestingly, a delay of just the opposite 

sign was reported by Laney et al.32 for the diatom Ditylum brightwellii. In this case the smaller 

daughter derived from the previous hypotheca is more likely to divide faster than the one from the 
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epitheca. These contradictory findings certainly express the need for more detailed experimental 

investigations and species-specific treatment. The variety of diatoms is so large that it is not known 

whether this asymmetry in timing between the two daughter cells holds for the majority of species 

or how this time delay can vary. 

In both the Müller and Laney models with a delay of one generation, a Fibonacci series for the 

number of cells replaces the exponential growth. In Fig. 1b the principle is shown explicitly for the 

Müller model, in Fig. 1c for the Laney model. Without losses, the number of cells derived from one 

initial cell follows the series 1, 2, 3, 5, 8,... rather than 1, 2, 4, 8, 16 in the non-delayed scheme. Due

to the delay the division scheme including closure by the sexual phase represents a second-order 

difference system, but it can be reduced to a first-order matrix equation as shown in Supplementary 

Information 2. 

The resulting matrix for the Müller delay model is also non-negative and irreducible, thus the 

dominant eigenvalue is real positive and given for α=β by

λmax=
β p
2

(1+√1+4σ /β ) (14)

(see Supplementary Information 2).

That means that also with this division scheme the qualitative behaviour does not change, and no 

true oscillations can be expected. Indeed, simulations with this variant exhibit decaying oscillations 

similar to those in Fig. 2 (see Supplementary information 4). The timescale is larger, though, since 

the vegetative proliferation takes longer to cross all size classes (Fig. 1b). Again, an equilibrium 

population can be reached only with a special combination of the parameters, such that λmax=1.

In the Laney delay model, the situation is somewhat different. Due to the transition into a resting 

phase and back, a short-term oscillation of 2 generations is induced (for even n this oscillation is 

sustained, see also Supplementary Information 4). In real cultures it would be difficult to observe 

such a behaviour, though, because even under high synchronization the delay would probably be 

subject to some distribution. Oscillations in the order of the life cycle decay as in the basic model, 

with the same timescale as can be deduced also from Fig. 1c. Sustained oscillations have not been 

found.

As a result from this section, we can conclude that a delay of one daughter cell with respect to 

further division changes the growth law of the population but does not stabilize oscillations in the 

life cycle.
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3.3. Nonlinear processes

In this section we answer the question whether nonlinear processes can cause sustained oscillations.

In modelling population dynamics, the assumption of limited resources that inhibit the growth of a 

population is a typical feature for underlying models. But also biparental schemes introduce a 

second-order nonlinearity by the required meeting probability of the two mating types. For the life 

cycle scheme of diatoms, we discuss biparental schemes first, and then nutrient saturation. Since 

linear eigenvalue analysis cannot be applied here, we performed computer simulations for the 

corresponding models, the biparental nonlinear model and the saturation nonlinear model.

Biparental reproduction should be modelled as second order kinetics similar to bimolecular 

chemical reactions, expressing the dependence on density of the mating strains as reported in 

literature.33 We note, however, that there is a limit even in dense systems since the parent cells can 

only supply a limited number of gametes. Thus the number of auxospores cannot surpass the 

number of parent cells, so there will be a transition to first order with increasing cell number. 

Modelling a biparental scheme accordingly with the expression for the biparental nonlinear model 

(see Materials and Methods) results in a slight shift of the targeted equilibrium with time. 

Simulations showed decaying oscillations similar to the basic linear model, but no further 

stabilization of these oscillations. An illustrating example is given in Supplementary Information 4. 

The positive feedback that is introduced by the nonlinearity (more small cells produce more than 

proportionally auxospores) obviously is not able to counteract the size broadening mechanism. 

Sustained oscillations of the life cycle probably cannot be attributed to biparental nonlinearity. For 

the applicability of the models to different sexual reproduction schemes, however, we can conclude 

that the linear model is a good approximation also for biparental schemes.

Now, nutrient saturation is discussed. Limitation of nutrients (silica, nitrogen, iron, etc.) would 

reduce the growth of diatoms if the population is too large and therefore provide a kind of negative 

feedback. In selecting an appropriate nonlinear expression for saturation, measures have to be taken 

in a discrete model that the number of individuals will not fall below zero. Therefore, instead of 

assuming a logistic-type growth model,34 which is the textbook model for discrete difference 

equations showing oscillations and chaos, we apply the nonlinear model of Ricker35 and extend it 

here to our one-species-several-ages case. In the (one-dimensional) Ricker model, the proliferation 

rate drops exponentially down with the number of individuals as result of competition for nutrients, 

but can never become negative as in logistic growth. In our multidimensional model, we regard the 
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total number of cells as limiting factor for saturation, but note that in principle the total surface area 

or volume could also be considered. Written in terms of our matrix model, this means

xt+1=P xt e
−γ(∑i

xi)t
(15)

in which P is still the linear matrix (saturation nonlinear model). The sum in the exponent is over 

all elements of the population vector, i.e. counting the number of individuals.

In an alternate view on this model variation, we modify p into an effective peff depending on the 

total population

peff= p0 e
−γ(∑i

xi)
(16)

 γ is the inverse of the number of cells K for which the proliferation rate drops to 1/e of the full rate, 

thus representing an inverse carrying capacity. If we compare this to the one-dimensional Ricker 

model written as

xt+1=xt er e−x /K (17)

with a critical value for the first bifurcation at r=2, it becomes clear that we can expect a similar 

bifurcation at a critical value of p, i.e. pcrit= e2 /2 ≈ 3.69 (the factor 1/2 arises from the fact that one 

cell yields two cells in the next generation, thus 2p ≡ er). Numerical simulations confirm this 

behaviour and show a decoupling of high-frequency oscillations due to nonlinearity from the cycle 

through the size classes. Figure 3 shows a representative simulation for p = 4. One can see on the 

one hand a persistent high-frequency oscillation in the total number of cells and on the other hand 

the damped oscillation of mean size and variance leading to a steady-state distribution. A stronger 

coupling of the nonlinear term to the dynamic size distribution can be achieved by defining the 

carrying capacity via the total cell surface or volume, but as respective simulations show, the 

general behaviour at the end of the simulation does not change. As long as there is an equilibrium 

distribution as attractor for the trajectory in the linear model, oscillating behaviour is controlled by 

the value of p, up to further bifurcations and eventually chaos. For the Ricker model, however, a  

pcrit of 3.69 for the onset of oscillations is too large to be reasonable, since in the biological model 

no cell can produce more than two daughter cells in the next generation (i.e. p ≤ 1). It might be 

possible to redefine the time scale by assigning one discrete step to several generations at the cost of

complicated proliferation schemes, but clearly the high frequency oscillations for large p values are 

not the oscillations we are looking for. It should be mentioned that we investigated several other 
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nonlinear models such as the three-parameter Hassell model,36 and obtained similar results by 

detecting persistent oscillations only in the cell numbers, whereas oscillations in the size 

distribution still decay.

The effect of nonlinearity in providing an effective p to limit the total population can be seen best 

below the bifurcation onset. For instance, with n=5 (for better numerical accuracy), p=1, α=β=0.8, 

s=0.2, γ =10-3, an equilibrium population of 421.85 cells per volume was obtained, giving rise to 

peff=0.656 which perfectly fulfils the equilibrium condition 

seff=
s peff

p
=σ n peff=

(1−peff β )n

peff
n−1 (18)

expected for the linear system.

Figure 3. Results of a nonlinear Ricker model with a value for p exceeding the critical value for the first bifurcation. It

can be seen that the high-frequency oscillation in the population (period 2) does not couple to the generation cycle

(period around n).

As conclusion for the saturation nonlinearity, we can exclude this effect as cause for sustained 

oscillations with periods in the order of the number of generations. The simulations showed clearly 
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a decoupling of population control and size control. This did not change if we include the size in 

determining the saturation according to

peff=p e
−γ(∑i

x i
2)

(total surface area) (19)

or 

peff=p e
−γ(∑i

x i
3)

(total cell volume volume) (20)

even if there is an explicit dependence on the size distribution. 

3.4. Modelling with ageing

In this section we answer the question whether limited lifespans of individual thecae can cause 

sustained oscillations. The problem with all the models discussed up to this point is that a newly 

generated theca stays in the system and is not removed faster than thecae that are produced later. 

But in order to maintain a narrow distribution it is necessary that larger or older cells are removed. 

Thus a possible mechanism would be a limited lifespan of an epithecal half. Indeed there are some 

experimental reports addressing this issue, such as the one by D. Jewson for the centric diatom 

Stephanodiscus neoastraea. 37 Jewson deduced a lifespan of six to eight generations and 

extrapolated a similar value for Aulacoseira subarctica.38 Laney et al.32 posed the hypothesis that by 

the bias to the smaller daughter cell damaged cell material can be divided asymmetrically, ensuring 

the quality of inherited material. The other, larger half will accumulate defects and eventually die 

earlier. This principle of genetic quality control by asymmetric cell divisions and implications for 

population development is found in several unicellular organism, for instance in Escherichia coli 

and in Saccaromyces cerevisiae, in which the asymmetry in cell division is much more 

pronounced.31,39 For the latter it is known that one single mother cell can only produce 20-25 

daughters by budding before dying which clearly defines a replicative lifespan. Budded daughters 

always start as juvenile cells independent of the age of the mother cell.40 

Therefore we applied the ageing model in which the age of a cell is defined by the number of cell 

divisions its epitheca has already undergone. For sake of simplicity we define a fixed number of 

generations a theca may survive. Mathematically this means that the population is represented by an

n × m matrix in which n (index i) denotes the number of size classes, and m (index j) defines the 

lifespan in generations. In order to keep the concept of a distinct lifespan meaningful, ageing for 

epithecae has to be more pronounced as for hypothecae. In our model, the smaller, “younger” cell 
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keeps its age, whereas the larger, “older” cell ages by one generation. When a cell reaches its 

lifespan after m generations, it is removed from the model. 

We note that in the (biologically unrealistic) limiting case that only the hypothecal daughter 

survives in each cell division (lifespan = one generation), a perfect oscillation would be obtained. In

this special case, the size for the single remaining cell would permute through all size classes until 

sexual reproduction would produce a single new initial cell. 

Normally, we would assume that new initial cells are pristine, i.e. we set the age to zero. It is also 

instructive, however, to consider an alternative case in which new initial cells retain a memory of 

the age of their parent cells. Such a situation could hypothetically arise in the case of vegetative cell

size enlargement in order to start the cycle again. Both possibilities are indicated in a small model 

system with n=4 and m=3 in Figure 4, indicating the very first generations. 

Figure 4. Age treatment of auxospores. i represents size class, j age. They retain their age or are set to pristine again

(arrow). 4 sizes × 3 ages model, starting with 3rd generation. The narrowing distribution is indicated in the columns right

to the matrices.

Pristine initial cells definitely consist the biologically more plausible case, so we confine our 

analytical treatment mainly to this case. We note, however, that in the case of an age memory upon 

re-entry of initial cells the conditions that mathematically prevent sustained oscillations are not 

fulfilled any more (Supplementary Information 3) and the process may become cyclic. Therefore, in

the computer simulations both variations are treated for a comparison of these contrasting 

behaviour.

In order to analyse the results for arbitrary lifespans mathematically, we rewrote the state matrix as 

a vector of size nm and therefore the propagation as nm × nm matrix (see Materials and Methods 

section). Analytical treatment (Supplementary Information 3) lead to the following conclusions 

about the nm eigenvalues although an analytical expression for could not be given: First, 0 is a (n-1)

(m-1) fold eigenvalue. Second, there is exactly one positive real eigenvalue. Again, for conservation

of population number, this eigenvalue can be 1 for an exact combination of p (or peff in the case of 
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nonlinearity) and σ. Third, there are at most m negative real eigenvalues. That leaves a spectrum of 

minimum nm-(n-1)(m-1)-1-m = n-2 complex eigenvalues.

In order to see how they contribute to the time development of the population, simulations were 

performed. Respective results of a larger system are displayed in Figure 5 for the variant with age 

memory of initial cells and in Figure 6 for pristine initial cells. In all cases, a nonlinear Ricker term 

as explained above was implemented to keep an upper limit for the total number of cells.

If the auxospores retain their age, indeed sustained oscillations with a periodicity of the number of

size classes are obtained (Fig. 5). This periodicity is induced by the circular character of the matrix

and the constant removal of the generation formed m generations before. A closer look to the size

distributions reveals that despite of stable oscillations a proper limit cycle in the sense of a cyclic

propagation  through  a  set  of  defined  population  states  is  not  followed.  Since  the  population

distribution via Pascal’s triangle is cut off after  m values, the population becomes narrower from

generation to generation. This can be seen in the variance plot of the simulations and in detail in the

small model system of Fig. 4. The population becomes more and more dominated by the oldest size

class. Thus, under the assumption of an “age memory” in the auxospore, an oscillation will not

decay and is subject to self-narrowing of the distribution by the MacDonald-Pfitzer-process. At the

moment, however, there is no hint that this assumption is justified in real diatom species.

Figure 5. Results of a nonlinear ageing model in which auxospores carry a memory of the previous age.
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Figure 6. Results of a nonlinear ageing model in which auxospores are always pristine. In the lower right plot, the

trajectory has to be read counterclockwise.

A different picture arises if new cells from auxospores are juvenile again. Here, the circular 

character of the propagation mechanism breaks down, and in each generation the re-entry of large, 

young cells is possible. This leads again to a smearing of the population distribution and results in a 

damped oscillation towards a steady state (Fig. 6). Due to the permanent reset of age, the 

distribution is smeared again, as indicated by the width of the auxospore peaks. An interesting 

feature arises also in the periodicity of the oscillations: now they deviate from the number of 

generations. Instead of the expected periodicity of 20 in Fig. 6, the periodicity in mean size, 

auxospore formation and variance is 26 generations for n=20 and m=7. This periodicity can be 

explained by considering the offspring of an auxospore until the next pristine auxospores is formed. 

The population moves diagonally through the n×m matrix, cells exceeding the right border being 

extinguished. After n+m-1 generations all cells derived from a single auxospore have disappeared, 

with the exception of the newly created auxospores (for details, see Supplementary Information 3). 

This n+m-1-periodicity has been confirmed in numerical simulations by computing the Fourier 

transform of the oscillations for various values of n and m. Only for a large m/n ratio, some small 

deviations are detected which we can attribute to a nonlinear distorsion and numerical uncertainties.

A selection of simulated data are given in Table 2, the full dataset with various variations in the 

different model parameters are compiled in the Supplementary Information 6. 

20



Table 2. Selection of simulation results under the assumption of a limited lifespan and juvenile initial cells. In all 

simulations p = α = σ = 1, γ = 0.001. Given are the other parameters, average oscillation period in generations from 

Fourier transform, and fitting parameters for equilibrium distribution and relaxation of population maxima and minima 

as given in the text.

n m β period cmax τmax cmin τmin nB a b

20 5 1 23.7 0.78 1.3·103 0.96 2.0·103 29.5 2.3 5.9

50 5 1 53.9 0.56 19.0·103 0.98 70.8·103 147.7 3.7 27.5

70 5 1 73.9 0.50 47.4·103 0.98 262.0·103 276.3 4.0 45.0

100 5 1 104.0 0.42 111.2·103 0.97 1049.6·103 531.0 4.3 71.6

140 5 1 144.0 0.36 214.5·103 1.02 3826.1·103 1342.6 4.7 157.5

50 2 1 51.0 0.72 177.8·103 0.99 330.6·103 133.3 1.7 8.8

50 4 1 52.9 0.56 26.2·103 1.01 102.4·103 150.1 3.1 22.9

50 8 1 56.8 0.65 14.9·103 0.92 32.8·103 127.3 5.3 32.1

50 12 1 60.6 0.80 13.5·103 0.88 16.9·103 100.5 6.6 27.3

50 20 1 68.2 1.04 10.7·103 0.80 6.7·103 68.7 6.4 13.0

50 5 1.9 54.0 0.45 15.6·103 0.98 125.8·103 244.3 4.2 65.8

50 5 1.4 53.9 0.50 17.4·103 0.98 96.1·103 192.4 4.0 44.2

50 5 0.8 53.9 0.60 19.3·103 0.98 57.5·103 124.4 3.4 19.6

50 5 0.5 53.8 0.71 18.7·103 0.98 36.3·103 89.1 2.8 9.2

50 5 0.2 53.5 1.01 14.9·103 0.93 13.4·103 58.8 1.5 2.2

In all simulations with pristine auxospores the oscillations decay towards an equilibrium state, but 

on a large timescale. Before discussing the interesting details of the long-term relaxation process, 

we will have a look on the equilibrium state, taken at the end of the simulations (after several 

million generations). 

The presence of a defined equilibrium is ensured by the nonlinear Ricker term which controls the 

total population. From the structure of the nm×nm matrix that represents the linear operation on the 

population matrix, it can be shown that again only certain combinations of p – together with the 

nonlinear Ricker term as peff – and σ lead to an eigenvalue of 1, that means a stable population. The 

n×m matrix characterizing the population eigenstate expresses a distinct size and age distribution in 

each age class. Comparable with observables, however, are mainly the cumulated size distributions, 

summed over the age structure (Fig. 7). It turns out that the total distribution has a maximum at a 

specific size class. Age-resolved plots show that this distribution is dominated by the oldest cells. 

For younger cells, the distribution is shifted towards larger sizes, which may be counter-intuitive at 

first sight. However, considering the fact that older cells on average went through more size-

reducing cell divisions, one can understand the reason behind this. In Fig. 4, where the size 
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distributions for different ages can be read as columns, the tendency can already be seen after a few 

generations. 

Figure 7. Equilibrium distribution after 5.3 mio. generations for distinct age classes and summed over all ages, with

corresponding beta-binomial fitting functions. Simulation parameters are n = 50, m=4, p = α = β = σ = 1, γ = 0.001.

Fitting attempts with several distribution functions showed that it can be represented empirically by 

a beta-binomial distribution on an inverted size scale, i.e.

f (i)=( nB

n−i)
B(a+n−i ,nB+b−n+i)

B (a ,b)
(1−d)+d (21)

in which i is again the size index and B(a,b) the beta distribution with shape parameters a and b. In 

probability distributions nB would represent the upper limit, hence n, but here it can be regarded just

as an additional fit parameter deviating from n and taking also non-natural values. d is an offset 

with renormalization and is negligible in most cases. The distribution function can thus only be 

taken as empirical function without some statistical foundation, but it describes the simulated data 

astonishingly well. Note that this equilibrium distribution differs substantially from the flat 

distribution function in the simple models. The fitted parameter data are included in Table 1. The 

maximum of the age-cumulated size distribution, calculated in percentage relative to the largest 

size, shifts towards larger cells for increasing n at constant m and towards smaller cells for 

increasing m at constant n. The width of the distribution, measured as full width at half maximum 

FWHM, decreases in both cases. 

Now we consider the relaxation process from an initial condition towards this equilibrium. For this 

purpose we plotted the maxima as well as the minima of the total cell number in each oscillation vs.

generation t. The decline does not follow a simple exponential law – which is understandable 

considering the nonlinear term and the existence of several complex eigenvalues – but can be 

22



reasonably well described by a stretched exponential function, in mathematics also known as 

complementary cumulative Weibull function,

N=A2+( A1−A2)exp(−(t /τ )c) (22)

in which A2 denotes the equilibrium cell number, (A1-A2) the starting amplitude, τ the scale 

parameter and c the shape parameter. The scale parameter can be taken as measure of the mean 

decay time and is represented graphically as the inflection point when the generation is plotted on a 

logarithmic timescale (Fig. 8). 

Figure 8. Relaxation of total cell number towards the equilibrium. Indicated are the enveloping stretched exponential

fits for maxima and minima (thick solid lines) with the location of the inflection points (dashed lines). Note the

logarithmic time scale. Simulation parameters are the same as in Fig. 7.

Fitted values describing the decline functions for various model parameters are also compiled in 

Table 1, with the full set in the electronic supplement. The following general trends can be extracted

from the fits: For increasing number of size classes n, other parameters being constant, the 

equilibrium population decreases almost exponentially i.e. with positive curvature, the scale 

parameter τ increases with positive curvature. Interestingly, the shape parameter c decreases steadily

for the maxima whereas it does not vary so much for the minima and passes through a transient 

maximum. For increasing lifespan m, other parameters being constant, the equilibrium population 

increases and the scale parameter decreases. The shape parameter increases for the maxima, but 

decreases for the minima. The higher the preference for younger daughter cells is, i.e. for 

decreasing values of β, the lower is the population and the scale parameter in the minima. The shape

parameter for the decay of the maxima becomes higher. Interestingly, the scale parameter of the 

maxima and the shape parameter of the minima are maximized for certain values of β. Finally, a 

change in σ leads to modifications of the decay parameters for maxima and minima in opposite 

directions, respectively. In summary, the relaxation parameters have a complex dependence of the 
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model parameters, but long lasting relaxations (i.e. large scale parameters) are obtained for large n, 

small m, and high values of β.

Even if an equilibrium point exists, it may never be reached in a real diatom population in a 

reasonable amount of time. We note that the decay by persistent oscillations comprises many orders 

of magnitude, in the order of 104 to 105 generations in the maxima, and even more in the minima. 

This is much longer than any biological system can stay undisturbed by external influences, so for 

any practical reason the oscillation can be regarded as a persistent one. Any perturbation that 

changes the parameters for vegetative or sexual reproduction slightly would induce a new deflection

from equilibrium and start the oscillation anew. Possible factors that may contribute in natural 

environments are light conditions, temperature, predator occurrence, and nutrient availability.

3.5. Periodic environmental influences

Fluctuating external factors can be of a periodic nature, typically following the seasons throughout a

year. Photoperiod, temperature and nutrients change within a year and favour or disfavour the total 

growth of a diatom population. Sexual reproduction may only be limited to a few weeks in a year 

(Mann, 1988).15 It can therefore be inferred that seasonal changes of environmental factors act as 

zeitgeber and are coupled to the inherent mechanism of the life cycle by varying the reproduction 

parameters. This can be expressed as non-autonomous system in which p or s is a periodic function 

of time. We investigate the influence of such an external zeitgeber on the oscillations of the 

previous model. As basic mode we assume a sinusoidal variation and note that other annual 

variations can be expressed as sum of the basic mode and its higher harmonics. Usually, a year is 

shorter than the complete life cycle and can be expressed by z<n generations.

In Fig. 9a, the results of a computer simulation with the p-zeitgeber model is shown for a variation 

of p between the original value and 75% of that value in one year consisting of z=20 generations, 

with n=50 size classes. The oscillating behaviour seems complicated, especially in the seemingly 

random auxosporulation events, but Fourier analysis reveals the occurrence of the n+m-1 

generation period of 54 generations (frequency 0.0185) as well as the seasonal period of 20 

generations (frequency 0.05). Interestingly, besides the usual higher harmonics, new periodicities 

arise: the difference frequency at 0.0315 and the sum frequency at 0.0685 which can be attributed to

nonlinear coupling of the two periodic processes since the Ricker term is still included. Like 

nonlinear saturation, the seasonal change of p couples only to the cell number, but not to the size 

distribution. If the simulation is performed further until 106 generations (Fig. 9b), oscillations in the 

total cell number remain, but have been decayed for the mean size, leading to an equilibrium size 
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distribution as in the other models. The only remaining Fourier components for the cell number are 

the 20 generation-period, now being dominant, and the 54 (n+m-1) generation-period. 

Figure 9. Simulation results for a system with sinusoidal variation of p down to 75% of its value, representing an 

annual zeitgeber. The nominal generation cycle (number of size classes) is n=50 generations, the zeitgeber cycle z=20 

generations. (a) Behaviour at the beginning. Given is the total cell number, mean size, the auxospore number, and the 
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power spectrum of the total cell number. In both upper graphs, the sinusoidally varying value of p multiplied with a 

factor of 5 for better visibility is indicated as bottom line in red. (b) Long-term behaviour. Replacing auxospore number,

the size distribution after 106 generations is displayed.

Figure 10. Simulation results for a system with sinusoidal variation of s down to 75% of its value. Graphs are displayed

as in Fig. 9 at the beginning (a) and for 106 generations (b).
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The situation is different if instead of p, s is varied since the variation concerns only the sexual part,

i.e.  the  population  of  only  the  initial  cells.  In  Fig.  10,  the  results  are  displayed  for  the  same

parameter set as in Fig. 9, but a variation of σ between the original value and 75% of that value (s-

zeitgeber  model).  Since  s=pσn,  s drops  down  to  virtually  zero  during  the  course  of  the  year.

Auxospore formation depends strongly on the phase relationship between total cell  number and

external signal, so there are some years in which there are almost no auxospores.  The pattern in the

frequency  space  at  the  beginning  is  much  more  complicated,  with  low frequency  components

indicating periodicities with long time scales, much longer than the generation period. After 106

generations, again the annual period dominates the population, but there is still an oscillaton in the

meansize. The size distribution reveals the presence of a typical multimodal distribution (Fig. 10b,

lower right), in which each peak can be attributed to a single year. These peaks traverse the size

distribution, stabilizing the n+m-1 generation-period. Here, we can see clearly that a variation of s

directly influences the cell size distribution and therefore keeps it oscillating, whereas a variation in

p (Fig.  9) only influences  the total  cell  number and therefore leads to  the original  equilibrium

distribution. If there is no ageing, a multimodal distribution still exists, but is less narrow. The peak

in the power spectrum for the  n+m-1 vanishes which means that the  zeitgeber signal defines the

only remaining timescale (see Supplementary Information 4e).

We can state as result of this section that seasonally varying sexual reproduction behaviour may

supply the necessary driving for keeping the generation clock running. Without ageing, however,

the annual zeitgeber clock overwrites this clock completely and imprints its own rhythm.

4. Conclusion

Is the life cycle of diatoms a clock? If we mean limit cycles that consist of a series of defined

population states that are adopted sequentially and return exactly back to previous states, then at the

moment  we  would  have  to  answer  no with  the  present  knowledge  about  the  proliferation

mechanism. The problem is  the size distribution that  needs  some self-narrowing mechanism in

order to compensate broadening exactly. If we assume finite lifetimes for a newly formed theca,

then older, larger cells are removed effectively and counteract the broadening. With the additional

assumption of age memory in auxospores, self-sustained rhythms with even further size narrowing

can occur. But also without this somewhat arbitrary additional assumption, the oscillatory decay

towards an equilibrium is significantly slowed down by the proposed finite lifetimes and takes place

on a time scale of millions of generations, enough to keep the oscillations running by statistical

fluctuations. If we define a biological clock in the common sense as “an inherent timing mechanism
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in a living system that is inferred to exist in order to explain the timing or periodicity of various

behaviours and physiological states and processes”,41 then the answer to our question is yes, but it

resembles more a cuckoo clock that has to be wound up from time to time. This could happen by

environmental  fluctuations,  ranging  from  singular  environmental  events  bringing  the  size

distribution again away from equilibrium up to the annual period of the sexual phase. 

The results presented here may help in guiding experimental investigations of previously unknown

or even contradictory data connecting cell cycle and life cycle. If for instance more data about the

lifespan of a single theca and the asymmetry in timing between the daughters would be known,

population dynamics of diatoms can be understood better. This may turn out useful – together with

knowledge about nutrient supply currents – for modelling algal blooms and periodic events in the

carbon cycle.
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Supplementary Information

1 Basic Linear Model

We consider the propagation matrix Pn of our basic linear model without
delay or internal structure and obtain for s = σnp the (n× n)-matrix

Pn = p


α 1

β 1
. . . . . .

β 1
σn β

 . (1)

Recall that all three parameters β, p and σ take their values in the real
interval [0, 1] and we have 0 ≤ α ≤ β. We assume in the sequel that β, p
and σ are different from 0, as this is the biologically most interesting case.

The matrix Pn is obviously (elementwise) nonnegative. We associate with
it a directed graph Gn with vertices 1, . . . , n and an edge from vertex i to j,
whenever the entry of Pn at position ij is positive. Thus the graph Gn is of
the following form:

1 2 · · · n

As one can see, Gn contains one loop of length n going through all vertices.
This implies that Gn is a strongly connected graph where one can reach from
any vertex any other vertex. By a well-known theorem,[1] this implies that Pn
is an irreducible matrix. In addition, Gn contains loops of length 1 connecting
the vertices 2, . . . , n with themselves (for α 6= 0 such a loop also exists for
the vertex 1). The period of the matrix Pn is defined as the greatest common

[1]For a general survey of the theory of nonnegative matrices see Berman A., Plemmons
R.J. 1994 Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia.
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divisor of the lengths of the loops in Gn and hence we are dealing with an
aperiodic matrix.

We can now apply the Perron-Frobenius theorem.[2] It asserts for a non-
negative irreducible aperiodic matrix like Pn the following properties. Let
r > 0 be the maximal modulus of an eigenvalue of Pn. Then r itself is a
simple eigenvalue and it is the dominant eigenvalue, as the moduli of all
other eigenvalues are less than r. Furthermore, there exists an eigenvector
v to this eigenvalue r for which all entries are positive. If we assume that v
is normalised such that the sum of all its entries is 1, then it describes the
asymptotic behaviour of our discrete dynamical system xt = P t

nx0 for almost
all initial values: if x0 is not an eigenvector, then we find for t → ∞ that
xt/‖xt‖ → v where ‖xt‖ denotes the sum of the absolute values of the entries
of the vector xt.

1.1 Stationary state in the general case

The eigenvalues of the matrix Pn are the zeros of its characteristic polynomial
χn(λ) = det (Pn − λIn) where In denotes the n× n unit matrix. In our case,
the determinant can be easily computed by expanding along the first column
which has only two non-zero entries:

χn(λ) = (pα− λ)

∣∣∣∣∣∣∣∣∣
pβ − λ p 0

. . . . . .

pβ − λ p
0 pβ − λ

∣∣∣∣∣∣∣∣∣
+ (−1)n−1pσn

∣∣∣∣∣∣∣∣∣
p 0

pβ − λ p
. . . . . .

0 pβ − λ p

∣∣∣∣∣∣∣∣∣
= (pα− λ)(pβ − λ)n−1 − (−pσ)n .

(2)

From the above expression for the characteristic polynomial, it follows

[2]Perron O. 1907 Zur Theorie der Matrizen. Math. Ann. 64(2) : 248–263. Frobenius
G. 1912 Über Matrizen aus nicht negativen Elementen. Sitzungsber. Kgl. Preuss. Akad.
Wiss. 1912 : 456–477.
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immediately that 1 is an eigenvalue, if and only if

s = σpn = (1− pα)

(
1− pβ
p

)n−1
. (3)

Thus for each choice of α, β and p there exists exactly one value for s leading
to a stationary point.

1.2 Eigenvalues in the special case α = β

If we denote as usual by ζ
(n)
k = e2πki/n for 0 ≤ k ≤ n − 1 the nth roots of

unity, i. e. the n distinct complex solutions of xn = 1, then it is easy to see
that in this special case χn has n distinct zeros given by

λk = p(β + ζ
(n)
k σ) 0 ≤ k ≤ n− 1 . (4)

The eigenvalues of the propagation matrix Pn are given by λk = pµk.
Thus in the complex plane, the eigenvalues of Pn lie uniformly on a circle with
center pβ and radius pσ. If n is odd, then only the eigenvalue λ0 = p(β + σ)
is real. For even n, also the eigenvalue λn/2 = p(β − σ) is real.

Oscillatory modes with a constant amplitude occur in a linear discrete
dynamical system only, if the propagation matrix possesses at least one eigen-
value with absolute value 1. For our system, we find |λk| = 1, if

β2 + σ2 + 2βσ cos (2πk/n) = 1/p2 . (5)

This condition can only be satisfied, if β + σ ≥ 1/p. In the special case
β + σ = 1/p, we must have k = 0 and we then find λ0 = 1 corresponding to
a stationary point. Writing φ = 2πk/n and considering (5) as an equation
for σ, we find that for given β ≤ 1 and φ this equation has a unique positive
root, namely

σ = −β cosφ+
1

p

√
1− p2β2 sin2 φ (6)

taking its values between 0 and 2. The real part of the corresponding eigen-
value is then given by

Re (λk) = p(β + σ cosφ) . (7)

Since for k > 0 the eigenvalue λk is not of maximal absolute value and thus
not dominant, the corresponding oscillatory mode can be observed only for

3



carefully prepared initial values and thus is irrelevant as a model for nature.
We may therefore conclude that our basic model does not support stable
oscillations. Any oscillatory mode will either decay or grow exponentially.

A positive eigenvector for the dominant eigenvalue λ0 = p(β + σ) can be
easily determined and is given by the vector

v =


1
σ
...

σn−1

 with norm ‖v‖ =
1− σn

1− σ
. (8)

Thus for almost all initial conditions the asymptotic distribution of the pop-
ulation over the different sizes is exclusively determined by the value of
σ = n

√
s/p and thus is in particular independent of β.

1.3 Linear Models with a Size Range for Auxosporu-
lation

In the model considered in the previous section, all cells below a certain size
threshold have been put into one size class, the only class where auxosporu-
lation occurs. In this brief section, we comment on what happens, if we drop
this simplifying assumption. There are (at least) two natural possibilities to
implement a size range for auxosporulation. In the first one, cells generated
by auxospores have always the maximum size. Abbreviating σ̄ = 1− σn, we
obtain then as propagation matrix instead of Pn the following matrix:

P ′n = p



α σ̄
βσ̄ σ̄

. . . . . .

βσ̄ σ̄
βσ̄ 1

β
. . .
. . . . . .

β 1
σn . . . . . . . . . σn 0 . . . 0 β


.

If the k smallest size classes are able to form auxospores, then we have in the
bottom row k times an entry σn. We omit a plot of the directed graph G′n
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associated to P ′n, as compared to the graph Gn only some additional edges
appear. We have seen in the last section that Gn is strongly connected and
hence the same is true for G′n. It is also easy to see that the matrix P ′n is
still aperiodic. Hence we can again apply the Perron-Frobenius theorem.

The second possibility is that the size of the cells generated by auxospores
depends on the size of the parent cell. Now we obtain as propagation matrix

P ′′n = p



α σ̄
0 βσ̄ σ̄
...

. . . . . .

0 βσ̄ σ̄
σn βσ̄ 1

. . . β
. . .

. . . . . . . . .
. . . β 1

σn 0 . . . 0 β


.

If we assume that 2k ≤ n + 1, then the directed graph G′′n associated with
P ′′n possesses the following form:

1 2 · · · k − 1 k · · ·

· · · n+ k − 1 · · · n− 1 n

There exists a path visiting all nodes, namely

1→ 2→ · · · → n→ k → k + 1→ · · · → n− k + 1→ 1 .
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Hence the matrix P ′′n is irreducible. Because of the loops of length 1, it is also
trivially aperiodic and we can again apply the Perron-Frobenius theorem.

If 2k > n+ 1, one obtains exactly the same results, only the path visiting
all nodes is slightly different. Once one has reached the vertex n, one must
follow as many “backwards” arrows as neccessary to reach a vertex with an
index less or equal n− k + 1. From there, one walks “forward” to n− k + 1
and then one can return to 1.

2 Linear Models with Delay

2.1 The Müller Model

We perform now a similar analysis for the delay model in the case where
the smaller daughter needs one generation until it can reproduce, i. e. the
model proposed by Müller. In this case, the linear model is a second-order
difference system

x(t+ 1) = pA0x(t) + βp2A1x(t− 1) (9)

where the coefficient matrices are given by

A0 = βIn , A1 =


0 1

. . . . . .

0 1
σn 0

 (10)

where In is again the n × n identity matrix. We transform this system into
a first-order one with twice the dimension by rewriting it in the form(

x(t+ 1)
x(t)

)
=

(
βpIn βp2A1

In 0

)(
x(t)

x(t− 1)

)
= P2n

(
x(t)

x(t− 1)

)
. (11)

Again the first task consists of determining the eigenvalues of the 2n × 2n
propagation matrix P2n. For this, we use the following trick exploiting the
block structure of P2n. Assuming that A, B, C, D are square matrices of
suitable, not necessarily equal sizes with A invertible and denoting generically
by I identity matrices of the right size, the simple identity(

A B
C D

)(
I −A−1B
0 I

)
=

(
A 0
C D − CA−1B

)
6



implies that

det

(
A B
C D

)
= det (A) det

(
D − CA−1B

)
. (12)

Hence, we can reduce the computation of the block determinant to computing
two smaller determinants.

For determining the eigenvalues of the propagation matrix P2n, we must
compute det (P2n − λI2n) and therefore choose A = pA0 − λIn = (pβ − λ)In
(which is invertible over the fieldR(λ) of rational functions in λ), B = βp2A1,
C = In and D = −λIn. Since A is a diagonal matrix, it is trivial to determine
its inverse, A−1 = (pβ − λ)−1In, and its determinant is given by det (A) =
(pβ − λ)n. The second determinant in (12) takes the form

det
(
D − CA−1B

)
= (−1)n

∣∣∣∣∣∣∣∣∣∣
λ βp2

pβ−λ

λ
. . .
. . . βp2

pβ−λ
βp2σn

pβ−λ λ

∣∣∣∣∣∣∣∣∣∣
.

It can be easily computed by expanding along the first column and we obtain

det
(
D − CA−1B

)
= (−1)n

(
λn − (−1)n

( βp2σ

pβ − λ

)n)
.

Putting everything together, the characteristic polynomial of the propagation
matrix P2n can be written as

χ2n(λ) = λn(λ− pβ)n − βnp2nσn .

Hence we can express the eigenvalues of P2n as n pairs of the form

λk,± =
p

2

(
β ±

√
β2 + 4ζ

(n)
k βσ

)
where again ζ

(n)
k denotes for 1 ≤ k ≤ n the n different nth roots of unity.

The dominant eigenvalue is λ0,+ = βp(1 +
√

1 + 4σ/β)/2. The eigenvalue
λ0,− is also real and if n is even, then the eigenvalues λn/2,± are real, too. All
other eigenvalues are complex.

Again the propagation matrix P2n is nonnegative, irreducible and aperi-
odic. The associated direct graph G2n has the following form:

7



1 2 3 · · · n− 1 n

n+ 1 n+ 2 n+ 3 · · · 2n− 1 2n

Thus we have a loop connecting all vertices, namely

n→ n+ 1→ 1→ n+ 2→ 2→ · · · → n− 1→ 2n→ n ,

which ensures the strong connectivity. Furthermore, the loops of length 1
ensure the aperiodicity. We may therefore again apply the Perron-Frobenius
theorem, although most of its statements follow already directly from our
explicit computation of the eigenvalues. The main additional information is
that the positive unit eigenvector to λ0,+ determines the asymptotic distri-
bution of the population over the different sizes. However, this eigenvector
does not seem to possess a managable representation in closed form.

2.2 The Laney Model

In the model proposed by Laney, it is the larger daughter which needs more
time until it can again reproduce. Here, this time lag is set to one generation.
Compared to the Müller model, we must therefore swap the matrices A0 and
A1 leading to the second-order difference system

x(t+ 1) = pA1x(t) + βp2A0x(t− 1) .

8



Thus the propagation matrix is now given by

P2n =

(
pA1 β2p2In
In 0

)
.

We use now a variant of the trick applied to the Müller model to com-
pute the characteristic polynomial χ2n of P2n. Assuming this time that the
matrix D is invertible, we can write(

A B
C D

)(
I 0

−D−1C I

)
=

(
A−BD1C B

0 D

)
and obtain now instead of (12)

det

(
A B
C D

)
= det

(
A−BD−1C

)
detD . (13)

Thus we find that

χ2n(λ) = det (−λIn) det

(
pA1 −

(
λ+

β2p2

λ

)
In

)
.

It follows now from (2) that

χ2n(λ) = (λ2 − β2p2)n − (pσ)nλn .

Because of the very special form of this polynomial, it is straightforward to
determine the eigenvalues:

λi,± = −ζ
(n)
i pσ

2
±

√√√√(ζ(n)i pσ

2

)2

+ β2p2 . (14)

Thus all eigenvalues are simple. Real eigenvalues are obtained for i = 1 (as

ζ
(n)
1 = 1) and for even n additionally for i = n/2 (as then ζ

(n)
n/2 = −1).

Again the propagation matrix P2n is nonnegative and irreducible. The
associated direct graph G2n has the following form:

9



1 2 · · · n− 1 n

n+ 1 n+ 2 · · · 2n− 1 2n

A path going through all vertices is given by

1→ n+ 1→ 1→ 2→ n+ 2→ 2→ 3→ · · · → n→ 2n→ n→ 1 ,

hence G2n is strongly connected. It has length 3n and a loop of length 2 is
given by 1 → n + 1 → 1. In addition, there are loops of any length n + 2k
for 0 ≤ k < n obtained by augmenting the loop 1 → 2 → · · · → n → 1 by
k “detours” ` → n + ` → `. If n is odd, this observation implies that the
matrix is aperiodic. For even n, the period of G2n is 2.

The dominant eigenvalues can be obtained from (14). For odd n, the
single dominant eigenvalue is

λ1+ ≈
β2p

σ
.

For even n the positive dominant eigenvalue is

λn/2,+ ≈ pσ +
β2p

σ

and thus larger. The second dominant eigenvalue is in this case also real,
namely λ1− = −λn/2,+ (note that q1 = −qn/2 < 0) and causes oscillations
with a period of 2 generations as observed in the simulations. Since for
nonnegative initial vectors negative populations will never result, the eigen-
vector with negative eigenvalue cannot occur alone, but is possibly mixed to
the positive dominant eigenvector.

10



3 Models with Age Structure

3.1 Pristine initial cells

We consider now a linear model where the age of the diatoms is taken into
account. We restrict to the case where the auxospores lead to pristine cells
and assume that there are n size classes and m age classes. We denote by
X

(n,m)
i,j the number of diatoms in size class i and in age class j and interpret

these values as entries of an n × m matrix X(n,m). Recall that we number
the size classes by 0, 1, . . . , n − 1 (with 0 denoting the largest size) and the
age classes by 0, 1, . . . ,m−1 (with 0 denoting the cells newly generated from
auxospores) and we use the same indexing scheme for this matrix.

The model is then described by the following difference equations where
special cases appear at the lower and left boundary of the matrix X(n,m). In
the generic case where i 6= n− 1 and j 6= 0 we have

X
(n,m)
i,j (t+ 1) = βpX

(n,m)
i,j−1 (t) + pX

(n,m)
i+1,j (t) . (15a)

At the bottom of the matrix we get for j 6= 0

X
(n,m)
n−1,j(t+ 1) = βpX

(n,m)
n−1,j−1(t) (15b)

and at the left side of the matrix for i 6= n− 1

X
(n,m)
i,0 (t+ 1) = pX

(n,m)
i+1,0 (t) . (15c)

Finally, the generation of new cells from auxospores leads to

X
(n,m)
n−1,0(t+ 1) = s

m−1∑
j=0

X
(n,m)
0,j (t) . (15d)

For expressing all these linear difference equations in the standard form of
a matrix difference equation X(n,m)(t+1) = P (n,m)X(n,m)(t) with an nm×nm
matrix P (n,m), we rewrite the matrix X(n,m) as an nm-dimensional vector –
which we continue to denote by X(n,m) – by stacking the columns, i. e. the
transpose of the vector X(n,m) is given by

(X
(n,m)
0,0 , . . . , X

(n,m)
n−1,0, X

(n,m)
0,1 , . . . , X

(n,m)
n−1,1, . . . , X

(n,m)
0,m−1, . . . , X

(n,m)
n−1,m−1) .
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We will write the propagation matrix P (n,m) as an m×m block matrix with
blocks which are n×n matrices. For this purpose, we introduce the following
three n× n matrices:

Dn =


0 1 0 · · · 0

. . . . . . . . .
...

. . . . . . 0
. . . 1

0 0

 , Sn =


0 · · · · · · 0
...

...

0
...

σn 0 · · · 0

 , Bn = βIn ,

where as before s = σnp. Now we can write P (n,m) = pA(n,m) with

A(n,m) =


Dn + Sn Sn · · · Sn
Bn Dn 0

. . . . . .

0 Bn Dn

 . (16)

As in the previous sections, our first task consists of computing the
characteristic polynomial χ(n,m)(µ) = det (A(n,m) − µInm). If we abbreviate
D̂n = Dn − µIn, then we can write

A(n,m) − µInm =

(
D̂n + Sn S̃n
B̃n D̃n,m−1

)
(17)

where S̃n is the n × n(m − 1) matrix (Sn · · · Sn) with m − 1 blocks and
where the matrices

B̃n =


Bn

0
...
0

 , D̃n,m−1 =


D̂n 0

Bn D̂n

. . . . . .

0 Bn D̂n


have m− 1 block rows. We first note that the matrix D̂n is invertible (over
the field R(µ) of rational functions in µ) with inverse

D̂−1n = −


µ−1 µ−2 · · · µ−n

. . . . . .
...

. . . µ−2

µ−1

 , (18)
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as one can easily verify. For later use, we note that also the powers of this
inverse possess a simple closed form representation: for any integer k > 0 we
find the following upper triangular matrix

D̂−kn = (−1)k



(
k−1
k−1

)
µ−k

(
k
k−1

)
µ−k+1 · · ·

(
k+n−2
k−1

)
µ−k−n+1

. . . . . .
...

. . .
(
k
k−1

)
µ−k+1(

k−1
k−1

)
µ−k

 . (19)

This can be easily shown by repeated multiplication with D̂−1n and by noting
that the arising numerical coefficients represent a column sum in Pascal’s
triangle, i. e. by using the identity

∑̀
j=0

(
j

i

)
=

(
`+ 1

i+ 1

)
. (20)

As a consequence of the above observation, the matrix D̃n,m−1 is invert-
ible, too. It is straightforward to verify that its inverse is given by

D̃−1n,m−1 =


D̂−1n 0

−βD̂−2n D̂−1n
. . . . . .

(−β)m−1D̂−mn · · · −βD̂−2n D̂−1n


Here we exploited that Bn is a multiple of an identity matrix and hence
multiplication by it corresponds to a scalar multiplication with β.

After these preparations, we apply (13) to (16) and obtain

χ(n,m)(µ) = det
(
D̂n + Sn − S̃nD̃−1n,m−1B̃n

)
· det (D̃n,m−1) . (21)

As D̃n,m−1 possesses a block triangular form with triangular blocks D̂n on
the diagonal, it follows immediately that the last determinant is given by

det (D̃n,m−1) = det (D̂n)
m−1

= (−µ)n(m−1) .
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The form of the matrices S̃n and B̃n and the above determined expression
for the inverse D̃−1n,m−1 yield in a straightforward computation that

S̃nD̃
−1
n,m−1B̃n =

m−1∑
k=1

(−β)kSnD̂
−k
n .

The product SnD̂
−k
n yields a matrix where all rows are zero except of the bot-

tom one which is σn times the top row of D̂−kn . Thus the product S̃nD̃
−1
n,m−1B̃n

leads also to an n× n matrix where only the bottom row contains non-zero
entries. If we denote the jth entry of the bottom row by bj, then

bj =
m−1∑
k=1

(
k + j − 2

k − 1

)
σnβkµ−k−j−1 .

Now we can write out the remaining determinant explicitly:

det
(
D̂n + Sn − S̃nD̃−1n,m−1B̃n

)
=

∣∣∣∣∣∣∣∣∣∣∣

−µ 1 0
−µ 1

. . . . . .

0 −µ 1
b1 + σn b2 · · · bn−1 bn − µ

∣∣∣∣∣∣∣∣∣∣∣
.

We expand this determinant along the bottom row, as the thereby arising
determinants are trivial to compute. Furthermore, we treat the summands
σn and −µ, respectively, in the first and the last entry of the bottom row
separately. This procedure yields

det
(
D̂n + Sn − S̃nD̃−1n,m−1B̃n

)
=

(−µ)n + (−1)n+1σn +
n∑
j=1

m−1∑
k=1

(−1)n+j
(
k + j − 2

k − 1

)
σnβkµ−k =

(−1)n

[
µn − σn

m−1∑
k=1

(
k + n− 1

k

)
βkµ−k

]
where in the last equality we have used again the formula (20) for column
sums in Pascal’s triangle. Putting everything together, we arrive at the
following expression for the characteristic polynomial:

χ(m,n)(µ) = (−1)nm

[
µmn − σn

m−1∑
k=0

(
k + n− 1

k

)
βkµ(m−1)n−k

]
. (22)
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The eigenvalues of the propagation matrix P (n,m) are given by p times the
zeros of the polynomial χ(n,m)(µ). A first immediate observation is that 0 is an
(n−1)(m−1)-fold eigenvalue of P (m,n). Since σ and β are positive parameters,
the coefficients of the characteristic polynomial χ(m,n)(µ) show only one sign
change. Hence, by Descartes’ rule of signs[3] there exists exactly one positive
root (counted with multiplicity). One can easily derive a necessary and
sufficient condition for 1/p to be this unique positive root (meaning that 1
is an eigenvalue of P (n,m)):

s = pσn =
p

m−1∑
k=0

(
k+n−1

k

)
βkpn+k

. (23)

The polynomial χ(m,n)(−µ) exhibits m sign changes in the coefficients except
in the case that m is even and n is odd. In that case we have only m−2 sign
changes. In any case, by Descartes’ rule, we can have at most m negative
eigenvalues (again counted with multiplicities). Thus our matrix possesses at
most nm− n+ 2 real eigenvalues which implies that for n > 2 also complex
eigenvalues must exist.

Using Gershgorin’s circle theorem[4], one can deduce furthermore that all
eigenvalues lie in a disc centred at the origin of the complex plane with a
radius r given by

r = max
{
p, min {mσn, 1}, min {s, pβ}

}
. (24)

This follows immediately from the fact that all diagonal elements in the
propagation matrix P (n,m) vanish and that for each index i the minimum of
the sum of the non-diagonal elements of either row i or column i is given by
one of the above expressions.

For applying the Perron-Frobenius theorem, we must again verify first
that the matrix P (n,m) is irreducible. Thus we look at the associated directed
graph G(n,m) which has the following structure:

[3]See e. g. Henrici P. 1974 Applied and Computational Complex Analysis, Vol. 1, Wiley
(Thm. 6.2d).

[4]Ibid. (Thm. 7.8d)
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1 2 · · · n

n+ 1 n+ 2 · · · 2n

(m− 1)n+ 1 (m− 1)n+ 2 · · · mn

...
...

...

The red arrows correspond to the edges determined by the auxosporu-
lation. They all start at the same vertex because of our assumption that
auxospores always generate pristine cells and they are crucial for the strong
connectivity of the graph G(n,m). A path going through all vertices (visiting
some several times) can be given as follows:

1→ 2→ · · · → n→ n+ 1→ n+ 2→ · · · → 2n→ n→
2n+ 1→ 2n+ 2→ · · · → 3n→ 2n→ n→ 3n+ 1→ · · · →

4n→ · · · → n→ 4n+ 1→ · · · → mn→ (m− 1)n→ · · · → n→ 1 .

A loop of length n is given by 1→ 2→ · · · → n→ 1. A loop of length n+ 1
can be constructed by prepending n+ 1: n+ 1→ 1→ 2→ · · · → n→ n+ 1.
This implies that the greatest common divisor of the loop lengths can only
be 1 and our matrix is also aperiodic.

Thus all conditions of the Perron-Frobenius theorem are satisfied and we
can conclude that our matrix possesses a unique dominant eigenvalue which
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is given by the single positive real root of the characteristic polynomial. Fur-
thermore, we know from the above application of Gershgorin’s circle theorem
that a bound r for this root is given by (24). Because of our assumptions on
the parameters p, β and s, we obviously have that r ≤ 1.

Finally, we analyse in more detail what happens for the special initial
condition Xn−1,0(0) = 1 and Xi,j(0) = 0 for all other values of (i, j), i. e. for
an initial population of one pristine cell of maximal size. It follows from (15)
that such cells can only be generated via auxospores and cells of any other
combination of size and age only via cell division. The number Xi,j(t) of
cells obtained via cell division in generation t can be easily determined using
again Pascal’s triangle. After n + m − 1 generations all cells obtained this
way have disappeared. In the tth generation with 0 < t < n + m, we have
Xi,j(t) = βjpt

(
t
j

)
for n − 1 − i + j = t (and of course i < n, j < m) and

Xi,j(t) = 0 else. Thus the initial “seed” in the lower left corner of the matrix
moves like a wavefront through the matrix X with always all non-vanishing
entries in one diagonal.

If we assume that n > m, then the first auxospore formation happens in
generation n: Xn−1,0(n) = X0,0(n − 1) = 1. In the following generations we
obtain Xn−1,0(n + k) = X0,k(n + k − 1) = βkpn+k−1

(
n+k−1

k

)
for 0 ≤ k < m.

For the special case β = p = 1, the total number of auxospores having their
origin in our “seed” can be determined via a well-known identity for binomial
coefficients:

m−1∑
j=0

(
n− 1 + j

j

)
=

(
n+m− 1

m− 1

)
.

3.2 Initial cells with age memory

So far, we assumed that any cell generated by auxospores is pristine. We
now look at the hypothetical possibility that auxospores retain the age of
the cells from which they stem. In this case, we must replace A(n,m) by the
matrix

Ā(n,m) =


Dn + Sn 0
Bn Dn + Sn

. . . . . .

0 Bn Dn + Sn

 .

The directed graph Ḡ(n,m) associated with it has the following form:
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1 2 · · · n

n+ 1 n+ 2 · · · 2n

(m− 1)n+ 1 (m− 1)n+ 2 · · · mn

...
...

...

Compared to the model in the previous section, only the red edges have
changed. Because of this change, the propagation matrix is no longer irre-
ducible. Indeed, one can easily see that the vertices (m − 1)n + 1, . . . ,mn
form a subgraph in form of a loop into which no edge from the remaining
graph points. Hence it is not possible to reach these vertices from the rest
of the graph. Thus the Perron-Frobenius theorem cannot be applied and
cyclic oscillations as dominant modes may indeed occur, as observed in the
simulations. Even if the biological reality is questionable, this model variant
is an instructive counterexample to the idea that all linear models only lead
to decaying oscillations.
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4 Special Algorithms

Algorithms and simulation results for special models that require a modification of the basic 
algorithm (Supplemental Information 5) are explained here. Only the key lines are given, header 
and output modules are the same as in the full model in Supplemental Information 5.

a) Size dependent cell division probability
Here it is assumed that the proliferation probability drops continuously from larger cells to smaller 
cells. Since the roll function of the numpy library cannot used be conveniently, the size classes were
treated consecutively in a loop instead of the algorithm of Supplementary Information 5.
Here, the proliferation probability was linearly varied from nominally p/2 for the smallest size to p 
for the largest size. α was set to zero, though, and auxosporulation probability to s. Nutrient 
saturation and ageing was not applied.

Key algorithm:
p = 0.68 #maximum proliferation probability
dp=0 #for basic linear model
dp =0.5*p/(numsizes-1) #change of p with size
sigma = 1 # relative probability for auxospore formation
s=p*sigma**numsizes
beta = 1 #asymmetry between half cells
cells=np.zeros(numsizes)

""" Main loop """
cells[numsizes-1]=1   #initial cell
for gen in range (numgen+1):
    auxospores=s*cells[0]
    cells[0]=0        #alpha=0
    for i in range(numsizes-1):
        p_i=p-dp*(numsizes-1-i)
        cells[i]=beta*cells[i]+cells[i+1]
        cells[i]*=p_i
    cells[-1]*=p
    cells[-1]+=auxospores
    for i in range(numsizes):
         number[gen]+=cells[i]
         mom1[gen]+=cells[i]*i
         mom2[gen]+=cells[i]*i*i
    mom1[gen]=mom1[gen]/number[gen]
    mom2[gen]=mom2[gen]/number[gen]
    var[gen]=mom2[gen]-mom1[gen]**2 
    auxo[gen]=auxospores

Example output:



Decaying oscillations similar to results with a constant mean value of p are observed.

b) Müller delay model
Here, the smaller daughter is subjected to a delay of one generation until it can reproduce 
vegetatively or undergo auxosporulation.

Modified algorithm:
cw=np.zeros(numsizes) #resting cells
cells[numsizes-1]=1 #initial cell
for gen in range (numgen+1):
    for i in range(numsizes):
         number[gen]+=cells[i]+cw[i] #other outputs accordingly
    auxospores=s*cells[0]
    for i in range (numsizes-1):
        h=cells[i+1]     #smaller daughters
        cells[i]+=cw[i]  #back from resting phase
        cw[i]=h*p        #smaller daughters in resting phase
        cells[i]*=beta*p #here alpha=beta
    cells[-1]+=cw[-1]
    cw[-1]=auxospores
    cells[-1]*=beta*p
    auxo[gen]=auxospores

Example output:

Decaying oscillations with longer periods are observed.



c) Laney delay model
Here, the larger daughter is subjected to a delay of one generation until it can reproduce 
vegetatively. Auxosporulation is spontaneous according to presettings, but may be set manually to a 
delay. 

Modified algorithm:
cw=np.zeros(numsizes) #resting cells
cells[numsizes-1]=1 #initial cell
for gen in range (numgen+1):
    for i in range(numsizes):
         number[gen]+=cells[i]+cw[i] #other outputs accordingly
    auxospores=s*cells[0]
    for i in range(numsizes):
        cells[i],cw[i]=p*cw[i],p*cells[i] # flip to/from resting phase
    for i in range (numsizes-1):
        cells[i]+=cw[i+1] #smaller daughter
        cw[i]*=beta       #here alpha=beta
    cw[-1]*=beta
#    cw[-1]+=auxospores  #if auxospores are delayed
    cells[-1]+=auxospores #if auxospores are not delayed
    auxo[gen]=auxospores

Example output:

High-frequency oscillations with a period of 2 generations and small amplitudes have been 
observed.



d) Biparental sexual phase
Here, the auxosporulation probability depends on the cell density as in a bimolecular chemical 
reaction, with saturation per generation due to the limited number of gametes.
In the algorithm from a) the expression
    auxospores=s*cells[0]
was replaced by
    auxospores=s*cells[0]*cells[0]/(1+2*s*cells[0])
For size-invariant p (dp=0), typical results are as in the following output for p=0.56

The nonlinearity causes a shift of the equilibrium during the relaxation of the oscillations, but 
sustained oscillations have not been found.



5 Python Source Code

# -*- coding: utf-8 -*-
"""
Diatom population simulation with size and age structure
Program written by T.Fuhrmann-Lieker and N. Kubetschek
"""

"""used packages"""
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import  find_peaks, peak_widths
from scipy import signal
import scipy.optimize as opt
import matplotlib as mpl
from scipy.stats import betabinom
mpl.rcParams['agg.path.chunksize'] = 100000

""" Model definition """
numsizes = 50 # number of different cell sizes, smallest has index zero
p = 1 #proliferation probability
sigma_n = 1 # relative probability for auxospore formation
beta = 1 #asymmetry between half cells
alpha = 1 # first diagonal element

""" Nonlinearity """
gamma = 1e-3 #in Ricker model, set to zero for linear model
# for other nonlinear models see below

""" Ageing """
ageing = 1 #0: no ageing 1:ageing
lifespan = 5 #m
if ageing==0: lifespan = 1 #lifespan has no effect without ageing
juvenile = True # age of new cells reset to zero

""" Run parameters """
numgen = 100000 #100000*(numsizes+lifespan-1) # number of generations
every = numgen/5 #output every n generation

""" Output file """
filename=("sigma=1,n=50,m=5_")
paramsfile=filename+'param.txt'
paramsfitfile=filename+"Weibull_param.txt"
paramsfitfiledis=filename+"betabinom_param.txt"
param=filename+"inversebetabinom.txt"
paramstable=filename+"table.txt"
graphsfile1=filename+'1.png'
graphsfile2=filename+'2.png'
graphsfile3=filename+'3.png'
graphsfile4=filename+'4.png'
graphsfile5=filename+'5.png'
graphsfile6=filename+'6.png'
graphsfile7=filename+'7.png'
graphsfile8=filename+'8.png'
graphsfile9=filename+'9.png'
graphsfile10=filename+'10.png'

""" Plot parameters """
font = {'family' : 'sans-serif',
        'weight' : 'normal',
        'size'   : 10}



""" Predefinitions """
cells=np.zeros((numsizes,lifespan)) #histogram array coding size and age 
agedcells=np.zeros((numsizes,lifespan)) #represents ageing of actual cells
newcells=np.zeros((numsizes,lifespan))#represents new cells without ageing
distribution=np.zeros(numsizes) #histogram size only
u=np.ones(lifespan) #help array for contracting cells to distribution
size=np.arange(numsizes) #integer array for computing statistics
size2=size*size #squared integer array for computing statistics
size3=size*size2 #cubed integer array 
number=np.zeros(numgen+1) #output array cell total number
mom1=np.zeros(numgen+1) #output array average size
mom2=np.zeros(numgen+1) #output array second moment of distribution
var=np.zeros(numgen+1) #output array variance of distribution
auxo=np.zeros(numgen+1) #output array auxospores 

cells[numsizes-1,0] = 1 #initial condition: one cell of largest size, pristine
load = 0

""" Log file """
if (ageing==1):
    txt='with ageing (m={0:d})'.format(lifespan)
else:
    txt='no ageing'
if (juvenile==True):
    txt = txt+'\nnew cells juvenile'    
legendtext = 'n={0:d} sizes\np={1:.2f}   \u03c3={2:.2f}\n\u03b1={3:.2f}   \
\u03b2={4:.2f}\n\u03b3={5:.0e}\n{6:s}'\
    .format(numsizes,p,sigma_n,alpha,beta,gamma,txt)
stream=open(paramsfile,'w',encoding='utf-8')
stream.write(legendtext)
stream.close()
#p=p*np.arange(1.0,0.0,-1/numsizes) #for size-dependent p

""" Main Loop """
for gen in range (numgen+1): #loop for generations
    if (gen)%every==0: #output not for every step
        plt.figure(figsize=(3.3,2.6),dpi=300)
        plt.rc('font', **font) #formatting for plots
        plt.plot(cells.dot(u),"ob--",markersize=4,label=legendtext)
        plt.title('after {0:d} generations'.format(gen),size=10)
        plt.xlim(0,numsizes-1)
        plt.xlabel('Cell size index')
        plt.xticks(np.arange(0,numsizes,numsizes/10))
        plt.xticks(rotation=45)
        plt.ylabel('Number of cells')
        plt.legend(loc='best',fontsize='x-small',handlelength=0,
             markerscale=0,facecolor='lightgrey')
        plt.tight_layout()
        plt.savefig("sigma=1,n=50,m=5_generation{0:3d}.png".format(gen),\
                    dpi=300)
        plt.show()

#    p=0.75+0.25*(np.cos(np.pi*gen/20))**2 #zeitgeber
    distribution=cells.dot(u) #calculating size distribution
    number[gen]=np.sum(distribution) #calculating total number
    mom1[gen]=np.sum(size*distribution)/number[gen] #calculating 1st moment
    mom2[gen]=np.sum(size2*distribution)/number[gen] #calculating 2nd moment
    var[gen]=mom2[gen]-mom1[gen]**2 #calculating variance
    load=number[gen] #or mom1[gen]*number[gen] etc.
    agedcells=np.roll(cells,ageing,axis=1)
    agedcellsT=agedcells.transpose()
    agedcellsP=p*agedcellsT
    agedcells=agedcellsP.transpose()



    
        #shift array to right for ageing
    if (ageing==1): agedcells[:,0]=0 #reentered old cells removed
    agedcells[0,:]*=alpha #correction for smallest size
    agedcells[1:,:]*=beta
    newcells=np.roll(cells,-1,axis=0) #shift upwards for new smaller cells
    newcellsT=newcells.transpose()
    newcellsP=p*newcellsT
    newcells=newcellsP.transpose()
    newcells[-1,:]*=sigma_n**numsizes
    
    if (juvenile==True): #auxospore zero age
        newcells[-1,0]=np.sum(newcells[-1,:])
        newcells[-1,1:]=0
        
    auxo[gen]=np.sum(newcells[-1,:])

    # formation of next generation:    
    cells=(agedcells+newcells)*np.exp(-gamma*load) #Ricker
#    cells=(agedcells+newcells)/((1+gamma*(load))**2) #Hassell
    

""" Output plots """

plt.figure(figsize=(6.3,4.8),dpi=300)
plt.rc('font', **font) #formatting for plots
plt.subplot(2,2,1)
plt.plot(number,linewidth=0.75,label=legendtext)
plt.ylabel('Total cell number')
plt.yscale('log')
plt.xlim(0,numgen)
plt.xlabel('Generation')
plt.xticks(rotation=45)
plt.legend(loc='best',fontsize='x-small',handlelength=0,
     facecolor='lightgrey')
plt.tight_layout()

plt.subplot(2,2,2)
plt.plot(mom1,linewidth=0.75)
plt.ylabel('Mean size')
plt.yscale('linear')
plt.xlim(0,numgen)
plt.xlabel('Generation')
plt.xticks(rotation=45)
plt.tight_layout()

plt.subplot(2,2,3)
plt.plot(auxo,linewidth=0.75)
plt.ylabel('Auxospores')
plt.xlim(0,numgen)
plt.xlabel('Generation')
plt.xticks(rotation=45)
plt.tight_layout()

plt.subplot(2,2,4)
plt.plot(mom1,var,'o--',markersize=1,linewidth=0.75)
plt.ylabel('Variance')
plt.xlabel('Mean size')
plt.xticks(rotation=45)
plt.tight_layout()
plt.savefig(graphsfile1)
plt.show()

mn=np.mean(number)



xi=np.linspace(0, 1.0, numgen+1, endpoint=True)
z=np.fft.fft(number-mn)/(numgen+1)
zpow=np.absolute(z)**2
acf=np.fft.ifft(zpow)

#print('Peaks in population \n', signal.find_peaks(number)[0])
popks=signal.find_peaks(number)[0]  #find t-value maxima of cell size
dumarray=[]
for peak in popks:
    "print(peak,number[peak])"
    dumarray.append(number[peak]) 
popksheight=np.array(dumarray) #y-value of cell size maxima
print('Peaks in mean size: \n', signal.find_peaks(mom1)[0])
print('Peaks in auxospores: \n',signal.find_peaks(auxo)[0])
print('Peaks in variance: \n',signal.find_peaks(var)[0])
print('Freq\tPeriod')
pks=signal.find_peaks(zpow,height=0.005)[0]
for freq in pks:
    print('{0:.4f}\t{1:.2f}'.format(xi[freq],1/xi[freq]))
print('Peaks in acf: \n',signal.find_peaks(acf)[0])

popks_m=signal.find_peaks(number*-1)[0] #find t-value of cell size minima 
dumarray_m=[]
for peak_m in popks_m:
    dumarray_m.append(number[peak_m])
popksheight_m=np.array(dumarray_m)

plt.figure(figsize=(6.3,4.8),dpi=300)
plt.rc('font', **font) #formatting for plots
plt.subplot(2,2,1)
plt.plot(xi,zpow,linewidth=2,color='r')
plt.xlim(0,5/numsizes)
plt.tick_params(axis='both',width=2)
plt.plot(xi[pks],zpow[pks],"x")
plt.ylabel('Power spectrum')
plt.xlabel('Frequency')
plt.tight_layout()

plt.subplot(2,2,2)
plt.plot(acf/acf[0],linewidth=1.5,color='b')
plt.xlim(0,numgen/4)
plt.tick_params(axis='both',width=2)
plt.ylabel('ACF')
plt.xlabel('Generation')
plt.xticks(rotation=45)
plt.tight_layout()

plt.subplot(2,2,3)
plt.plot(var,linewidth=0.75)
plt.ylabel('Variance')
plt.xlim(0,numgen)
plt.xlabel('Generation')
plt.xticks(rotation=45)
plt.tight_layout()

plt.subplot(2,2,4)
plt.plot(popks,popksheight,'o--',markersize=1,linewidth=0.75)
plt.ylabel('Population peak')
plt.xlabel('Generation')
plt.xticks(rotation=45)
plt.tight_layout()
plt.savefig(graphsfile2)
plt.show()



"""fitting weibull distribution on maxima and minima"""

"""fitting population peak maxima vs. generation with weibull distribution:"""
t = popks[popks>(numsizes+lifespan+50)]  
y = popksheight[popks>(numsizes+lifespan+50)]
def f(t,A1,A2,tau,c):
    return A2+(A1-A2)*np.exp(-(t/tau)**c) 
(A1_,A2_,tau_,c_), _max = opt.curve_fit(f,t,y,p0=[700 , 400 , 13000 , 0.7])\
    #p0=Startparams for fitting
y_fit = f(t, A1_, A2_,tau_,c_)

"""fitting population peak minima vs. generation with weibull distribution:"""
t_m = popks_m[popks_m>20]  
y_m = popksheight_m[popks_m>20]
def f_m(t_m,A1_m,A2_m,tau_m,c_m):
    return A2_m+(A1_m-A2_m)*np.exp(-(t_m/tau_m)**c_m) 
(A1_m_,A2_m_,tau_m_,c_m_),_min=opt.curve_fit(f,t_m,y_m,p0=[180,400,22000,0.89])\
    #p0=startparams for fitting
y_m_fit = f(t_m, A1_m_, A2_m_,tau_m_,c_m_)

Fehler_max = np.sqrt(np.diag(_max))
Fehler_min = np.sqrt(np.diag(_min))
"""formatting Fit-parameters"""

legendt = 'n={0:d} sizes\nA1={1:.2f}           A2={2:.2f}\ntau={3:.2f} \
      c={4:.2f}\nA1_m={5:.2f}      A2_m={6:.2f}\ntau_m={7:.2f} \
          c_m={8:.2f}\n\n{9:s}'\
    .format(numsizes,A1_,A2_,tau_,c_,A1_m_,A2_m_,tau_m_,c_m_,txt)
stream=open(paramsfitfile,'w',encoding='utf-8')
stream.write(legendt)
stream.close()

"""plot data, fitted functions and tau"""
plt.figure(figsize=(6.3,4.8),dpi=300)
plt.rc('font', **font) #formatting for plots
plt.subplot(2,1,1)
plt.plot(number,linewidth=0.75,label=legendtext) #plot data
plt.ylabel('Total cell number')
plt.xscale("log")       #x-axis log
plt.xlabel('Generation')
plt.grid(True)
plt.xticks(rotation=45)

plt.axvline(x=tau_,color="red",linestyle="--") #plot tau for maxima fit
plt.axvline(x=tau_m_,color="green",linestyle="--") #plot tau for minima fit
plt.plot(t, y_fit,'r-') #plot fit to maxima
plt.plot(t_m,y_m_fit,'g-') #plot fit to minima
plt.legend(loc='best',fontsize='x-small',handlelength=0,
     facecolor='lightgrey')
plt.tight_layout()

"""plot maxima, minima and fits"""

plt.subplot(2,1,2)
plt.rc('font', **font) #formatting for plots
plt.plot(popks,popksheight,'o--',color="blue",markersize=0.5,linewidth=0.7,\
         label=legendt) #plot maxima data
plt.plot(popks_m,popksheight_m,"o--",color="blue",markersize=0.5,\
         linewidth=0.7) #plot minima data
plt.ylabel('Population peak')
plt.xlabel('Generation')
plt.xscale('log')
plt.grid(True)
plt.axvline(x=tau_,color="red",linestyle="--")  #plot maxima tau



plt.axvline(x=tau_m_,color="green",linestyle="--") #plot minima tau
plt.plot(t, y_fit,'r-')   #plot maxima fit
plt.plot(t_m,y_m_fit,'g')               #plot minima fit
plt.legend(loc='best',fontsize='x-small',handlelength=0,
     facecolor='lightgrey')
plt.tight_layout()
plt.savefig(graphsfile3) #save figure
plt.show()#plot figure

"""plot distribution"""
plt.figure(figsize=(3.3,2.6),dpi=300)
plt.rc('font', **font) #formatting for plots
plt.plot(size,distribution,"ob--",markersize=3,label=legendtext)
plt.title("Distribution",size=10)
plt.xlabel('cell size index')
plt.xticks(rotation=45)
plt.ylabel('Number of cells')
plt.savefig(graphsfile4)
plt.legend(loc='best',fontsize='x-small',handlelength=0,
     facecolor='lightgrey')
plt.show()

"""area standardized distribution with inverse x-axis"""
area = np.trapz(distribution,size) \
    #numeric integration, calculate area under distribution

#fit area standardized betabinominal fit with inverse x-axis
x=size*-1+(numsizes-1)
y=distribution/area
def f5(x,n,a,b,d11):
    return (1-d11)*betabinom.pmf(x,n,a,b)+d11
(n_,a_,b_,d11_),_dis=opt.curve_fit(f5,x,y,p0=[150.07,3.06,22.9,0.00011])
y_fit5=f5(x,n_,a_,b_,d11_)
Fehler_dis = np.sqrt(np.diag(_dis))
legendt_distribution ='n={0:d} sizes\na={1:.2f}      \nb={2:.2f}\nn_B={3:.2f} \
        \n{4:s}'\
    .format(numsizes,a_,b_,n_,txt)
stream=open(param,'w',encoding='utf-8')
stream.write(legendt_distribution)
stream.close()

#plot area standardized distribution with inverse x-axis and fit
plt.figure(figsize=(3.3,2.6),dpi=300)
plt.rc('font', **font) #formatting for plots
plt.plot(size*-1+(numsizes-1),distribution/area,"ob--",markersize=3,\
         label=legendt_distribution) #plot inverse distribution
plt.title("betabinominal, inverse x-Axis",size=10)
plt.xlabel('inverse cell size index')
plt.xticks(rotation=45)
plt.ylabel('Number of cells/area')
plt.plot(x,y_fit5,"g-",label="betabinominal")
plt.legend(loc='best',fontsize='x-small',handlelength=0,
     facecolor='lightgrey')
plt.savefig(graphsfile5)

"""plot area standardized distribution with betobinominal fit"""
plt.figure(figsize=(3.3,2.6),dpi=300)
plt.rc('font', **font) #formatting for plots
plt.plot(size,distribution/area,"ob--",markersize=3)
plt.plot(size,(1-d11_)*betabinom.pmf(x,n_,a_,b_)+d11_,"g-",\
         label=legendt_distribution)
plt.title("betabinominal fitted distribution",size=10)
plt.xlabel('cell size index')
plt.xticks(rotation=45)



plt.ylabel('Number of cells/area')
plt.legend(loc='best',fontsize='x-small',handlelength=0,
     facecolor='lightgrey')
plt.savefig(graphsfile6)

"""calculate distribution maxima and Full Width Half Maximum"""
r=((1-d11_)*betabinom.pmf(x,n_,a_,b_)+d11_) 
peaks, _ = find_peaks(r)
results_half = peak_widths(r, peaks, rel_height=0.5)
results_half[0]  # widths
results_full = peak_widths(r, peaks, rel_height=1)
results_full[0]
halfwidth=results_half[0]
halfwidth_=halfwidth[0]/(numsizes-1) #standardized FWHM
Maxima_x=peaks[0]/(numsizes-1) #standardized x-value of maxima

legendt_dis =  'n={0:d} sizes\na={1:.2f}      b={2:.2f}\nn_B={3:.2f} \
       d={4:.2f}\nFWHM={5:.2f} max_x={6:.2f} \n{7:s}'\
    .format(numsizes,a_,b_,n_,d11_,halfwidth_,Maxima_x,txt)
stream=open(paramsfitfiledis,'w',encoding='utf-8')
stream.write(legendt_dis)
stream.close()

"""plot fitted distribution with maxima and FWHM"""
plt.figure(figsize=(3.3,2.6),dpi=300)
plt.rc('font', **font) #formatting for plots
plt.plot(size,distribution/area,"ob--",markersize=3,label=legendt_dis)
plt.plot(r,"g-")
plt.plot(peaks, r[peaks], "rx")
plt.hlines(*results_half[1:], color="C2")
plt.hlines(*results_full[1:], color="C3")
plt.title("betabinominal fitted distribution",size=10)
plt.xlabel('cell size index')
plt.xticks(rotation=45)
plt.ylabel('Number of cells/area')
plt.legend(loc='best',fontsize='x-small',handlelength=0,
     facecolor='lightgrey')
plt.savefig(graphsfile7)

""""Print Weibull parameters"""
print("Maxima Weibull:","Gen:",numgen,"A1:",A1_,"A2:",A2_,"c:",c_,"tau:",tau_)\
    #parameters weibull maxima fit
print("Minima Weibull:","Gen:",numgen,"A1_m:",A1_m_,"A2_m:",A2_m_,"c_m:",c_m_,\
      "tau_m:",tau_m_)#parameters weibull minima fit

"""print betabinominal parameters"""
print("area:",area)#area under distribution
print("Maxima:",peaks[0]/(numsizes-1),r[peaks[0]])\
    #maxima on standardized cell size index axis
print("halfwidth:",halfwidth_) #halfwidth (FWHM)
print("betabinom:","a:",a_,"b:",b_,"n_B:",n_, "d:",d11_,"maxima_x:",Maxima_x,\
      "FWHM:",halfwidth_)#parameters distribution fit

"""Fitparameters formatting for Table"""
Table = "{0:.5f} {1:.5f} {2:.5f} {3:.5f} {4:.5f} {5:.5f} {6:.5f} {7:.5f} \
 {8:.5f} {9:.5f} {10:.5f} {11:.5f} {12:.5f} {13:.5f}"\
 .format(A1_,A2_,c_,tau_,A1_m_,A2_m_,c_m_,tau_m_,n_,a_,b_,d11_,\
 Maxima_x,halfwidth_).replace(".",",")
stream=open(paramstable,'w',encoding='utf-8')
stream.write(Table)
stream.close()



6    Table of Simulation Results

steps n m sigma alpha beta p gamma frequency period A1_max A2_max c_max tau_max A1_min A2_min c_min tau_min n_B a b d max_x FWHM
1400000 10 5 1 1 1 1 1,00E-03 673,58877 511,54808 1,01951 162,75981 348,37845 511,54808 0,93297 150,5058 11,27629 1,55522 2,37983 0,01447 0,66667 0,58435
2400000 20 5 1 1 1 1 1,00E-03 0,0422 23,71 663,10941 390,15355 0,78088 1300,45741 216,26646 390,15413 0,95888 2005,49445 29,45129 2,33121 5,90058 0,00225 0,68421 0,54912
3400000 30 5 1 1 1 1 1,00E-03 0,0296 33,82 654,2733 317,44746 0,67325 4382,55354 155,81916 317,44908 0,98197 9734,1435 57,93436 2,9644 11,78308 0,00064 0,68966 0,48987
4400000 40 5 1 1 1 1 1,00E-03 0,0228 43,87 647,97774 269,28181 0,60666 10105,92161 120,70375 269,29368 0,98459 29768,08697 97,52043 3,39699 19,22416 0,00024 0,71795 0,4432
5400000 50 5 1 1 1 1 1,00E-03 0,0186 53,9 643,04949 234,83896 0,56016 18988,09969 98,15331 234,90652 0,98259 70844,01949 147,65016 3,69038 27,50915 0,00011 0,73469 0,4096
6400000 60 5 1 1 1 1 1,00E-03 0,0156 63,92 638,8176 208,90561 0,52576 31433,88203 82,52891 209,01233 0,97933 143899,94359 207,47284 3,89644 36,19425 0,00006 0,74576 0,3846
7400000 70 5 1 1 1 1 1,00E-03 0,0135 73,93 636,82264 188,48459 0,49657 47361,3414 71,10744 188,73195 0,97621 262034,04558 276,2789 4,04719 45,04694 0,00003 0,75362 0,36533
8400000 80 5 1 1 1 1 1,00E-03 0,0119 83,94 636,64292 171,92867 0,47129 66588,97264 62,41135 172,37138 0,97349 440470,47707 353,43077 4,16148 53,93323 0,00002 0,75949 0,3498
9400000 90 5 1 1 1 1 1,00E-03 0,0106 93,95 639,20829 158,08204 0,44748 88254,05891 55,59521 158,85396 0,97172 696529,55075 438,53619 4,25085 62,80178 0,00001 0,76404 0,33712

10400000 100 5 1 1 1 1 1,00E-03 0,0096 103,95 644,8 146,18486 0,42434 111202,16023 50,14785 147,4578 0,97173 1049579,89074 531,03524 4,32335 71,6103 0,00001 0,76768 0,32639
11400000 110 5 1 1 1 1 1,00E-03 0,0088 113,96 652,6343 135,76384 0,40246 134690,69827 45,75547 137,66404 0,97503 1520619,12882 610,29119 4,38199 77,57614 0,00001 0,77064 0,31726
12400000 120 5 1 1 1 1 1,00E-03 0,0081 123,96 660,71185 126,60647 0,38337 159207,48174 42,20494 129,07244 0,98341 2130363,0761 622,10847 4,42467 74,16873 0 0,77311 0,30975
13400000 130 5 1 1 1 1 1,00E-03 0,0075 133,97 669,33412 118,60666 0,36696 184036,9883 39,31201 121,36904 0,99782 2895412,85481 1238,69249 4,42713 141,78197 0 0,77519 0,3053

14400000 140 5 1 1 1 1 1,00E-03 0,0069 143,97 672,82089 111,85744 0,35589 214484,24064 36,89872 114,33659 1,0174 3826133,61479 1342,64636 4,6677 157,49185 0 0,78417 0,28657

steps n m sigma alpha beta p gamma frequency period A1_max A2_max c_max tau_max A1_min A2_min c_min tau_min n_B a b d max_x FWHM
5000000 50 1 1 1 1 1 1,00E-03
5100000 50 2 1 1 1 1 1,00E-03 0,0196 50,98 142,84012 77,05301 0,72131 177756,89156 40,82811 77,14008 0,98904 330663,5228 133,32261 1,70961 8,79879 0,00134 0,77551 0,49691
5200000 50 3 1 1 1 1 1,00E-03 0,0192 51,95 350,27513 138,26994 0,59454 50995,12515 61,6548 138,38051 1,02376 165106,17757 145,92391 2,38989 16,36116 0,00044 0,7551 0,45991
5300000 50 4 1 1 1 1 1,00E-03 0,0189 52,93 531,15991 190,01997 0,55667 26179,92751 80,39374 190,07292 1,0067 102407,23501 150,07197 3,05838 22,87728 0,0002 0,7551 0,43076
5400000 50 5 1 1 1 1 1,00E-03 0,0186 53,9 643,04949 234,83896 0,56016 18988,09969 98,15331 234,90652 0,98259 70844,01949 147,65016 3,69038 27,50915 0,00011 0,73469 0,4096
5500000 50 6 1 1 1 1 1,00E-03 0,0182 54,87 698,39085 274,39865 0,5845 16447,10061 115,28226 274,42308 0,96016 52502,83423 141,85755 4,27501 30,3442 0,00007 0,71429 0,39532
5600000 50 7 1 1 1 1 1,00E-03 0,0179 55,84 721,6623 309,60341 0,61789 15418,16921 131,99416 309,62183 0,94092 40798,01459 134,73997 4,80664 31,75206 0,00005 0,71429 0,38595
5700000 50 8 1 1 1 1 1,00E-03 0,0176 56,8 729,65032 341,22332 0,65499 14897,307 148,40269 341,22421 0,92439 32812,42793 127,27856 5,28129 32,07314 0,00004 0,69388 0,37874
5800000 50 9 1 1 1 1 1,00E-03 0,0173 57,76 731,1647 369,75621 0,69219 14523,21227 164,59976 369,7562 0,91026 27082,46737 119,96124 5,69624 31,59297 0,00003 0,67347 0,37479
5900000 50 10 1 1 1 1 1,00E-03 0,017 58,72 729,78327 395,63871 0,7288 14193,74563 180,58663 395,63788 0,89777 22800,76411 113,00605 6,04959 30,53321 0,00003 0,67347 0,37222
6000000 50 11 1 1 1 1 1,00E-03 0,0168 59,68 727,23449 419,20426 0,76441 13870,15864 196,41767 419,20336 0,88661 19501,52035 106,51101 6,34038 29,06976 0,00003 0,65306 0,37152
6100000 50 12 1 1 1 1 1,00E-03 0,0165 60,63 724,31645 440,72637 0,7989 13539,8433 212,05143 440,72512 0,87619 16885,09274 100,51962 6,5688 27,34487 0,00003 0,65306 0,37188
6200000 50 13 1 1 1 1 1,00E-03 0,0162 61,58 721,37895 460,43221 0,83231 13201,42734 227,4647 460,4313 0,86621 14762,73135 95,03546 6,73594 25,46822 0,00003 0,63265 0,37333
6300000 50 14 1 1 1 1 1,00E-03 0,016 62,53 718,57804 478,51476 0,86473 12855,96253 242,67996 478,51381 0,85658 13010,42278 90,03932 6,84374 23,52283 0,00003 0,63265 0,37573
6400000 50 15 1 1 1 1 1,00E-03 0,0158 63,48 716,00537 495,1379 0,89617 12503,3295 257,66435 495,13729 0,84701 11537,93712 85,51018 6,89516 21,57468 0,00003 0,61224 0,37877
6500000 50 16 1 1 1 1 1,00E-03 0,0155 64,42 713,648 510,44415 0,92682 12146,9367 272,42297 510,44337 0,8375 10284,51065 81,40397 6,89336 19,66541 0,00003 0,61224 0,38282
6600000 50 17 1 1 1 1 1,00E-03 0,0153 65,36 711,52681 524,55626 0,95666 11786,74757 286,95236 524,55576 0,82794 9204,56359 77,70229 6,84295 17,83486 0,00003 0,59184 0,3873
6700000 50 18 1 1 1 1 1,00E-03 0,0151 66,3 709,62018 537,58285 0,98579 11424,31078 301,05459 537,58254 0,81765 8254,89558 74,36729 6,74838 16,10379 0,00004 0,59184 0,39269
6800000 50 19 1 1 1 1 1,00E-03 0,0149 67,23 707,91556 549,61961 1,01425 11060,07093 314,75939 549,61913 0,80673 7414,11007 71,3679 6,61459 14,48683 0,00004 0,57143 0,39864
6900000 50 20 1 1 1 1 1,00E-03 0,0147 68,16 706,39304 560,75037 1,04205 10694,88862 328,35735 560,75023 0,79613 6676,61524 68,67349 6,44664 12,99146 0,00005 0,57143 0,40522

3000000 50 30 1 1 1 1 1,00E-03 0,013 77,18 697,80993 635,63482 1,28654 7133,55599 438,47151 635,63491 0,65409 2145,72631 53,35413 3,91389 4,10145 0,00013 0,46939 0,51325
3000000 50 40 1 1 1 1 1,00E-03 694,95023 670,46444 1,45894 4223,23986 456,33041 670,46454 0,43503 279,55833 49,19227 1,92489 1,6332 0,00021 0,40816 0,69443

steps n m sigma alpha beta p gamma frequency period A1_max A2_max c_max tau_max A1_min A2_min c_min tau_min n_B a b d max_x FWHM
5400000 50 5 1 1 1,9 1 1,00E-03 0,0185 53,95 1142,03379 280,27474 0,4496 15607,5878 97,62499 280,89096 0,97711 125789,49125 244,28094 4,23251 65,83473 0,00004 0,77551 0,3382
3000000 50 5 1 1 1,8 1 1,00E-03 0,0185 53,94 1088,73326 276,44167 0,45743 15934,64935 97,71385 276,98699 0,97774 119986,93975 234,32293 4,19662 61,52048 0,00004 0,77551 0,34355
3000000 50 5 1 1 1,7 1 1,00E-03 0,0185 53,94 1035,0248 272,38566 0,46592 16270,73089 97,79869 272,86449 0,97837 114120,62206 224,12781 4,15684 57,18897 0,00004 0,77551 0,34938
3000000 50 5 1 1 1,6 1 1,00E-03 0,0185 53,94 980,63432 268,08153 0,47527 16628,12941 97,88051 268,49768 0,97903 108187,94621 213,75459 4,11259 52,86427 0,00005 0,7551 0,35513
3000000 50 5 1 1 1,5 1 1,00E-03 0,0185 53,93 925,52595 263,4987 0,48569 17010,42161 97,95798 263,85598 0,97971 102183,89637 203,18215 4,06306 48,54767 0,00005 0,7551 0,36167
3000000 50 5 1 1 1,4 1 1,00E-03 0,0185 53,93 869,36839 258,60093 0,49754 17438,71285 98,02867 258,90265 0,9804 96102,31194 192,41112 4,00722 44,24776 0,00006 0,7551 0,36896
3000000 50 5 1 1 1,3 1 1,00E-03 0,0185 53,92 812,63426 253,34237 0,51089 17889,23737 98,08776 253,59306 0,98106 89934,94821 181,49895 3,94396 39,98934 0,00007 0,7551 0,37751
3000000 50 5 1 1 1,2 1 1,00E-03 0,0185 53,92 756,69091 247,66974 0,52501 18260,1194 98,13281 247,87252 0,98169 83675,63763 170,36269 3,87148 35,76125 0,00008 0,73469 0,38695
3000000 50 5 1 1 1,1 1 1,00E-03 0,0186 53,91 700,94251 241,50536 0,54035 18566,98679 98,16069 241,67153 0,98228 77316,25965 159,07563 3,78786 31,59539 0,00009 0,73469 0,39731
5400000 50 5 1 1 1 1 1,00E-03 0,0186 53,9 643,04949 234,83896 0,56016 18988,09969 98,15331 234,90652 0,98259 70844,01949 147,65016 3,69038 27,50915 0,00011 0,73469 0,4096



3000000 50 5 1 1 0,9 1 1,00E-03 0,0186 53,89 587,05392 227,36817 0,5791 19151,33739 98,12024 227,45362 0,98298 64249,65865 136,05411 3,57524 23,51284 0,00013 0,71429 0,42428
3000000 50 5 1 1 0,8 1 1,00E-03 0,0186 53,88 529,71847 219,11368 0,60273 19301,72264 98,02618 219,16973 0,98291 57517,57092 124,36337 3,43761 19,6455 0,00016 0,71429 0,44129
3000000 50 5 1 1 0,7 1 1,00E-03 0,0186 53,86 471,81925 209,7879 0,63035 19325,78835 97,81053 209,84253 0,98188 50609,36286 112,59681 3,27049 15,93744 0,00021 0,71429 0,46135
3000000 50 5 1 1 0,6 1 1,00E-03 0,0186 53,84 413,07223 199,14945 0,66458 19173,85018 97,50249 199,17361 0,98022 43553,80394 100,80977 3,06402 12,43343 0,00027 0,69388 0,4847
3000000 50 5 1 1 0,5 1 1,00E-03 0,0186 53,81 353,45039 186,70579 0,7071 18738,48947 97,00264 186,71393 0,97703 36320,10323 89,10361 2,80412 9,19535 0,00037 0,67347 0,51508
3000000 50 5 1 1 0,4 1 1,00E-03 0,0186 53,76 292,71739 171,74375 0,76166 17858,12368 96,1523 171,74887 0,97069 28897,49941 77,64861 2,47092 6,30765 0,00051 0,65306 0,55602
3000000 50 5 1 1 0,3 1 1,00E-03 0,0186 53,68 230,31633 153,03305 0,83631 16308,66951 94,51816 153,03388 0,95623 21264,97003 66,9232 2,04207 3,90645 0,00071 0,65306 0,61516
3000000 50 5 1 1 0,2 1 1,00E-03 0,0187 53,54 163,40172 128,13707 1,01609 14854,11735 90,96526 128,13706 0,92507 13552,98238 58,82231 1,5289 2,22956 0,00102 0,65306 0,70391

steps n m sigma alpha beta p gamma frequency period A1_max A2_max c_max tau_max A1_min A2_min c_min tau_min n_B a b d max_x FWHM
3000000 50 5 0,9 1 1 1 1,00E-03 0,0185 53,91 257,3157 137,15403 0,75974 49295,85243 -13,19752 137,2569 0,63235 33694,17628 213,86534 4,75028 27,89301 0,00227 0,46939 0,48774
3000000 50 5 0,95 1 1 1 1,00E-03 0,0186 53,9 442,50034 187,24388 0,60386 25719,87452 38,77223 187,47401 0,66342 42038,80783 216,56587 4,09108 34,92282 0,00053 0,63265 0,48049
5400000 50 5 1 1 1 1 1,00E-03 0,0186 53,9 643,04949 234,83896 0,56016 18988,09969 98,15331 234,90652 0,98259 70844,01949 147,65016 3,69038 27,50915 0,00011 0,73469 0,4096
3000000 50 5 1,05 1 1 1 1,00E-03 0,0186 53,89 937,51798 279,94022 0,48856 11436,04329 101,1044 280,15373 0,97256 63692,35555 96,11041 3,31783 19,48602 0,00007 0,79592 0,33853
3000000 50 5 1,1 1 1 1 1,00E-03 0,0186 53,89 2187,93228 322,71931 0,32642 1613,46467 109,56781 323,282 1,00269 59669,13251 64,26664 2,93947 13,47905 0,00011 0,83673 0,2847
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