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Abstract

The unique size reduction and restitution cycle of diatoms requires special
attention in modeling their population dynamics. Matrix models based on dis-
tinct size classes are generally necessary to fully address periodic changes in
cell size distribution and understand infra-annual algae blooms. Here, different
approaches for such size-resolved models are compared, with their conclusions
about oscillatory behavior in diatom populations. Particularly, the coupling of
model parameters with environmental signals that may act as zeitgebers are
discussed.

1 Introduction
The simulation of ecosystems by population dynamics of contained species has a
long tradition[11]. Normally, coupled differential equations are used that describe
the interdependence of species or the reaction to changing environmental conditions.
Mostly, a species is considered as a single compartment characterized by the number
of individuals, but in some models age classes such as juvenile, adult, and senescent
are distinguished[44]. This idea can be transferred for treating different size classes
such as in diatoms. Among unicellular organisms, diatoms are unique due to their size
reduction-restitution life cycle that defines an intrinsic long-period rhythm, described
by William Lewis as “sex clock”[46]. For modeling this means that the size variance
has to be taken into account if real scenarios have to be described properly. Only
a few contributions in literature have been devoted to treating this issue in some
mathematical depth, despite the ecological significance of diatoms for carbon fixation
and therefore the world climate[7] [71]. This review will examine the very different
approaches for size-resolved population dynamics described in literature. After an
introduction of the size reduction-restitution cycle and the important parameters
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that need to be considered in models, we discuss experimentally detected deviations
of the simple scheme. For instance, we will meet asynchronization of the two halves
that changes the growth pattern and the timing of the proliferation process. Having
set the biological background behind modeling, we introduce the basic mathematical
concepts that are needed for understanding the various models. The main section is
devoted to a detailed description of the different modeling approaches. Finally, some
conclusions are made concerning the dependence of model parameters and thus the
internal timing on external variables reflecting fluctuations in the environment.

2 The MacDonald–Pfitzer rule and the need for ma-
trix descriptions

The size-diminution and restitution life cycle was first described independently by
John MacDonald and Ernst Pfitzer in 1869[47] [60]. The mechanism is a consequence
of the solid silica frustule of diatoms which prevents a growth in diameter if once
formed. The two cell halves of the frustule overlap like the halves of a Petri dish. The
larger half is denoted as epitheca, the smaller one as hypotheca. When a cell divides
vegetatively, the missing half is replenished inside, thus forming a new hypotheca in
each of the parental thecae. This leads to a decreasing mean cell size of the diatom
population. On the other hand, the cell size distribution increases since the individuals
inheriting the larger epitheca also continue to divide. If the generation time for all
individuals is equal and no cell is removed, a distribution of size classes according to
Pascal’s triangle is formed. If cells become too small for further vegetative division
they change from mitosis to meiosis and switch to sexual reproduction. There are
variants of sexual reproduction involving gametes and auxospores (see below) but at
the end of the sexual process new initial cells of large size are generated, starting
the vegetative process from the beginning (Fig. 1). In field studies, different cohorts
derived from initial cells that were formed at different times (in different years) can
be clearly distinguished which demonstrates the cyclic character of the process in
natural populations. In order to keep the sizes within each cohort together, however,
there seem to be mechanisms counteracting the broadening of the size distributions.
We will discuss this important point further below.

It should have become evident that the state and further evolution of a diatom
population strongly depends on the size distribution. For each individual cell, the
probability between further vegetative division or sexual reproduction is decoded in
its size. Conveniently, distinct size classes can be defined for mathematical modeling,
so the state of the population is expressed as a vector. The transformation over time
can then be implemented as a matrix acting on this vector and changing the cell size
distribution. Different transition or retention parameters in this matrix represent
by asymmetric division, replenishment of initial cells, and cell death. This bears
some resemblance to age classes in other population models but the number of size
classes needed here is typically much larger. So also in mathematical modeling diatom
populations turn out to be unique and justify a separate treatment as in this review.
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Figure 1: a) The diatom division scheme according to the MacDonald–Pfitzer rule.
From left to right: vegetative process, from right to left: closing the life cycle by
sexual reproduction. b) Change of size distribution from generation to generation
according to Pascal’s triangle.

3 Cardinal points and cycle lengths

3.1 Considered cardinal parameters

For the different sizes diatom cells may attain in the course of their life cycle, so-
called cardinal points were first defined by L. Geitler of the University of Vienna.
The cardinal points constitute the most important parameters needed for any size-
resolved modeling of the diatom life cycle. These four cardinal points are:

(i) the size of the initial cells,f

(ii) the upper sexual size threshold, i.e. the upper size limit below which cells are
able to produce gametes for sexual reproduction,

(iii) a lower sexual size threshold, i.e. a lower size limit below which cells are not
able any more to produce gametes,

(iv) a final minimum size, at which cells are not able to further divide and eventually
die.

That means that the cells of a culture can be divided into three subpopulations,
limited by the respective cardinal points: Large cells that proliferate only by veg-
etative division between (i) and (ii), medium-sized cells that are capable of both
vegetative and sexual reproduction between (ii) and (iii), and small cells between (iii)
and (iv) that divide vegetatively until they are not viable any more. This last cate-
gory is not relevant for closing the life cycle by the sexual phase, and therefore may
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be neglected in studies aiming at cycle lengths. On the other hand, they contribute
to the size distribution of a population as well and have to be taken into account
when analyzing experimental distributions.

Since there are many cell divisions within each of these categories, the incremental
size diminution in one division step, or alternatively the total number of steps between
two cardinal points is a further parameter that has to be specified. It should be
mentioned that size could be defined by diameter of centric diatoms, respectively the
long axis in pennate diatoms, or by volume. Typically, lengths are easier detectable by
microscope, whereas other methods like counting by electrical conductivity (Coulter
counter) address rather the volume[58], or even the surface (fluorescence staining of
cell walls)[61]. The scaling between length and volume is not always clear, since it
depends on the species[5]. In long pennate diatoms like Synedra tabulata, length and
volume are directly proportional[16].

These parameters mentioned so far affect only the sizes. For describing temporal
events, the time between two mitotic cell divisions τ is an important parameter. It
surely depends on environmental conditions and may be subjected to a certain distri-
bution function (see also section 4 for a discussion on asymmetry)[1] [52]. Typically,
this time has to be derived from the growth rate from counting of cells or turbidimetric
measurements. The cell division rate, based on binary logarithm, can be calculated
from two population numbers X1 and X2 with a time leap ∆t by

µD “ τ´1 “
logpX2{X1q

∆t log 2
(1)

and is obtained with higher reliability by fitting logX versus time. Attention should
be paid to the fact that sometimes the rate is given as growth rate µ “ µD lnp2q on
base of natural logarithms.

The sexual process involving gametogenesis and auxosporulation takes a certain
amount of time that may be modeled as a multiple of τ .

3.2 Factors determining cardinal points

The formation of initial cells shall be considered as first step in the cycle. For sim-
plicity in modeling, it may be reasonable to assume a certain fixed size for the initial
cells. However, it can be expected that the size of initial cells is subjected to some
distribution. For example, Bethge reported a ratio of 2-4 for initial cell size relative to
the parental cell size for species in the Melosira genus[9]. For string-forming species
of the genus Aulacoseira, a plot of initial cell diameter versus maternal filament diam-
eter revealed an almost linear dependence, with a ratio of sizes between initial cells
and their parental cells in the range 2-3[23]. More recently, Davidovich added further
data on linear dependence for Nitzschia lanceolata, Synedra tabulata and Licmophora
ehrenbergii, finding a ratio between maximum and minimum size of initial cells of 1.5
to 2[16].

In the vegetative phase, the timing for the sequence of generations follows the
cell cycle. The cell cycle is controlled by some checkpoints that ensure that the right
conditions for proliferation are met[34]. For instance, nutrients and silica required for
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ostrearia.png

Figure 2: Temperature dependence on the doubling rate for Haslea ostrearia. Strains
were adapted to 10°C and 26°C and then exposed to different temperatures. Con-
structed with data from[21].

the formation of a new theca have to be available. Notably, there is also a checkpoint
for blue light that is sensed by an aureochrome photoreceptor[36]. This enables the
synchronization of the cell cycle with the diurnal rhythm and can also be applied
to synchronize cell cultures, as demonstrated for Seminavis robusta [28] and Phaeo-
dactylum tricornutum[35]. Davidovich et al. investigated the influence of temperature
on the rate of cell divisions for Haslea ostrearia and Haslea karadagensis. Data are
given in figure 2 and show division times between two days at low and one day at
higher temperature[21]. Williams characterized the influence of salinity for 14 species
of pennate diatoms and measured maximum rates between 0.6 and 3.2 divisions/day
that were found to correlate with cell volume and area/volume ratio[74]. Much slower
rates are reported for Stephanodiscus neoastreaea in an northern Irish lake with only
3-7 divisions in the spring growing period[37].

The checkpoint for the switch to sexual reproduction is one of the mysteries that
is not fully understood. By artificially altering the cell size using nutritional as well
as operative methods, Von Stosch at the University of Marburg was able to show in
the 1960’s that this threshold is indeed determined by the cell size and not by the
age of a population[68] [49]. For Stephanodiscus neoastreaea, nitrate was found to be
a prerequisite to start sexual reproduction in fall[37]. For Seminavis robusta, it was
recently found that the light quality (color) also influences sexual reproduction[10].

Typically, new initial cells are formed within auxospores. The kinetics of aux-
ospore formation depends on the detailed mechanism of sexual reproduction of which a
large variety is known[39] [13]. Some bypasses exist that allow single cells to form new
enlarged initial cells without the need of combining genetic material stemming from
another cell. One example is vegetative enlargement[68], another is automixis in which
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gametes produced in one parental cell immediately fuse to form the auxospore[13]. In
these uniparental cases there is no need to consider encounter dynamics of gametes by
diffusion. In biparental auxosporulation we distinguish between homothallic strains
in which one clonal strain produces two types of gametes, and heterothallic strains,
in which different mating types exist in separate strains. Since gametes from differ-
ent parents have to combine it is no wonder that the success rate of auxosporulation
depends on the cell density[64].

The lower limit for sexual reproduction is not described for all diatom species. If
such a lower limit exists, the life cycle is called a “closed cycle”, if not, it is referred
to as an “open cycle”[39].

Finally, aging and natural cell death shall be discussed. Obviously, there is some
difficulty to maintain the silica pattern with possibly self-organized pores in very
small frustules. Also, there would be a crowding of organelles, so it is understandable
that there is some size limit for viability, and very small cells will eventually die.
Jewson addressed the important question whether some aging exists in the vegetative
phase of larger cells i.e. whether there is a maximum number of divisions an epitheca
can undergo or whether the cells will leave the population after a certain number of
smaller offspring[37] [38]. For Stephanodiscus neoastraea he deduced a lifespan of six
to eight generations and extrapolated a similar value for Aulacoseira subarctica. By
the removal of older cells from the scheme, an asymmetry is induced that changes
the size-resolved population dynamics. The occurrence of such asymmetries and
consequences for modeling will be further treated in section 4.

3.3 Experimental data

Experimental data normally stem from investigations of the size distribution of nat-
ural diatom populations in some time intervals. Such data may have some gaps due
to the organization of the field study and are influenced by strong weather fluctua-
tions and singular natural events. Nevertheless, they give important insight into the
cycles of real ecosystems. Notable studies include the investigation of populations
in lakes, such as Tabellaria fenestrata and Aulacoseira (Melosira) islandica in the
Zürichsee[56], Nitzschia sigmoidea in Blackford Pond[48], and Aulacoseira subarctica
and Stephanodiscus sp. in Lough Neagh[37] [38]. Investigations of sediments that
made the assignment of distinct years possible might open a window in the past[56].
Only in some cases in which cultures can be held successfully in the laboratory, pa-
rameter data under controlled conditions are available. The most conspicuous finding
of these investigations are multimodal distributions of cell sizes which are used for
calculating life cycle length, or more precisely the periodic occurrence of initializa-
tions events by large cells. For plotting and detection of deviations from Gaussian
distributions, Rankit plots[59] have been favorably used as visualization tool[48]. In
table 1, some proposals for life cycle lengths are compiled. Interpretation of data
might be ambiguous, so some data have been reanalyzed later. For example, Jew-
son suggested a shorter life cycle for Aulacoseira islandica than the one originally
reported by Nipkow, whereas for Tabellaria fenestrata Mann suggested a longer life
cycle. For Aulacoseira subarctica he proposed a theoretical maximum cycle of 15 years
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corresponding to over 100 divisions, while the upper sexual size threshold is already
reached after 4-6 years.

Species Cycle length Size range Ref.
Seminavis robusta ă1 year 25(50)–73 µm [12] [14]
Eucampia zodiacus „1 year 10(15)–80 µm [57]
Cocconeis scutellum 1 year 15–49 µm [50]
Fragilariopsis kerguelensis „1 year 10(31)–76 µm [42][4]
Pseudo-nitzschia delicatissima ă1 year 8(80)–94 µm [2]
Pseudo-nitzschia multistriata 2 years 30(55)–82 µm [15]
Tabularia fasciculata 1–1.5 years 10(113)–248 µm [19]
Haslea karadagensis ă1–2 years 22(52)–97 µm [20]
Stephanodiscus sp. 1–2 years 25–66 µm [62]
Haslea ostrearia 1–2.5 years* 17(68)–140 µm [18]
Melosira helvetica 3–4 years 4–31 µm [9]
Pseudo-nitzschia australis 2 years 75(121)–170 µm [33]
Pseudo-nitzschia pungens 3 years 75(115)–185 µm [33]
Pseudo-nitzschia multiseries 3 years 39–146 µm [17]
Chaetoceros dichaeta ą3 years* 6(15)–44 µm [5]
Stephanodiscus sp. 3–4 years 20(34)–74 µm [37]
Coscinodiscus wailesii ă4 years* 90(200)–350 µm [55]
Nitzschia sigmoidea ą5 years 200(300)–424 µm [48]
Tabellaria fenestrata 2–8 years 40(40)–90 µm [56] [48]
Aulacoseira subarctica 4–6 years 3(8)–14 µm [38]
Aulacoseira islandica 40 years 4–22 µm [56] [48]

Table 1: Reported life cycles and cardinal points of selected species. Cycle lengths
marked with a star are rough estimates based on the reported size diminution speeds
and the size range. The size in brackets marks the size at which cells were observed
to become sexually inducible.

4 Asymmetry, delay and Fibonacci growth

4.1 The Müller model

Since the introduction of the MacDonald–Pfitzer rule in 1869, it has been evident
that the theory cannot represent full reality. The rule is commonly used as a sim-
ple description of the diatoms life cycles but over time diatomists have repeatedly
disputed its simplicity. Some have specifically rejected the idea that diatoms divide
uniformly and would thus generate a binomial distribution of cell sizes.

In 1883, Otto Müller proposed an approach to the cell division scheme which in-
volves a delay [53]. He defined a process of simultaneous division as the vegetative
cell division in which cells divide into two daughter cells which then in turn continue
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to divide simultaneously again. Müller, however, found that this was not in agree-
ment with his observations of some diatom species. Instead, if the larger or older
daughter cells would divide first and the younger daughter would delay division by
one generation, his findings could be explained. Furthermore, a simultaneous division
would lead to a large number of auxospores at one point. As this cannot be found in
nature, a delay of some kind should slow down the formation of auxospores and the
progression of the size reduction.

The diatom Ellerbeckia (Melosira) arenaria possesses particular modifications of
the girdle band that allow the deduction of the age of the cells and thecae. Müller
first found evidence of a delay when investigating diatoms of the genus Terpsinoë.
These chain forming diatoms often form groups of three (triplets) hinting at a faster
division of one cell. Lacking the proper tools to assign the age of the thecae, he
could not prove his assumption. However, in Ellerbeckia arenaria the girdle bands
can indicate the age of the theca. Because of its division mechanism, this species has
girdle bands only on one theca opposite to a thickening [54] or a step [38] on the next
cell (inset B Fig. 3). During division, a new girdle band is formed and smaller thecae
are enclosed. Again, the girdle band ends at a step which is formed on the adjacent
new valve of the next cell (inset A Fig. 3). Hence, two parameters can be assigned
to each theca in the chain, thereby creating four types: the existence or absence of a
step and whether the thecae are enclosed or free. Every cell is then found to be part
of a twin or triplet group which has free thecae as its boundary. If the knowledge
about the parameter sequence in the chain and the grouping of the cells is combined,
the age of each theca can be deduced and the formation of the chain could be traced
back until the initial cell. Applying this method, Müller concluded that the younger
cell which contains the smaller half of the mother cell and a fresh even smaller theca,
must delay its division for one generation. He hypothesised that the older daughter
would inherit richer material, by quality or quantity, from their mother.

In 1884, following up on his first publication, Müller presented a deeper analysis
of the composition of the Ellerbeckia arenaria chains[54]. As the motivation of the
analysis was to find the influence of the delay on auxosporulation, it is important
to understand the number of cells and their corresponding sizes first. The delayed
division scheme generates a chain whose total number of individuals follows the Fi-
bonacci sequence (Fig. 3). The Fibonacci sequence dominates the division process
in all aspects of single theca generation as well as frustule grouping. When transi-
tioning into the next generation, a twin of an older and a younger cell produces one
additional cell which turns it into a triplet with a fresh triplet-twin and an undivided
triplet cell. A triplet reproduces another triplet from the triplet-twin and a twin from
the triplet cell. After the first few divisions, this leads to Fibonacci growth of twin
and triplet numbers. Furthermore, Fibonacci growth also occurs with the numbers
of the four different theca types. Although, in this case there is one exception for
the initial cell which can cause a variation by two thecae depending on the initial
cells composition. After establishing the total number of cells, the number of cells
in a certain size after a random number of generations are essential since the cells
of the smallest size can auxosporulate. These numbers are obtained with arithmetic
sequences of the corresponding order. Thus, the onset of auxosporulation in the nth
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generation in a simultaneous division scheme is delayed to the 2n ` 1th generation.
However, the numbers of auxospores that are produced from this generation on are
the same as with simultaneous division.

Further investigation of the chain, provides insights into the symmetry of the
chains. Here, symmetry is defined as the symmetry of the arrangement of the four
types of theca from each end of the chain. The individuals can be grouped in different
levels. The first level would be the twins and triplets which in turn can be regrouped
on multiple levels. The analysis and breakdown of this grouping leads to three key
findings. Firstly, the previous elements of the chain are always reproduced until the
point where the chain ended in the previous generation. Secondly, the entire chain
is symmetrical with the exception of up to four cells in the center and the outmost
thecae. Lastly, the chain can be broken down into smaller groups which are in turn
symmetrical except for their outmost thecae. The length of these groups is also
derived from Fibonacci growth.

4.2 The Laney model

The previous section discussed asymmetric division and favoring of the older daugh-
ters. On the contrary, Laney et al. noting that much recent research has been
focusing on phenotypic differences of daughter cells in diatoms, but not on the tim-
ing of frustule inheritance, just found the opposite, namely favoring of the younger
daughters[43].

Laney et al. investigated the division rates and cell volume of Ditylum brightwellii
using a modern time-lapse imaging approach[43]. The pictures were taken at low
density using infrared microscopy. Because of higher density after only few divisions
and close proximity of the cells the analysis was mostly performed manually and
therefore had to be limited. Nevertheless, daughters inheriting the hypotheca were
found to need about 4 % less total light dosage to divide. The smaller cells also
received more of the mother’s cytoplasm. Interestingly, the division speed did not
seem to accumulate over multiple generations. Nonetheless, results were comparable
to observations in E. coli which suggested a common behavior across species. A
linear regression of the received additional cytoplasm and the light dosage supported
a relationship between the volume of cytoplasm and division rate as well. Moreover,
the analysis indicated that the younger daughters have an advantage independent
of cytoplasm volume. This would be in agreement with the previously introduced
theory that the quality of inherited material is better. Specifically, it is assumed that
the smaller daughter receives material that is fresh and received less oxidative stress.
Thus, the chance for success in sexual reproduction at the end of a size-diminution
cycle would be higher.

The authors propose that the asymmetrical division of diatoms could also play a
role in tuning the diatom sex clock. This would be an important modeling parameter
for the clock besides the cardinal points that is depending on the diatom life cycle.
Ecologically, a faster division of smaller cells would lead to more copies of a mother
cells genome and permit more of its progeny to reach sexual reproduction. Müller had
already concluded that delays in cell division fundamentally alter the growth speed
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Figure 3: The modified MacDonald–Pfitzer scheme of Ellerbeckia (Melosira) arenaria
according to Müller. New thecae are enclosed by a girdle band in the first generation
which is faced by a thickening or step in the valve of the next cell (A). Jewson
described the formation of this peculiar arrangement more recently[38]. The reference
point for the size of the theca when considering the MacDonald–Pfitzer rule is the
thickening of the valve if there is one (B). In Müller’s division pattern nascent cells
always skip one generation before dividing again. This leads to Fibonacci growth and
formation of twin and triplet groups.
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and size distribution of a population. Laney et al. remark that it would be essential to
further investigate the influence of different division speeds and subsequently improve
modeling approaches. As the delays in both cases are assigned to different halves, a
wide spectrum of systematic asymmetry in diatom division is suggested.

5 Continuous vs. discrete modeling
Population dynamics represents a typical evolution problem: we are interested in
the evolution of certain quantities over time. A fundamental question in the design
of mathematical models is then whether time is considered as a continuous or as a
discrete quantity, as these options lead to rather different type of equations. A general
overview over various mathematical approaches to population dynamics can be found
in the textbook[11].

In everyday life, we perceive time as a continuous quantity, i. e. mathematically it
is identified with the real numbers R. In typical models, we then also treat quantities
like the number X of diatoms in a given population as real numbers, although they
are actually integers. Since X is usually a rather large number, this does not lead to
relevant errors and allows us to consider X as a function R Ñ R for which we can
derive differential equations. Some classical introductions into their basic theory are
the books[32] [70] [73].

In population dynamics, it is often also natural to think in “generations”: one
combines all births within a certain time span into one generation and enumerates
the different generations, i. e. mathematically time is now identified with the integers
Z. In principle, this makes it also natural to describe X by integers, i. e. as a function
Z Ñ Z. However, most models contain real parameters like birth rates or survival
probabilities and thus one must considerX as a real-valued function ZÑ R satisfying
difference equations. Here, some typical introductory textbooks are[24] [40] [63].

In practice, one usually deals with systems and not with scalar equations. Thus,
one deals with vector-valued functions X from either R or Z to Rn. The meaning of
the components of X can be rather different. They may represent different species or
compartments, but vectors also naturally appear in age structured (Leslie[44]) models
or in the case of diatoms in size structured models. If one uses a model with both age
and size structure, then it may be useful to consider X actually as a matrix-valued
function from R or Z to Rmˆn. For notational simplicity, we will in this section
consider such models still as vector-valued with vectors in Rmn.

In this section, we will briefly survey some basic mathematical facts for both
types of equations with an emphasis on linear systems where much information can
be gleaned with the help of elementary linear algebra. This concerns in particular
the stability of equilibria and the existence of periodic solutions (i. e. oscillations).
In many situations, it is relevant for the understanding of a linear system to have
information about the dominant eigenvalue of the system matrix. In the context of
population dynamics, such information can often be obtained rather easily with the
help of the Perron–Frobenius Theorem. Therefore, we will also briefly discuss this
theorem and its application.
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5.1 Discrete dynamical systems

Let X be a function ZÑ R
n whose values are n-dimensional vectors decoding differ-

ent species or size classes. Alternatively, we may consider X as an infinite sequence
of vectors

`

. . . ,Xp´2q,Xp´1q,Xp0q,Xp1q,Xp2q, . . .
˘

.

As in evolutionary problems one is typically only interested in the future, one considers
X only from some starting index n0 on, which is usually chosen to be 0. Hence we will
consider from now X as a function N0 Ñ R

n or as a sequence
`

Xp0q,Xp1q,Xp2q, . . .
˘

.
An (autonomous) first-order system of difference equations for X is of the form

Xpt` 1q “ f
`

Xptq
˘

(2)

with some function f : Rn Ñ R
n. Equation (2) may be considered as a rule describ-

ing the population in generation t ` 1, if the population in generation t is known.
Consequently, it is common to consider initial value problems : prescribing the val-
ues Xp0q “ X0 P R

n, the rule (2) determines uniquely the population Xptq in all
generations t ą 0.

An equilibrium (or steady state) solution of an autonomous system is defined by
a vector V P Rn such that fpVq “ V (such vectors are also called fixed points of
the function f). Indeed, in this case the constant function Xptq “ V for all t P N0

obviously solves (2). A periodic solution with period ` (for some ` ą 1) is defined by
a vector V P Rn such that f `pVq “ f

`

fp¨ ¨ ¨ pfpVqqq
˘

“ V and f jpVq ‰ V for any
exponent 1 ď j ă `. Indeed, setting Xp0q “ V, Xp1q “ fpVq, Xp2q “ f2pVq, . . . ,
Xp`´ 1q “ f `´1pV q, we can construct a solution by continuing with Xptq “ Xpt´ `q
for all indices t ě `.

A second-order system of difference equations is of the form

Xpt` 2q “ f
`

Xptq,Xpt` 1q
˘

, (3)

i. e. the population in generation t` 2 depends not only on the population in the last
generation t`1 but also on the last but first generation t. This may be interpreted as
a model for delay effects. In an initial value problem, it is now necessary to prescribe
both the values Xp0q “ X0 and Xp1q “ X1, as now the rule (3) is able to determine
the population Xptq only in all generations t ą 1. One can extend in an obvious
manner to higher-order systems.

The simplest difference equations are the linear ones and we will concentrate here
on these. A linear, first-order system of difference equations with constant coefficients
has the form

Xpt` 1q “ AXptq (4)

where A P Rnˆn is a real matrix with constant entries. In the context of population
dynamics, A is often called the propagator matrix. Obviously, the zero vector (or
more generally any vector V with AV “ V) defines an equilibrium for such a system.
Furthermore, such systems can be closed in solved form via elementary linear algebra.

We restrict here to the simplest case that A is a diagonalizable matrix which is
also the most relevant case for applications. For such a matrix, we can find n linearly
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independent eigenvectors V1, . . . ,Vn with corresponding eigenvalues λ1, . . . , λn (i. e.
solving the matrix equation AVk “ λkVk; note that we do not require that λi ‰ λj
for i ‰ j). If we furthermore assume that all these eigenvalues and -vectors are real,
then a fundamental system of real solutions is given by the functions

Xkptq “ λtkVk , 1 ď k ď n (5)

and the general solution is the linear combination Xptq “
řn
i“1 ckXkptq with arbitrary

coefficients ck P R. The unique solution of an initial value problem with Xp0q “ X0

is then obtained by solving the linear system of equations
řn
i“1 ckVk “ X0 for the

coefficients ck (i. e. one expresses the vector X0 in the eigenbasis pV1, . . . ,Vnq).
If the matrix A also possesses complex eigenvalues, then (5) still represents a fun-

damental system of solutions, but at least some of them are complex. It is, however,
easily possible to derive an alternative fundamental system consisting entirely of real
solutions. If λ “ ρeiω P C is a complex eigenvalue of A, then its complex conjugate
λ̄ “ ρe´iω is also an eigenvalue. Furthermore, if V P Cn is an eigenvector for λ, then
V̄ is an eigenvector for λ̄. Decomposing the eigenvector in its real and imaginary
part, V “Wre ` iWim, we can replace in our fundamental system the two complex
solutions corresponding to λ and λ̄ by the following two real ones:

Xreptq “ ρt
“

cos pωtqWre ´ sin pωtqWim

‰

,

Ximptq “ ρt
“

sin pωtqWre ` cos pωtqWim

‰

.
(6)

The expressions (5) and (6) describing a real fundamental system of (4) easily
allow us to make certain statements about the asymptotic behavior of solutions. If
there exists an eigenvalue λk with |λk| ą 1, then for any initial condition with ck ‰ 0
the solution will be unbounded for tÑ 8, i. e. the population of at least one species
will become arbitrary large; one says that the system is unstable. Conversely, if all
eigenvalues satisfy |λk| ă 1, then any solution will converge for tÑ 8 towards 0, i. e.
all species get extinct; mathematically, one speaks of an asymptotically stable system.
If the absolute value is greater than 1 for some eigenvalues and less than 1 for some
others, then one has a saddle point. (6) indicates that complex eigenvalues are related
to oscillatory behavior : if ρ ă 1, the oscillations are damped, whereas for ρ ą 1, the
amplitude grows towards infinity.

The situation is more complicated, if eigenvalues λk exist with |λk| “ 1. If λk
is real, this means that λk “ ˘1. In the case λk “ `1, any eigenvector Vk defines
an equilibrium; in the case λk “ ´1, a periodic solution with period 2 is given by
Xptq “ p´1qtVk for any eigenvector Vk. If λk is complex, then one can observe
for appropriate initial conditions sustained oscillations. One should note that such
oscillations do not necessarily lead to periodic solutions. For λk “ eiωk , periodic
solutions will only arise if ωk is a rational multiple of 2π. Otherwise, one finds almost
periodic solutions which never exactly repeat themselves, but come arbitrarily close
to doing so.

Figure 4a shows in green the region in the complex plane where all eigenvalues
must be located for an asymptotically stable equilibrium, namely inside the unit cir-
cle. For sustained oscillations, one must also have at least some eigenvalues on the
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unit circle itself (shown in blue). The figure also shows that complex eigenvalues
always appear in complex conjugated pairs, i. e. the eigenvalues lie symmetric with
respect to the real axis. The Jury test [45] allows for effectively determining the num-
ber of eigenvalues outside of the unit circle (indicating instability) without explicitly
computing the eigenvalues which is quite useful for higher-dimensional systems.

We remark that the case that the propagator matrix A is not diagonalizable can
also be handled in closed form. The situation is more complicated then and one
needs the so-called Jordan normal form of A. In this case, further possibilities for
unstable behavior exist, namely multiple eigenvalues of absolute value 1 without the
corresponding number of linearly independent eigenvectors. In such situations, one
no longer has an exponential instability but only a polynomial one.

We thus conclude that using linear algebra allows us to solve any system of the
form (4) with a fundamental system composed of the solutions (5). This explicit
form furthermore permits statements about the asymptotic behavior of the solution.
Assume for simplicity that one eigenvalue, say λ1, has the greatest absolute value,
i. e. |λ1| ą |λk| for all k ą 1. We know from the discussion above that for the initial
data X0 “

řn
i“1 ckVk the solution is given by Xptq “

řn
i“1 ckλ

t
kVk. It is now easy to

see that we obtain for large times t

lim
tÑ8

Xptq

|λ1|t
“ c1V1 . (7)

Thus in the long run the solution mode corresponding to the eigenvalue λ1 dominates
all other modes which consequently effectively disappear, as they become negligibly
small in comparison. If several eigenvalues have the same absolute value, then the
long time behavior is controlled exclusively by the corresponding modes.

For nonlinear first-order systems of the form (2), some of the above sketched ideas
about linear systems can be reused. Assume that V is an equilibrium of (2) and that
the right hand side f is partially differentiable with respect to all of its arguments.
Then we can form the Jacobian of f at V

J “

¨

˚

˝

Bf1
x1
pVq ¨ ¨ ¨

Bf1
xn
pVq

...
...

Bfn
x1
pVq ¨ ¨ ¨

Bfn
xn
pVq

˛

‹

‚

P R
nˆn (8)

and in many cases the local behavior of (2) near V can by analyzed by studying its
linearization Ypt` 1q “ JYptq. If for example all eigenvalues of the Jacobian J have
an absolute value less than 1, then the equilibrium V of (2) is asymptotically stable.
Such a simple relationship between linear and nonlinear stability exists, however,
only for hyperbolic equilibria, i. e. if none of the eigenvalues of J has absolute value 1.
Otherwise, more sophisticated methods must be used.

5.2 The Perron–Frobenius Theorem

It has become apparent from the discussions in the previous section that information
about the size of the eigenvalues of a matrix are crucial for assessing the stability
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(a) Discrete dynamical systems (b) Continuous dynamical systems

Figure 4: Stability and oscillatory regions (green and blue area, resp.) in the complex
plane for (a) discrete and (b) continuous dynamical systems. The green and blue
marks show possible locations of the eigenvalues for an asymptotically stable system
and for a system with sustained oscillations, respectively.

of solutions or equilibria on the one hand and for the search for periodic solutions
on the other hand. For small systems, it is often possible to determine explicitly
all eigenvalues by hand or with the help of a computer algebra system. For larger
systems, one usually fails here. The Perron–Frobenius Theorem provides information
for certain matrices about the dominant eigenvalue which determines the long time
behavior of a dynamical system as discussed above. We refer to the monograph[8] for
an in-depth treatment of everything discussed in this section.

We first introduce some necessary terminology. Let A “ paijq P Rnˆn be a square
matrix. The maximum of the absolute values |λ| of the eigenvalues is the spectral
radius ρpAq of A (note that it is always a real number, even if all the eigenvalues are
complex). We say that A is reducible, if there exists a permutation matrix P such that
PAP´1 is in block triangular form; otherwise A is irreducible. A positive matrix A has
only positive entries, i. e. if aij ą 0 for all indices i, j, and in a non-negative matrix also
zero entries are allowed, i. e. aij ě 0 now. Such matrices appear naturally in stochastic
problems, but also in many biological applications like population dynamics.

A property like irreducibility is not easy to check directly from its definition. A
practically useful approach is based on a directed graph GpAq associated with any
non-negative matrix A P Rnˆn. It has n vertices 1, . . . , n and a directed edge goes
from i to j, if aij ą 0. Thus, this graph encodes where the positive entries are located
in A. A path of length ` connecting two vertices is a sequence of edges i0 Ñ i1 Ñ ¨ ¨ ¨ i`;
it is called a loop, if i` “ i0. The graph GpAq is strongly connected, if for any pair pi, jq
there exists a path from i to j. One can now prove that the matrix A is irreducible,
if and only if GpAq is strongly connected.
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We consider as a simple example the following two non-negative matrices

A “

¨

˚

˚

˝

1 0 1 0
0 0 0 1
0 1 0 0
1 0 0 1

˛

‹

‹

‚

, B “

¨

˚

˚

˝

1 0 1 0
0 1 1 1
1 0 1 0
1 1 0 1

˛

‹

‹

‚

(9)

which possess the following associated directed graphs

4 3

1 2

4 3

1 2

It is easy to see that in the graph GpAq on the left we have a loop 1 Ñ 3 Ñ 2 Ñ 4 Ñ 1
which connects all vertices. Hence, GpAq is strongly connected and the matrix A is
irreducible. In the graph GpBq on the right, there exists no possibility to reach 2 or
4 from 1. Hence, the graph is not strongly connected and the matrix B is reducible.

The Perron–Frobenius Theorem makes a number of statements about matrices
with specific properties. The first assertion is that the spectral radius ρpAq of a non-
negative matrix A is always an eigenvalue and that it always possesses an eigenvector
with non-negative entries. Thus, we always find a non-negative real eigenvalue of
maximal absolute value and in applications like population dynamics where nega-
tive values make no sense in solutions it is very important to have in addition an
eigenvector without negative entries.

If the matrix A is in addition irreducible, then ρpAq is a simple eigenvalue and its
one-dimensional eigenspace can be generated by a positive eigenvector (and ρpAq is the
only eigenvalue with such an eigenvector). In the context of population dynamics,
this means that no species is extinct. Furthermore, all other eigenvalues λ with
|λ| “ ρpAq are simple, too. The total number of such eigenvalues is called the index
of cyclicity of A. If ρpAq is the only eigenvalue with this property, then A is a
primitive matrix. The index of cyclicity can again be read off the graph GpAq; it is
the greatest common divisor of the lengths of the different loops existing in GpAq.
For the concrete irreducible matrix A defined in (9), the situation is very easy: we
noted already above that there exists a loop of length 4 passing through all vertices;
in addition, we obviously have loops of length 1 like 4 Ñ 4 and hence the greatest
common divisor of all lengths can only be one (there is no need to check whether
further loops exist), so that A is a primitive matrix.
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5.3 Continuous dynamical systems

The theories of differential and difference equations, respectively, share many similar-
ities, but also differ in crucial aspects. We consider now functions X : RÑ R

n whose
values are n-dimensional vectors and always tacitly assume that X is sufficiently often
differentiable. An (autonomous) first-order system of differential equations for X is
of the form

9Xptq “ f
`

Xptq
˘

(10)

with 9X denoting the first derivative of X (taken componentwise) and with some
function f : Rn Ñ R

n (the vector field corresponding to the equation (10)). Thus at
each time t, the system allows us to compute the rate of change 9Xptq from the current
stateXptq. Again it is common to consider initial value problems where one prescribes
the initial state Xp0q “ X0 P R

n, as normally any differential equation possesses
infinitely many solutions and such an initial condition selects then a particular one.

An equilibrium (or steady state) solution of an autonomous system is defined by
a vector V P Rn such that fpVq “ 0, i. e. by the zeros of the vector field f . Indeed,
in this case the constant function Xptq “ V for all t P R obviously solves (10). A
periodic solution with period T ą 0 is a solution Xptq satisfying Xpt` T q “ Xptq for
all t P R (with T the smallest value with this property). It is generally a hard task
to decide whether or not a system of the form (10) possesses any periodic solution.

While it was obvious for systems of difference equations in the form (2) that any
initial value problem has a unique solution, this represents for differential equations a
theorem: the Picard–Lindelöf Theorem[70] asserts that, given Xp0q, the system (10)
has a unique solution Xptq for t in some open interval I containing 0 – under mild
conditions on f which are in applications almost always satisfied. In general, it is a
non-trivial task to decide whether I is infinite or whether the solution Xptq becomes
infinite already for some finite time ts ą 0. Only for linear systems, it is guaranteed
that one may choose I “ R.

A linear, first-order system of differential equations with constant coefficients has
the form

9Xptq “ AXptq (11)

where A P Rnˆn is a real matrix with constant entries. Any vector V with AV “ 0
(and thus in particular the zero vector) defines an equilibrium. As in the discrete
case, any such system can be explicitly solved with elementary linear algebra and
we restrict our discussion to diagonalizable matrices. Thus, we assume again that
V1, . . . ,Vn are n linearly independent eigenvectors with corresponding eigenvalues
λ1, . . . , λn. A fundamental system of solutions is then given by

Xkptq “ eλktVk , 1 ď k ď n . (12)

For solving the initial value problem withXp0q “ X0, we must again express the initial
vector X0 “

řn
i“1 ckVk as a linear combination of the eigenvectors with coefficients

ck and obtain the unique solution Xptq “
řn
i“1 ckXkptq.

If some eigenvalues are complex, then the same is true for the corresponding
eigenvectors. But as in the discrete case, we can rewrite complex members of the
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fundamental system (12) as real ones. Again this is based on the fact that with
λ “ ρ` iω also its complex conjugate λ̄ “ ρ´ iω is an eigenvalue of A and if V P Cn

is an eigenvector for λ, then V̄ is an eigenvector for λ̄. Decomposing the eigenvector
in its real and imaginary part, V “Wre ` iWim, we can replace in our fundamental
system the two complex solutions corresponding to λ and λ̄ by two real ones:

Xreptq “ eρt
“

cos pωtqWre ´ sin pωtqWim

‰

,

Ximptq “ eρt
“

sin pωtqWre ` cos pωtqWim

‰

.
(13)

One key difference to the discrete case is that here ρ and ω are the real and the
imagimary part of λ, respectively, whereas in the discrete case ρ was the modulus
and ω the argument of λ.

Based on the explicit expressions (12) and (13), we can again make statements
about the asymptotic behavior of solutions. If the real part <pλkq of some eigenvalue
λk (for λk P R obviously <pλkq “ λk) is positive, then the solution will be unbounded
for t Ñ 8 for any initial condition with ck ‰ 0. Thus, the population of at least
one species/size class will become arbitrarily large and the system is unstable. On
the other hand, if all eigenvalues have a negative real part, then any solution will
converge for t Ñ 8 to the origin, so that all species/size classes get extinct. This
represents an asymptotically stable system. If positive and negative real parts exist
among the eigenvalues, then the origin is a saddle point. As in the discrete case,
complex eigenvalues indicate an oscillatory behavior which is damped for ρ ă 0 and
unbounded for ρ ą 0.

The situation is more complicated, if eigenvalues λk exist with a vanishing real
part. If λk is real, this means λk “ 0 and the matrix A is singular. In this case, we
have not only one equilibrium at the origin, but at least a whole line of equilibria.
If λk ‰ 0, it is purely imaginary, λk “ iωk, and periodic solutions with frequency ωk
exist for appropriate initial conditions. They correspond to sustained oscillations.

Using the theory of the Jordan normal form, these results can be extended also
to non-diagonalizable matrices. While the fundamental system above was composed
of pure exponential functions, now also products of polynomials with exponential
functions appear as components. Assume now for simplicity that one eigenvalue, say
λ1, has the real part with the largest absolute value, i. e. |<pλ1q| ą |<pλkq| for all
k ą 1. Now we find that for large times the solution Xptq “

řn
k“1 cke

λktVk for the
initial data X0

řn
k“1 ckVk satisfies

lim
tÑ8

e´λ1tXptq “ c1V1 . (14)

Hence, the fundamental mode corresponding to the eigenvalue λ1 dominates the long
term behavior of solutions.

These results can to some extent be applied to study equilibria of nonlinear systems
of the form (10), too. Assume that V is an equilibrium of (10). As in the discrete
case, we use the Jacobian J of the right hand side f at V defined by (8). We call
V a hyperbolic equilibrium, if no eigenvalue of J has a vanishing real part. For such
equilibria, the local solution behavior of (10) near V is the same as for the linear
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system 9Y “ JY. Hence, the equilibrium is asymptotically stable if all eigenvalues
have a negative real part.

Figure 4b shows on the right hand side in green the region in the complex plane
where all eigenvalues must be located for an asymptotically stable equilibrium, namely
in the left half plane. The Routh–Hurwitz criterion[70] allows for detecting this
without explicitly computing of the eigenvalues and requires only calculation of certain
determinants. For sustained oscillations, one must also have at least some eigenvalues
on the imaginary axis (shown in blue).

5.4 Extensions and generalizations

We mentioned above that higher-order difference equations may be considered as a
model for delay effects. This is not the case for continuous models: a higher-order
differential equation has nothing to do with a delay; one has to generalize to delay
differential equations. In the simplest case an autonomous first-order system of delay
differential equations takes the form

9Xptq “ f
`

Xptq,Xpt´ τq
˘

(15)

where τ ą 0 denotes the delay. One may also consider several delays τ1, . . . , τr by
allowing that f depends Xpt´ τ1q, . . . ,Xpt´ τrq. In addition, delay models frequently
incorporate integrals (one then speaks of a distributed delay).

The theory of delay differential equations is considerably more involved than that
of ordinary differential equations. This starts already with the formulation of initial
value problems. Whereas for an ordinary differential equation like (10) it suffices to
prescribe a single value Xp0q (implying that the solution space is finite-dimensional),
an initial condition for (15) has typically the form Xptq “ X0ptq for ´τ ď t ď 0,
i. e. X0 is no longer a constant vector but a function defined on the interval r´τ, 0s
(implying that the solution space is now infinite-dimensional like for most partial
differential equations). Using the method of steps, i. e. looking at intervals of the
form rkτ, pk ` 1qτ s for k “ 0, 1, 2, . . . , one can use the Picard–Lindelöf Theorem to
prove the (local) existence of a unique solution for the described initial value problem.

The simplest form of a linear delay system with constant coefficients is

9Xptq “ AXptq `BXpt´ τq (16)

with two matrices A,B P Rnˆn. If one searches for exponential solutions as in the
case of linear systems of ordinary differential equations, then the equation for the
“eigenvalues” λ takes the form hpλq “ det pλEn ´ A´ e

´τλBq “ 0 and thus is no
longer simply a polynomial in λ. One can show that h is an entire function entailing
many special properties of the equation hpλq “ 0, i. e. that there are at most countably
many solutions and that these do not possess a finite accumulation point. Most
remarkably, for any real number r P R there exist only finitely many solutions with
<pλq ą r and again the dominating solution modes are those corresponding to the
solutions λ with maximal real part.
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Delays can lead to oscillations even in very simple linear models, if the delay τ
is greater than some threshold. For example, in the simplest scalar delay equation
9Xptq “ ´aXpt ´ τq, the solutions will start to oscillate whenever aτ ě e´1. The
oscillations will be damped, as long aτ ě π{2; for even greater values of aτ , the
amplitude of the oscillations will grow with t.

We refrain from delving deeper into the theory of delay differential equations and
refer instead to textbooks like [66] for an introduction or to [22] [29] for in-depth
treatments of different aspects.

So far, we have always assumed that X depends only on the time t. Of course,
in reality populations will also show a spatial distribution or in the case of marine
species like diatom a dependence on the water depth. This leads to models with
partial differential equations for functions Xpt, rq where the spatial variable r may
again be vector-valued. The dimension of r depends on the modeling. If one considers
simply a water column to include the effect of the water depth, then r would be a
scalar quantity, namely the depth. If one studies the distribution of a population
over some region on the surface of the earth, r would be two-dimensional (cartesian
coordinates or longitude and latitude). If the region is part of an ocean and water
depth is taken into account, r would be even three-dimensional. As a general rule
of thumb, both the theoretical analysis and the numerical simulation of a system of
partial differential equations become rapidly more complicated and expensive with
each additional dimension. As it suffices for our purposes here, we will restrict to the
case that r is a scalar quantity x.

In the context of population dynamics (and many other biological applications),
a frequent approach to formulating distributed models consists of simply adding a
diffusion term to model the spatial spreading. This leads then to reaction-diffusion
equations of the form

BX

Bt
pt, xq “

B

Bx

ˆ

Dpt, xq
BX

Bx
pt, xq

˙

` f
`

Xpt, xq
˘

(17)

where D is a diagonal matrix containing the diffusion coefficients for the different
species (which may depend on t and x, although in many models they are assumed
to be constant) and f represents the reaction part of the equation. Thus (17) may
be considered as a distributed refinement of the simpler model 9Xptq “ f

`

Xptq
˘

. Such
equations appear in many biological, ecological and chemical applications, but also in
geology, physics and many other fields of science. Some classical textbooks describing
their mathematical theory and some applications are [26] [30] [67].

From a mathematical point of view, (17) represents a parabolic system. As the
only nonlinear part is the reaction term f , many results from the theory of linear par-
tial differential equations can be exploited in its analysis. Nevertheless, this nonlin-
earity leads to many interesting phenomena like traveling waves solutions or pattern
formation as discovered by Turing[72]. One usually studies initial boundary value
problems for a system like (17). Here, the spatial variable x is constrained to some
closed interval ra, bs and one prescribes an initial condition Xpt0, xq “ X0pxq for all
x P ra, bs with a given function X0pxq and two boundary conditions Xpt, aq “ Xaptq,
Xpt, bq “ Xbptq for all t ą t0 with two given functions Xaptq,Xbptq. Using methods
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from functional analysis, one can show that under modest conditions on the reaction
term f and the prescribed functions X0pxq, Xaptq and Xbptq a unique solution exists.

5.5 Stochastic branching models

In the approaches discussed so far, individuals are grouped into classes in order to
define a state vector on which propagating matrices are applied. Stochastic branching
processes constitute a different approach of following the fate of individual cells during
proliferation[41]. Interestingly, we encounter in principle the same matrices with the
same eigenvalues and eigenvectors if the concept is extended to multiple species or
size classes. The general idea is as follows: At a certain time, a cell or generally a
particle, is generated. This particle has a lifetime that underlies a certain distribution.
After the end of the lifetime, a number of new cells are generated, each starting a
new process. There are also variants in which new particles are generated during
the lifetime, but these are mainly applicable for higher organisms, so we will not
discuss them further in this context. Important, however, is that the newly generated
progeny may occur in different type classes. This type space can be attributed to
different size classes, so the treatment leads to matrix equations just as in the case
of differential or difference equation systems. An important point is that also non-
Markovian processes can be easily written down due to the introduction of finite
lifetimes. In a Markov process, the future development of a system only depends on
the present state, in non-Markovian processes also states in the past contribute to
the development. Actually, a system in which the previous generation contributes
may be classified as a second-order Markov chain, and so on, so a true non-Markov
process has to take the complete history into account.

In a multitype branching process, the state is characterized by a vector Xptq with
the number of particles (cells) of the different types (for diatoms: size classes). To
make it simple, we first discuss a one-dimensional system (i. e. one type) with one
initial particle at t “ 0 with lifetime realization τpωq and progeny number Y pωq.
Then, after time t, the number of particles is given by

Xptq “

$

&

%

1 t ă τ
Y
ř

i“1

Xpiqpt´ τq, t ě τ,
(18)

which is a recurrence relation because each individual starts a new process.
Now, different models can be considered for the lifetime distribution. The simplest

case is that each particle has the same fixed lifetime of one generation (Galton–Watson
process). In this case the process is Markovian and a stochastic version of a discrete
system is reproduced, with all the properties given above. In the second special case of
a lifetime distribution that falls as a single exponential, also a Markov system results,
which can be proved analytically[41]. The general case is the Bellman–Harris process
in which τ is an arbitrary non-negative random variable from another distribution.
Here, a true non-Markovian, age-dependent process results.

The key for treating such problems is to rewrite it with probability generating
functions. Such probability generating functions apply to non-negative random vari-
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ables such as the number of particles or the number of progeny and are polynomials
on a symbolic new variable s with the possible values as exponents and the prob-
abilities pi as coefficients. For instance, the probability generation function for the
number of offspring is defined as

fpsq “
ÿ

i

pis
i (19)

in which i are the possible values for Y . In the case of exact two daughters, fpsq is
simply s2 since the probability for the value Y “ 2 is exactly 1. For the total number
of particles we write F ps, tq with the same definition and take i as possible values for
X. The mean (expectation value E) of the particle number after time t is given then
conveniently by the first derivative by s at s “ 1

ErZptqs “ F 1p1, tq “
BF ps, tq

Bs

ˇ

ˇ

ˇ

ˇ

s“1

. (20)

Higher moments of Xptq are represented by higher derivatives, so the variance is given
by VpXq “ F 2p1q ` F 1p1q ´ pF 1p1qq2.

With these two probability functions we can rewrite the above expression and
bring it into a single line by introducing a cumulative distribution function for the
lifetimes Gpτq, resulting in

F ps, tq “

#

s, t ă τ

f rF ps, t´ τqs, t ě τ.
(21)

“ sr1´Gptqs `

ż t

0

f rF ps, t´ uqs dGpuq. (22)

Figure 5: Three cumulative distributions functions for generation times (“lifetimes”
of a Bellman–Harris particle): a) fixed lifetime, b) exponentially decreasing lifetime
distribution c) lifetime with Gaussian distribution.

Examples for cumulative distribution functions are a step function at the fixed
lifetime τ0 for the Galton–Watson process, the function Gpτq “ 1´expp´τ{τ0q for an
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exponentially decreasing lifetime distribution, or the integral of the Gaussian function
for a normal distribution with τ0 as mean value .5 The computational task in solving
Bellman–Harris processes is to treat the resulting integral equation to obtain self-
consistent solutions, representing steady-states, or follow the temporal evolution.

In multitype branching processes, the offspring may occur in different types (classes),
so Xptq and F ps, tq become vectors and a progeny matrix M is needed that sorts the
offspring according to some rules to these classes. This matrix is also non-negative
and similar to the propagation matrices of difference equations; thus the evolution is
also subjected to the Perron–Frobenius theorem[6].

6 Simulation models

6.1 The Schwarz et al. model

Schwarz et al. developed a stochastic model based on experimental data to find
optimal values for Markov-type propagation matrices[65]. They reduced the number
of size classes from around 40 as expected for the modeled species Pseudo-nitzschia
delicatissima to seven. The size distribution was described as a superposition of seven
normal distributions with respective means and widths (Gaussian mixture model).
The number of seven size classes has been found as optimal number according to the
Bayesian information criterion preventing overfitting with insignificant parameters
added by further Gaussian functions.

dXpdq
dd

“

7
ÿ

i“1

Ai exp

ˆ

pd´ µiq
2

2σ2
i

˙

(23)

1 2 3 4 5 6 7
µi in µm 80.8 75.4 64.5 43.8 51.6 28.7 17.9
σi in µm 0.5 0.5 7.1 4.0 4.2 3.6 2.0
limits (µm) ą80.0 ą74.5 ą57.0 ą48.0 ą37.5 ą21.0 ą14.0
range in µm 5.5 5.5 17.5 9.0 10.5 16.5 7.0
τ (days) 5.1 3.0 15.6 15.0 31.9 168.7 8

Table 2: Size clusters for P. delicatissima according to Schwarz et al.[65]. Given
is mean µi, standard deviation σi (from graph), lower boundary, cluster range and
holding time τ for the Gaussian functions and their derived clusters, respectively.

A univariate clustering analysis of an experimental distribution (with cell size as
the single variable) led to the definition of the seven classes with respective boundaries,
as given in table 2. It should be noted that in this procedure for the determination
of the boundaries, the contained size ranges may differ substantially from cluster to
cluster.

Having defined the distinct size classes, the propagation matrix for continuous time
modeling was obtained by fitting experimental data for a laboratory strain of Pseudo-
nitzschia delicatissima[2] with size distributions followed for 265 days. Choosing a
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monoclonal strain of a single mating type, sexual reproduction was prevented, so that
the vegetative phase could be modeled in isolation. Allowing only a transition into
the next size class with smaller size and abandon the reentry by the sexual phase, the
continuous, time-independent propagation matrix was constructed as

Q “

¨

˚

˚

˚

˝

´q12 q12 0
. . . . . .

´q67 q67
0 0 0

˛

‹

‹

‹

‚

. (24)

The diagonal elements correspond to the negative inverse holding times that were as
an initial guess extracted from the scaling law of the size distribution versus time
plot (values in table 2). These holding times vary significantly for the different size
classes and do not scale with the size range of an individual class. For instance, they
are conspicuously long for size class 6 without an identifiable reason.

The fitted entries were tested with parallel data of two other strains by predicting
the time evolution of the size distribution. In order to estimate the confidence intervals
for being in the experimentally determined states after certain amounts of time, the
Fisher information approach was used. The Fisher information Ipθq expresses the
significance of parameter values θ that are contained in a probability distribution
function fpX; θq and is defined as the expectation value of the second derivative
´ log f versus the parameter.

Ipθq “ ´

ż
ˆ

B2 log fpX; θq

Bθ2

˙

fpX; θqdX. (25)

In this case, the parameter is time with n different distributions at certain time
intervals. Schwarz et al. calculated 95% confidence intervals for the time estimates
as

t˘ 1.96
a

1{pnIptqq (26)

and showed that the predicted times for the observed size distributions match the
experimental time within these limits, thus verifying the model.

In extension of the model, an 8th class was introduced representing the sexual
phase, being accessible only from size class 6 and 7. The average holding time was
set to 2 days after which class 1 is repopulated (not explicitly stated in the paper).
In this case, a stationary distribution with population maximum in the 5th class was
obtained.

6.2 The D’Alelio et al. model

D’Alelio et al. developed a parametrized model that aimed at explaining experimental
data for Pseudo-nitzschia multistriata taken over a time span of 10 years in the Gulf
of Naples[15]. It is formulated as a continuous model with a sampling time of one
day. From the original paper it is not completely conclusive how the size classes are
defined, but the largest, initial cells were set to 80 µm, the smallest size to 30 µm,
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and the upper sexual threshold to 55 µm. The resolution of the output was 2.5 µm
which would correspond to 20 or 21 size classes. Even if cells were collected to size
classes and hence the model is denoted as matrix model, there seems to be a certain
tracing of individual cells. This can be deduced from a size-depending rate of cell size
decrease, given as

Rpdq “ 10´7µm / divisionpd{µmq2.5 (27)

(units added here, d represents cell size), and the statement that the total number
of cells was kept below 104 by randomly removing cells in each time step. The size-
dependent expression for Rpdq exhibits a larger reduction for larger cells and was
justified by comparing the output of the model with the observed data.

Figure 6: Size-dependent growth parameter described by a parabolic function.

Similarly, the growth and death rates were taken as cell size dependent (Figure 6):

gpdq “ g0r0.25` 0.04pd{µmq ´ 5 ¨ 10´4pd{µmq2s (28)

kpdq “ k0r0.4` 0.04pd{µmq ´ 5 ¨ 10´4pd{µmq2qs (29)

Also for these equations, the choices of prefactors in the second order polynomial
were derived from comparison with experimental data. The basic rates were modu-
lated according to the seasons: g0 was set tentatively from 0.69 to 1.40 per day during
the bloom season and from 0.07 to 0.20 per day during the rest of the year. Coupled
to g0, k0 varied accordingly from from 0.05 to 1.00 per day.

The probability for auxosporulation was 2%, with instantaneous reentering into
the process (an experimentally determined delay of 2-3 days was neglected deliber-
ately). The authors compared different timing scenarios for sexual reproduction with
a gating function θptq between 0 and 1. While the assumption of a continuous sexual
reproduction irrespective of the seasons and an annual sex time window during the
bloom failed to reproduce the experimental observations, the assumption of biennial
sexual periods displayed the best matching. If sex would occur less than every 4th
year, the model predicted local extinction of a population.

The parameters used in the model are compiled in table 3 for reference.
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Parameter Code here
Size s d
Size of initial cells Init size 80 µm
Size of smallest cells Small size 30 µm
Gametangia threshold size Sex size 55 µm
Parameterized growth rate Pgr gpdq
Parameterized death rate Pdr kpdq
Rate of cell size decrease Red Rpdq
Probability of forming gametes Sex prob 2%
Timing of sexual reproduction Sex time θptq

Table 3: Parameters used in the model of D’Alelio et al. Given is the original denota-
tion in the paper [15] as well as an abbreviated version used here in the mathematical
expressions.

6.3 The Hense–Beckmann model

Hense and Beckmann[31] developed a rather complex model of the population dy-
namics of diatoms and embedded it into the context of a complete ecosystem, which
leads to a system of partial differential equations combined with a discrete system.
The basis is a compartmental model PPND of a water column consisting of four
compartments: a diatom species B, a bulk phytoplankton P , a limiting nutrient N
and detritus D. This model takes the form of a reaction-diffusion system as in (17)
where the vector X consists of the four component pP,B,N,Dq, given as biomass
in nitrogen equivalents. The equations for B and D are augmented each by a term
describing a sinking along axis z, whereas P and N are assumed to be buoyant. More
precisely, one obtains the following model

BB

Bt
“ µBB ´

`

γB ` δBpB ` P q
˘

B ` Av
B2B

Bz2
´ wB

BB

Bz
,

BP

Bt
“ µPP ´

`

γP ` δP pB ` P q
˘

P ` Av
B2P

Bz2
,

BN

Bt
“ ´µPP ´ µBB ` τD ` Av

B2N

Bz2
,

BD

Bt
“
`

γB ` δBpB ` P q
˘

B `
`

γP ` δP pB ` P q
˘

P ´ τD ` Av
B2D

Bz2
´ wD

BD

Bz
.

(30)

The parameters and typical values are listed in 4. Here, the growth rates µB{P of the
species B and P , respectively, depend on the temperature T , the nutrient N and the
light I in the water column:

µB{P “ µ0,B{PFB{P pT q
N

kN,B{P `N

I

kI,B{P ` I
. (31)

Here, the temperature dependency for the species P follows an empirical law of a
constant times 1.066T [25], whereas for diatoms B an additional Gaussian term is
used defining an optimal temperature[51]. The temperature itself plays the role of
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an external forcing with seasonal variation. For the light, self-shading is taken into
account by modeling its depth dependency as

Ipzq “ I0 exp
´

kwz ` kc

ż z

0

`

P pz1q `Bpz1q `Dpz1q
˘

dz1
¯

. (32)

Parameter Symbol Value
Diatom maximum growth rate µ0,B 0.98 day´1
Diatom optimal temperature ToptB 8 °C
Diatom nutrient half saturation kNB

0.16 mmol N m´3

Diatom light half saturation kIB 33.6 Wm´2

Attenuation coefficient for water kw 0.08 m´1
Attenuation coefficient for biomass kc 0.07 m2 mmol N´1
Diatom cell lysis rate γB 0.01 day´1
Diatom grazing rate δB 0.10 m3 day´1 mmol N´1
Subsurface vertical mixing coefficient Av 10´5 m2s´1
Diatom sinking rate wB 0.12 m day´1
Nutrient remineralization rate τ 0.1 day´1
Detritus sinking rate wD 1.5 m day´1

Table 4: Selected parameters used in the Hense–Beckmann PPND model. Parameters
for the second, bulk phytoplankton species (index P instead of B) are omitted here.

In this relatively classical form, the size reduction and restitution cycle of the
diatoms is not yet taken into account. For this purpose, Hense and Beckmann devel-
oped a rather detailed individual based model of the diatom life cycle called DiaLCM.
It aggregates a fixed number c of diatoms with identical status into one entity called
agent, so that a smaller number of individual cells has to be followed in total. The
biomass of the individually modeled diatoms bi constitutes the total biomass, i.e.

B “ c
ÿ

i

bi. (33)

For each cell, five processes are taken into account: (i) Cell growth: Depending on
temperature and limited by nutrient and light availability as described above but with
size dependent parameters, individual cylindrical cells uptake biomass and change
their shape by extending into the pervalvar direction due to a fixed diameter. (ii) Cell
division: When a size dependent maximum biomass is reached, the biomass is split
evenly between epivalvar and hypovalvar daughter, but the hypovalvar daughter gets a
smaller diameter, calculated with a constant factor (iii) Cell mortality: Cells die due to
size independent cell lysis and size dependent grazing (iv) Auxosporulation: If cells are
below the upper sexual threshold (after 80% of the maximum number of generations)
and meet additional conditions on available energy and cell concentration, they form
new cells of maximum size after an developmental period. (v) Vertical movements in
the water column: This is modeled by size dependent sinking and turbulent mixing in
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the surface region. Since cells change their shape, an equivalent hydrodynamic radius
is calculated for this and other processes.

The precise modeling of these processes is too complex to be presented here in de-
tail. For example, in size dependent aspects the authors have to recalculate between
biomass, volume, surface area and equivalent radius. Empirical functional relation-
ships between the various relevant quantities are assumed and taken from the litera-
ture. On the whole, the DiaLCM model depends on almost 20 parameters for which
values must be chosen. Some variable ranges and parameters are compiled in 5. The
authors report from a comparison of the results of simulations of the DiaLCM model
with the results of laboratory experiments conducted by Armbrust and Chisholm[3]
where they obtained a good agreement. In particular, they could observe periodic
changes.

Quantity Symbol Value
Number of cells per agent c 104

Number of agents M 2 ¨ 105–3.1 ¨ 106

Cell biomass bi 0.18–1.82 pmol N cell´1
Equivalent radius rei 2.61–6.89 µm
Pervalvar length hi 3.85–17.69 µm
Number of generations G 100
Biomass ratio epivalve:hypovalve δe : δh 50:50
Maximum age of epivalve amax 7 divisions
Generation threshold for sex gcrita 0.8 G
Daily mean energy threshold for sex Ecrit 12 Wm´2

Minimum cell concentration for sex ccrit 107 cells m´3

Developmental period τdev 1 day

Table 5: Selected variables and parameters used in the Hense–Beckmann DiaLCM
model as far as mentioned in the text. For a complete list please refer to the appendix
of the original article[31].

For the coupling of the two models, the diatom compartment B is removed from
the PPND model, i. e. the equation for B is removed from (30) and replaced by the
DiaLCM model. This approach allows determination of all B dependent terms in the
remaining equations in (30). Hense and Beckmann report that in the coupled model
the strict periodicity of the DiaLCM model under “laboratory conditions” disappears.
They observed that under the influence of environmental factors achieved through
the coupling with the PPND model, the size reduction and restitution cycle can be
significantly accelerated or decelerated. Due to the complexity of their model with
its many parameters and assumptions, it is, however, difficult to see which factors are
mainly responsible for these observations.

6.4 The Terzieva–Terziev model

Terzieva and Terziev followed a non-Markovian approach and applied the Bellman–
Harris stochastic branching concept to the cell division scheme[69]. This allows them
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to model a flexible time between cell divisions. Explicitly, the time between two divi-
sions, constituting the lifetime of a particle in the multitype Bellman–Harris scheme,
is drawn from a Gaussian normal distribution with mean τ0 and variance σ2. Orig-
inally, for the size range between 30 µm and 150 µm of a generic diatom, five size
classes (types) have been defined which are reduced to four by uniting the two lowest
classes (i. e. 1 from 30 to 80 µm, 2 from 80 to 105 µm, 3 from 105 to 130 µm, 4 from
130 to 150 µm). For the individual cells of these four types, the following individual
generation functions are constructed:

f1psq “ 1´ ρ` ρs1 , (34)
fipsq “ 1´ ρ` ρsi´1si for i “ 2, 3, 4 (35)

forming together the four-dimensional vector f with the four-dimensional symbolic
variable s as argument. ρ denotes the number of offspring after dividing in each of
the daughter types. ρ is not subjected to a distribution and represents the probability
of survival until the next division. The lack of asymmetry between the daughter types
reveals that one type essentially represents one distinct size, otherwise the number of
progeny would be less for the smaller type. Also, as a probability, ρ is meant to be
not larger than 1. In the multitype Bellman–Harris variant, the number of progeny
is expressed as matrix (particle production mean matrix M) with elements given as

mi,j “
Bfi
Bsj
|s“1 (36)

performing the differentiation at the vector of ones 1 “ p1, 1, 1, 1q, i.e.

M “

¨

˚

˚

˝

ρ 0 0 0
ρ ρ 0 0
0 ρ ρ 0
0 0 ρ ρ

˛

‹

‹

‚

. (37)

Note that a sexual size restoring mechanism is not implemented in this matrix.
For the ensemble of particles with individual lifetimes, a vectorial generation func-

tion was then constructed, with integrals over the cumulative lifetime distribution
functions Gpτq as in the single type case with components

Fips, tq “ sip1´Giptqq `

ż t

0

fipFps, t´ τqqdGipτq . (38)

Note that in the integral the generating function vector F is used as argument for the
individual generating functions f to define its own components, hence the recursion.

A matrix of means for the ensemble Uptq was then similarly constructed, in which
the last row gives the expectation of the population Xptq for the starting condition
of one initial cell

Xptq “

¨

˚

˚

˝

u11ptq 0 0 0
u21ptq u22ptq 0 0
u31ptq u32ptq u33ptq 0
u41ptq u42ptq u43ptq u44ptq

˛

‹

‹

‚

¨

˚

˚

˝

0
0
0
1

˛

‹

‹

‚

.
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The respective elements of Uptq are given by

uijptq “ 1´Giptq ` ρ

ż t

0

p1´Gipt´ uqqd
8
ÿ

n“1

ρn´1pGiptqq
˚n (39)

in which ˚n denotes the nth convolution[6].
The paper of Terzieva and Terziev, which is not easily accessible at first glance,

demonstrate how multitype Bellman–Harris procedures may be applicable to size-
resolved population dynamics of diatoms in principle, but numerical simulations are
still lacking.

6.5 The Fuhrmann-Lieker et al. model

Fuhrmann-Lieker et al. understood the diatom population as a discrete dynamical
system[27]. The authors varied parameters and expanded their model to investigate
whether a linear matrix model could produce the diatom clock’s oscillations in cell
and population size. For that, a basic model was introduced which assumed the
population to consist of discrete size classes according to the MacDonald–Pfitzer
scheme. Consequently, cells would divide simultaneously at a discrete periodical rate.
The number of cells in a certain size class is denoted in a population vector Xptq with
elements xi. The distribution of the next generation t`1 is obtained by multiplication
of the vector with the propagator matrix (as introduced in (4)):

P “

¨

˚

˚

˚

˚

˚

˝

αp p 0 ¨ ¨ ¨ 0 0
0 βp p ¨ ¨ ¨ 0 0
...

...
...

...
...

0 0 0 ¨ ¨ ¨ βp p
s 0 0 ¨ ¨ ¨ 0 βp

˛

‹

‹

‹

‹

‹

‚

. (40)

The propagator matrix contains the parameters of survival and auxosporulation rate
as well as an optional asymmetry factor according to table 6. For simplification of P
and later analytical treatment, the parameter σ was introduced.

In addition to the basic model, four different modifications were examined. Asym-
metry between two daughter cells was considered according to the observations of
Müller and Laney[53] [43]. In a second modification the authors applied two differ-
ent methods to introduce a nonlinearity. First, to account for a biparental sexual
reproduction, the auxosporulation probability was modified:

xn´1,t`1 “
sx20,t

p1` 2sx0,tq
. (41)

Second, the natural saturation was included by addition of a Ricker function which
limits the maximal size of the population by modifying the survival probability de-
pending on the population size:

p “ p0e
´γp

ř

i xiqt . (42)
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Parameter Meaning Model
N number of size classes all models
i index for size class (0 ď i ă N) all models
p survival probability of theca all models
s probability of auxosporulation all models
α survival factor of smallest cells all models
β asymmetry factor between daughters all models
σ ps{pq1{n all models
t generation as time scale all models
γ inverse carrying capacity saturation, aging models
m number of age classes aging models
j index for age class (0 ď j ă m) aging models

Table 6: Parameters used in the Fuhrmann-Lieker et al. model.

The third modification involves the aging of daughter cells as it has been observed
in various microorganisms to control population development. The authors follow
Jewson’s findings that the daughter cells containing the epitheca would age and sub-
sequently die after a certain number of divisions[37]. To include this mechanism,
another dimension is added to the population vector, thus turning it into a matrix
with a size and an age dimension. Upon division, the cell containing the epitheca
moves along the age axis of the matrix into the older class while the hypothecal cell
moves into the smaller size class along the size axis. The last variation of the model
introduced a sinusoidal oscillation of the survival and auxosporulation parameters to
mimic seasonal changes.

The authors evaluated their models by generational development of total cell num-
ber, number of auxospores, mean size and the variance of the sizes. Furthermore,
eigenvalues and eigenvectors of the systems were analyzed (as described in section
5). The authors conclude that a continuous oscillation as in natural environments
could only be obtained by including temporal modulations into the model. With
certain combinations of parameters and variations of the model a very long decay
time of millions of generations for initially occurring inherent oscillations was found.
Under natural conditions it could be assumed that these oscillations would appear
stable since no system could stay undisturbed for such a long period. Nevertheless,
an equilibrium is always reached in theory as long as no fluctuation is included.

As an example of numerical results from the model, in Figure 7 the situation for
two different scenarios is compared. On the left side the population dynamics and the
trajectory of size distribution is followed for the original MacDonald–Pfitzer scheme,
showing an approach towards an equilibrium population and size distribution after a
few life cycles. On the right side, the assumption of Jewson about a limited lifespan
of individual cells is added. Here, the oscillations persist for a long time and decay
only slowly.
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Figure 7: Direct comparison of the Fuhrmann-Lieker et al. model with and without
aging. a) Development of the population in a small model with 20 size classes in
which cells die only due to overpopulation (saturation by Ricker term) b) Trajectory
of the size distribution in a), represented by mean size and variance. c) Same model
as in a), but thecae live for only 7 generations as suggested by Jewson. Long-term
oscillations are induced. d) Trajectory of the size distribution in c).

7 Oscillatory behavior

7.1 Reproduction of experimental data

Models have to be capable of describing present data and giving predictions for the
future, also in alternative scenarios with modified parameters. In this section we show
for the few existing long-term studies agreements and difficulties in the application of
the models. Comparison mainly concentrates on the observation of distinct cohorts,
each started by a synchronous auxosporulation event which starts the reduction-
restitution cycle.

Figure 8 can be taken as a representative example for long-term studies. For
10 years, the size distribution in the population of Pseudo-nitzschia multistriata in
the Gulf of Naples was monitored by taking samples in regular intervals[15]. During
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bloom phases P. multistriata was abundant, so sampling was easy, but the bloom
did not occur every year with the same cell concentration. In samples in the rest
of the year, the diatoms occurred less frequently, so the statistic significance of the
data is also less. A bimodal distribution of cell sizes was observed in many of the
samples, but the assignment of a certain cell size to one of the assumed cohorts can be
ambiguous if the modes overlap. From the bimodal distribution, a total of 7 cohorts
was identified, each of which survive for three years and generate a new cohort in
the second year, so a biannual rhythm can be seen. The first phase from the initial
cell to midsize cells could only be postulated with no experimental data because of
the low frequency of occurrence. The problem of observing auxosporulation and the
generation of new initial cells was discussed in depth by Mann[48]. Since the total
percentage of cells switching from vegetative growth to gametogenesis is very small,
auxosporulation is a very rare event, when compared to all cells that are still in the
vegetative phase. In reading the further size decrease from the graph, one has to
take into account that model parameters change in the bloom phase (black bar at the
bottom) and in the following stationary phase (white bar). This feature is further
discussed in the next section. As this example shows, finding total agreement of a
model and experimental data is not easy. Similar studies confirm this picture[48] [49].
Sometimes multimodal behavior can be seen, but sometimes the size classes merge,
and cohorts are not easily distinguished. Therefore, the only hope is to be able to
deduce some of the parameters that would represent an ideal life cycle, neglecting
stochastic fluctuations of real populations. In the laboratory, chances are better, but
also here unforeseen events and discontinuity in the culture may obstruct the analysis.

7.2 Coupling to external rhythms

In all models the question arises if the parameters used in the differential equations
and matrices can be taken as constant or if they may be subjected to external in-
fluences. Mann and others suggested that auxosporulation occurs only within a few
weeks each year[48]. So there must be a coupling of the auxosporulation probability
not only to size but also to photo- or thermoperiod. Wherever doubling rates are
given, they are also subjected on fluctuations in nutrient and light conditions. Typ-
ically they vary roughly with some typical period that can be defined as zeitgeber
rhythm, in the terms of chronobiology. Zeitgeber can be implemented in the models
as gating functions (see discussion of the D’Alelio et al. model) or, as all periodic
signals can be described as Fourier series of the fundamental frequency and its higher
harmonics, as sine functions. Then, the intrinsic frequency given by the size reduction
and restitution cycle (the “sex clock”) and the annual cycle of the zeitgeber interact.

In Figure 9 the behavior is shown when the auxosporulation parameter σ is varied
sinusoidally in the Fuhrmann-Lieker et al. model. Since the auxosporulation prob-
ability is given by s “ pσn it mimics a confined time window with high probability
for sexual reproduction and a longer phase with a strongly reduced probability. In
the resulting plot of the population dynamics, both periodicities are involved (a),
with the result that auxosporulation does not take place significantly in every year
but with a burst in the years when sexually productive cells are abundant during the
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mating season (b). Fourier transformation of the cell number reveal the frequency
coupling on short and long terms. At the beginning of the oscillations, the Fourier
spectrum shows the signals for the size cycle at 0.018/generation and the annual cycle
at 0.025/generation, but also mixed frequencies by nonlinear coupling. For example,
the dominant Fourier peak at 0.07/generation is just the difference frequency of both
underlining rhythms (c). In the long term however, the zeitgeber rhythm controls the
dynamic behavior (d) and becomes the only surviving mode. This again is a result
of the Perron–Frobenius theorem that forbids a dominant oscillating eigenvector in
the matrices describing the size class structure to which the external signal is not
subjected.

8 Conclusion
We have seen that there are many different approaches possible in modeling the size
resolved population dynamics of diatoms. They all have in common that the pop-
ulation is sorted into classes of distinct cell sizes in order to describe the vegetative
size reduction process. Then the similarity ends. Under the proposed models, there
are systems of differential equations, difference equations, as well as individual-based
stochastic processes. The models are either constructed to describe an experimentally
obtained data set for a distinct species, or are developed as rather generic models to
understand the principles of size-dependent population dynamics. In any case, a good
model for population dynamics of diatoms takes cell size and environmental param-
eters into account. Such models will be important for simulating whole ecosystems
that contain diatoms as one of the most influential primary production sources and
carbon dioxide sequestration agents.
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Figure 8: Cell size dynamics of Pseudo-nitzschia multistriata according to D’Alelio
et al.[15]. Upper graph: cell abundance at the sampling period. Center: Division
of the population according to cell size into subpopulations (cohorts, dotted ellipses)
and size classes (solid circles). The mean cell size of the cohorts is indicated in pink.
The dashed line indicates the postulated upper size threshold for sex. Lower graph:
Comparison with the model. Different model cohorts are emphasized by different
colors. Changes of cell size reduction speed are attributed to different growth phases:
normal growth (gray in the bar below), bloom phases (black), and stationary phases
(white). Reproduced with permission.
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Figure 9: Temporal development of population parameters and dynamics in the
Fuhrmann-Lieker et al. model with zeitgeber rhythm. a) Population size and zeit-
geber modulation of the parameter σ with a period of 40 generations, multiplied by
100 for better scaling (red), b) Number of auxospores, showing years of low and high
auxosporulation c) Fourier transform of the total cell number for the first 8000 gener-
ations. Temporal frequency is given as 1/generation d) Fourier transform of the total
cell number for the first 256000 generations.
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