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Quantization of the reduced phase space of two-dimensional diltaton gravity
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We study some two-dimensional dilaton gravity models using the formal theory of partial different
equations. This allows us to prove that the reduced phase space is two dimensional without an ex
construction. By using a convenient~static! gauge we reduce the theory to coupled ordinary differentia
equations and we are able to derive for some potentials of interest closed-form solutions. We use an effe
~particle! Lagrangian for the reduced field equations in order to quantize the system in a finite-dimensio
setting leading to an exact partial differential Wheeler-DeWitt equation instead of a functional one. A W
approximation for some quantum states is computed and compared with the classical Hamilton-Jacobi th
The effect of minimally coupled matter is examined.

PACS number~s!: 04.60.Kz, 02.30.Jr, 04.20.Fy
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I. INTRODUCTION

A tensor formulation of physical theories makes no ove
reference to any particular frame of reference. To interp
these theories it is often necessary to extract from th
coordinate-independent information. In particular in theori
of classical gravitation, coordinate freedom is either expl
itly removed by working in a particular coordinate system
regarded as generating constraints for the subsequent an
sis. For the classical theory it may simply be a matter of ta
as to which procedure is adopted. However the discussion
quantization is often acutely sensitive to the choice adopt

Following Witten’s observation@1# that models of two-
dimensional dilaton gravity offer a means of studying th
Hawking effect with back reaction there has been an en
mous interest in such models. They arise naturally from c
tain truncations of low energy string effective actions@2# and
symmetric configurations in higher dimensions@3#. Such
models have been rendered completely integrable at the c
sical level by exploiting the local conformal flatness of a
two-dimensional manifolds and their quantization discuss
from several alternative viewpoints@4#.

In this paper we reexamine the conditions that are resp
sible for this remarkable integrability and offer an alternativ
quantization. The basic observation is that a particular co
formal gauge reduces the classical integrability to the pro
lem of solving a system ofordinary differential equations.
Methods from the formal theory of partial differential equa
tions @5,6# allows us to compute the dimension of the re
duced phase space without explicitly constructing it. Th
technique should also prove useful in more complicat
theories where explicit reduction is not possible.

Using methods from the Hamilton-Jacobi theory for sy
tems with constraints@7,8# we construct local expressions fo
the dynamical degrees of freedom for dilaton gravity on t
line. This is in marked difference to other approaches to t
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quantization of the reduced theory@9,10#. The quantum am-
plitudes are shown to satisfy a simple hyperbolic wave equ
tion which is exactly soluble for appropriate boundary con
ditions. Similar quantum theories were already obtained b
different authors@11,12# in an approximate minisuperspace
approach. But here it is not necessary to make such an
proximation because of the finite-dimensional reduced pha
space.

A straightforward semiclassical analysis of the exac
quantum description yields a WKB phase that encodes all t
classical dilaton gravity solutions. We explicitly demonstrat
that the integral curves that annihilate the gradient of th
WKB phase form a family of exact classical vacuum solu
tions. This suggests that such a quantization of dilaton gra
ity deserves further scrutiny.

This work is organized as follows. After a brief discussion
of the classical action and its field equations, we use in Se
III a formal analysis to derive indirectly the dimension of the
reduced phase space. In Sec. IV we explicitly reduce the fie
equations by a gauge fixing to a system of ordinary differen
tial equations and construct its general solution. After con
sidering some explicitly solvable models we proceed in Se
VI to the Hamilton-Jacobi analysis of the system. Its resul
are used in Sec. VII for the quantization. Section VIII dis
cusses the effect of minimally coupling a matter field. Fi
nally, some conclusions are given.

II. CLASSICAL ACTION AND FIELD EQUATIONS

In two dimensions a general coordinate invariant La
grangian density containing the metricgmn , a scalar dilaton
field F and their derivatives up to second order is given b

L @gmn ,F#5A2g~ 1
2 g

mn]mF]nF1V~F!1D~F!R!,
~1!

whereR denotes the curvature scalar associated with th
metric andD is a scalar function.

Using field redefinitions one can, however, considerab
simplify this action. The kinetic term forF can be elimi-
nated by a Weyl rescaling of the metric@9#,
4366 © 1996 The American Physical Society
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ḡmn5V2~F!gmn , ~2!

if V satisfies the differential equation

4D8~F!
dlnV

dF
51. ~3!

If we additionally redefine the dilaton fieldF̄5D(F), we
obtain the action

L @ ḡmn ,F̄#5A2ḡ„V~F!1F̄R̄…, ~4!

where the new potentialV(F) is given by

V~F!5
V„F~F!…

V2
„F~F̄!…

. ~5!

~One must be careful here, ifD has critical points@13#.!
Henceforth we will restrict our attention to this action an

drop the bar over the fields. Variation with respect to th
metric yields the ‘‘Einstein equations’’

¹m¹nF2gmn@¹r¹rF1V~F!#50, ~6!

whereas variation with respect toF leads to the additional
equation

R1V8~F!50 ~7!

determining the curvature scalar.
Before we start a detailed analysis of these field equ

tions, we study briefly the relation between the potentia
appearing in~1! and ~4! for the most often considered cas
D(F)5aFn for some constantsa,n. If nÞ2 a solution of
~3! is given by

V~F!5e2F22n/4an~n22!, ~8!

while, for n52,

V~F!5F1/8a. ~9!

For n51 we obtain, thus, from~5!,

V~F!5V~F/a!e2F̄/2a2. ~10!

This implies especially that for an exponential potenti
V(F);enF the potential remains an exponential after th
transformation but with a modified coefficien
n̄5(2an21)/2a2. Note that this result also holds fo
n50, i.e., if the potential consists just of a cosmologic
constant. Conversely, the potential becomes constant
a51/2n.

For n52 the transformation reads

V~F!5V~6AF̄/a!~F̄/a!21/8a. ~11!

Thus Lagrangian densities of the formL5FR1LF̄n as
they are, e.g., considered in@14# can be derived from a
model in the form~1! with D(F)52F2/8n and a ‘‘cosmo-
logical constant’’ as potentialV(F)5L/(28n)n.
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A class of models which appeared first in effective stri
actions and which has found considerable interest due to
existence of black hole solutions@2,1# is described by the
action

L @gmn ,w#5 1
8A2ge22w@R14~¹w!21c#, ~12!

wherec is a constant. Using field redefinitions one can tran
form it to @15#

L @gmn ,f#5A2g~ 1
2 gmn]mf]nf1 1

2 qfR1 1
8 ce

f/q!.
~13!

with an arbitrary constantq. Elimination of the kinetic term
leads then to a modification of the exponential. Note that t
simple Liouville form of the transformed action is due to th
factor 4 in ~12!. A different factorg leads to a modified
potential of the formmf12g/4ef/q.

III. FORMAL ANALYSIS

The first step in a formal analysis is always to comple
the given system of partial differential equations to an inv
lutive one @5,6#. This completion is closely related to th
Dirac formalism for systems with constraints. Actually, on
can interpret the Dirac algorithm as a completion proced
for the Hamilton-Dirac equations of the system@16#.

In our case the involution analysis is rather simple, as i
straightforward to show that the combined field equations~6!
and ~7! are already in involution. An interesting fact hereb
is that~6! entails~7!, if we exclude the trivial case thatF is
constant. The integrability conditions of~6! require that ei-
ther ~7! holds orF must be constant. Similar effects ar
known from other theories coupled to gravity.

The arbitrariness of the general solution of a system
qth order partial differential equations inn-independent vari-
ables can be determined from its Cartan charactersaq

(k) ,
k51, . . . ,n @17#. A simple calculation for our system yield

a2
~2!52, a2

~1!56. ~14!

By a comparison with a Taylor expansion of the gene
solution these characters can be interpreted in terms of n
bers of arbitrary functions of different numbers of argumen
Here we obtain that the general solution of our field equ
tions can be written as an algebraic expression contain
two arbitrary functions of two arguments and two arbitra
functions of one argument.

Another way to represent the arbitrariness of the gene
solution is given by the Hilbert polynomialH(r ) of the field
equations. It denotes the number of Taylor coefficients
orderr which can be chosen arbitrarily. From~14! we obtain
@6,17# ~note the slightly different notation used there!

H~r !52r14. ~15!

It is important to note thatH(r ) yields the correct values
only for r>2, as we are dealing with second-order equatio
On the other hand the number of arbitrary Taylor coefficie
of order less than or equal to 2 is determined by the dim
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4368 53WERNER M. SEILER AND ROBIN W. TUCKER
sion of the submanifold described by the field equations
the appropriate second-order jet bundle; thus in our case
20.

We must, however, adjust for the covariance under co
dinate transformations. Especially the two functions of tw
variables stem obviously from this gauge covariance. W
have recently shown how such a correction can be perform
as soon as the gauge group is known@17,18#. The key is the
introduction of a gauge-corrected Hilbert polynomial whic
in turn leads to gauge-corrected Cartan characters.

In our case we must subtract the invariance under
transformation

gmn5
]xr

]xm

]xs

]xn grs , ~16a!

F5F. ~16b!

The transformation depends on two gauge functionsx̄r

through their first derivatives. Thus if we expand again in
power series, we can giveG(r ) coefficients of orderr arbi-
trary values through gauge transformation whereG(r ) is
given by

G~r !52S r12

r11D 52r14. ~17!

By comparison with the Hilbert polynomial we see tha
all the arbitrariness forr>2 stems from this gauge covari
ance. Hence the gauge-corrected Cartan characters va
and the reduced phase space of this theory is finite dim
sional. UsuallyG(r ) yields the correct values only from a
certain value ofr on. In our case, however, one can easi
see by writing out the first terms of the expansion that it
correct for all r>0. Thus we can further conclude that 1
Taylor coefficients of order up to 2 can be given arbitra
values by gauge transformation. Since the general solution
our field equations contains only 20 arbitrary coefficients
these orders we obtain that the dimension of the reduc
solution space is two. This fact was also proven in@13,9#
using an explicit reduction.

Actually, in this simple case it is not necessary to use t
Cartan characters to prove the finiteness of the reduced ph
space. The easier concept of the strength of a differen
equation introduced by Einstein@19,20# suffices here. A
straightforward computation shows that the field equatio
are absolutely compatible and have a vanishing strength
one takes the gauge symmetry into account. But since we
dealing with a two-dimensional space-time, this implies im
mediately that the gauge reduced solution space is finite
mensional. However, the exact dimension can be compu
only with the refined analysis used above.

We can understand this finiteness by considering the m
ric as an external field. Equation~6! represents then a finite-
type system for the dilaton fieldF, as each second-orde
derivative ofF is determined by an equation. Thus the ge
eral solution of this system depends only on a finite numb
of parameters. All arbitrary functions stem therefore from t
metric as solution of~7!.
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IV. REDUCTION TO ORDINARY DIFFERENTIAL
EQUATIONS

The solution of every system of finite type can be ob
tained by solving systems of ordinary differential equation
@21,22#. The reduction is based on the theory of comple
systems and can be performed in a purely algorithmic wa
However, in our case it will not be necessary to follow thi
procedure which would lead to a fairly complicated syste
of ordinary differential equations@6#. By choosing an appro-
priate gauge the reduction can be obtained directly.

We first exploit the well-known fact that every two-
dimensional metric is~locally! conformally flat@23# and set

gmn5el~x,t !hmn , ~18!

wherehmn5diag(21,1) is the Minkowski metric. The cur-
vature scalar of such a metric is given by

R5~l tt2lxx!e
2l. ~19!

Thus after some trivial manipulations the combined fie
equations can be written in the form

F tt2
1
2 ~F tl t1Fxlx!1 1

2 e
lV~F!50, ~20a!

Fxx2
1
2 ~F tl t1Fxlx!2 1

2 e
lV~F!50, ~20b!

Fxt2
1
2 ~Fxl t1F tlx!50, ~20c!

l tt2lxx1elV8~F!50. ~20d!

Banks and O’Loughlin@13# showed that the field equa-
tions imply the existence of a Killing vector

km5emn¹nF ~21!

orthogonal to the gradient toF. Thus we can always choose
the gaugeF t50. Then~20c! leads tol t50, if we discard
the uninteresting caseF5const. This means that it suffices
to study static metrics.

We will assume from now on that we are in a coordina
system wherel t5F t50. The first two equations of~20!
yield Fxx2Fxlx50. This can be integrated once and yield

Fx5Ael ~22!

with an integration constantA. Note that this implies that the
sign ofFx never changes and that it is fixed by the sign o
A. Substituting this in~20b! leads to

Alx5V~F!. ~23!

Differentiating ~22! allows one to eliminatel and arrive fi-
nally at the simple equation

AFxx2V~F!Fx50. ~24!

There is no need to consider~20d!, as it is an integrability
condition and thus automatically satisfied.

Rewriting the potential as a derivative,V(F)5W8(F),
one can easily obtain an implicit solution of~24!. Integrating
once yields the first integral
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AFx2W~F!5B ~25!

for some constantB. Separation of variables leads to

x~F!1C5E
0

F Adw

B1W~w!
. ~26!

Once this expression is inverted to obtainF in explicit form,
l can be derived algebraically from~22!:

l5 lnSB1W~F!

A2 D . ~27!

We have thus found a three-dimensional solution spa
This is no surprise, as the field equations together with
used gauge conditions describe a three-dimensional man
in the second-order jet bundle. A similar construction
light-cone coordinates was presented in@24#.

To conclude this section we briefly discuss the three
curring integration constants.C can obviously be set to any
value by changing the origin of the coordinate system. Th
we can set it to zero without loss of generality. Similar
A can be adjusted to any value by a coordinate sca
x→x/A, t→t/A, as under such a transformatio
l→l1 lnA2.

By contrast B has an invariant meaning. Sinc
A5Fxe

2l, we obtain, from~25!,

B5e2lFx
22W~F!. ~28!

This expression can be expressed covariantly as

B5gmn¹mF¹nF2W~F!. ~29!

One can show thatB corresponds to the Arnowitt-Deser
Misner ~ADM ! energy of the system@25#.

Thus only one of the three integration constants para
etrizing the general solution of the field equations has
invariant meaning. The other two can be absorbed in coo
nate transformation. This effect is extensively discussed
@9#.

This is exactly the result one would expect in ordina
gravity from the Birkhoff theorem: Up to coordinate tran
formations the static vacuum solutions form a one-param
family. For this reason some authors speak of the general
Birkhoff theorem of dilaton gravity@24#.

V. SOME SOLVABLE MODELS

We start by considering a linear potential of the for
V(F)5kF1m, i.e., the so-called Jackiw-Teitelboim o
Liouville gravity @26,27# with a cosmological constantk
Þ0. In this case the field equations decouple and we ob
for the conformal factor the equation

lxx2kel50 ~30!

which can be considered either as a special case of
Poisson-Boltzmann equation or as describing stationary
lutions of the Liouville equation. Its general solution is give
by @26#
ce.
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l~x!52 lnH k

2b2sinh
2@b~x2x0!#J ~31!

with two integration constantsb, x0 . Obviously,x0 is with-
out physical significance and can be set zero. The curvatu
is constant

R5k. ~32!

From ~23! we obtain immediately

F~x!52
A

k
$2bcoth@b~x2x0!#2m%. ~33!

Next we consider potentials of the formV(F)5aebF as
they occur in the effective string actions.1 Here it is simpler
to go back to Eqs.~22! and ~23! and to introduce new de-
pendent variablesc, m by c5V(F) and m5Ael. This
transformation yields the system

cx5bcm5bAmx . ~34!

Thus these new variables are related through

c~x!5bA@m~x!1d# ~35!

with an integration constantD. Eliminating c leads to a
simple Bernoulli equation form which can be solved by
separation of variables. We must distinguish two cases:
D50, we obtain

m~x!5
1

C2bx
~36!

and for the curvature scalar

R5
Ab2

bx2C
~37!

with a further integration constantC. Otherwise we find

m~x!5
D

Ce2bDx21
~38!

and the curvature scalar

R5
ADCb2

ebDx2C
. ~39!

By settingC50 in ~37! andC51 in ~39!, respectively, we
can move the singularity of the curvature tox50.

The third important model is provided by spherically
symmetric gravity in 311 dimensions@3#. It can be reduced
to a dilaton gravity action in two dimensions of the form~4!
where the potential is given byV(F)51/A2F. As above
we must distinguish two cases in the integral in~26!. If
B50, the solution can be given in explicit form

1As already mentioned in Sec. II more generally one obtains
potential of the formaFgebF. These models can still be solved
exactly @28#; however, many case distinctions arise.
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F~x!5
1

A2 ~x1C!2. ~40!

Otherwise an inversion is not possible. The implicit solutio
is

x1C5A@A2F2Bln~11A2F/B2 !#. ~41!

In any case the curvature scalar is given by

R5 1
4 F23/2. ~42!

VI. HAMILTON-JACOBI THEORY

After the gauge reduction we obtained in Sec. IV the fo
lowing system of one first-order and two second-order or
nary differential equations:

Fxx2elV~F!50, ~43a!

lxx2elV8~F!50, ~43b!

Fxlx2elV~F!50. ~43c!

Note that the first-order equation produces together with a
of the second-order ones the other second-order equation
an integrability condition. The two second-order equation
however, form a normal system and thus cannot generate
first-order one.

We now try to find an effective Lagrangian for the gauge
equations of motion~43!. A reasonable starting point is ob
tained by applying our gauge conditions to the full Lagran
ian density~4! and integrating once by parts

Lg@F,l#5Fxlx1elV~F!. ~44!

The corresponding Euler-Lagrange equations are the
second-order equations in~43!. Thus this action yields a too
general dynamics, as it ‘‘loses’’ one condition. Performing
Legendre transformation on~44! shows that the missing
equation demands the vanishing of the Hamiltonian of t
system~‘‘zero-energy condition’’!:

Hg5pFpl2elV~F!50, ~45!

where the canonically conjugate momenta are given
pF5lx andpl5Fx , respectively.

If we denote Hamilton’s principal function as usual b
S, the Hamilton-Jacobi equation for theunconstrainedsys-
tem described by the LagrangianLg is

]S

]x
1

]S

]F

]S

]l
2elV~F!50. ~46!

Imposing the constraint~45! leads to a second equation fo
S: namely@7,8#,

]S

]F

]S

]l
2elV~F!50. ~47!

Obviously, we can now discard~46! by simply looking for a
principal function independent ofx.
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Ideally, one would like to find a complete integra
S(x,F,l,p1 ,p2) of ~46! such that it satisfies the constrain
~47! for p250. Such a complete integral generates a cano
cal transformation to new coordinates (q1 ,q2 ,p1 ,p2) via

pF5
]S

]F
, pl5

]S

]l
, ~48a!

q15
]S

]p1
, q25

]S

]p2
. ~48b!

In these coordinates the system decouples@29# into an un-
constrained one depending only on the canonical p
(q1,p1) plus a trivial one containing the gauge degree
freedom (q2,p2). p2 is constrained to zero andq2 remains
completely arbitrary.

Unfortunately, we have not been able to construct such
complete integral. However, we found an incomplete integr
@8# satisfying the full system~46! and ~47!:

S~0!~F,l,p1!5p1e
l1

W~F!

p1
, ~49!

where againW8(F)5V(F). S(0) can be extended to a com-
plete integral by making the ansatz

S~x,F,l,p1p2!5S~0!~F,l,p1!1p2@D~F,l,p1 ,p2!2x#.
~50!

It is not difficult to show that such a functionD always
exists. The special form of~50! allows us to evaluate the
canonical transformation~48! on the constraint surface
p250. There we obtain

pF5V~F!/p1 , pl5p1e
l, ~51a!

q15el2W~F!/~p1!
2. ~51b!

We cannot computeq2, but this does not matter, as it is
purely gauge.

The new coordinates (q1,p1) are gauge-independent ob
servables, as one can easily check that their Poisson brac
with the Hamiltonian vanish~modulo the constraint!. Fur-
thermore we can relate them with the integration consta
A,B used in Sec. IV:

A5p1 , B5~p1!
2q1. ~52!

VII. QUANTIZATION

Since we have related dilaton gravity to the zero-ener
sector of a finite-dimensional dynamical system, we ca
quantize it in a simple way obtaining a standard Wheele
DeWitt equation instead of a functional equation. We choo
the usual representation of the momenta in terms of par
derivatives. The vanishing of the classical Hamiltonian~45!
yields the following hyperbolic equation for the wave func
tion C~F,l!:

\2
]2C

]F]l
1elV~F!C50. ~53!
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The simple field redefinitionm5el, r5W(F) where again
W8(F)5V(F) transforms it into the Klein-Gordon equation
~in characteristic coordinates!

\2
]2 C

]r]m
1C50. ~54!

In order to validate our quantization procedure we com
pute the semiclassical limit of this theory using the WK
approach. Thus we make the following ansatz forC depend-
ing on two real fieldsS,A:

C~r,m!5A~r,m!exp„i /\S~r,n!…. ~55!

~54! yields the differential equation

\2Arm1 i\~ASrm1AmSr1ArSm!2ASrSm1A50.
~56!

Now we expand both functions in power series in\:
A5A(0)1\A(1)1••• and S5S(0)1\S(1)1•••. In the
classical limit, i.e., for\→0, this leads to

Sr
~0!Sm

~0!51. ~57!

This is exactly the Hamilton-Jacobi equation~47! we ob-
tained in the last section~transformed to the new coordinate
r,m) and we can reuse the incomplete integral~49!. In the
new coordinatesr,m thel2F relation~27! derived in Sec.
IV reads

Am5
r1B

A
. ~58!

Identifying p1 with A one can easily see that these classic
trajectories are orthogonal with respect to the Minkows
metric to the curves described byS(0)5const. Thus we ob-
tain the correct classical limit.

For the next terms in the WKB approximation we obta
the differential equations

Sm
~0!Sr

~1!1Sr
~0!Sm

~1!50, ~59a!

Srm
~0!
A~0!1Sr

~0!
Am

~0!1Sm
~0!
Ar

~0!50, ~59b!

Srm
~0!
A~1!1Srm

~1!
A~0!1Sr

~0!
Am

~1!1Sr
~1!
Am

~0!1Sm
~0!
Ar

~1!

1Sm
~1!
Ar

~0!50. ~59c!

They can be solved easily by introducing the new variab
2s65Ar6m/A:

S~0!~s1,s2!5s11C, ~59d!

S~1!~s1,s2!5F~s2!, ~59e!

A~0!~s1,s2!5G~s2!, ~59f!

A~1!~s1,s2!5H~s2!1@G~s2!F9~s2!

1G8~s2!F8~s2!#s1 ~59g!

with an arbitrary constantC and three arbitrary functions
F,G,H.
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VIII. MINIMALLY COUPLED MATTER

We now couple minimally a matter fieldc by adding

LM5kA2g~¹c!2 ~60!

with a coupling constantk to the action~4!. Its energy-
momentum tensor is given in the conformal gauge~18! by

T005T115
k

2
e22l~c t

21cx
2!, ~61a!

T0152ke22lc tcx . ~61b!

Adding again the gauge-fixing conditionl t50 it is easy
to show that we obtain exactly in the same way as before th
F t50 and additionally thatc t50. Thus we can still reduce
the field equations to ordinary differential equations. Not
that this stems from the fact that there is no coupling be
tween the dilaton field and the matter.

The reduced field equations now have the form

Fxx2elV~F!50, ~62a!

lxx2elV8~F!50, ~62b!

cxx50, ~62c!

Fxlx2elV~F!1kcx
250. ~62d!

Again we can identify the last equation with a zero-energ
condition for the unconstrained system defined by the L
grangian

Lg@F,l,c#5Fxlx1kcx
21elV~F!. ~63!

Quantizing the Hamiltonian constraint we obtain again
hyperbolic wave equation as Wheeler-DeWitt equation

\2
]2C

]F]l
1

\2

4k

]2C

]c21elV~F!C50. ~64!

In the absence of matterF and l entered the equation on
equal footing. There was no way to decide whetherF1l or
F2l should be a timelike coordinate in the superspac
Now the sign ofk induces a (211) split of the superspace.
However, in general it is not clear which part of the split is
timelike and which spacelike.

IX. CONCLUSION

A similar reduction to ordinary differential equations was
used by Banks and O’Loughlin@13#. We would like to point
out some differences in the obtain quantum theories. They
not consider whether their quantum theory yields the corre
classical limit. Actually, it is easy to see that they would no
obtain their classical model. The latter one depends on thr
fields, whereas their quantum theory knows only two degre
of freedom. The fieldg used in their parametrization of the
metric simply disappears.

There exists an alternative way to endow the gaug
reduced equations of motion with a Hamiltonian structure. I
Sec. VI we started with the second-order system~43!. Alter-
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natively one can use the first-order formulation obtained
Sec. IV after one integration

Fx5Ael, ~65a!

Alx5V~F!. ~65b!

These are the Euler-Lagrange equations for the first-or
Lagrangian

L1@F,l#5Flx1Ael2
W~F!

A
. ~66!

It is well known that such a Lagrangian leads directly
generalized Poisson brackets@30# which can also be consid-
ered as Dirac brackets@31#. Applying this formalism toL1
yields

$l,F%51. ~67!

In this description we can thus interpret the dilaton and t
conformal factor as canonically conjugate coordinates. Ho
ever, we believe that~66! represents a dubious starting poin
for a quantization, asA is treated as a parameter. But we sa
in Sec. VI that it can be identified with a dynamical variabl

Since we have not been able to find a complete integra
the Hamilton-Jacobi equation~46! we could not pursue this
argument until the end. We have not constructed the f
canonical transformation which leads to the decoupling
the Hamiltonian. Otherwise we could have used its regul
gauge-independent part for the quantization and thus qu
tize the fully reduced phase space.

Instead we have used a finite-dimensional classical s
tem and imposed from the outside a gauge symmetry
considering only its zero-energy sector. This symmetry c
responds to the residual gauge freedom left after fixing t
gauge with the conditionl t50. Then we proceed in the
usual way following Dirac@32# by requiring that the wave
function is annihilated by an operator version of the~first-
class! constraint.

It appears natural to ask for the relationship between
quantum theory obtained this way and the one obtained
following the above-mentioned Hamiltonian-Jacobi proc
dure. One can expect that they are not equivalent. This s
ation is very similar to the quantization of the free relativist
particle. The approach we took here corresponds to the
variant quantization. No gauge fixing is performed and w
get a covariant wave function@the Klein-Gordon equation
~54! is obtained in characteristic coordinates#.

One should probably study in more detail the relation b
tween the residual gauge symmetry in the reduced field eq
in

der
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tions ~43! and the symmetry generated by the constrain
Hg50. As mentioned in Sec. IV the integration constantA
can be changed by a rescaling ofx. In the context of the field
equations we consider this as a gauge transformation. For
system described by the particle LagrangianLg this corre-
sponds to a reparametrization of the evolution parameterx
and is not contained in the gauge transformations genera
byHg . Under these transformationsA5p1 remains invari-
ant.

This connection can be made more transparent by using
reparametrization invariant action. To this end one introduc
a new evolution parameterg and setsx5X(g). This leads to
the action~the dot denotes derivatives with respect tog)

Lg8@l,F,X#5
Ḟl̇

Ẋ
1ẊelV~F!. ~68!

The original equations of motion are recovered, if one im
poses the gauge-fixing conditionX2g50. Since this condi-
tion depends explicitly on the evolution parameter, th
gauge-fixed Hamiltonian acquires a correction term@33,34#.
Once this is taken into account, one obtains exactly the sa
quantum theory as we did in Sec. VII.

Finally, we would like to stress again that applying meth
ods from the formal theory of partial differential equations
allows us to compute the dimension of the fully reduce
phase space without constructing it. This indicates that the
techniques should also be useful for more complicated mo
els where this construction cannot be performed explicitly.

This holds especially for systems where one can sho
that for a full gauge reduction one must pose in additio
initial and/or boundary conditions. For instance in the case
standard four-dimensional general relativity it is easy to se
that the gauge-corrected Cartan characters cannot be
tained from any system of differential equations, as they d
not satisfy all properties of Cartan characters. This implie
that it is not possible to fix the gauge completely by impos
ing gauge conditions in the form of differential~or algebraic!
equations. Nevertheless, one can determine the arbitrarin
of the fully reduced phase space@6,18#.
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@4# T. Klösch and T. Strobel, ‘‘Classical and Quantum Gravity

111 Dimensions. Part I: A Unifying Approach,’’ Technische
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