
Efficient Computation of (Finite) Pommaret
Bases

Bentolhoda Binaei1, Amir Hashemi1,2, and Werner M. Seiler3

1 Department of Mathematical Sciences, Isfahan University of Technology
Isfahan, 84156-83111, Iran;

2 School of Mathematics, Institute for Research in Fundamental Sciences (IPM),
Tehran, 19395-5746, Iran

h.binaei@math.iut.ac.ir

Amir.Hashemi@cc.iut.ac.ir
3 Institut für Mathematik, Universität Kassel

Heinrich-Plett-Straße 40, 34132 Kassel, Germany
seiler@mathematik.uni-kassel.de

Abstract. In this paper, we describe a new and efficient algorithm to
compute Pommaret bases. To this end, based on the method proposed
by Möller et al. [20], we present a more efficient variant of Gerdt’s al-
gorithm (than the algorithm presented in [16]) to compute minimal in-
volutive bases. Further, by using the involutive version of Hilbert driven
technique, along with the new variant of Gerdt’s algorithm, we modify
the algorithm, given in [23], to compute a linear change of coordinates for
a given homogeneous ideal so that the new ideal (after performing this
change) possesses a finite Pommaret basis. All the proposed algorithms
have been implemented in Maple and their efficiency is discussed via a
set of benchmark polynomials.

1 Introduction

Gröbner bases are one of the most important concepts in computer algebra for
dealing with multivariate polynomials. A Gröbner basis is a special kind of gen-
erating set for an ideal which provides a computational framework to determine
many properties of the ideal. The notion of Gröbner bases was originally in-
troduced in 1965 by Buchberger in his Ph.D. thesis and he also gave the basic
algorithm to compute it [2, 3]. Later on, he proposed two criteria for detecting
superfluous reductions to improve his algorithm [1]. In 1983, Lazard [19] devel-
oped new approach by making connection between Gröbner bases and linear
algebra. In 1988, Gebauer and Möller [10] reformulated Buchberger’s criteria in
an efficient way to improve Buchberger’s algorithm. Furthermore, Möller et al. in
[20] proposed an improved version of Buchberger’s algorithm by using the syzy-
gies of constructed polynomials to detect useless reductions (this algorithm may
be considered as the first signature-based algorithm to compute Gröbner bases).
Relying on the properties of the Hilbert series of an ideal, Traverso [26] described
the so-called Hilbert-driven Gröbner basis algorithm to improve Buchberger’s al-
gorithm by discarding useless critical pairs. In 1999, Faugère [6] presented his

F4 algorithm to compute Gröbner bases which stems from Lazard’s approach
[19] and uses fast linear algebra techniques on sparse matrices (this algorithm
has been efficiently implemented in Maple and Magma). In 2002, Faugère pre-
sented the famous F5 algorithm for computing Gröbner bases [7]. The efficiency
of this signature-based algorithm benefits from an incremental structure and
two new criteria, namely F5 and IsRewritten criteria (nowadays known respec-
tively as signature and syzygy criteria). We remark that several authors have
studied signature-based algorithms to compute Gröbner bases and as the novel
approaches in this directions we refer to e.g. [8, 9].

Involutive bases may be considered as an extension of Gröbner bases (w.r.t.
a restricted monomial division) for polynomial ideals which include additional
combinatorial properties. The origin of involutive bases theory must be traced
back to the work of Janet [18] on a constructive approach to the analysis of
linear and certain quasi-linear systems of partial differential equations. Then
Janet’s approach was generalized to arbitrary (polynomial) differential systems
by Thomas [25]. Based on the related methods developed by Pommaret in his
book [21], the notion of involutive polynomial bases was introduced by Zharkov
and Blinkov in [27]. Gerdt and Blinkov [13] introduced a more general concept
of involutive division and involutive bases for polynomial ideals, along with al-
gorithmic methods for their construction. An efficient algorithm was devised by
Gerdt [12] (see also [15]) for computing involutive and Gröbner bases using the
involutive form of Buchberger’s criteria (see http://invo.jinr.ru for the
efficiency analysis of the implementation of this algorithm). In this paper, we
refer to this algorithm as Gerdt’s algorithm. Finally, Gerdt et al. [16] described
a signature-based algorithm (with an incremental structure) to apply the F5 cri-
terion for deletion of unnecessary reductions. Although this algorithm is faster
than Gerdt’s algorithm (see [16]), however its drawbacks are as follows: Due to
its incremental structure (in order to apply the F5 criterion), the selection strat-
egy should be the POT module monomial ordering (which may be not efficient
in general). Further, to respect the signature of computed polynomials, the re-
duction process may be not accomplished and (that may increase the number
of intermediate polynomials) that may significantly affect the efficiency of com-
putation. Finally, the involutive basis that this algorithm returns may be not
minimal.

The aim of this paper is to provide an effective method to calculate Pom-
maret bases. These bases are a particular form of involutive bases introduced by
Zharkov and Blinkov in [27] and contain many combinatorial properties of the
ideals they generate, see e.g. [22–24] for a comprehensive study of Pommaret
bases. They are not only of interest in computational aspects of algebraic geom-
etry (e.g. by providing deterministic approaches to transform a given ideal into
some classes of generic positions [23]), but they also serve in theoretical aspects
of algebraic geometry (e.g. by providing simple and explicit formulas to read
off many invariants of an ideal like dimension, depth and Castelnuovo-Mumford
regularity [23]).

Relying on the method developed by Möller et al. [20], we give a new signature-
based variant of Gerdt’s algorithm to compute minimal involutive bases. In par-
ticular, the experiments show that the new algorithm is more efficient than Gerdt
et al. algorithm [16]. On the other hand, [23] proposes an algorithm to compute
deterministically a linear change of coordinates for a given homogeneous ideal
so that the changed ideal (after performing this change) possesses a finite Pom-
maret basis (note that in general a given ideal does not have a finite Pommaret
basis). In doing so, one computes iteratively the Janet bases of certain polyno-
mial ideals. By applying the involutive version of Hilbert driven technique on the
new variant of Gerdt’s algorithm, we modify this algorithm to compute Pom-
maret bases. We have implemented all the algorithms described in this article
and we assess their performance on a number of test examples.

The rest of the paper is organized as follows. In the next section, we will
review the basic definitions and notations which will be used throughout this
paper. Section 3 is devoted to the description of the new variant of Gerdt’s
algorithm. In Section 4, we present the improved algorithm to compute a linear
change of coordinates for a given homogeneous ideal so that the new ideal has
a finite Pommaret basis. Finally, we analyze the performance of the proposed
algorithms in the last section.

2 Preliminaries

In this section, we review the basic definitions and notations from the theory of
Gröbner bases and involutive bases that will be used in the rest of the paper.
Throughout this paper we assume that P = k[x1, . . . , xn] is the polynomial
ring (where k is an infinite field). We consider also homogeneous polynomials
f1, . . . , fk ∈ P and the ideal I = 〈f1, . . . , fk〉 generated by them. We denote
the total degree of and the degree w.r.t. a variable xi of a polynomial f ∈ P
respectively by deg(f) and degi(f). Let M = {xα1

1 · · ·xαn

n | αi ≥ 0, 1 ≤ i ≤ n}
be the monoid of all monomials in P. A monomial ordering on M is denoted by
≺ and throughout this paper we shall assume that xn ≺ · · · ≺ x1. The leading
monomial of a given polynomial f ∈ P w.r.t. ≺ will be denoted by LM(f). If
F ⊂ P is a finite set of polynomials, we denote by LM(F) the set {LM(f) |
f ∈ F}. The leading coefficient of f , denoted by LC(f), is the coefficient of
LM(f). The leading term of f is defined to be LT(f) = LM(f) LC(f). A finite
set G = {g1, . . . , gk} ⊂ P is called a Gröbner basis of I w.r.t ≺ if LM(I) =
〈LM(g1), . . . ,LM(gk)〉 where LM(I) = 〈LM(f) | f ∈ I〉. We refer e.g. to [4] for
more details on Gröbner bases.

Let us recall the definition of Hilbert function and Hilbert series of a homo-
geneous ideal. Let X ⊂ P and s a positive integer. We define the degree s part
Xs of X to be the set of all homogeneous elements of X of degree s.

Definition 1. The Hilbert function of I is defined by HFI(s) = dimk(Ps/Is)
where the right-hand side denotes the dimension of Ps/Is as a k-linear space.

It is well-known that the Hilbert function of I is the same as that of LT(I) (see
e.g. [4, Prop. 4, page 458]) and therefore the set of monomials not contained in

LT(I) forms a basis for Ps/Is as a k-linear space (Macaulay’s theorem). This
observation is the key idea behind the Hilbert-driven Gröbner basis algorithm.
Roughly speaking, suppose that I is a homogeneous ideal and we want to com-
pute a Gröbner basis of I by Buchberger’s algorithm in increasing order w.r.t.
the total degree of the S-polynomials. Assume that we know beforehand HFI(s)
for a positive integer s. Suppose that we are at the stage where we are looking at
the critical pairs of degree s. Consider the set P of all critical pairs of degree s.
Then, we compare HFI(s) with the Hilbert function at s of the ideal generated
by the leading terms of all already computed polynomials. If they are equal, we
can remove P .

Below, we review some definitions and relevant results on involutive bases
theory (see [12] for more details). We recall first involutive divisions based on
partitioning the variables into two subsets of the variables, the so-called multi-
plicative and non-multiplicative variables.

Definition 2. An involutive division L is given on M if for any finite set
U ⊂ M and any u ∈ U , the set of variables is partitioned into the subset of
multiplicative ML(u, U) and non-multiplicative variables NML(u, U) such that
the following three conditions hold where L(u, U) denotes the monoid generated
by ML(u, U):

1. v, u ∈ U , uL(u, U) ∩ vL(v, U) 6= ∅ ⇒ u ∈ vL(v, U) or v ∈ uL(u, U),
2. v ∈ U , v ∈ uL(u, U) ⇒ L(v, U) ⊂ L(u, U),
3. V ⊂ U and u ∈ V ⇒ L(u, U) ⊂ L(u, V).

We shall write u |L w if w ∈ uL(u, U). In this case, u is called an L-involutive
divisor of w and w an L-involutive multiple of u.

We recall the definitions of the Janet and the Pommaret division, respectively.

Example 3. Let U ⊂ P be a finite set of monomials. For each sequence d1, . . . , dn
of non-negative integers and for each 1 ≤ i ≤ n we define the subsets

[d1, . . . , di] = {u ∈ U | dj = degj(u), 1 ≤ j ≤ i}.

The variable x1 is Janet multiplicative (denoted by J -multiplicative) for u ∈ U
if deg1(u) = max{deg1(v) | v ∈ U}. For i > 1 the variable xi is Janet multi-
plicative for u ∈ [d1, . . . , di−1] if degi(u) = max{degi(v) | v ∈ [d1, . . . , di−1]}.

Example 4. For u = xd1

1 · · ·xdk

k with dk > 0 the variables {xk, . . . , xn} are con-
sidered as Pommaret multiplicative (denoted by P-multiplicative) and the other
variables as Pommaret non-multiplicative. For u = 1 all the variables are multi-
plicative. The integer k is called the class of u and is denoted by cls(u).

The Pommaret division is called a global division, because the assignment of the
multiplicative variables is independent of the set U . In order to avoid repeating
notations let L always denote an involutive division.

Definition 5. The set F ⊂ P is called involutively head autoreduced if for each
f ∈ F there is no h ∈ F \ {f} with LM(h) |L LM(f).

Definition 6. Let I ⊂ P be an ideal. An L-involutively head autoreduced subset
G ⊂ I is an L-involutive basis for I (or simply either an involutive basis or
L-basis) if for all f ∈ I there exists g ∈ G so that LM(g) |L LM(f).

Example 7. Let I = {x2
1x3, x1x2, x1x

2
3} ⊂ k[x1, x2, x3]. Then, {x

2
1x3, x1x2, x1x

2
3,

x2
1x2} is a Janet basis for I and {x2

1x3, x1x2, x1x
2
3, x

2
1x2, x

i+3
1 x2, x

i+3
1 x3 | i ≥ 0} is

a (infinite) Pommaret basis for I. Indeed, Janet division is Noetherian, however
Pommaret division is non-Noetherian (see [14] for more details).

Gerdt in [12] proposed an efficient algorithm to construct involutive bases based
on a completion process where prolongations of generators by non-multiplicative
variables are reduced. This process terminates in finitely many steps for any
Noetherian division.

Definition 8. Let F ⊂ P be a finite. Following the notations in [23], the invo-
lutive span generated by F is denoted by 〈F 〉L,≺.

Thus, a set F ⊂ I is an involutive basis for I if we have I = 〈F 〉L,≺.

Definition 9. Let F ⊂ I be an involutively head autoreduced set of homoge-
neous polynomials. The involutive Hilbert function of F is defined by IHFF (s) =
dimk(Ps/(〈F 〉L,≺)s).

Since F is involutively head autoreduced, one easily recognizes that 〈F 〉L,≺ =
⊕

f∈F k[ML(LM(f),LM(F))] · f . Thus using the well-known combinatorial for-
mulas to count the number of monomials in certain variables, we get

IHFI(s) =

(

n+ s− 1

s

)

−
∑

f∈F

(

s− deg(f) + kf − 1

s− deg(f)

)

where kf is the number of multiplicative variables of f (see e.g. [12]). We remark
that an involutively head autoreduced subset F ⊂ I is an involutive basis for I
if and only if HFI(s) = IHFF (s) for each s.

3 Using Syzygies to Compute Involutive Bases

We now propose a variant of Gerdt’s algorithm [12] by using the intermediate
computed syzygies to compute involutive bases and especially Janet bases. For
this, we recall briefly the signature-based variant of Möller et al. algorithm [20]
to compute Gröbner bases (the practical results are given in Section 5).

Definition 10. Let us consider F = (f1, . . . , fk) ∈ Pk. The (first) syzygy mod-

ule of F is defined to be Syz(F) = {(h1, . . . , hk) | hi ∈ P,
∑k

i=1 hifi = 0}.

Schreyer in his master thesis proposed a slight modification of Buchberger’s
algorithm to compute a Gröbner basis for the module of syzygies of a Gröbner
basis. The construction of this basis relies on the following key observation (see
[5]): Let G = {g1, . . . , gs} be a Gröbner basis. By tracing the dependency of each

SPoly(gi, gi) on G we can write SPoly(gi, gj) =
∑s

k=1 aijkgk with aijk ∈ P. Let
e1, . . . , es be the standard basis for Ps and mij = lcm(LT(gi),LT(gj)). Set

sij = mi,j/LT(gi).ei −mi,j/LT(gj).ej − (aij1e1 + aij2e2 + · · ·+ aijses).

Definition 11. Let G = {g1, . . . , gs} ⊂ P. Schreyer’s module ordering is defined
as follows: xβ

ej ≺s x
α
ei if LT(x

βgj) ≺ LT(xαgi) and breaks ties by i < j.

Theorem 12 (Schreyer’s Theorem). For a Gröbner basis G = {g1, . . . , gs}
the set {sij | 1 ≤ i < j ≤ s} forms a Gröbner basis for Syz(g1, . . . , gs) w.r.t. ≺s.

Example 13. Let F = {xy − x, x2 − y} ⊂ k[x, y]. The Gröbner basis of F w.r.t.
x ≺dlex y is G = {g1 = xy − x, g2 = x2 − y, g3 = y2 − y} and the Gröbner basis
of Syz(g1, g2, g3) is {(x,−y + 1,−1), (−x, y2 − 1,−x2 + y + 1), (y, 0,−x)}.

According to this observation, Möller et al. [20] proposed a variant of Buch-
berger’s algorithm by using the syzygies of constructed polynomials to remove
superfluous reductions. Algorithm 1 below corresponds to it with a slight mod-
ification to derive a signature-based algorithm to compute Gröbner bases. We
associate to each polynomial f , the two-tuple p = (f,mei) where Poly(p) = f is
the polynomial part of f and Sig(p) = mei is its signature. Further, the function
NormalForm(f,G) returns a remainder of the division of f by G. Further, if
Sig(p) = mei in the first step of reduction process we must not use fi ∈ G. We

Algorithm 1 GröbnerBasis

Input: A set of polynomials F ⊂ P; a monomial ordering ≺
Output: A Gröbner basis G for 〈F 〉
G := {} and syz := {}
P := {(F [i], ei) | i = 1, . . . , |F |}
while P 6= ∅ do

select (using normal strategy) and remove p ∈ P
if ∄ s ∈ syz s.t. s | Sig(p) then

f := Poly(t)
h := NormalForm(f,G)
syz := syz ∪ {Sig(t)}
if h 6= 0 then

j := |G|+ 1
for g ∈ G do

P := P ∪ {(r.h, r.ej)} s.t. r.LM(h) = LCM(LM(g),LM(h))
G := G ∪ {h}
syz := syz ∪ {LM(g).ej | LM(h) and LM(g) are coprime}

od

fi

fi

od

return (G)

show now how to apply this structure to improve Gerdt’s algorithm [15].

Definition 14. Let F = (f1, . . . , fk) ⊂ Pk be a sequence of polynomials. The
involutive syzygy module ISYZ(F) of F is the set of all (h1, . . . , hk) ∈ Pk so

that
∑k

i=1 hifi = 0 where hi ∈ k[ML(LM(fi),LM(F))].

[23, Thm. 5.10] contains an involutive version of Schreyer’s theorem replacing
S-polynomials by non-multiplicative prolongations and using involutive division.
Algorithm 2 below represents the new variant of Gerdt’s algorithm for comput-
ing involutive bases using involutive syzygies. For this purpose, we associate to
each polynomial f , the quadruple p = (f, g, V,m.ei) where f = Poly(p) is the
polynomial itself, g = Anc(p) is its ancestor, V = NM(p) is the list of non-
multiplicative variables of f which have been already processed in the algorithm
and m.ei = Sig(p) is the signature of f . If P is a set of quadruple, we denote by
Poly(P) the set {Poly(p) | p ∈ P}.

Algorithm 2 InvolutiveBasis

Input: A finite set F ⊂ P; an involutive division L; a monomial ordering ≺
Output: A minimal L-basis for 〈F 〉
F :=sort(F,≺)
T := {(F [1], F [1], ∅, e1)}
Q := {(F [i], F [i], ∅, ei) | i = 2, . . . , |F |}
syz := {}
while Q 6= ∅ do

Q :=sort(Q,≺s)
p := Q[1]
if ∄s ∈ syz s.t s | Sig(p) with non-constant quotient then

h := InvolutiveNormalForm(p, T,L,≺)
syz := syz ∪ {h[2]}
if h = 0 and LM(Poly(p)) = LM(Anc(p)) then

Q := {q ∈ Q | Anc(q) 6= Poly(p)}
fi

if h 6= 0 and LM(Poly(p)) 6= LM(h) then

for q ∈ T with proper conventional division LM(Poly(h)) | LM(Poly(q)) do
Q := Q ∪ {q}
T := T \ {q}

od

j := |T |+ 1
T := T ∪ {(h, h, ∅, ej)}

else

T := T ∪ {(h,Anc(p),NM(p), Sig(p))}
fi

for q ∈ T and x ∈ NML(LM(Poly(q)),LM(Poly(T)) \NM(q)) do
Q := Q ∪ {(x.Poly(q),Anc(q), ∅, x. Sig(q))}
NM(q) := NM(q) ∪NML(LM(Poly(q)),LM(Poly(T))) ∪ {x}

od

fi

od

return (Poly(T))

In this algorithm, the functions sort(X,≺) and sort(X,≺s) sort X by increas-
ing, respectively, LM(X) w.r.t. ≺ and {Sig(p) | p ∈ X} w.r.t. ≺s. The involutive
normal form algorithm is given in Algorithm 3.

Algorithm 3 InvolutiveNormalForm

Input: A quadruple p; a set of quadruples T ; an involutive division L; a monomial
ordering ≺
Output: An L-normal form of p modulo T , and the corresponding signature, if any
S := {} and h := Poly(p) and G := Poly(T)
while h has a monomial m which is L-divisible by G do

select g ∈ G with LM(g) |L m
if m = LM(Poly(p)) and (m/LM(g). Sig(g) = Sig(p) or Criteria(h, g)) then

return (0, S)
fi

if m = LM(Poly(p)) and m/LM(g). Sig(g) ≺s Sig(p) then

S := S ∪ {Sig(p)}
fi

h := h− cm/LT(g).g where c is the coefficient of m in h
od

return (h, S)

Furthermore, we apply the involutive form of Buchberger’s criteria from [12].
We say that Criteria(p, g) holds if either C1(p, g) or C2(p, g) holds where
C1(p, g) is true if LM(Anc(p)).LM(Anc(g)) = LM(Poly(p)) and C2(p, g) is true
if LCM(LM(Anc(p)),LM(Anc(g))) properly divides LM(Poly(p)).

Remark 15. We shall remark that, due to the second if-loop in Algorithm 3,
if miei is added into syz then there exists an involutive representation of the
form migi =

∑ℓ

j=1 hjgj + h where T = {g1, . . . , gℓ} ⊂ P is the output of the
algorithm, h is L-normal form of p modulo T and LM(hj)ej ≺s miei for each j.

In the next proof, by an abuse of notation, we refer to the signature of a
quadruple as the signature of its polynomial part.

Theorem 16. InvolutiveBasis terminates in finitely many steps (if L is a
Noetherian division) and returns a minimal involutive basis for its input ideal.

Proof. The termination and correctness of the algorithm are inherited from those
of Gerdt’s algorithm [12] provided that we show that any polynomial removed
using syzygies is superfluous. This happens in both algorithms. Let us deal
first with Algorithm 2. Now, suppose that for p ∈ Q there exists s ∈ syz
so that s | Sig(p) with non-constant quotient. Suppose that Sig(p) = miei
and s = m′

iei where mi = um′
i with u 6= 1. Let T = {g1, . . . , gℓ} ⊂ P be

the output of the algorithm and m′
igi =

∑ℓ

j=1 hjgj + h be the representa-
tion of m′

igi with f, gj ∈ T, hj ∈ P and h the involutive remainder of the
division of m′

igi by T . Then, from the structure of both algorithms, it yields

that LM(hjgj) ≺ LM(m′
igi). In particular, we have LM(hj)ej ≺s m′

iei for each
j. This follows that LM(uhj)ej ≺s um′

iei = miei for each j. On the other
hand, if h 6= 0 then again by the structure of the algorithm uh has a signa-
ture less than miei. For each j and for each term t in hj we know that the
signature of utgj is less than miei and by the selection strategy used in the
algorithm which is based on Schreyer’s ordering, utgj should be studied before
m′

igi and therefore it has an involutive representation in terms of T . Further-
more, the same holds also for uh provided that h 6= 0. These arguments show
that m′

igi is unnecessary and it can be omitted. Now we turn to Algorithm 3.
Let p ∈ Q and g ∈ T so that LM(h) = uLT(g) and Sig(p) = u Sig(g) where
h = Poly(p) and u is a monomial. Using the above notations, let Sig(p) = miei
and Sig(g) = m′

iei where mi = um′
i. Further, let m′

igi =
∑ℓ

j=1 hjgj + g be
the representation of m′

igi with LM(hj)ej ≺s m′
iei for each j. It follows from

the assumption that LM(hjgj) ≺ LM(m′
igi) = LM(g) for each j. We can write

um′
igi =

∑ℓ

j=1 uhjgj + ug. Since LM(uhj)ej ≺s um′
iei = miei for each j then,

by repeating the above argument, we deduce that uhjgj for each j has an invo-
lutive representtaion. Therefore, um′

igi has a representation using the fact that
u is multiplicative for g. Thus h has a representation and it can be removed. ⊓⊔

4 Hilbert Driven Pommaret Bases Computations

As we mentioned Pommaret division is not Noetherian and therefore, a given
ideal may not have a finite Pommaret basis. However, if the ideal is in quasi-
stable position it has a finite Pommaret basis. On the other hand, a generic linear
change of variables transforms an ideal in such a position. Thus, one of the chal-
lenges in this direction is to find a linear change of variables so that the ideal
after performing this change possesses a finite Pommaret basis. [23] proposes a
deterministic algorithm to compute such a linear change by computing repeat-
edly the Janet basis of the last transformed ideal. In this section, by using the
algorithm described in Section 3, we show how one can incorporate an involutive
version of Hilbert driven strategy to improve this algorithm.

Algorithm 4 HDQuasiStable

Input: A finite set F ⊂ P and a monomial ordering ≺
Output: A linear change Φ so that 〈Φ(F)〉 has a finite Pommaret basis
Φ := ∅ and J :=InvolutiveBasis(F,J ,≺) and A :=test(LM(J),≺)
while A 6= true do

G := substitution of φ := A[3] 7→ A[3] + cA[2] in J for a random choice of c ∈ K
Temp :=HDInvolutiveBasis(G,J ,≺)
B :=test(LM(Temp))
if B 6= A then

Φ := Φ, φ and J := Temp and A := B
fi

od

return (Φ)

It is worth noting that in [23] it is proposed to perform a Pommaret head
autoreduced process on the calculated Janet basis at each iteration. However,
we do not need to perform this operation because each computed Janet basis
is minimal and by [11, Cor. 15] each minimal Janet basis is Pommaret head
autoreduced. All the used functions are described below. By the structure of the
algorithm, we first compute a Janet basis for the input ideal using Involutive-

Basis algorithm. From this basis, one can read off easily the Hilbert function
of the input ideal. Further, the Hilbert function of an ideal does not change
after performing a linear change of variables. Thus we can apply this Hilbert
function in the next Janet bases computations as follows. The algorithm has the
same structure as the InvolutiveBasis algorithm and so we remove the similar
lines. We add the next written lines in HDInvolutiveBasis algorithm between
p := Q[1] and the first if-loop in InvolutiveBasis algorithm.

Algorithm 5 HDInvolutiveBasis

Input: A set of monomials F ; an involutive division L ; a monomial ordering ≺
Output: A minimal L-involutive basis for 〈F 〉
...
d := deg(p)
while HF〈F 〉(d) = IHFT (d) do

remove from Q all q ∈ Q s.t. deg(Poly(q)) = d
if Q = ∅ then

return (Poly(T))
else

p := Q[1]
d := deg(p)

fi

od
...

Algorithm 6 test

Input: A finite set U of monomials
Output: True if any element of U has the same number of Pommaret and Janet
multiplicative variables, and false otherwise
if ∃u ∈ U s.t. MP,≺(u, U) 6= MJ ,≺(u, U) then

V := MJ ,≺(u, F) \MP,≺(u, F)
return(false, V [1], xcls(u))

fi

return (true)

Theorem 17. The algorithm HDQuasiStable terminates in finitely many steps
and it returns a linear change of variables for a given homogeneous ideal so that
the changed ideal (after performing the change on the input ideal) possesses a
finite Pommaret basis.

Proof. Let I be the ideal generated by F ; the input of HDQuasiStable al-
gorithm. The termination of this algorithm follows, from one side, from the
termination of the algorithms to compute Janet bases. From the other side, [23,
Prop. 2.9] shows that there exists an open Zariski set U of kn×n so that for
each linear change of variables, say Φ corresponding to an element of U we have
Φ(I) has a finite Pommaret basis. Moreover, he proved that the process of find-
ing such a linear change termintaes in finitely many steps (see [23, Rem. 9.11]).
Taken together, these arguments show that HDQuasiStable algorithm termi-
nates. To prove the correctness, using the notations of HDInvolutiveBasis

algorithm, we shall prove that any p ∈ Q removed by Hilbert driven strategy
reduces to zero. In this direction, we recall that any change of variables is a
linear automorphism of P, [17, page 52]. Thus, for each i, the dimension over k
of components of degree i of I and that of I after the change remains stable.
This yields that the Hilbert function of I does not change after a linear change
of variables. Let J be the Janet basis computed by InvolutiveBasis. One can
readily observe that HFI(d) = IHFJ(d) for each d, and therefore from the first
Janet basis one can derive the Hilbert function of I and use it to improve the
next Janet bases computations. Now, suppose that F is the input of HDInvo-

lutiveBasis algorithm, p ∈ Q and HFI(d) = IHFT (d) for d = deg(Poly(p)). It
follows that dimk(〈F 〉d) = dimk(〈Poly(T)〉d) and therefore the polynomials of
Poly(T) generate involutively whole 〈F 〉d and this shows that p is superfluous
which ends the proof. ⊓⊔

Remark 18. We remark that we assumed that the input of InvolutiveBasis

and HDQuasiStable algorithms should be homogeneous, however the former
algorithm works also for non-homogeneous ideals. Further, the latter algorithm
also may be applied for non-homogeneous ideals provided that we consider the
affine Hilbert function for such an ideal; i.e. HFI(s) = dimk(P≤s/I≤s).

[23] provides a number of equivalent characterizations of the ideals which have
finite Pommaret bases. Indeed, a given ideal has a finite Pommaret basis if only
if the ideal is in quasi stable position (or equivalently if the coordinates are
δ-regular) see [23, Prop. 4.4].

Definition 19. A monomial ideal I is called quasi stable if for any monomial
m ∈ I and all integers i, j, s with 1 ≤ j < i ≤ n and s > 0, if xs

i | m there exists
an integer t ≥ 0 such that xt

jm/xs
i ∈ I. A homogeneous ideal I is in quasi stable

position if LT(I) is quasi stable.

Example 20. The ideal I = 〈x2
2x3, x

3
2, x

3
1〉 ⊂ k[x, y, z] is a quasi stable monomial

ideal and its Pommaret basis is {x2
2x3, x

3
2, x

3
1, x1x

2
2x3, x1x

3
2, x

2
1x

2
2x3, x

2
1x

3
2}.

5 Experiments and Comparison

We have implemented both algorithms InvolutiveBasis andHDQuasiStable

in Maple 174. It is worth noting that, in the given paper, we are willing to

4 The Maple code of the implementations of our algorithms and examples are avail-
able at http://amirhashemi.iut.ac.ir/softwares

compare behavior of InvolutiveBasis and HDQuasiStable algorithms with
Gerdt et al. [16] andQuasiStable [23] algorithms, respectively (we shall remark
that QuasiStable has the same structure as the HDQuasiStable, however to
compute Janet bases we use Gerdt’s algorithm). For this purpose, we used some
well-known examples from computer algebra literature. All computations were
done over Q, and for the input degree-reverse-lexicographical monomial order-
ing. The results are shown in the following tables where the time and memory
columns indicate, respectively, the consumed CPU time in seconds and amount
of megabytes of used memory. The C1 and C2 columns show, respectively, the
number of polynomials removed by C1 and C2 criteria by the corresponding
algorithm. The sixth column shows the number of polynomials eliminated by
the new criterion related to syzygies applied in InvolutiveBasis and Invo-

lutiveNormalForm algorithms. The F5 and S columns show the number of
polynomials removed, respectively, by F5 and super-top-reduction criteria. Three
last columns represent, respectively, the number of reductions to zero, the num-
ber and the maximum degree of polynomials in the final involutive basis (we
note that for Gerdt et al. algorithm the number of polynomials is the size of the
basis after the minimal process). The computations in this paper are performed
on a personal computer with 2.70 GHz Intel(R) Core(TM) i7-2620M CPU, 8 GB
of RAM, 64 bits under the Windows 7 operating system.

Liu time memory C1 C2 Syz F5 S redz poly deg

InvolutiveBasis 1.09 37.214 4 3 2 - - 25 19 6

Gerdt et al. 2.901 41.189 7 39 - 25 0 1 19 7

Noon time memory C1 C2 Syz F5 S redz poly deg

InvolutiveBasis 3.822 43.790 4 15 6 - - 69 51 10

Gerdt et al. 45.271 670.939 8 107 - 49 3 17 51 10

Haas3 time memory C1 C2 Syz F5 S redz poly deg

InvolutiveBasis 8.424 95.172 0 20 24 - - 203 73 13

Gerdt et al. 41.948 630.709 1 88 - 88 16 68 73 13

Sturmfels-Eisenbud time memory C1 C2 Syz F5 S redz poly deg

InvolutiveBasis 22.932 255.041 28 103 95 - - 245 100 6

Gerdt et al. 2486.687 30194.406 29 1379 - 84 11 40 100 9

Lichtblau time memory C1 C2 Syz F5 S redz poly deg

InvolutiveBasis 24.804 391.3 0 5 6 - - 19 35 11

Gerdt et al. 205.578 3647.537 0 351 - 18 0 31 35 19

Eco7 time memory C1 C2 Syz F5 S redz poly deg

InvolutiveBasis 40.497 473.137 51 21 30 - - 201 45 6

Gerdt et al. 1543.068 25971.714 63 1717 - 175 8 18 45 11

Katsura5 time memory C1 C2 Syz F5 S redz poly deg

InvolutiveBasis 46.956 630.635 21 0 2 - - 68 23 12

Gerdt et al. 42.416 621.551 62 73 - 114 1 21 23 8

Katsura6 time memory C1 C2 Syz F5 S redz poly deg

InvolutiveBasis 81.526 992.071 43 0 4 - - 171 43 8

Gerdt et al. 608.325 795.196 77 392 - 209 1 41 43 11

As one can observe InvolutiveBasis is a signature-based variant of Gerdt’s
algorithm which has a structure closer to Gerdt’s algorithm and it is more effi-
cient than Gerdt et al. algorithm. Moreover, we can see the detection of criteria

and the number of reductions to zero by the algorithms are different. Indeed,
this difference is due to the selection strategy used in each algorithm. More pre-
cisely, in teh Gerdt et al. algorithm the set of non-multiplicative prolongations is
sorted by POT ordering however in InvolutiveBasis it is sortd using Schreyer
ordering. However, one needs to implement it efficiently in C/C++ to be able
to compare it with GINV software5.

The next tables illustrate an experimental comparison of HDQuasiStable

and QuasiStable algorithms. In these tables HD column shows the number of
polynomials removed by Hilbert driven strategy in the corresponding algorithm.
Further, the chen column shows the number of linear changes that one needs to
transform the corresponding ideal into quasi stable position.

Liu time memory C1 C2 Syz HD redz chen deg

HDQuasiStable 4.125 409.370 4 3 2 93 56 4 6

QuasiStable 9.56 1067.725 14 3 - - 151 4 6

Katsura5 time memory C1 C2 Syz HD redz chen deg

HDQuasiStable 67.234 9191.288 44 3 6 185 168 2 8

QuasiStable 145.187 26154.263 86 29 - - 359 2 8

Weispfenning94 time memo C1 C2 Syz HD reds chen deg

HDQuasiStable 110.339 6268.532 0 1 9 45 170 1 15

QuasiStable 243.798 16939.468 0 2 - - 85 1 15

Noon time memory C1 C2 Syz HD redz chen deg

HDQuasiStable 667.343 66697.995 4 25 6 325 119 4 11

QuasiStable 1210.921 205149.994 16 35 - - 450 4 11

Sturmfels-Eisenbud time memory C1 C2 Syz HD redz poly deg

HDQuasiStable 1507.640 125904.515 86 308 440 1370 1804 12 8

QuasiStable 843.171 96410.344 218 1051 - - 3614 12 8

Eco7 time memory C1 C2 Syz HD redz chen deg

QuasiStable 2182.296 241501.340 298 98 373 1523 1993 8 11

QuasiStable 2740.734 500857.600 547 725 - - 3889 8 11

Haas3 time memory C1 C2 Syz HD redz chen deg

HDQuasiStable 5505.375 906723.699 0 0 91 84 255 1 33

QuasiStable 10136.718 1610753.428 1 120 - - 430 1 33

Lichtblau time memory C1 C2 Syz HD redz chen deg

HDQuasiStable 16535.593 2051064.666 0 44 266 217 265 2 30

QuasiStable 18535.625 2522847.256 0 493 - - 751 2 30

Acknowledgments.

The research of the second author was in part supported by a grant from IPM
(No. 94550420).

References

1. Buchberger, B.: A criterion for detecting unnecessary reductions in the construc-
tion of Gröbner-bases. Symbolic and algebraic computation, EUROSAM ’79, int.
Symp., Marseille 1979, Lect. Notes Comput. Sci. 72, 3-21 (1979). (1979)

5 See http://invo.jinr.ru

2. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. Innsbruck: Univ. Inns-
bruck, Mathematisches Institut (Diss.) (1965)

3. Buchberger, B.: Bruno Buchberger’s PhD thesis 1965: An algorithm for finding
the basis elements of the residue class ring of a zero dimensional polynomial ideal.
Translation from the German. J. Symb. Comput. 41(3-4), 475–511 (2006)

4. Cox, D., Little, J., O’Shea, D.: Ideals, varieties, and algorithms. An introduction
to computational algebraic geometry and commutative algebra. 3rd ed. New York,
NY: Springer, 3rd ed. edn. (2007)

5. Cox, D.A., Little, J., O’Shea, D.: Using algebraic geometry, Graduate Texts in
Mathematics, vol. 185. Springer, New York, second edn. (2005)

6. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure
Appl. Algebra 139(1-3), 61–88 (1999)

7. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: Proceedings of theinternational symposium on symbolic
and algebraic computation, ISSAC’02. Lille, France, July 07–10, pp. 75–83 (2002)

8. Gao, S., Guan, Y., Volny, F.: A new incremental algorithm for computing Groebner
bases. In: Proceedings of the international symposium on symbolic and algebraic
computation, ISSAC’10, Munich, Germany, July 25–28, pp. 13–19 (2010)

9. Gao, S., Volny, F.I., Wang, M.: A new framework for computing Gröbner bases.
Math. Comput. 85(297), 449–465 (2016)

10. Gebauer, R., Möller, H.: On an installation of Buchberger’s algorithm. J. Symb.
Comput. 6(2-3), 275–286 (1988)

11. Gerdt, V.P.: On the relation between Pommaret and Janet bases. In: Computer
algebra in scientific computing. CASC 2000. Proceedings of the 3rd workshop,
Samarkand, Uzbekistan, October 5–9, 2000, pp. 167–181. Berlin: Springer (2000)

12. Gerdt, V.P.: Involutive algorithms for computing Gröbner bases. In: Computa-
tional commutative and non-commutative algebraic geometry. Proceedings of the
NATO Advanced Research Workshop, Chisinau, Republic of Moldova, June 6–11,
2004, pp. 199–225. Amsterdam: IOS Press (2005)

13. Gerdt, V.P., Blinkov, Y.A.: Involutive bases of polynomial ideals. Math. Comput.
Simul. 45(5-6), 519–541 (1998)

14. Gerdt, V.P., Blinkov, Y.A.: Involutive bases of polynomial ideals. Math. Comput.
Simul. 45(5-6), 519–541 (1998)

15. Gerdt, V.P., Hashemi, A., M.-Alizadeh, B.: A Variant of Gerdt’s Algorithm for
Computing Involutive Bases. Bulletin of PFUR. Series Mathematics. Information
Sciences. Physics 2, 65–76 (2012)

16. Gerdt, V.P., Hashemi, A., M.-Alizadeh, B.: Involutive bases algorithm incorporat-
ing F5 criterion. J. Symb. Comput. 59, 1–20 (2013)

17. Herzog, J., Hibi, T.: Monomial ideals. London: Springer (2011)
18. Janet, M.: Sur les systèmes d’équations aux dérivées partielles. C. R. Acad. Sci.,

Paris 170, 1101–1103 (1920)
19. Lazard, D.: Gröbner bases, Gaussian elimination and resolution of systems of al-

gebraic equations. Computer algebra, EUROCAL ’83, Proc. Conf., London 1983,
Lect. Notes Comput. Sci. 162, 146-156. (1983)

20. Möller, H., Mora, T., Traverso, C.: Gröbner bases computation using syzygies. In:
Proceedings of the international symposium on symbolic and algebraic computa-
tion, ISSAC’92. Berkeley, CA, USA, July 27–29, pp. 320–328 (1992)

21. Pommaret, J.: Systems of partial differential equations and Lie pseudogroups. With
a preface by Andre Lichnerowicz. Mathematics and its Applications. Vol. 14. New
York-London-Paris: Gordon and Breach Science Publishers. (1978)

22. Seiler, W.M.: A combinatorial approach to involution and δ-regularity. I: Involu-
tive bases in polynomial algebras of solvable type. Appl. Algebra Eng. Commun.
Comput. 20(3-4), 207–259 (2009)

23. Seiler, W.M.: A combinatorial approach to involution and δ-regularity. II: Struc-
ture analysis of polynomial modules with Pommaret bases. Appl. Algebra Eng.
Commun. Comput. 20(3-4), 261–338 (2009)

24. Seiler, W.M.: Involution. The formal theory of differential equations and its appli-
cations in computer algebra. Berlin: Springer (2010)

25. Thomas, J.M.: Differential systems. New York: American Mathematical Society
(AMS). IX. 118 p. (1937). (1937)

26. Traverso, C.: Hilbert functions and the Buchberger algorithm. J. Symb. Comput.
22(4), 355–376 (1996)

27. Zharkov, A., Blinkov, Y.: Involution approach to investigating polynomial systems.
Math. Comput. Simul. 42(4), 323–332 (1996)

