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Abstract We consider linear overdetermined systems of partial differential equa-
tions. We show that the introduction of weights classically used for the definition
of ellipticity is not necessary, as any system that is elliptic with respect to some
weights becomes elliptic without weights during its completion to involution. Fur-
thermore, it turns out that there are systems which are not elliptic for any choice
of weights but whose involutive form is nevertheless elliptic. We also show that
reducing the given system to lower order or to an equivalent one with only one
unknown function preserves ellipticity.
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1 Introduction

The definition of ellipticity for general overdetermined systems is quite rarely
found in the literature, one accessible exception being the encyclopaedia article
[15, Def. 2.1]. Without the general definition one may encounter conceptual prob-
lems already in very simple situations. For instance, consider the transformation
of the two-dimensional Laplace equationuxx + uyy = 0 to the first order system
(this is discussed in the recent textbook [42, Example 2.10]):

ux = v , uy = w , vx + wy = 0 .

The transformed system isnot elliptic, although it is obviously equivalent to La-
place’s equation. The usual approach to resolve this issue [2,3,12] consists of in-
troducing a weighted symbol where two sets of weights are attached to the equa-
tions and the dependent variables, respectively. It is straightforward to find weights
such that the above first order system becomes elliptic (see Example 6.8 below).
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However, a much simpler solution exists: if one adds the integrability condition
vy = wx, one obtains an overdetermined system which is elliptic without weights.

Besides the already mentioned encyclopaedia article [15] and the research
monograph [50], the question of defining ellipticity for overdetermined systems
was taken up only by few authors [11,22,38]. Notable are here in particular the re-
sults of Cosner [11] who constructed for any system which is elliptic with weights
an equivalent system which is also elliptic without weights. Within the theory of
exterior differential systems, Bryant et al. [8, Chapt. V,§2] give a definition of
an elliptic Pfaffian system; however, we are not aware of any extension of the
approach via weighted symbols to exterior systems.

The purpose of this article is to show that the problems in defining ellipticity
are solely related to the presence of hidden integrability conditions. For checking
whether a formally integrable or passive system, i. e. a system explicitly containing
all its integrability conditions, is elliptic, no weights are needed. It turns out that
the main purpose of the weights is to simulate a partial completion: due to the ad-
dition of integrability conditions, terms which do not appear in the original symbol
will show up in the symbol of the completed system. In some cases, weights can
achieve the same effect. However, we will present explicit examples where it is not
possible to find any weights such that the original system is elliptic with respect to
them, although a completion shows that the system is in fact elliptic.

So the approach via weights has its limitations. On the other hand, the weights
do contain some relevant information about the system, as they turn up in a rather
natural way in the a priori estimates for systems which are elliptic with weights.
Hence it may look like the weights are necessary. However, a completion does not
really alter the solution space but only provides another (better) representation of
it. Therefore we can readily obtain the same information from the a priori estimates
of the completed system. But since these functional analytic considerations are not
needed in the present article, we just refer to [4,15,50] for details.

The question of completion has attracted much interest since the middle of
the 19th century and so many different approaches have been proposed that we
can mention only some of the major directions. A more algebraic solution for
linear systems1 stems from Janet [25] and Riquier [43]. Within differential algebra
(see [28] for a general introduction) Boulier et al. [6] presented an algorithmic
solution for arbitrary ideals of differential polynomials; subsequent developments
and improvements are contained in the survey by Hubert [24]. On the geometric
side, Cartan [10] (and K̈ahler [27]) developed the notion of an involutive exterior
differential system; some open points in the question of completion were settled
by Kuranishi [30]. A modern presentation of this theory with many applications
can be found in [8]. Later, ideas from Janet-Riquier and Cartan-Kähler theory,
respectively, were merged into the formal theory of partial differential equations
(see [14,29,37,39,45,49] and references therein).

1 The Janet-Riquier theory is often also applied to nonlinear systems. However, this re-
quires some assumptions like that all equations (including the hidden integrability condi-
tions appearing during the completion) can be solved for their leading derivatives.
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It is perhaps worth while pointing out that the formal theory (or any other
of these theories) is not only useful for studying analytic questions like defining
ellipticity. As already demonstrated in a number of articles [20,32,34,40,44,47,
51–53], completion is also important for a propernumericaltreatment of overde-
termined systems.

All these theories are quite involved with many technical subtleties. Fortu-
nately, our results are independent of any concrete completion procedure, as they
are based on analysing the syzygies of the (transposed) principal symbol and any
completion procedure must treat, possibly in a rather hidden manner, all such
syzygies. Thus in principle we could use any of the above mentioned approaches.
Mainly for reasons of personal taste, we will use the language of the formal theory
(emphasising its roots in Janet-Riquier theory). However, no deeper knowledge of
it is required to understand our proofs; some familiarity with integrability condi-
tions and the idea of completion is completely sufficient.

The article is organised as follows. In Section 2 we collect the necessary back-
ground material needed to formulate and prove our theorems; this includes some
results from commutative algebra. Section 3 provides a brief introduction to a few
basic ideas of the formal theory of differential equations. In Section 4 we make
some general remarks about elliptic symbols and discuss their genericity. Sec-
tion 5 introduces weighted symbols and their elementary properties. In Section 6
we prove our main result stating that given a system elliptic with respect to some
weights its involutive form is elliptic without weights. In Section 7 we show that
transforming a system to lower order or to an equivalent system with only one de-
pendent unknown function preserves ellipticity. Finally, in Section 8 we conclude
with some general remarks.

2 Basic definitions

2.1 Multi indices

Let Nn
0 be the space of multi indices (or exponent vectors), i. e. the set of all or-

deredn-tuplesµ = (µ1, . . . , µn) with µi ∈ N0. The multi index where thejth
component is one and all other ones vanish is denoted by1j . Thelengthof a multi
index is|µ| = µ1+· · ·+µn. For a givenµ and the variablesx1, . . . , xn we have the
monomialxµ = (x1)µ1 · · · (xn)µn and the differential operator∂µ = ∂µ1

x1 · · · ∂µn
xn .

The derivatives of a functiony are denoted byyµ = ∂µy. The number of distinct
multi indicesµ ∈ Nn

0 with length|µ| = q is

nq =
(

n + q − 1
q

)
.

In other words,nq is the number of distinct derivatives of orderq.
Assume that a total ordering≺ on the set of multi indices satisfies the following

conditions: for allρ we have (1)µ ≺ µ + ρ and (2)µ ≺ ν implies µ + ρ ≺
ν + ρ. Then≺ is called aranking (or term order) and can be used to order both
monomials and derivatives. Finally, the integercls µ = min{i | µi 6= 0} is the
classof the multi indexµ (or the monomialxµ or the derivativeyµ, respectively).
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2.2 Maps and operators

Let Ω ⊆ Rn be a domain and letE0 = Ω × Rm andE1 = Ω × Rk. HenceE0

andE1 are (trivial) vector bundles overΩ and we may identify the sections ofE0

(resp.E1) with graphs of mapsΩ → Rm (resp.Ω → Rk). The coordinates inΩ
are denoted byx = (x1, . . . , xn) and inRm by y = (y1, . . . , ym). The tangent
(resp. cotangent) bundle ofΩ is denoted byTΩ (resp.T ∗Ω).

With these notations, the generalqth order linear differential equation is

Ay =
∑
|µ|≤q

aµ(x)∂µy = f (1)

wherex ∈ Ω ⊆ Rn, aµ(x) ∈ Rk×m andµ ∈ Nn
0 . The corresponding differential

operator is then a mapA : F(E0) → F(E1) whereF(Ei) are some conve-
nient function spaces. For our purposes, it is not essential to define precisely the
functional analytic setting, but we will make a few remarks about this question at
appropriate places.

We will also need the special differential operatorjq which associates to a
section ofE0 all of its derivatives up to orderq. For example, ifm = 1 and
n = q = 2 we get

j2 : y 7−→
(
y, y10, y01, y20, y11, y02

)
. (2)

Elementary combinatorics shows that the number of components injqy is mdq

where

dq = 1 + n1 + · · ·+ nq =
(

n + q
q

)
.

2.3 Symbols

To each operatorA we may associate two symbols: the geometric symbol and the
principal symbol. As we will see, both contain essentially the same information
but coded in different ways.

Definition 2.1 The principal symbol of the operatorA in (1) is

σA(x, ξ) =
∑
|µ|=q

aµ(x)ξµ

whereξ ∈ Rn is a real vector.

The principal symbol is an intrinsic object which does not depend on the cho-
sen coordinate system: we may regardξ as a one-form, i. e. as a section ofT ∗Ω,
and in a fixed basis ofT ∗Ω the coefficients of this one-form define at each point
x ∈ Ω a real vectorξ ∈ Rn as in the definition above. Then the principal sym-
bol becomes ak × m matrix whose entries are homogeneous polynomials inξ
of degreeq. Fixing some vectorξ ∈ Rn allows us to interpretσA also as a map
E0 → E1 or even as a mapRm → Rk; this is the usual situation.
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Definition 2.2 The geometric symbolMq of the system(1) is a family of vector
spaces overΩ defined by the kernel of the matrix

Mq =
(
aµ1 , . . . , aµnq

)
whereµ1, . . . , µnq are thenq distinct multi indices of lengthq, i. e. |µi| = q.

It is a customary abuse of language to call the matrixMq geometric symbol,
too, and we will do so in the sequel. From now on we suppose for the simplicity of
notation that various properties of the symbols do not depend on the pointx ∈ Ω
and omit the reference to it. In particular, this implies thatMq is in fact a vector
bundle.

In order to describe the connection between the two symbols, let us introduce
the vector

Ξq =
(
ξµ1

, . . . , ξµnq )
.

Then we have the following formula which will be useful later on:

σA = Mq(Ξq ⊗ Im) . (3)

Here Im is the unit matrix of sizem × m and⊗ is the tensor product.2 For a
coordinate free description of the connection between the two symbols see [49].

2.4 Rings and modules

In the analysis of the principal symbol it is convenient to introduce some basic
notions of commutative algebra. All the relevant material can be found for example
in [16,18]. LetA = K[ξ] = K[ξ1, . . . , ξn] be a polynomial ring inn variables
whereK is some field of characteristic zero (in our applicationsK will always
beR or C). The Cartesian productAk is then anA-module of rankk. A module
which is isomorphic to such a Cartesian productAk is calledfree. A moduleM is
finitely generated, if there is a finite numberν of elementsa1, . . . , aν ∈ M such
thatM = 〈a1, . . . , aν〉. SinceA is a Noetherian ring by Hilbert’s basis theorem,
every submodule ofAk is finitely generated.

An m × k matrix B whose entries belong to the ringA defines a module
homomorphismB : Ak → Am. We denote byb1, . . . , bk ∈ Am the columns of
B. If M0 = image(B) = 〈b1, . . . , bk〉 ⊆ Am is the submodule generated by the
vectorsbi ands ∈ Ak is such that

Bs = s1b
1 + · · ·+ skbk = 0 ,

then s is called asyzygyof M0 (or B) and all such vectorss form the (first)
syzygy moduleM1 ⊆ Ak of M0. SinceA is Noetherian, there are generators
s1, . . . , s` ∈ Ak such thatM1 = 〈s1, . . . , s`〉. We denote byS the matrix with
columnss1, . . . , s`; it trivially satisfiesBS = 0. One can compute generators of
the syzygy moduleM1 algorithmically using Gr̈obner bases, for example with the
program SINGULAR [19].

2 In the sequel we will use some elementary properties of the tensor or Kronecker prod-
uct. The necessary material may be found in [23].
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Remark 2.3Let B be am×k matrix withk > m. Then the moduleM0 generated
by the columns ofB has a nonzero syzygy module, because it can easily be proved
that in this case the systemBs = 0 has nonzero solutions.C

The computation of the first syzygy module is the first step in the computation
of a free resolutionof the given module. Hilbert’s syzygy theorem [16, p. 45]
asserts that every finitely generatedA-module has a free resolution of length less
than or equal to the numbern of variables in the polynomial ringA, i. e. for our
moduleM0 there exists an exact sequence of freeA-modules

0 // A`r
Sr // A`r−1 // . . .

. . . // A`
S // Ak

B // Am // Am/M0
// 0

(4)

with r ≤ n − 2. Recall that exactness means that the image of one map in this
sequence is equal to the kernel of the next map.

In general, the rank of a matrixB over some ringR is defined via determinantal
ideals [7, Chapt. 4]. LetIj(B) denote thejth Fitting ideal of B generated by all
(j × j)-minors ofB (it can be shown that the Fitting ideals depend only on the
moduleM0 = im(B)). Therankof B in the sense of module theory,rankR(B), is
the largest nonnegative integerr such thatIr(B) 6= 〈0〉.3 We putI(B) = Ir(B).

The polynomial ringA is trivially an integral domain and thus possesses a field
of fractions, the fieldF = K(ξ1, . . . , ξn) of rational functions. SinceA ⊂ F and
since it does not matter whether we compute minors overA or overF, we find that
rankA(B) = rankF(B). But the latter rank is the classical rank of linear algebra
and may be determined with Gaussian elimination.

Specialising each variableξi to a field element̄ξi ∈ K leads to a new matrix
B(ξ̄) ∈ Km×k. Its rank (over the fieldK) is denoted byrank

(
B(ξ̄)

)
. Obviously,

rank
(
B(ξ̄)

)
≤ rankA(B)

and for generic vectors̄ξ ∈ Kn equality holds. Thus the specialisation may affect
the exactness of the sequence (4). From now on we will use the notationξ for
both the indeterminates of the polynomial ringA and vectors inKn. The intended
meaning should be clear from the context.

Those vectorsξ ∈ Kn which lead to a smaller rank are calledcharacteristic
for the matrixB (they make denominators vanish which appear in the Gaussian
elimination overF). More formally, they are defined by the zeros ofI(B), i. e. they
correspond to the points of the varietyV

(
I(B)

)
. Recall that the radicalrad(I) of

an idealI ⊆ A consists of all polynomialsf such thatfn ∈ I for somen ∈ N
(thus trivially I ⊆ rad(I)) and thatV (I) = V

(
rad(I)

)
. Furthermore, ifI, J are

two ideals withI ⊆ J , then the corresponding varieties satisfyV (I) ⊇ V (J).

3 Some authors consider the annihilators of the Fitting ideals, but in our case this makes
no difference, as the polynomial ringA does not contain zero divisors.
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Lemma 2.4 If the complex (4) is exact, then

rad
(
I(B)

)
⊆ rad

(
I(S)

)
. (5)

For a proof we refer to [16, p. 504]. By the considerations above, it implies
that any vectorξ that is characteristic forS is also characteristic forB, since

V
(
I(S)

)
= V

(
rad

(
I(S)

))
⊆ V

(
rad

(
I(B)

))
= V

(
I(B)

)
. (6)

Corollary 2.5 Let the entries ofB be homogeneous polynomials and

rankA(B) = rank
(
B(ξ)

)
∀ξ ∈ Kn \ {0} . (7)

Then we also have

rankA(S) = rank
(
S(ξ)

)
∀ξ ∈ Kn \ {0} . (8)

Proof By definition, rank
(
B(ξ)

)
< rankA(B) is equivalent toξ ∈ V

(
I(B)

)
.

Hence it follows from the hypothesis thatV
(
I(B)

)
= {0}. But (6) implies that

V
(
I(S)

)
⊆ {0} which yields (8). ut

Lemma 2.6Under the assumptions of Corollary 2.5, the complex

K`
S(ξ) // Kk

B(ξ) // Km (9)

is exact for all vectorsξ 6= 0.

Proof Since (4) is exact,k = rank(Ak) = rankA(B) + rankA(S) [16, p. 500].
Using Corollary 2.5, we get

k = rank
(
B(ξ)

)
+ rank

(
S(ξ)

)
= dim im

(
B(ξ)

)
+ dim im

(
S(ξ)

)
∀ξ 6= 0 .

(10)
SinceBS = 0, we always have

im
(
S(ξ)

)
⊆ ker

(
B(ξ)

)
∀ξ 6= 0 .

B(ξ) also trivially satisfiesdim im
(
B(ξ)

)
= k − dim ker

(
B(ξ)

)
implying

dim ker
(
B(ξ)

)
= dim im

(
S(ξ)

)
∀ξ 6= 0 .

Together with the inclusion above, this observation entails

im
(
S(ξ)

)
= ker

(
B(ξ)

)
∀ξ 6= 0

and hence the exactness of (9).ut
If we apply the functorHomK(·, K) to an exact sequence of vector spaces, i. e.

if we dualise the sequence, then by a standard result in homological algebra we
obtain again an exact sequence [31] (note that generally this holds only for vector
spaces and not even for free modules over a ringR, asHomR(·, R) is only a left
exact functor). At the level of matrices this yields the following corollary to the
above lemma.

Corollary 2.7 Under the assumptions of Corollary 2.5, the transposed complex

Km
BT (ξ) // Kk

ST (ξ) // K`

is exact for allξ 6= 0, too.



8 Katsiaryna Krupchyk et al.

3 Involutive Systems

3.1 Completion to Involution

Overdetermined systems usually still contain hidden integrability conditions; the
process of their explicit construction is calledcompletion. As already mentioned
in the Introduction, many approaches to this problem exists; we will use the formal
theory containing both geometric and algebraic elements. Since we study only lin-
ear systems, we emphasise the algebraic side and briefly describe the construction
of involutive bases for linear differential systems [17]. More details and the precise
connection of these bases to the formal theory can be found in [21]; for a general
introduction to involutive bases see [9,46].

Janet introduced the fundamental concept ofmultiplicative variables: we as-
sign to each equation in the system a subset of the set of all independent variables
as its multiplicative variables. Roughly speaking, a system is involutive, if it suf-
fices to consider of each equation only the prolongations (i. e. differentiations) with
respect to these variables. Another point of view is that this assignment of multi-
plicative variables permits us to generate in a systematic way all cross-derivatives
which could lead to integrability conditions.4

A ranking≺ distinguishes in each equation of the system aleading derivative,
namely the one which is maximal with respect to≺. By a Gaussian elimination, we
may render any linear system triangular implying in particular that every equation
has a different leading derivative. If an equation has the leading derivativeyj

µ with
cls µ = k, then we assign it the multiplicative variablesx1, . . . , xk. A ranking that
is particularly useful in the context of the formal theory works as follows:yj

µ � yk
ν ,

if we have either that|µ| > |ν| or that|µ| = |ν| and the first non-vanishing entry
of µ− ν is positive or thatµ = ν andj > k.

We may now introduce the notions of (involutive) reduction and normal form,
respectively. Assume that one of our equations contains a termyj

µ and the leading
derivative of another equation isyj

ν with µ = ν + ρ. In principle, we could now
reduce the first equation by subtracting∂ρ times the second one. However, we
only allow this reduction, if the prolongation∂ρ requires only differentiations with
respect to multiplicative variables of the second equation. Thus ifcls ν = k and
ρi > 0 for somei > k, then the reduction is not permitted.

An equation is ininvolutive normal formwith respect to a system, if it is not
possible to involutively reduce any term in it. A system isinvolutively autoreduced,
if any equation is in involutive normal form with respect to the remaining ones.
The process of (involutive) autoreduction of a linear system may be thought of as
a differential generalisation of Gaussian elimination.

Definition 3.1 An involutively autoreduced system isinvolutive, if the involutive
normal form of any differential consequence is zero. A differential consequence
whose involutive normal form does not vanish is anobstruction to involution.

4 The word “multiplicative” might appear strange here, as we differentiate with respect
to these variables. The reason is historical, as Janet formulated his theory in terms of mono-
mials so that differentiation corresponds to a multiplication with these variables.
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A more rigorous formulation of this definition is possible using some algebraic
notions. LetD = F[∂1, . . . , ∂n] be the ring of linear differential operators with co-
efficients in some function fieldF, say the rational functionsF = K(x1, . . . , xn).
If there arem unknown functions, then our system defines a submoduleS of the
free D-moduleDm (in the casem = 1 this means of course thatS ⊆ D is a
differential ideal). An involutive system corresponds to a basis ofS such that the
involutive normal form of any element ofS with respect to this basis vanishes.

Example 3.2We illustrate these concepts with two simple systems of second order
in two independent variables and one dependent variable. The first one is

y02 − y01 = 0 , y11 − cy10 = 0

wherec is some real constant. As the first equation is of class2 and the second
one of class1, we have one non-multiplicative variable, namelyx2 for the second
equation. If we compute any differential consequence of the first equation, it is
trivially involutively reducible, as all variables are multiplicative for the equation
so that we may always reduce. The same holds, if we differentiate the second
equation with respect tox1.

Thus the only interesting differentiation is thex2-derivative of the second
equation. It yieldsy12 − cy11 = 0. We may now involutively reduce with thex1-
derivative of the first equation. Forc = 1, the involutive normal form is0 and thus
our system is involutive. Otherwise, we have obtained an obstruction to involution
(y11 = 0) and the system is not involutive. Obviously, this obstruction is a classical
integrability condition obtainable also by simply taking the cross-derivative of the
two equations in our system.

As second example we consider the seemingly similar system

y02 − y10 = 0 , y20 − y01 = 0 .

We find the same classes as in the previous system, so that again only thex2-
derivative of the second equation is of interest. It yieldsy21 − y02 = 0. While we
may involutively reduce the second term in it by simply adding the first equation
of our system, it is not possible to simplify involutively the leading derivativey21.
Hence we have found an obstruction to involution and the system is not involutive.
Note that in the classical sense this obstruction isnot an integrability condition; it
arises only because of our restriction to multiplicative differentiations.C

If a system is not involutive, one maycompleteit to an involutive one by adding
the arising obstructions to involution. One can show that this process terminates
after a finite number of steps. Informally, we may describe the completion as fol-
lows. We always keep the system in an involutively autoreduced form. Each equa-
tion is differentiated with respect to its non-multiplicative variables and then the
involutive normal form of the result is computed. If it does not vanish, it is added
to the system as an integrability condition. The completion terminates as soon as
no non-multiplicative differentiation yields a new equation.
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Example 3.3A completion may require surprisingly many steps, as demonstrated
by the following classical second order system in one dependent variable y and
three independent variablesx1, x2, x3 due to Janet:

y002 + x2y200 = 0 , y020 = 0 .

We use a ranking such that in the first equationy002 is the leading derivative. So
the first equation is of class3 and the second one of class2. Hence we must study
only one non-multiplicative prolongation, namely thex3-derivative of the second
equation. It yields the new equationy021 = 0 which is already in involutive normal
form with respect to our system.

This equation is again of class2 and thus hasx3 as sole non-multiplicative
variable. The equationy022 = 0 is not in involutive normal form, as it can be invo-
lutively reduced by the first equation. As one easily checks, its involutive normal
form is y210 = 0. As this integrability condition is of class1, we must check now
two non-multiplicative prolongations. The one with respect tox2 yields nothing
new, as it is trivially reducible by the second equation. But thex3-prolongation
yields the new equationy211 = 0 which is in involutive normal form.

This integrability condition is of class1, too, and therefore we must check
two non-multiplicative prolongations. As before, thex2-prolongation is trivially
reducible but thex3-prolongation yields after some computations the new equation
y400 = 0. It leads to two further equationsy410 = 0 and y401 = 0. The first
one is involutively reducible with respect to the equationy210 = 0 and all non-
multiplicative prolongations of the second one are involutively reducible, too, so
that we are finally done.

Thus the involutive completion of our system has lead to the fifth order system:

y002 + x2y200 = 0 , y020 = 0 , y210 = 0 ,

y400 = 0 , y021 = 0 , y211 = 0 , y401 = 0 .

Only the first two obstructions to involution are integrability conditions in the clas-
sical sense; the remaining three are reducible although not involutively.C

Strictly speaking, we have described here the construction of a so-called Pom-
maret basis of the given system. Other kinds of involutive bases arise by using
different rules for the assignment of multiplicative variables; for a detailed discus-
sion of these notions we refer to [17,46]. Furthermore, we ignore here the problem
of δ-regularity (which concerns the termination of the described completion algo-
rithm in certain “bad” coordinate systems), as it is related to characteristics and
thus of minor importance for elliptic systems. Details (and a constructive solution)
are contained in [21].

Involutive systems possess many pleasant properties. For lack of space, we
only mention one. In the analytic category, we have a general existence and unique-
ness theorem for initial value problems, theCartan-Kähler theoremgeneralising
the well-known Cauchy-Kovalevskaya Theorem (for its proof all obstructions to
involution and not only the classical integrability conditions are decisive). Not
much is currently known about existence and regularity of solutions in larger
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function spaces. In the case of linear systems, it is not difficult to generalise the
uniqueness theorem of Holmgren to arbitrary involutive systems. An existence and
uniqueness theorem for smooth solutions of hyperbolic systems with elliptic con-
straints is contained in [47].

3.2 Completion and Equivalence

An important point in the completion to involution is to what extent we may say
that the completed system is equivalent to the original one. Intuitively equivalence
means that the solution space remains unchanged, but obviously this idea depends
on what kind of solutions we are treating. The simplest class areformal solutions.
Here it is clear that the completion does not change the solution space, as any for-
mal solution trivially satisfies any integrability condition independent of its order.
This extends trivially toanalytic solutions, as these are nothing but converging
formal solutions.

Furthermore, the same argument generalises tosmooth solutions: because of
their infinite differentiability, they automatically satisfy any integrability condition
constructed during the completion. The same holds true for anyweak solutionthat
may be understood in a distributional sense, as distributions are again infinitely
differentiable.

The situation is somewhat more complicated for solutions possessing only a
finite differentiability. If we assume that the original system was of orderq and
that the completion lead to a system of orderq′ > q, then a strong solution of class
Cq of the original system becomes a weak solution of the completed system.

Finally, we must discuss the effect of the completion on the data, i. e. the right
hand side of a linear system and its coefficients. If we study an inhomogeneous
systemAy = f , then the completion leads to a system̃Ay = f̃ where the right
hand sidef̃ consists of linear combinations of components off and their deriva-
tives up to a finite order. Again this provides no real problems, if it is possible to
interpret the derivatives in a distributional sense.

In contrast, the situation is much less clear, if the coefficients of the operator
A are not sufficiently often differentiable. Here we cannot simply argue with dis-
tributional derivatives. Therefore we will assume in the sequel that the completion
does not require more differentiations than the regularity of the coefficients permit.

More generally, we consider two systems of differential equations as equiva-
lent, if a bijection between their solution spaces exists (requiring again a precise
specification of the used function spaces). This notion of equivalence allows us to
study more complex operations on differential equations like reduction to first or-
der or to one dependent variable (see Section 7) where the number of independent
and/or dependent variables changes. For a more formal definition of equivalence,
see the discussion in [15].

3.3 Compatibility Conditions and the Fundamental Principle

Given an inhomogeneous overdetermined systemAy = f , it will generally not
possess solutions for arbitrary right hand sidesf . Solutions will exist only, iff
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satisfies certain differential equations known ascompatibility conditions(the dif-
ferential analogue to syzygies). For an involutive system it is straightforward to
determine a complete generating set of these conditions.

Recall from our discussion above that in an involutive system the involutive
normal form of any equation obtained by a differentiation with respect to a non-
multiplicative variable is zero. This implies that the equation can be written as a
linear combination of multiplicative prolongations. Let us denote the class of the
sth equation of the system byks. ThenAy = 0 is an involutive system, if and only
if functionsBsj

tl (x) andCsj
t (x) exist such that for allj > ks

∂xj (Ay)s =
∑

t

∑
l≤kt

Bsj
tl (x)∂xl(Ay)t + Csj

t (x)(Ay)t

 .

These relations trivially imply that a necessary condition for the existence of solu-
tions of the inhomogeneous systemAy = f is that the right hand sidef satisfies
the linear differential equations

∂xj fs =
∑

t

∑
l≤kt

Bsj
tl (x)∂xlft + Csj

t (x)ft

 . (11)

Example 3.4If we consider Maxwell’s equations for the electric fieldE and the
magnetic fieldB

Et −∇×B = J , Bt +∇× E = 0 , ∇ · E = ρ , ∇ ·B = 0 , (12)

then the compatibility condition is the well-known continuity equation

ρt −∇ · J = 0

describing the conservation of charge.C

The fundamental principlestates that the conditions (11) are not only neces-
sary but also sufficient. Of course, the correctness of this statement depends again
on the considered function spaces. Using the theory of involutive bases it is fairly
straightforward to show that the principle is correct at the level of formal solu-
tions. Ehrenpreis and Malgrange showed that the principle also holds for smooth
and distributional solutions, if we restrict to linear equations with constant coeffi-
cients. These are, however, highly non-trivial results; see [35,36] for an extensive
discussion of this and related issues.

We may express these considerations in a somewhat more abstract way using
differential sequences. LetFi(Ei) be some spaces of sections of bundlesEi. If A1

represents the compatibility operator for a given linear differential operatorA0,
then the sequence

F0(E0)
A0 // F1(E1)

A1 // F2(E2)

defines by construction a complex, i. e.im A0 ⊆ ker A1. In other words, the dif-
ferential equationA0y = f may possess for a given right hand sidef ∈ F1(E1)
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a solutiony ∈ F0(E0) only, if A1f = 0. The fundamental principle concerns
the question whether or not the sequence is exact, i. e. whetherim A0 = kerA1.
In this case every solutionf ∈ F1(E1) of the equationA1f = 0 is of the form
f = A0y for some functiony ∈ F0(E0).

4 Elliptic Symbols

4.1 Ellipticity and its Generalisations

Let us consider again the general linearqth order differential operator and its prin-
cipal symbol:

Ay =
∑
|µ|≤q

aµ(x)∂µy and σA =
∑
|µ|=q

aµ(x)ξµ .

Definition 4.1 The differential operatorA or the principal symbolσA, resp., is
calledelliptic, if the mapσA : E0 → E1 is injective for allξ ∈ R \ {0}.

Note that, sinceξ is intrinsically defined as a one-form, the property of being
elliptic is independent of the choice of coordinates. Ellipticity is equivalent to the
absence of characteristic vectors, so that we recover the familiar idea of an elliptic
system as a system without real characteristics.

Note that Definition 4.1 excludes systems wherek < m, i. e. systems with less
equations than unknown functions; such a system is obviously underdetermined.
While its symbol may still have full rank, it cannot have fullcolumnrank. In [15]
such operators are calledoperators with constant defect. As a simple example of
an underdetermined system with full rank, we take the system∇ · y = 0 defining
divergence free vector fields inRm. For a given vectorξ ∈ Rm the principal
symbol is simply the matrixξt which has obviously full row rank for anyξ 6= 0.

Underdetermined systems with full rank appear mainly as subsystems of larger
systems. In the Maxwell system (12) the first two equations (six scalar equations)
form a (symmetric) hyperbolic system in Cauchy-Kovalevskaya form; the last two
equations form an underdetermined system with full rank. This full rank condition
is very important for the analysis of the whole system, see [47] or [45, Sect. 5.6]
for a discussion of its role in proving an existence and uniqueness theorem for
smooth solutions.

Independent of these considerations, we have the following interesting relation
between a full rank symbol and involution (note that we do not require here full
rank for all vectorsξ but only for one).

Proposition 4.2Let k ≤ m and assume that there exists at least one vector0 6=
ξ ∈ Rn such thatσA has full rank. ThenA is involutive.

Proof We perform a linear change of the independent variablesx 7→ z subject to
the sole condition thatzn = 〈ξ, x〉. Obviously this is always possible for a non-
vanishing vectorξ. After such a change, we can transform the systemAy = 0
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with the help of some linear operations and possibly a renumbering of the depen-
dent variablesyα into a new system where theith equation isyi

0...0di
= f i and

where the functionsf i do not depend on purezn-derivatives of theyj of order
greater than or equal todj for 1 ≤ j ≤ k. We may consider this as an under-
determined Cauchy-Kovalevskaya form (fork = m this is the classical Cauchy-
Kovalevskaya form) and such a system is trivially involutive, as no equation has a
non-multiplicative variable. ut

In the sequel we will restrict to systems withk ≥ m, as for applications this
is the most interesting case. By the same reasoning as used in the above proof,
one sees immediately that if such a system is elliptic, it must be either in Cauchy–
Kovalevskaya form or overdetermined.5

4.2 On Genericity

From a certain degree of overdeterminacy on, linear systems are generically el-
liptic. The following result, although rather elementary, seems to be new. Let us
consider the generalqth order operatorA as in (1).

Proposition 4.3The operatorA is generically elliptic, ifn + m < k + 2.

Proof Recalling (3) linking the geometric and the principal symbol, we may state
the condition of ellipticity as follows. The operatorA is elliptic, if and only if the
following algebraic system forξ ∈ Rn andv ∈ Rm has only the trivial solutions
ξ = 0, v arbitrary orv = 0, ξ arbitrary:

(σA)v = Mq(Ξq ⊗ Im)v = Mq(Ξq ⊗ v) = 0 . (13)

It is convenient to write these equations in a different way. To this end let us intro-
duce matricesBj ∈ Rnq×m by writing the rows ofMq as matrices. More precisely,
we set

(Bj)i = (aµi)j

where(Bj)i denotes theith row of Bj . With the help of the matricesBj we can
write the conditions in (13) as

〈Ξq, Bjv〉 = 0 , 1 ≤ j ≤ k .

As these equations are homogeneous inξ and linear inv, we may normalise|ξ| =
|v| = 1. Together with the equations above this makesk + 2 equations. Since we
haven + m unknowns, the claim follows. ut

5 Opposed to common belief, a system withk ≥ m may very well be underdetermined.
Examples are gauge theories in elementary particle physics; see e. g. [45, Sect. 3.3] for a
rigorous discussion.
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It is somewhat surprising that the result does not depend on the order of the
system. Protter [38, p. 74] proved that a first order differential system is generically
elliptic if m(n + 1)/2 ≤ k. Our result is sharper, except that form = 1 we have
the boundk ≥ n while Protter hask ≥ (n + 1)/2. However, Protter’s statement
is false in this case and our bound is in fact optimal.6 This can be seen directly as
follows. Form = q = 1 we have

σA = M1ξ

whereM1 ∈ Rk×n. Ellipticity is now equivalent to the injectivity ofM1 which
implies thatk ≥ n.

5 DN–Elliptic Systems

In order to generalise the notion of ellipticity (and to solve such problems like
the reduction of the Laplace equation to first order mentioned in the introduction),
Douglis and Nirenberg [12] introduced the concept ofweightsof a system, see also
[4, §3.2b] for a discussion. The weights of a system are two sets of integers: we
denote bysi the weights for the equations,1 ≤ i ≤ k, andtj the weights for the
unknowns,1 ≤ j ≤ m. They must be chosen such that

si + tj ≥ qij

whereqij is the maximal order of a derivative of thejth unknown function in the
ith equation of the system.

Definition 5.1 Theweighted (principal) symbolof the differential operatorA is(
σwA

)
i,j

=
∑

|µ|=si+tj

(
aµ(x)

)
i,j

ξµ .

Note thatσwA = σA, if we choose

s1 = · · · = sk = 0 and t1 = · · · = tm = q . (14)

Obviously, the weighted symbolσwA remains unchanged, if we replace all weights
si by si + c and all weightstj by tj − c for somec ∈ Z. Hence we may always
suppose thats1 ≤ s2 ≤ · · · ≤ sk = 0 andt1 ≥ t2 ≥ · · · ≥ tm ≥ 0. Furthermore,
let us define indicesil, Il, jl, Jl as follows:

s1 = · · · = si1 < si1+1 = · · · = si1+i2 < · · · < si1+···+ia−1+1 = · · · = sk = 0 ,

t1 = · · · = tj1 > tj1+1 = · · · = tj1+j2 > · · · > tj1+···+jb−1+1 = · · · = tm ,

I0 = 0 , Il = i1 + · · ·+ il ,

J0 = 0 , Jl = j1 + · · ·+ jl .
(15)

6 For seeing why Protter’s argument fails examine the matrixT in [38, p. 74].
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Finally, we defineia andjb by k = i1 + · · · + ia andm = j1 + · · · + jb. With
these conventions,σwA can be written as a block matrix:

σwA =


A11 A12 . . . A1b

A21 A22 . . . A2b

...
...

...
...

Aa1 Aa2 . . . Aab

 . (16)

Here the blockAlh is anil × jh matrix and its entries are homogeneous polyno-
mials inξ of degreeνlh = sIl + tJh

. Now, conversely given some degreesνlh, can
we solve for the corresponding weights?

Lemma 5.2 If we fix sk = 0, choose arbitrary values forν1h and νl1, and set
νlh = νl1 + ν1h − ν11, then there exist unique weightssi andtj corresponding to
this choice.

Proof By definition,sl +th = νlh = νl1+ν1h−ν11. Fixingsk = 0 leaves us with
k + m − 1 unknowns (weights). We obtain now the solution simply as follows:
first sk + tj = tj = νk1 + ν1j − ν11; thensi = νi1 + ν1j − ν11 − tj = νi1 − νk1.
ut

For a fixed vectorξ ∈ Rn, the weighted symbol may also be interpreted as a
mapσwA : E0 → E1. This leads to the following generalised notion of ellipticity.

Definition 5.3 The differential operatorA is DN–elliptic, if we can find weightssi

andtj such that its weighted symbolσwA is injective for allξ ∈ R \ {0}.

Note that an operator is DN–elliptic, ifsomechoice of relevant weights exists
and in general there are many different possible choices. In particular, the property
of being DN–elliptic isnot independent of the choice of coordinates. Also it may
not be easy to effectively find suitable weights/coordinates. Quantifier elimination
allows an algorithmic solution of the problem of weight determination [48].

In particular, a system is elliptic in the usual sense, if it is DN–elliptic with
respect to the weights (14). Two other special cases are worth mentioning. Let us
denote byqi the order of theith equation and bỹqj the maximal order of the vari-
ableyj in the whole system. Hence, by our conventions,q = max qi = max q̃j .

Definition 5.4 A reduced (principal) symbolof the operatorA, denoted byσrA,
is a weighted symbol with all weightstj equal. APetrovskij (principal) symbolof
the operatorA, denoted byσpA, is a weighted symbol with all weightssi equal.
If σpA is injective, the operatorA is said to beP–elliptic (elliptic in the sense of
Petrovskij [4]).

Of course, in the reduced case the most natural choice of weights is

si = qi − q and t1 = · · · = tm = q (17)

and in the Petrovskij case

si = 0 and tj = q̃j , (18)
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respectively. If we speak in the sequel ofthereduced orthePetrovskij symbol, we
always mean the weighted symbol with respect to this particular choice. Referring
to the block matrix (16), we see that in the “reduced case” we haveb = 1 while in
the “Petrovskij case” we havea = 1.

Remark 5.5Let σrA be the reduced symbol of the operatorA and lets ∈ Ak be a
syzygy of the transposed matrix(σrA)t. We associate withs a differential operator
ŝ by substituting∂1j for ξj . Then the expression̂stAy is a linear combination of
differential consequences of the original systemAy = 0 and, because of the fact
thats is a syzygy, the highest order terms cancels. Thus such linear combinations
may be considered as generalised cross-derivatives and the result is possibly an
integrability condition (depending on whether or not it reduces to zero modulo
Ay = 0). In particular, adding the equation̂stAy = 0 to the original system may
increase the column rank of the reduced symbol, as we have already seen in the
introductory example of the first order form of the Laplace equation.

We will later formulate the proof of our main theorem solely on the basis of
such syzygy considerations. As the purpose of any completion method is the detec-
tion of all hidden integrability conditions, it must check for all syzygies of(σrA)t

whether they lead to an integrability condition. Gröbner-like approaches are ex-
plicitly formulated this way (recall thatS-polynomial is an abbreviation for syzygy
polynomial); in other approaches like exterior systems theory this fact is rather ob-
scured. Nevertheless, this technique of proof ensures that our results remain true
for any completion theory. C

It is easily seen that differentiating (some of) the equations of a system pre-
serves DN–ellipticity.

Lemma 5.6Suppose that the operatorA is DN–elliptic. Let the weight of theith
equation besi. Let A′ be the operator obtained fromA by adding all equations
obtained by differentiating theith equationc times with respect to each variables.
ThenA′ is DN–elliptic for the following weights:si is set to zero, the weights for
the new equations aresi + c, and all other weights are as forA.

Proof Let v =
(
ξc
1, . . . , ξ

c
n

)
. Let us denote by

(
σwA)i the ith row in σwA. Now

apply the derivative∂c
j to theith equation and set the weight of this new equation

to si+c. Doing this for eachj and adding all these equations to the original system
we get the new operatorA′. But clearly in terms of the symbols, this corresponds
to adding the rowsv ⊗

(
σwA)i to the original weighted symbol. Hence, choosing

weights forA′ as described in the statement of the Lemma, we see that ifσwA has
full rank, thenσwA′ has full rank, too. ut

Informally, we may describe the content of the Lemma as follows. From the
point of view of analysing the rank properties of the symbol we may replace(
σwA)i by v ⊗

(
σwA)i. As a further consequence, one may without loss of gen-

erality suppose that all equations in a DN-elliptic system are of orderq whenever
it is convenient. In particular, the above Lemma gives the following simple result.
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Corollary 5.7 Let a reduced symbolσrA be elliptic and lets = maxi si. Then the
operatorA′ obtained by differentiating theith equations − si times with respect
to all variables (including all mixed derivatives) has an elliptic symbolσA′.

Lemma 5.8Assume that all rows inA are of orderq and that the weights are
ordered as in(15). If σwA is DN–elliptic, then

(i) s1 + t1 = q andAl1 = 0 for 1 < l ≤ a;
(ii) A11 is an elliptic symbol; i. e.rank

(
A11

)
= j1 and in particulari1 ≥ j1;

(iii) tm ≥ 0 and without loss of generality we may suppose thattm ≥ 1.

Proof If s1 + t1 < q, then the firsti1 equations could not be of orderq. On the
other hand, ifs1 +t1 > q, then the first block column would be zero, so the system
could not be DN–elliptic. Thuss1 + t1 = q and for alli > i1 we havesi + t1 > q
implying Al1 = 0 for 1 < l ≤ a. If rank

(
A11

)
< j1, then(σwA)v = 0 for some

nonzero vectorv of the form

v = (v1, . . . , vj1 , 0, . . . , 0) .

As this is impossible for an DN–elliptic symbol, we must havei1 ≥ j1. Finally,
for tm < 0 the last block column would be zero, and the system could not be
DN–elliptic.

Suppose thattm = 0 and let us call the variablesy1+Jb−1 , . . . , ym algebraic
variables because no derivatives of these variables appear in the system. Moreover,
the first Ia−1 equations do not depend on these variables. Hence the firstIa−1

equations form a DN–elliptic system with variablesy1, . . . , yJb−1 . BecauseAab

is of full column rank, the algebraic variables can be solved in terms of other
variables. In caseb = 1, Aa1 is of full column rank and we can again solve the
algebraic variables in terms of other variables, and hence obtain a system without
algebraic variables.ut

So, whenever it is convenient, one may suppose that

σwA =


A11 A12 . . . A1b

0 A22 . . . A2b

...
...

...
...

0 Aa2 . . . Aab

 and σA =


A11 0 . . . 0
A′

21 A′
22 . . . A′

2b
...

...
...

...
A′

a1 A′
a2 . . . A′

ab

 .

6 Ellipticity and Completion

Our goal in this section is to show that if weights exists such that the linear differ-
ential operatorA is DN–elliptic, then the completion ofA leads to an equivalent
operator that is elliptic without weights. Thus we may dispense with the introduc-
tion of weights, if we always complete to involution before the classification. In
addition, we will show with some concrete examples that the approach via weights
is not sufficient, as it sometimes fails to properly recognise elliptic systems.
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6.1 Preliminary results

Let us consider the general linear systemAy = f defined in (1), and from now on
we will suppose thatk ≥ m.

Proposition 6.1 If during the completion to involution a reduced symbol becomes
elliptic at some stage, then it will remain elliptic until the end of the completion.

Proof The completion to involution is based on the addition of the arising ob-
structions to involution. At the level of reduced symbols this leads to the addition
of further rows. If a reduced symbol has already full column rank, then such fur-
ther rows cannot change the rank and the completion does not affect its ellipticity.
Note that involutive head autoreductions and similar algebraic computations per-
formed during the completion do not matter here, as they correspond at the level
of reduced symbols to elementary row operations.ut

Remark 6.2By Corollary 5.7, it is trivial to go from an operator with an elliptic
reduced symbol to an equivalent elliptic operator: we must only add derivatives of
the lower order equations. Hence for all practical purposes it suffices to show that
a reduced symbol becomes elliptic at some stage of the completion process.C

Example 6.3Consider the system

A :

{
y1
20 − y2

02 = 0 ,

y1 + y2 = 0 ,
and σrA =

(
ξ2
1 −ξ2

2

1 1

)
.

Obviously the reduced symbolσrA is elliptic. Differentiating the last equation
twice with respect to both variables we obtain the elliptic system:

A(1) :


y1
20 − y2

02 = 0 ,

y1
20 + y2

20 = 0 ,

y1
02 + y2

02 = 0 ,

and σA(1) =

ξ2
1 −ξ2

2

ξ2
1 ξ2

1

ξ2
2 ξ2

2

 .

Remark 6.4In Section 3.1 we gave an algebraic introduction to the notion of in-
volution. There also exists a geometric approach based on jet bundles. Within this
approach, the completion consists of two basic operations: prolongation and pro-
jection. A projection corresponds to the addition of integrability conditions; hence
it preserves ellipticity by the same argument as in the proof of Proposition 6.1.
In a prolongation, all equations in the system are differentiated with respect to all
independent variables. It also preserves ellipticity, as the following simple argu-
ment shows. LetA be a linear differential operator andA′ the operator obtained
by adding toA all the differentiated equations. Then clearly

σA′ =

ξ1σA
...

ξnσA

 = ξ ⊗ σA .

Thus the prolonged symbolσA′ has full column rank for allξ 6= 0, if and only if
the originalσA has full column rank. This implies that Proposition 6.1 holds for
the geometric approach, too.C
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6.2 The Petrovskij Case

Before treating the general case, let us make a few remarks about the Petrovskij
case. Using the indicesJl defined in (15), we introduce vectorsy(l) by

y(l) =
(
y1+Jl−1 , . . . , yJl

)
, l = 1, . . . , b . (19)

In this way, the general operatorA in (1) may be written as

Ay =
b∑

l=1

Aly
(l) . (20)

Using this decomposition, the Petrovskij symbol may be written as

σpA =
(
σA1 σA2 · · · σAb

)
.

Lemma 6.5 If A is P–elliptic, then each operatorAl in (20) is elliptic.

Proof Suppose that someAl is not elliptic. Then there is some nonzerov(l) ∈ Rjl

such thatσAlv
(l) = 0. Let

v =
(
0, . . . , 0, v(l), 0, . . . , 0

)
∈ RJb

Thenv is nonzero and(σpA)v = 0. ut

The converse to this result is obviously false. Anyway, since P–elliptic systems
are constructed as sums of systems which are elliptic in the ordinary sense, it seems
natural that the completed system should also be elliptic.

Example 6.6Consider the system

A :

{
y1
20 − y2 = 0 ,

y1
02 + y2 = 0 ,

and σpA =
(

ξ2
1 −1

ξ2
2 1

)
.

ObviouslyA is P–elliptic. Taking cross derivatives we obtain an elliptic system:

A(1) :


y1
20 − y2 = 0 ,

y1
02 + y2 = 0 ,

y2
20 + y2

02 = 0 ,

and σA(1) =

ξ2
1 0

ξ2
2 0
0 ξ2

1 + ξ2
2

 .
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6.3 General case

Let us first consider some examples.

Example 6.7Consider the system

A :


y1
30 + y1 + ay2 + by3 = 0 ,

y1
03 + cy2 + dy3 = 0 ,

y1
11 + y2

10 + y3
01 = 0 ,

depending on four real parametersa, b, c and d. With the following choice of
weightss1 = s2 = −1, s3 = 0, t1 = 4, t2 = t3 = 1 the symbols are

σwA =

ξ3
1 a b

ξ3
2 c d
0 ξ1 ξ2

 and σA =

ξ3
1 0 0

ξ3
2 0 0
0 0 0

 .

It is easy to see thatA is DN–elliptic, if and only if the following polynomial has
no real zeros:

p(z) = az4 − bz3 − cz + d . (21)

Clearly this is possible for suitable values of the parameters, e. g.b = c = 0 and
ad > 0.

Then by differentiating the system with convenient operators which can easily
be found by inspection and then eliminating the highest order equations we obtain

A(1) :



y1
30 + y1 + ay2 + by3 = 0 ,

y1
03 + cy2 + dy3 = 0 ,

y1
11 + y2

10 + y3
01 = 0 ,

−y1
01 + y2

30 − ay2
01 + y3

21 − by3
01 = 0 ,

y2
12 − cy2

10 + y3
03 − dy3

10 = 0 .

So the symbols are now

σwA(1) =


ξ3
1 a b

ξ3
2 c d
0 ξ1 ξ2

0 ξ3
1 ξ2

1ξ2

0 ξ1ξ
2
2 ξ3

2

 and σA(1) =


ξ3
1 0 0

ξ3
2 0 0
0 0 0
0 ξ3

1 ξ2
1ξ2

0 ξ1ξ
2
2 ξ3

2

 .

with weightss1 = s2 = −3, s3 = −2, s4 = s5 = 0, t1 = 6, t2 = t3 = 3.
Note thatσA(1) is still not elliptic, as the second and the third columns are linearly
dependent. But differentiating the last two equations of the systemA(1)y = 0 and
subtracting one from another yields

A(2) :



y1
30 + y1 + ay2 + by3 = 0 ,

y1
03 + cy2 + dy3 = 0 ,

y1
11 + y2

10 + y3
01 = 0 ,

−y1
01 + y2

30 − ay2
01 + y3

21 − by3
01 = 0 ,

y2
12 − cy2

10 + y3
03 − dy3

10 = 0 ,

y1
03 + ay2

03 − cy2
30 + by3

03 − dy3
30 = 0 .
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The principal symbol is now

σA(2) =


ξ3
1 0 0

ξ3
2 0 0
0 0 0
0 ξ3

1 ξ2
1ξ2

0 ξ1ξ
2
2 ξ3

2

ξ3
2 aξ3

2 − cξ3
1 bξ3

2 − dξ3
1

 ,

which is elliptic, if and only if the polynomial (21) has no real zeros. Thus, we
have transformed the operatorA to an equivalent operatorA(2) which is elliptic,
if and only if the operatorA is DN-elliptic. C

Example 6.8Let us rewrite the Helmholtz operatorHy = ∆y + cy = 0 for n = 2
as a first order operator:

Ĥ :


y1
10 − y2 = 0 ,

y1
01 − y3 = 0 ,

cy1 + y2
10 + y3

01 = 0 .

(22)

Then choosings1 = s2 = −1, s3 = 0, t1 = 2, t2 = t3 = 1 gives

σwĤ =

ξ1 −1 0
ξ2 0 −1
0 ξ1 ξ2

 and σĤ =

ξ1 0 0
ξ2 0 0
0 ξ1 ξ2

 .

So the operator̂H is DN–elliptic. Adding the hidden integrability condition gives
an elliptic system:

Ĥ(1) :


y1
10 − y2 = 0 ,

y1
01 − y3 = 0 ,

cy1 + y2
10 + y3

01 = 0 ,

y2
01 − y3

10 = 0 ,

and σĤ(1) =


ξ1 0 0
ξ2 0 0
0 ξ1 ξ2

0 ξ2 −ξ1

 .

As the following two examples demonstrate, it is not only that the completion
to involution avoids the search for appropriate weights. In some cases the original
system is not DN–elliptic, although the system becomes elliptic after the comple-
tion to involution. Thus we may conclude that the weights are neither necessary
nor sufficient for deciding ellipticity of a differential operator.

Example 6.9Consider the systemAy = ∇ × y + y = 0. While A is not DN–
elliptic, adding the integrability condition∇ · y = 0 gives the symbol

σA(1) =


0 ξ3 −ξ2

−ξ3 0 ξ1

ξ2 −ξ1 0
ξ1 ξ2 ξ3


which is obviously elliptic. C
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Example 6.10Let us consider the following system

A :


y1
20 + y2

20 + ay2
01 + y3

11 = 0 ,

y1
11 + y2

11 + cy2
10 + y3

02 = 0 ,

y1
01 + y2

10 − y3
10 = 0 .

Some relevant information is contained in the first order terms in the first two
equations. As second order derivatives ofy2 are present in these equations, it is not
possible to choose weights such that these terms enter the symbol, and therefore
the system cannot be DN–elliptic. Adding the integrability condition gives

A(1) :


y1
20 + y2

20 + ay2
01 + y3

11 = 0 ,

y1
11 + y2

11 + cy2
10 + y3

02 = 0 ,

y1
01 + y2

10 − y3
10 = 0 ,

cy2
20 − ay2

02 = 0 .

Then the reduced principal symbol is:

σrA
(1) =


ξ2
1 ξ2

1 ξ1ξ2

ξ1ξ2 ξ1ξ2 ξ2
2

ξ2 ξ1 −ξ1

0 cξ2
1 − aξ2

2 0

 .

This is evidently DN–elliptic wheneverac < 0. Hence simply differentiating once
the third equation produces an elliptic system.C

In all the examples we have considered we found suitable operators by inspec-
tion and applying these operators to the original system we obtained the integra-
bility conditions. As already indicated in Remark 5.5, the general procedure can
be conveniently described with syzygies. In the proof of the main result we will
need the following technical lemma. Recall thatA = K[ξ].

Lemma 6.11Suppose thatB =
(
B1, C1

)
, B1 ∈ Ak×m1 , C1 ∈ Ak×m2 , m =

m1 + m2, and let

B′ =
(

B1 0
B2 ST C1

)
whereS is the syzygy matrix ofBT

1 andB2 an arbitrary matrix of appropriate size.
Thenker

(
B(ξ)

)
= {0} for all ξ 6= 0 impliesker

(
B′(ξ)

)
= {0} for all ξ 6= 0.

Proof Note that, by Remark 2.3,S 6= 0. Suppose now that there is a vector
ξ̂ 6= 0 such thatker

(
B′(ξ̂)

)
6= {0}. Then there exists av =

(
ṽ, v̂

)
6= 0 with

B′(ξ̂)v = 0 implying that B1(ξ̂)ṽ = 0. Sinceker
(
B(ξ̂)

)
= {0}, we have

ker
(
B1(ξ̂)

)
= {0} and then it follows that̃v = 0. Thus we getST (ξ̂)C1(ξ̂)v̂ = 0

andC1(ξ̂)v̂ ∈ ker
(
ST (ξ̂)

)
. Sinceker

(
B1(ξ)

)
= {0} for all ξ 6= 0, we may apply

Proposition 2.7 which implies thatker
(
ST (ξ̂)

)
= im

(
B1(ξ̂)

)
. So there is somêu

such thatB1(ξ̂)û + C1(ξ̂)v̂ = 0. Puttingu =
(
û, v̂

)
6= 0 implies thatB(ξ̂)u = 0.

But this contradicts our assumption thatker
(
B(ξ)

)
= {0} for all ξ 6= 0. ut
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Finally, we are in the position to prove the main result of this article.

Theorem 6.12If an operatorA is DN–elliptic, then its completion to involution
will lead to an equivalent elliptic operator.

Proof Consider a DN–elliptic operatorA. Then using the decomposition (20) with
variablesy(`) partitioned as in (19), the weighted principal symbol of the operator
A may be decomposed into reduced symbols

σwA = (σrA1, . . . , σrAb)

with weightstJ1 > tJ2 > · · · > tJb
and somesi, i = 1, . . . , k.

Let S be the syzygy matrix of the matrix(σrA1)T . By Remark 2.3,S 6= 0. Let
l be the number of the columns of the matrixS. The columns ofS are denote by
vr, r = 1, . . . , l. Since the entries of(σrA1)T are homogeneous polynomials, for
eachr there is somemr such that the degree ofvr

i is mr − si or vr
i is zero.

Substituting∂1j for the variableξj in the matrixS, we construct the differen-
tial operatorŜ. Let us now consider the operatorA(1) = (A, ŜT A). If we choose
t
(1)
j = tj + 1 for j > J1, s

(1)
k+r = mr − 1, r = 1, . . . , l, and all other weights as in

σwA, then its weighted principal symbol is of the form

σwA(1) =
(

σrA1 0
B ST

(
σrA2, . . . , σrAb

))
with some matrixB of appropriate size. This choice of weights is consistent with
the definition of weights since the orders of derivatives of variablesy(1) in therth
equation of the system̂ST Ay = 0 is smaller than or equal totJ1 + mr − 1.

Since the symbolσwA is DN–elliptic, using Lemma 6.11 in the caseK = R
we get that the symbolσwA(1) is also DN–elliptic. So we can apply the same
arguments to the operatorA(1) and so on until we obtain an operatorA(ν) such
that tJ1 = t

(ν)
J2

.7 Thus in a finite number of steps we have reduced a DN–elliptic
operator withb block columns to an equivalent operator withb−1 block columns.

Continuing in this fashion, we get after a finite number of steps an operator
which is equivalent to the original operator and which has an elliptic reduced sym-
bol. But, by Remark 6.2, this suffices to prove our claim.ut

Remark 6.13Of course, in the proof of Theorem 6.12 for a DN–elliptic operatorA
an equivalent elliptic operator̃A was constructed in a very different manner than
the completion to involution outlined in Section 3.1. However, every equation ap-
pearing in the final operator̃A is a differential consequence of the original system
A. Thus by Definition 3.1 of an involutive system, the involutive normal form of
every equation iñA with respect to the involutive completionA′ of A vanishes. At
the level of the principal symbols this implies that any row inσÃ equals a linear
combination of rows inσA′ with coefficients that are polynomials inξ. Thus ifσÃ
has full column rank, thenσA′ must possess full column rank, too.

7 In our general caseν = tJ1 − tJ2 . But sometimes it is possible to sets
(i)
k+r = mr − c

with somec > 1 for all r = 1, . . . , l. In this case we havetJ1 = t
(ν)
J2

for someν < tJ1−tJ2 .
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Moreover, it is not really necessary for our purposes that the involutive normal
form of each equation iñA vanishes. We only need that each row in the principal
symbolσÃ is expressible as a linear combination of the rows inσA′. This prop-
erty holds not only for involutive systems as defined in Section 3.1 but also for
systems obtained via other approaches to completion. This includes in particular
passive systems in Janet-Riquier theory [25,43], Mansfield’s differential Gröbner
bases [33], Reid’s reduced involutive form [41], or the geometric Cartan-Kuranishi
completion [45]. C

Example 6.14Consider the system

A :


y1
02 + y2

10 − y3 = 0 ,

y1
10 + y2

20 + y2
02 + y3 = 0 ,

y1
40 + y2

12 + y3
02 + y4

01 = 0 ,

y2
33 + y4

40 + y4
04 = 0

and its weighted principal symbol

σwA =


ξ2
2 0 −1 0
0 ξ2

1 + ξ2
2 1 0

ξ4
1 0 ξ2

2 0
0 ξ3

1ξ3
3 0 ξ4

1 + ξ4
2


with weightst1 = t2 = 4, t3 = t4 = 2, s1 = s2 = −2, s3 = 0, s4 = 2. This
system is DN–elliptic sincedet(σwA) = (ξ2

1 +ξ2
2)(ξ4

1 +ξ4
2)2. We write the system

and its symbol asAy = A1y
(1) + A2y

(2) andσwA =
(
σrA1, σrA2

)
.

Computing with SINGULAR [19] the syzygy matrix of(σrA1)T , we get

S =


ξ4
1 0
0 ξ3

1ξ3
2

−ξ2
2 0

0 −ξ2
1 − ξ2

2

 .

Thus in the notation of Theorem 6.12 we havem1 = 2 andm2 = 4. Computing
further with SINGULAR, we find that

rad
(
I(S)

)
= rad

(
I
(
(σrA1)T

))
= 〈ξ1, ξ2〉 .

So in this example we have in fact equality and not just inclusion as in (5).
Using the differential operator̂S corresponding toS, we obtain

ŜT A :

{
y2
50 − y2

14 − y3
40 − y3

04 − y4
03 = 0 ,

y1
43 + y3

33 − y4
60 − y4

42 − y4
24 − y4

06 = 0 .

The weighted principal symbol of the operatorA(1) =
(
A, ŜT A

)
is

σwA(1) =


ξ2
2 0 0 0
0 ξ2

1 + ξ2
2 0 0

ξ4
1 0 0 0
0 ξ3

1ξ3
3 0 0

0 ξ5
1 − ξ1ξ

4
2 −ξ4

1 − ξ4
2 0

ξ4
1ξ3

2 0 ξ3
1ξ3

2 −(ξ2
1 + ξ2

2)(ξ4
1 + ξ4

2)


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with weightst(1)3 = t
(1)
4 = 3, s(1)

5 = m1−1 = 1, s(1)
6 = m2−1 = 3 and all other

weights as inσwA.
Since t1 and t

(1)
3 are not equal, we now compute the syzygy matrixS1 of

(σrA
(1)
1 )T . This yields

S1 =


0 0 ξ4

1 0
0 ξ3

1 − ξ1ξ
2
2 0 ξ1ξ

5
2

ξ3
2 0 −ξ2

2 0
0 0 0 −ξ2

1 − ξ2
2

0 −1 0 ξ3
2

−1 0 0 0

 .

Thus we deduce thatm(1)
1 = 3, m

(1)
2 = 1, m

(1)
3 = 2 andm

(1)
4 = 4. In this case

we also find the same Fitting ideals as before:

rad
(
I(S1)

)
= rad

(
I
(
(σrA

(1)
1 )T

))
= 〈ξ1, ξ2〉 .

Operating now witĥST
1 , we get

ŜT
1 A(1) :


y2
15 − y3

33 − y3
05 + y4

60 + y4
42 + y4

24 + y4
06 + y4

04 = 0 ,

y1
40 − y1

22 + y3
40 + y3

04 + y3
30 − y3

12 + y4
03 = 0 ,

y2
50 − y2

14 − y3
40 − y3

04 − y4
03 = 0 ,

y1
25 − y3

43 − y3
07 + y3

15 − y4
60 − y4

42 − y4
24 − 2y4

06 = 0 .

This gives for the operatorA(2) =
(
A(1), ŜT

1 A(1)
)

the weighted principal symbol

σwA(2) = σrA
(2) =



ξ2
2 0 0 0
0 ξ2

1 + ξ2
2 0 0

ξ4
1 0 0 0
0 ξ3

1ξ3
3 0 0

0 ξ5
1 − ξ1ξ

4
2 0 0

ξ4
1ξ3

2 0 0 0
0 ξ1ξ

5
2 −ξ3

1ξ3
2 (ξ2

1 + ξ2
2)(ξ4

1 + ξ4
2)

ξ4
1 − ξ2

1ξ2
2 0 ξ4

1 + ξ4
2 0

0 ξ5
1 − ξ1ξ

4
2 0 0

ξ2
1ξ5

2 0 −ξ4
1ξ3

2 − ξ7
2 0


with weightst

(2)
3 = t

(2)
4 = 4, s

(2)
7 = m

(1)
1 − 1 = 2, s

(2)
8 = m

(1)
2 − 1 = 0,

s
(2)
9 = m

(1)
3 − 1 = 1, s

(2)
10 = m

(1)
4 − 1 = 3 and all other weights as inσwA(1).

So the reduced symbol of the operatorA(2) is elliptic, i. e. we have transformed
the DN-elliptic operatorA into an equivalent operatorA(2) with an elliptic reduced
symbol. By Lemma 6.2, the involutive form of the operatorA(2) is elliptic. C

Example 6.15Consider the system

A :


y1
30 + y1

20 − y2
01 + y3 = 0 ,

y1
03 + y1

11 + y2
10 = 0 ,

y1
12 + y3 = 0 ,

and σpA =

 ξ3
1 −ξ2 1

ξ3
2 ξ1 0

ξ1ξ
2
2 0 1

 .
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In this case we haveAy = A1y
1+A2y

2+A3y
3. This is clearly a P–elliptic system

with weightst1 = 3, t2 = 1 andt3 = 0. Computing with SINGULAR the syzygy
matrix of (σA1)T , we get

S =

 0 −ξ2
2

ξ1 0
−ξ2 ξ2

1


and thusm1 = 1 andm2 = 2. So we have the system

ŜT A :

{
y1
21 + y2

20 − y3
01 = 0 ,

−y1
22 + y2

03 + y3
20 − y3

02 = 0 .

We setA(1) = (A, ŜT A) as usual and get for the weighted principal symbol

σwA(1) =


ξ3
1 0 0

ξ3
2 0 0

ξ1ξ
2
2 0 0

ξ2
1ξ2 ξ2

1 −ξ2

−ξ2
1ξ2

2 ξ3
2 ξ2

1 − ξ2
2


with weightst

(1)
2 = 2, t

(1)
3 = 1, s4 = 0, s5 = 1, and all other weights as inσpA.

It is evident that the operatorA(1) is DN-elliptic. Note that its weighted principal
symbol has still the formσwA(1) =

(
σrA

(1)
1 , σrA

(1)
2 , σrA

(1)
3

)
but now we have

t1 − t
(1)
2 < t1 − t2. Now we get for the syzygy matrix ofσrA

(1)
1

S1 =


0 0 0 −ξ2

0 ξ1 0 0
0 −ξ2 ξ1 0
ξ2 0 −ξ2 ξ1

1 0 0 0

 .

This yieldsm(1)
r = 1 for all r = 1, . . . , 4. Now operating withŜT

1 gives

ŜT
1 A(1) :


y2
21 + y2

03 + y3
20 − 2y3

02 = 0 ,

y1
21 + y2

20 − y3
01 = 0 ,

−y2
21 + y3

02 + y3
10 = 0 ,

−y1
21 + y2

30 + y2
02 − y3

11 − y3
01 = 0 .

We setA(2) = (A(1), ŜT
1 A(1)). The second equation in the system̂ST

1 A(1)y = 0
is equal to the first equation in the system̂ST Ay = 0. So we can drop one of these
equations and the weighted principal symbol of the operatorA(2) is

σwA(2) =



ξ3
1 0 0

ξ3
2 0 0

ξ1ξ
2
2 0 0

ξ2
1ξ2 0 0

−ξ2
1ξ2

2 0 0
0 ξ2

1ξ2 + ξ3
2 ξ2

1 − 2ξ2
2

0 −ξ2
1ξ2 ξ2

2

−ξ2
1ξ2 ξ3

1 −ξ1ξ2


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with weights t1 = t
(2)
2 = 3, t

(2)
3 = 2, si = 0, i = 6, . . . 8, and all other

weights as inσwA(1). It is evident that the operatorA(2) is DN-elliptic. Hence,
we transformed the P–elliptic system with three blocks into the DN-elliptic system

A(2)y = A
(2)
1

(
y1

y2

)
+ A

(2)
2 y3 with two blocks with the help of syzygy matrices.

Computing the syzygy matrix ofσA
(2)
1 , we find

S2 =



0 0 0 −ξ2 0 0
0 ξ1 0 0 0 0
0 −ξ2 ξ1 0 0 0
ξ2 0 −ξ2 ξ1 ξ2 0
1 0 0 0 0 ξ1

0 0 0 0 0 ξ2
1

0 0 0 0 ξ1 ξ2
2

0 0 0 0 ξ2 −ξ1ξ2


.

Som
(2)
r = 1, r = 1, . . . , 5 andm

(2)
6 = 2. Then we get the system

ŜT
2 A(2) :



y2
21 + y2

03 + y3
20 − 2y3

02 = 0 ,

y1
21 + y2

20 − y3
01 = 0 ,

−y2
21 + y3

02 + y3
10 = 0 ,

−y1
21 + y2

30 + y2
02 − y3

11 − y3
01 = 0 ,

y2
21 + y2

03 + y3
20 − 2y3

02 = 0 ,

y3
40 − y3

22 + y3
04 + y3

30 + y3
12 = 0 .

Consider the operatorA(3) = (A(2), ŜT
2 A(2)). Again in the systemA(3)y = 0

some equations appear twice. Removing the duplicates, we obtain

A(3) :



y1
30 + y1

20 − y2
01 + y3 = 0 ,

y1
03 + y1

11 + y2
10 = 0 ,

y1
12 + y3 = 0 ,

y1
21 + y2

20 − y3
01 = 0 ,

−y1
22 + y2

03 + y3
20 − y3

02 = 0 ,

y2
21 + y2

03 + y3
20 − 2y3

02 = 0 ,

−y2
21 + y3

02 + y3
10 = 0 ,

−y1
21 + y2

30 + y2
02 − y3

11 − y3
01 = 0 ,

y3
40 − y3

22 + y3
04 + y3

30 + y3
12 = 0 .
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The weighted principal symbol of the operatorA(3) is

σwA(3) =



ξ3
1 0 0

ξ3
2 0 0

ξ1ξ
2
2 0 0

ξ2
1ξ2 0 0

−ξ2
1ξ2

2 0 0
0 ξ2

1ξ2 + ξ3
2 0

0 −ξ2
1ξ2 0

−ξ2
1ξ2 ξ3

1 0
0 0 ξ4

1 − ξ2
1ξ2

2 + ξ4
2



with weightst1 = t
(3)
2 = t

(3)
3 = 3, si = 0, i = 1, . . . 4, 6, . . . 8, s5 = s9 = 1.

Obviously, this reduced symbol is elliptic. Hence according to Corollary 5.7 we
obtain an elliptic system fromA(3)y = 0 by differentiating some equations of it.

Computing withMuPAD8 [5] an involutive completion ofAy = 0, we get



y1
30 + y1

20 − y2
01 + y3 = 0 ,

y1
03 + y1

11 + y2
10 = 0 ,

y1
12 + y3 = 0 ,

y1
21 + y2

20 − y3
01 = 0 ,

y2
21 + y2

03 + y3
20 − 2y3

02 = 0 ,

y2
30 + y2

20 + y2
02 − y3

11 − 2y3
01 = 0 ,

y2
21 − y3

02 − y3
10 = 0 ,

y2
22 − y3

03 − y3
11 = 0 ,

y3
40 − y3

22 + y3
04 + y3

12 + y3
30 = 0 .

One easily verifies that it is equivalent toA(3). C

Remark 6.16Let us finally compare our reduction process to the one proposed by
Cosner [11]. Consider the Laplace equation in 2 dimensions written as a first order
system, i. e. our system (22) withc = 0. After adding the integrability condition,
we obtained the following elliptic system:


y1
10 − y2 = 0 ,

y1
01 − y3 = 0 ,

y2
10 + y3

01 = 0 ,

y2
01 − y3

10 = 0 .

8 www.mupad.de
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However, Cosner’s approach produces the system

y1
10 + y2

01 = 0 ,

−y1 + y3 = 0 ,

−y2 + y4 = 0 ,

y10 − y3 = 0 ,

y01 − y4 = 0 ,

y3
01 − y4

10 = 0 ,

−y1
10 + y3

10 = 0 ,

−y1
01 + y3

01 = 0 ,

−y2
10 + y4

10 = 0 ,

−y2
01 + y4

01 = 0 ,

which is elliptic in the sense of Definition 4.1, i. e. without weights. Hence, at least
for this particular example, our approach produces a much smaller equivalent el-
liptic system than Cosner’s construction. Furthermore, while Cosner is exclusively
concerned with the question of ellipticity, we have embedded this problem in the
general context of completion which is useful in many other respects, too. As al-
ready mentioned in the Introduction, any system of differential equations should
be completed to involution before any subsequent analysis and our results show
that this automatically takes care of the question of ellipticity.C

7 Some Reductions for Elliptic Systems

In this section we consider two classical operations with differential systems: the
reduction to a lower order system and the reduction to one dependent variable. Our
goal is to show explicitly that in both cases ellipticity is preserved.

7.1 Preliminaries

In Section 2.2 we introduced the special differential operatorjq mapping a func-
tion y = (y1, . . . , ym) to its derivatives up to orderq. Let us consider the case
m = 1. Obviously,jq is an overdetermined operator withk = dq andm = 1.
We will now apply the results of Section 3.3 to it and determine its compatibil-
ity operator.9 It is a trivial exercise to verify thatjq is an involutive operator so
that for the construction of the compatibility conditions we must only study the
non-multiplicative derivatives of each equation.

Let us writejqy = z. Thus the right hand sidez is a vector of dimensiondq

and we will denote its components byzµ whereµ ∈ Nn
0 runs over all multi indices

9 An intrinsic description of this compatibility condition, which is sometimes called the
Spencer operator, is contained in [15,49].
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with 0 ≤ |µ| ≤ q. The compatibility conditions (11) take now the form

∂iz
µ =

{
zµ+1i 0 ≤ |µ| < q, 1 ≤ i ≤ n ,

∂kzµ−1k+1i |µ| = q, i > cls µ, k = cls µ .
(23)

These equations define a differential operatorDq
1. As bothjq andDq

1 are linear
operators with constant coefficients, we may apply the fundamental principle. It
tells us that at the level of smooth or distributional solutionsz = jqy, if and only
if Dq

1z = 0.
We have describedjq andDq

1 only for the casem = 1, but obviously for sev-
eral unknown functions one must simply take one copy ofDq

1 for each component
yj , as there is no interaction between the different components. Thus in the general
case the compatibility operator is of the formDq

1 ⊗ Im whereIm is them × m
identity matrix.

We continue with determining the principal symbols of the operatorsjq and
Dq

1. Recall thatΞj is the vector of all monomials inξ of degreej; in particular

Ξ1 = ξ. Then we find for the principal symbolsσjq =
(

0
Ξq

)
⊗ Im.

The situation is slightly more complicated for the operatorDq
1. The compat-

ibility systems splits naturally into two parts: the first subsystem corresponds to
the first line in (23), i. e. the functionszµ with |µ| < q; the second subsystem to
the second line, i. e. the functionszµ with |µ| = q. If we sort the equations by
ascending length ofµ, then the symbol of the first subsystem is simplyξ ⊗ Idq−1 .
We denote the operator defined by the second subsystem asD̄q

1. There does not
seem to exist a simple closed-form description of its symbol.

Example 7.1Let us taken = q = 2. The operatorj2 has already been given in
(2). If we write∂µy = zµ, then the corresponding compatibility systemD2

1z = 0
consists of the following eight equations:

∂1z
00 = z10 , ∂2z

00 = z01 , ∂1z
10 = z20 , ∂2z

10 = z11 , ∂1z
01 = z11 ,

∂2z
01 = z02 , ∂2z

20 − ∂1z
11 = 0 , ∂2z

11 − ∂1z
02 = 0 .

If we sort the unknown functionszµ asz00, z10, z01, z20, z11, z02, then the prin-
cipal symbol has the form

σD2
1 =



ξ1

ξ2

ξ1

ξ2

ξ1

ξ2

ξ2 −ξ1

ξ2 −ξ1


.

Lemma 7.2ker(σD̄q
1) = span(Ξq) and consequentlyker(σDq

1) = span(
(

0
Ξq

)
).
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Proof By construction,D̄q
1 is the compatibility operator of the differential opera-

tor given by allqth order derivatives. As both̄Dq
1 and this operator consist only of

derivatives of the same order, the respective principal symbols look like the oper-
ators. Thus the rows of the matrixσD̄q

1 form a basis of the first syzygy module of
the ideal generated by the entries ofΞq. But this observation immediately entails
the first claim. The second claim is a trivial consequence of the simple form of the
symbol of the first subsystem of the compatibility systemDq

1z = 0. ut

7.2 Reduction to Lower Order System

Let us again consider a differential operatorA of orderq as in (1). We want to write
A asA = Ā(`)◦jq−` with an operator̄A(`) of order` for 0 < ` < q. In the limiting
casè = q we can set̄A(q) = A. The most important case is` = 1, but the general
case has also some interest. Let us further defineA(`)z =

(
Ā(`)z, (Dq−`

1 ⊗ Im)z
)
.

We may construct̄A(`) as follows. In the equationAy = 0 all derivativesyj
µ

with |µ| ≤ q may appear. We introduce new dependent variables for all derivatives
of order less than or equal toq − ` and denote them as above byzj,µ with multi
indices|µ| ≤ q − `. The operator̄A(`) is now obtained fromA by performing the
following substitution in the equationAy = 0:

yj
µ 7−→

{
zj,µ if |µ| ≤ q − ` ,

∂µ2zj,µ1 if |µ| > q − ` where|µ1| = q − ` andµ1 + µ2 = µ .
(24)

Obviously there are many ways to perform such a substitution, as there are many
ways to split the multi indexµ into two parts. However, for our purposes any
choice is fine.

Lemma 7.3The operatorsA andA(`) are equivalent in the smooth category.

Proof This lemma is a straightforward consequence of the fundamental principle.
As already mentioned above, for any orderr > 0 every smooth solution of the
equation(Dr

1 ⊗ Im)z = 0 is of the formz = jry for a smooth functiony.
Let y be a solution ofAy = 0. The definition of the operatorA(`) entails

immediately thatz = jq−`y is a solution ofA(`)z = 0 asĀ(`)z = Ay and(Dq−`
1 ⊗

Im)z = 0 by the definition of the compatibility operatorDq−`
1 ⊗ Im. Conversely,

let z be a solution ofA(`)z = 0. This implies in particular that(Dq−`
1 ⊗ Im)z = 0

and thus by the consideration above thatz = jq−`y. But then0 = Ā(`)z = Ay
andy is a solution ofAy = 0. Hence the operatorjq−` defines a bijection between
the smooth solution spaces of the differential operatorsA andA(`). ut

For simplicity, we stated this result in the smooth category. But as already men-
tioned in Section 3.3, in the case of operators with constant coefficients the fun-
damental principle remains true for distributional solutions. Thus the equivalence
also holds in much larger function spaces and in particular for weak solutions.
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For analysing the ellipticity of the operatorsA(`), we need their symbols. To
this end let us introduce matricesΞq by the requirementΞq+1 = ΞqΞ

q. Hence
we can write

Ξq = Ξq−1 · · ·Ξ1ξ . (25)

Evidently the choice of the matricesΞq can be done in many ways; however,
fixing the rules used in the substitutions in (24) fixes the matrices, and conversely
choosing some matrices fixes the substitutions.

We can represent the symbolsσĀ(`) as matrices of sizek ×mdq−` which are
of the formσĀ(`) =

(
0, σB̄(`)

)
andσB̄(`) is of sizek × mnq−`. In the limiting

cases we haveσB̄(0) = Mq, i. e. the geometric symbol, andσĀ(q) = σA, i. e. the
principal symbol of the original operator.

Lemma 7.4The principal symbols of the operatorsA(`) are given by

σrA
(`) =

 0 σB̄(`)

ξ ⊗ Imdq−`−1 0
0 σ(D̄q−`

1 ⊗ Im)


whereσB̄(`) = Mq(Ξq−1 · · ·Ξq−` ⊗ Im).

Proof We prove only the formula forσB̄(`). SinceA = Ā(`) ◦ jq−`, the symbols

satisfyσA = σĀ(`) · σjq−` and as mentioned aboveσjq−` =
(

0
Ξq−`

)
⊗ Im.

Then we obtain using (3) and (25)

σA =Mq(Ξq ⊗ Im) = Mq(Ξq−1Ξ
q−1 ⊗ Im) = Mq(Ξq−1 ⊗ Im)(Ξq−1 ⊗ Im)

=Mq(Ξq−1 ⊗ Im) · · · (Ξq−` ⊗ Im)(Ξq−` ⊗ Im)

=Mq(Ξq−1 · · ·Ξq−` ⊗ Im)(Ξq−` ⊗ Im)

=
(
0,Mq(Ξq−1 · · ·Ξq−` ⊗ Im)

)
σjq−`

implying our claim. ut

Let us setσrC̄
(`) =

(
σB̄(`)

σ(D̄q−`
1 ⊗ Im)

)
. It is evident that ellipticity of the

symbolσrA
(`) is equivalent to ellipticity of the symbolσrC̄

(`).

Example 7.5Let us take the Laplacian inR3. Then

M2 =
(
1 0 1 0 0 1

)
, ξ =

ξ1

ξ2

ξ3

 ,

Ξ1 =


0 0 ξ3

0 ξ3 0
0 ξ2 0
ξ3 0 0
ξ2 0 0
ξ1 0 0

 , σrC̄
(1) =

(
M2Ξ1

σD̄1
1

)
=


ξ1 ξ2 ξ3

0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0

 ,

σA = M2Ξ1ξ = ξ2
1 + ξ2

2 + ξ2
3 .
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Note that the first row ofσrC̄
(1) corresponds to the divergence and the remaining

ones to the curl of a vector field. Hence from the Laplacian in three dimensions we
get canonically thecurl-div system when we rewrite it as a first order system.C

Theorem 7.6If the operatorA(`) is elliptic for somè , then the operatorsA(`)

are elliptic for all 0 < ` ≤ q.

Proof Now suppose thatA is not elliptic. Then there is a vectorv 6= 0 such that
σAv = 0. Let v(`) = (Ξq−` ⊗ Im)v = Ξq−` ⊗ v. Obviouslyv(`) 6= 0 for ξ 6= 0,
andσ(D̄q−`

1 ⊗ Im)v(`) = 0 by Lemma 7.2. But then

σB̄(`)v(`) = Mq(Ξq−1 · · ·Ξq−` ⊗ Im)(Ξq−` ⊗ v)
= Mq(Ξq ⊗ v) = Mq(Ξq ⊗ Im)v = σAv = 0 .

This implies thatσrC̄
(`)v(`) = 0 and henceA(`) is not elliptic.

On the other hand suppose thatA(`) is not elliptic. Hence there is av(`) 6= 0
such thatσrC̄

(`)v(`) = 0. In particular thenσ(D̄q−`
1 ⊗ Im)v(`) = 0. But then by

Lemma 7.2v(`) = (Ξq−` ⊗ Im)v for somev 6= 0 and we get

σAv =Mq(Ξq−1 . . . Ξ1ξ ⊗ Im)v = Mq(Ξq−1 . . . Ξq−`Ξ
q−` ⊗ v)

=Mq(Ξq−1 . . . Ξq−` ⊗ Im)(Ξq−` ⊗ v) = σB̄(`)v(`) = 0 .

Hence the operatorA is not elliptic either. ut

As a consequence we have the following

Theorem 7.7Any P–elliptic system is equivalent to an elliptic system.

Proof Consider the system (20) where each operatorAl is elliptic. Let us set̀ =
tm ≥ 1. By Theorem 7.6 we may replaceAl by A

(`)
l which is also elliptic. The

reduced symbol of the resulting operatorA(`) is

σrA
(`) =



σĀ
(`)
1 σĀ

(`)
2 . . . σĀ

(`)
b−1 σAb

σ(DtJ1
−`

1 ⊗ IJ1) 0 . . . 0 0
0 σ(DtJ2

−`
1 ⊗ IJ2) . . . 0 0

...
...

...
...

...

0 0 . . . σ(D
tJb−1

−`

1 ⊗ IJb−1) 0


This is clearly elliptic. ut

7.3 Reduction to One Unknown Function

With the help of a little trick apparently due to Drach [13], one may rewrite any
system of differential equations in several unknown functions as a system in only
one unknown function. It requires the introduction of one new independent vari-
able for each unknown function and raises the order of the system by one.
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Assume that the original linearqth order systemAy = f contains as usual the
independent variablesx1, . . . , xn and the dependent variablesy1, . . . , ym. Then
we introducem additional independent variablesx̂j and one new dependent vari-
ableŷ related to the old ones by the relation

ŷ = x̂1y
1 + · · ·+ x̂mym .

This allows us to represent any derivative∂|µ|yj/∂xµ as∂|µ|+1ŷ/∂xµ∂x̂j . If we
perform the corresponding substitutions in our system and if we add the equation

∂2ŷ

∂x̂j∂x̂k
= 0 , j, k = 1, . . . ,m , (26)

then we obtain a new system of orderq + 1 in only one dependent variable; the
new operator thus obtained will be denoted byÂ. Any solution of it has the form

ŷ(x, x̂) = x̂1y
1(x) + · · ·+ x̂mym(x) + Λ(x) (27)

whereΛ(x) is an arbitrary function andy(x) a solution of the original system. One
may consider the appearance of the functionΛ as a kind of “gauge symmetry”. It
is not difficult to show that the new system is involutive, if and only if the original
system is involutive [45, App. A.3].

Let us analyse the symbol of the transformed systemÂ. Denote the dual vari-
ables for the new independent variables byξ̂. Then it is not difficult to see that

σrÂ =
(

σAξ̂

Ξ̂2

)
.

Obviously,Â is not elliptic, because the symbol vanishes for any pair(ξ, ξ̂) with
ξ̂ = 0. Obviously, this is due to the appearance of the arbitrary functionΛ(x)
in (27) and hence removing this arbitrariness should lead to an elliptic system. A
simple possibility consists of adding the “gauge fixing” condition

m∑
j=1

x̂j ŷx̂j
− ŷ = 0 . (28)

It follows trivially from (27) that this equation is compatible with the operatorÂ, as
its sole effect is to requireΛ = 0. Furthermore, the augmented system is equivalent
to our original system, as now the solutions are in a one-to-one correspondence.

The addition of (28) still does not make the system elliptic. But as the aug-
mented system is no longer involutive, we must complete it. We show now that the
completed system is elliptic. It is convenient to state the problem in ideal theoretic
terms. LetR[ξ, ξ̂] be the polynomial ring and introduce the polynomials

p0 =
〈
x̂, ξ̂

〉
− 1 , pj =

(
σA ξ̂

)
j

, pij = ξ̂iξ̂j .

The first polynomial is thefull symbol of the “gauge fixing” condition (28); the
remaining ones are the entries of the reduced principal symbolσrÂ. The analysis
of the idealI generated by these polynomials yields some information about the
principal symbol of the augmented system.
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Lemma 7.8 If the principal symbolσA is a square matrix, then the idealI con-
tains the polynomialdet(σA) ∈ R[ξ].

Proof Let p denote the vector with the entriespj andadj(σA) the adjoint ma-
trix of the principal symbolσA. Then 〈x̂, adj(σA)p〉 = 〈x̂, adj(σA)σAξ̂〉 =
det(σA)〈x̂, ξ̂〉 by definition of the adjoint. Thusdet(σA) = 〈x̂, adj(σA) p〉 −
det(σA) p0 implying our claim. ut

Theorem 7.9If the linear operatorA is elliptic, then the involutive completion of
the linear system consisting of the Drach transformed operatorÂ and the equation
(28) is elliptic, too.

Proof Let us first consider the case thatA is a square operator. By the previous
lemma, we know that during the completion of the transformed system an integra-
bility condition arises the principal part of which is given bydet(σA). The princi-
pal symbol of the corresponding system is elliptic, as by assumptiondet(σA) 6= 0
for all ξ 6= 0 and Ξ̂2 6= 0 for all ξ̂ 6= 0. As ellipticity is preserved during the
completion, we are done.

If the operatorA is not square, then its ellipticity implies that we may choose
for each vectorξ 6= 0 a square subsystemA′ suchdet(σA′) 6= 0. It follows now by
the same argument as in the proof of the lemma above, that during the completion
of the transformed system an integrability condition arises the principal part of
which isdet(σA′). As this argument holds for all vectorsξ 6= 0, the completion
must lead to an elliptic symbol.ut

Example 7.10Consider the modified Cauchy-Riemann system{
y1
10 − y2

01 + y1 = 0 ,

y1
01 + y2

10 + y2 = 0 .

The Drach transformation with gauge fixing yields the second order system
ŷ1010 − ŷ0101 + ŷ0010 = 0 ,

ŷ0110 + ŷ1001 + ŷ0001 = 0 ,

x̂1ŷ0010 + x̂2ŷ0001 − ŷ = 0 ,

ŷ0020 = ŷ0011 = ŷ0002 = 0 .

Note that we have now four-dimensional multi indices where the first two entries
correspond to derivatives with respect tox1, x2 and the last two entries to deriva-
tives with respect tôx1, x̂2. We have

p0 = x̂1ξ̂1 + x̂2ξ̂2 − 1 , p1 = ξ1ξ̂1 − ξ2ξ̂2 , p2 = ξ2ξ̂1 + ξ1ξ̂2 .

Then we compute

x̂1(ξ1p1 + ξ2p2) + x̂2(−ξ2p1 + ξ1p2)− |ξ|2p0 = |ξ|2

indicating that the completion of the transformed system is elliptic. Indeed, if we
perform the same computation with the full differential equations, we obtain the
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following result. Denote the equation (28) byf0 and the equations of the system
by f1 andf2. Then we find

x̂1(∂x1f1 + ∂x2f2) + x̂2(−∂x2f1 + ∂x1f2)−
(
∂2

x1 + ∂2
x2

)
f0 =

ŷ2000 + ŷ0200 + x̂1

(
ŷ1010 + ŷ0101

)
+ x̂2

(
ŷ1001 − ŷ0110

)
=

ŷ2000 + ŷ0200 + 2ŷ1000 + ŷ = 0

The symbol of this integrability condition is clearly|ξ|2 which is the determinant
of the principal symbol of our modified Cauchy-Riemann system.C

8 Conclusions

Agmon [1, pp. 63–67] developed a regularity theory for overdetermined elliptic
systems in one dependent variable. As shown in Section 7.3, we may rewrite any
overdetermined system in an arbitrary number of dependent variables as an equiv-
alent one in one dependent variable. Furthermore, ellipticity is preserved by this
operation, if we perform the mentioned “gauge fixing”. Thus we may extend Ag-
mon’s results to arbitrary elliptic systems. Of course one can formulate such results
directly without Drach’s transformation. In [15] and [50] one can find some rele-
vant a priori estimates in terms of Sobolev space norms which show precisely the
regularity of the solution in terms of the data. In fact in these estimates the weights
needed in DN–elliptic symbols get a rather natural interpretation. Evidently to get
the relevant estimates one should also specify correct boundary conditions. It turns
out in addition of ellipticity of the operator the boundary operators should satisfy
theShapiro–Lopatinskijcondition. Discussing this condition is beyond the scope
of the present paper and we just refer to [4,15] for definitions.

Anyway we have shown that in general it is necessary first to transform the
given system to involutive form before one can decide whether or not it is elliptic.
This is consistent with the observation that whatever property of the system one is
interested in, it is in general necessary to compute the involutive form before the
analysis. Of course in some situations the full involutive form may not be necessary
but on the other hand there are situations where it is rather clear that the problems
encountered are only due to the fact that the given system is not involutive. As an
example we might cite the problems in the numerical solution of DAEs [52,53]
and the spurious solutions in computational electromagnetics [26].

Moreover we have seen that the notion of DN–ellipticity, while perhaps con-
venient in certain situations, does not define a larger class of systems than elliptic
ones. Its apparent generality is only a consequence of restricting attention to square
systems. Square systems are convenient in many ways, but the property of “square-
ness” is in no way intrinsic, so this restriction is conceptually rather artificial.
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