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Abstract We consider linear overdetermined systems of partial differential equa-
tions. We show that the introduction of weights classically used for the definition
of ellipticity is not necessary, as any system that is elliptic with respect to some
weights becomes elliptic without weights during its completion to involution. Fur-
thermore, it turns out that there are systems which are not elliptic for any choice
of weights but whose involutive form is nevertheless elliptic. We also show that
reducing the given system to lower order or to an equivalent one with only one
unknown function preserves ellipticity.

Key words Overdetermined system, partial differential equation, symbol, ellip-
tic system, completion, involution

1 Introduction

The definition of ellipticity for general overdetermined systems is quite rarely
found in the literature, one accessible exception being the encyclopaedia article
[15, Def. 2.1]. Without the general definition one may encounter conceptual prob-
lems already in very simple situations. For instance, consider the transformation
of the two-dimensional Laplace equatiop, + u,, = 0 to the first order system

(this is discussed in the recent textbook [42, Example 2.10]):

Upg =V, Uy =W, Ug+twy=0.

The transformed system st elliptic, although it is obviously equivalent to La-

place’s equation. The usual approach to resolve this issue [2,3,12] consists of in-
troducing a weighted symbol where two sets of weights are attached to the equa-
tions and the dependent variables, respectively. Itis straightforward to find weights
such that the above first order system becomes elliptic (see Example 6.8 below).



2 Katsiaryna Krupchyk et al.

However, a much simpler solution exists: if one adds the integrability condition
vy = Wy, ONe obtains an overdetermined system which is elliptic without weights.

Besides the already mentioned encyclopaedia article [15] and the research
monograph [50], the question of defining ellipticity for overdetermined systems
was taken up only by few authors [11,22, 38]. Notable are here in particular the re-
sults of Cosner [11] who constructed for any system which is elliptic with weights
an equivalent system which is also elliptic without weights. Within the theory of
exterior differential systems, Bryant et al. [8, Chapt.§¥] give a definition of
an elliptic Pfaffian system; however, we are not aware of any extension of the
approach via weighted symbols to exterior systems.

The purpose of this article is to show that the problems in defining ellipticity
are solely related to the presence of hidden integrability conditions. For checking
whether a formally integrable or passive system, i. e. a system explicitly containing
all its integrability conditions, is elliptic, no weights are needed. It turns out that
the main purpose of the weights is to simulate a partial completion: due to the ad-
dition of integrability conditions, terms which do not appear in the original symbol
will show up in the symbol of the completed system. In some cases, weights can
achieve the same effect. However, we will present explicit examples where it is not
possible to find any weights such that the original system is elliptic with respect to
them, although a completion shows that the system is in fact elliptic.

So the approach via weights has its limitations. On the other hand, the weights
do contain some relevant information about the system, as they turn up in a rather
natural way in the a priori estimates for systems which are elliptic with weights.
Hence it may look like the weights are necessary. However, a completion does not
really alter the solution space but only provides another (better) representation of
it. Therefore we can readily obtain the same information from the a priori estimates
of the completed system. But since these functional analytic considerations are not
needed in the present article, we just refer to [4,15,50] for details.

The question of completion has attracted much interest since the middle of
the 19th century and so many different approaches have been proposed that we
can mention only some of the major directions. A more algebraic solution for
linear systemsstems from Janet [25] and Riquier [43]. Within differential algebra
(see [28] for a general introduction) Boulier et al. [6] presented an algorithmic
solution for arbitrary ideals of differential polynomials; subsequent developments
and improvements are contained in the survey by Hubert [24]. On the geometric
side, Cartan [10] (and &hler [27]) developed the notion of an involutive exterior
differential system; some open points in the question of completion were settled
by Kuranishi [30]. A modern presentation of this theory with many applications
can be found in [8]. Later, ideas from Janet-Riquier and Cartahlét theory,
respectively, were merged into the formal theory of partial differential equations
(see [14,29,37,39,45,49] and references therein).

! The Janet-Riquier theory is often also applied to nonlinear systems. However, this re-
quires some assumptions like that all equations (including the hidden integrability condi-
tions appearing during the completion) can be solved for their leading derivatives.



Overdetermined Elliptic Systems 3

It is perhaps worth while pointing out that the formal theory (or any other
of these theories) is not only useful for studying analytic questions like defining
ellipticity. As already demonstrated in a number of articles [20,32,34,40,44,47,
51-53], completion is also important for a propemmericaltreatment of overde-
termined systems.

All these theories are quite involved with many technical subtleties. Fortu-
nately, our results are independent of any concrete completion procedure, as they
are based on analysing the syzygies of the (transposed) principal symbol and any
completion procedure must treat, possibly in a rather hidden manner, all such
syzygies. Thus in principle we could use any of the above mentioned approaches.
Mainly for reasons of personal taste, we will use the language of the formal theory
(emphasising its roots in Janet-Riquier theory). However, no deeper knowledge of
it is required to understand our proofs; some familiarity with integrability condi-
tions and the idea of completion is completely sufficient.

The article is organised as follows. In Section 2 we collect the necessary back-
ground material needed to formulate and prove our theorems; this includes some
results from commutative algebra. Section 3 provides a brief introduction to a few
basic ideas of the formal theory of differential equations. In Section 4 we make
some general remarks about elliptic symbols and discuss their genericity. Sec-
tion 5 introduces weighted symbols and their elementary properties. In Section 6
we prove our main result stating that given a system elliptic with respect to some
weights its involutive form is elliptic without weights. In Section 7 we show that
transforming a system to lower order or to an equivalent system with only one de-
pendent unknown function preserves ellipticity. Finally, in Section 8 we conclude
with some general remarks.

2 Basic definitions
2.1 Multi indices

Let Nj be the space of multi indices (or exponent vectors), i. e. the set of all or-
deredn-tuplesy = (p1, ..., un) With u; € Nyo. The multi index where thgth
component is one and all other ones vanish is denotdd byhelengthof a multi
indexis|u| = p1+- - -+pu,. For agivery and the variables?, . . . , =™ we have the
monomialz# = (z')1 - .. (z™)*~ and the differential operata¥* = o} - - - 9Lx.

The derivatives of a functiop are denoted by,, = 0*y. The number of distinct
multi indicesp € Ni with length|u| = ¢ is

n+qg—1
n( ‘ )

In other wordsp,, is the number of distinct derivatives of order

Assume that a total ordering on the set of multi indices satisfies the following
conditions: for allp we have (1)u < p+ p and (2)u < v impliesy + p <
v + p. Then< is called aranking (or term orde) and can be used to order both
monomials and derivatives. Finally, the integé&ry = min{s | p; # 0} is the
classof the multi indexy (or the monomialk:* or the derivativey,,, respectively).
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2.2 Maps and operators

Let 2 C R"™ be a domain and lef, = 2 x R™ andE; = 2 x R¥. HenceE,
andE; are (trivial) vector bundles ove? and we may identify the sections 6f
(resp.E;) with graphs of maps2 — R™ (resp.f2 — R¥). The coordinates iti2
are denoted by: = (x!,...,2") and inR™ by y = (y%,...,y™). The tangent
(resp. cotangent) bundle 6f is denoted byl'(2 (resp.T*(2).

With these notations, the genegglh order linear differential equation is

Ay = Z a;t(x)a#y = f (1)

lul<q

wherez € 2 C R", a,,(z) € R¥*™ andu € NZ. The corresponding differential
operator is then a magd : F(Ey) — F(E;) whereF(E;) are some conve-
nient function spaces. For our purposes, it is not essential to define precisely the
functional analytic setting, but we will make a few remarks about this question at
appropriate places.

We will also need the special differential operagdrwhich associates to a
section of Ey all of its derivatives up to ordeq. For example, ifm = 1 and
n =q = 2we get

7%y — (¥, Y10, Yo1, Y20, Y11, Yo2) - (2)
Elementary combinatorics shows that the number of componentsyiis md,
where

dg=1+n1+-+n,= (n;Q> .
2.3 Symbols

To each operatod we may associate two symbols: the geometric symbol and the
principal symbol. As we will see, both contain essentially the same information
but coded in different ways.

Definition 2.1 The principal symbol of the operaterin (1) is
oA, &) =Y au(x)e"

[1l=q

where§ € R" is a real vector.

The principal symbol is an intrinsic object which does not depend on the cho-
sen coordinate system: we may regéras a one-form, i. e. as a section’Bf(?,
and in a fixed basis df'** (2 the coefficients of this one-form define at each point
x € (2 areal vectog € R™ as in the definition above. Then the principal sym-
bol becomes & x m matrix whose entries are homogeneous polynomials in
of degreeq. Fixing some vecto€ € R™ allows us to interpret A also as a map
Ey — E, or even as amaR™ — RF; this is the usual situation.
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Definition 2.2 The geometric symboW1, of the systen{l) is a family of vector
spaces over? defined by the kernel of the matrix

Mq = (a#1,. . .,aunq)
wherep?!, ..., u™ are then, distinct multi indices of length, i. e. |u’| = q.

It is a customary abuse of language to call the matfixgeometric symbol,
too, and we will do so in the sequel. From now on we suppose for the simplicity of
notation that various properties of the symbols do not depend on theapair®
and omit the reference to it. In particular, this implies thdt, is in fact a vector
bundle.

In order to describe the connection between the two symboals, let us introduce
the vector

0= (¢, ")

Then we have the following formula which will be useful later on:
oA =Mi(Z'®1,). (3)

Here I,,, is the unit matrix of sizen x m and® is the tensor produét.For a
coordinate free description of the connection between the two symbols see [49].

2.4 Rings and modules

In the analysis of the principal symbol it is convenient to introduce some basic
notions of commutative algebra. All the relevant material can be found for example
in [16,18]. LetA = K[¢] = K[y, ..., &,] be a polynomial ring im variables
whereK is some field of characteristic zero (in our applicatidg@will always
beR or C). The Cartesian produdt” is then anA-module of rankk. A module
which is isomorphic to such a Cartesian prodétis calledfree A module M is
finitely generatedif there is a finite number of elementsy;,...,a, € M such
thatM = (aq,...,a,). SinceA is a Noetherian ring by Hilbert's basis theorem,
every submodule of* is finitely generated.

An m x k matrix B whose entries belong to the ring defines a module
homomorphismB : A¥ — A™. We denote by!,...,b* € A™ the columns of
B. If My = image(B) = (b',...,b*) C A™ is the submodule generated by the
vectorsh’ ands € A* is such that

Bs=s1b' 4+ +s,bF =0,

then s is called asyzygyof M, (or B) and all such vectors form the (first)
syzygy modulé/; C A* of M,. SinceA is Noetherian, there are generators
st,...,s" € AF such thatM; = (s',... s"). We denote byS the matrix with
columnss?, ..., s’ it trivially satisfiesBS = 0. One can compute generators of
the syzygy modulé/; algorithmically using Gobner bases, for example with the
program $NGULAR [19].

2 In the sequel we will use some elementary properties of the tensor or Kronecker prod-
uct. The necessary material may be found in [23].
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Remark 2.3 et B be am x k matrix with k& > m. Then the modulé/, generated
by the columns of3 has a honzero syzygy module, because it can easily be proved
that in this case the systeBs = 0 has nonzero solutions.<

The computation of the first syzygy module is the first step in the computation
of a free resolutionof the given module. Hilbert’s syzygy theorem [16, p. 45]
asserts that every finitely generatéemodule has a free resolution of length less
than or equal to the numberof variables in the polynomial ring,, i. e. for our
module M, there exists an exact sequence of ffeenodules

Sr Abr—1 - (4)

0 A@ ”

S B

Ak A™ A™ / MO >0

Aé

with » < n — 2. Recall that exactness means that the image of one map in this
sequence is equal to the kernel of the next map.

In general, the rank of a matri® over some ringr is defined via determinantal
ideals [7, Chapt. 4]. Lef;(B) denote thejth Fitting ideal of B generated by alll
(j x j)-minors of B (it can be shown that the Fitting ideals depend only on the
moduleM, = im(B)). Therankof B in the sense of module theoynk g (B), is
the largest nonnegative integesuch thatl,.(B) # (0).2 We putl(B) = I,.(B).

The polynomial ringA is trivially an integral domain and thus possesses a field
of fractions, the field® = K(&4,...,&,) of rational functions. Sincé& C F and
since it does not matter whether we compute minors éver overF, we find that
ranka (B) = rankp(B). But the latter rank is the classical rank of linear algebra
and may be determined with Gaussian elimination.

Specialising each variablg to a field elemeng; € K leads to a new matrix
B(&) € K™k Its rank (over the field) is denoted byank (B(¢)). Obviously,

rank (B(€)) < ranky(B)

and for generic vectors € K" equality holds. Thus the specialisation may affect
the exactness of the sequence (4). From now on we will use the notafam
both the indeterminates of the polynomial ridgand vectors irkK™. The intended
meaning should be clear from the context.

Those vectorg € K™ which lead to a smaller rank are callebaracteristic
for the matrix B (they make denominators vanish which appear in the Gaussian
elimination oveif). More formally, they are defined by the zerod¢B), i. e. they
correspond to the points of the varidty(/(B)). Recall that the radicahd([) of
an ideall C A consists of all polynomialg such thatf™ € I for somen € N
(thus trivially I C rad(I)) and thatV'(I) = V (rad([)). Furthermore, ifl, J are
two ideals with! C J, then the corresponding varieties satigfyl) > V' (J).

% Some authors consider the annihilators of the Fitting ideals, but in our case this makes
no difference, as the polynomial rifgdoes not contain zero divisors.
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Lemma 2.41f the complex (4) is exact, then
rad(I(B)) C rad(I(9)) . (5)

For a proof we refer to [16, p. 504]. By the considerations above, it implies
that any vectok that is characteristic fof is also characteristic faB, since

V(1(S)) = V(rad(I(S))) € V(rad(I(B))) = V(I(B)) . (6)
Corollary 2.5 Let the entries o8 be homogeneous polynomials and
rank, (B) = rank(B(€)) V¢ e K"\ {0} . (7)
Then we also have
ranky (S) = rank(S(€)) Ve e K*\ {0} . (8)

Proof By definition, rank(B(€)) < ranka(B) is equivalent to¢ € V (I(B)).
Hence it follows from the hypothesis theit(Z(B)) = {0}. But (6) implies that
V(I(S)) C {0} which yields (8). O

Lemma 2.6 Under the assumptions of Corollary 2.5, the complex

S B
e S€ i PO ©)

is exact for all vectorg # 0.

Proof Since (4) is exactk = rank(A*) = ranky(B) + rank,(S) [16, p. 500].
Using Corollary 2.5, we get

k = rank(B(£)) + rank(S(§)) = dimim(B(£)) + dimim(S(£)) V& # ? )
10
SinceBS = 0, we always have
im(S5(€)) C ker(B()) VEF#O.
B(¢) also trivially satisfieslim im (B(£)) = k — dim ker(B(€)) implying
dimker(B(¢)) = dimim(S(€)) VEF#DO.
Together with the inclusion above, this observation entails
im(S(€)) = ker(B(€)) VE#£O
and hence the exactness of (91

If we apply the functoHomx (-, K) to an exact sequence of vector spaces, i. e.
if we dualise the sequence, then by a standard result in homological algebra we
obtain again an exact sequence [31] (note that generally this holds only for vector
spaces and not even for free modules over a fng@sHompg(+, R) is only a left
exact functor). At the level of matrices this yields the following corollary to the
above lemma.

Corollary 2.7 Under the assumptions of Corollary 2.5, the transposed complex

T T
g BT e 5T

is exact for all¢ # 0, too.
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3 Involutive Systems
3.1 Completion to Involution

Overdetermined systems usually still contain hidden integrability conditions; the
process of their explicit construction is calledmpletion As already mentioned

in the Introduction, many approaches to this problem exists; we will use the formal
theory containing both geometric and algebraic elements. Since we study only lin-
ear systems, we emphasise the algebraic side and briefly describe the construction
of involutive bases for linear differential systems [17]. More details and the precise
connection of these bases to the formal theory can be found in [21]; for a general
introduction to involutive bases see [9,46].

Janet introduced the fundamental concepiaitiplicative variableswe as-
sign to each equation in the system a subset of the set of all independent variables
as its multiplicative variables. Roughly speaking, a system is involutive, if it suf-
fices to consider of each equation only the prolongations (i. e. differentiations) with
respect to these variables. Another point of view is that this assignment of multi-
plicative variables permits us to generate in a systematic way all cross-derivatives
which could lead to integrability conditiorfs.

A ranking < distinguishes in each equation of the systeleealing derivative
namely the one which is maximal with respectdoBy a Gaussian elimination, we
may render any linear system triangular implying in particular that every equation
has a different leading derivative. If an equation has the leading deri\@ti\m'ih
cls i = k, then we assign it the multiplicative variable . . ., z*. A ranking that
is particularly useful in the context of the formal theory works as follcygs» yk,
if we have either thal:| > |v| or that|u| = |v| and the first non-vanishing entry
of ;. — v is positive or thayy = v andj > k.

We may now introduce the notions of (involutive) reduction and normal form,
respectively. Assume that one of our equations contains agtf;md the leading
derivative of another equation ig, with 1 = v + p. In principle, we could now
reduce the first equation by subtractia§ times the second one. However, we
only allow this reduction, if the prolongatia#’ requires only differentiations with
respect to multiplicative variables of the second equation. Thels if = k& and
p; > 0 for somei > k, then the reduction is not permitted.

An equation is ininvolutive normal formwith respect to a system, if it is not
possible to involutively reduce any term in it. A systenmigolutively autoreduced
if any equation is in involutive normal form with respect to the remaining ones.
The process of (involutive) autoreduction of a linear system may be thought of as
a differential generalisation of Gaussian elimination.

Definition 3.1 An involutively autoreduced systeminsolutive, if the involutive
normal form of any differential consequence is zero. A differential consequence
whose involutive normal form does not vanish isolstruction to involution

4 The word “multiplicative” might appear strange here, as we differentiate with respect
to these variables. The reason is historical, as Janet formulated his theory in terms of mono-
mials so that differentiation corresponds to a multiplication with these variables.
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A more rigorous formulation of this definition is possible using some algebraic
notions. LetD = F[d,, . .., d,] be the ring of linear differential operators with co-
efficients in some function fielfl, say the rational function = K(x!, ..., 2").

If there arem unknown functions, then our system defines a submofliudéthe
free D-moduleD™ (in the casen = 1 this means of course th& C D is a
differential ideal). An involutive system corresponds to a basiS stich that the
involutive normal form of any element of with respect to this basis vanishes.

Example 3.2Me illustrate these concepts with two simple systems of second order
in two independent variables and one dependent variable. The first one is

Yoz — Y1 =0, y11—cyio=0

wherec is some real constant. As the first equation is of classid the second

one of clasd, we have one non-multiplicative variable, namekfor the second
equation. If we compute any differential consequence of the first equation, it is
trivially involutively reducible, as all variables are multiplicative for the equation
so that we may always reduce. The same holds, if we differentiate the second
equation with respect te'.

Thus the only interesting differentiation is thé-derivative of the second
equation. It yieldsj;» — cy1; = 0. We may now involutively reduce with the'-
derivative of the first equation. Fer= 1, the involutive normal form i and thus
our system is involutive. Otherwise, we have obtained an obstruction to involution
(y11 = 0) and the system is not involutive. Obviously, this obstruction is a classical
integrability condition obtainable also by simply taking the cross-derivative of the
two equations in our system.

As second example we consider the seemingly similar system

Yoz —Yy10 =0, Y20 —yo1=0.

We find the same classes as in the previous system, so that again oni§-the
derivative of the second equation is of interest. It yigjds— 302 = 0. While we

may involutively reduce the second term in it by simply adding the first equation
of our system, it is not possible to simplify involutively the leading derivative
Hence we have found an obstruction to involution and the system is not involutive.
Note that in the classical sense this obstructiomoisan integrability condition; it
arises only because of our restriction to multiplicative differentiations.

If a system is not involutive, one mapmpletdt to an involutive one by adding

the arising obstructions to involution. One can show that this process terminates
after a finite number of steps. Informally, we may describe the completion as fol-
lows. We always keep the system in an involutively autoreduced form. Each equa-
tion is differentiated with respect to its non-multiplicative variables and then the
involutive normal form of the result is computed. If it does not vanish, it is added
to the system as an integrability condition. The completion terminates as soon as
no non-multiplicative differentiation yields a new equation.
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Example 3.3A completion may require surprisingly many steps, as demonstrated
by the following classical second order system in one dependent variable y and
three independent variables$, 22, 23 due to Janet:

Yooz + 2%Y200 =0, Yo20 = 0.

We use a ranking such that in the first equatigi, is the leading derivative. So
the first equation is of classand the second one of cla&sHence we must study
only one non-multiplicative prolongation, namely th&-derivative of the second
equation. It yields the new equatigr,; = 0 which is already in involutive normal
form with respect to our system.

This equation is again of clagsand thus hag® as sole non-multiplicative
variable. The equationy22 = 0 is not in involutive normal form, as it can be invo-
lutively reduced by the first equation. As one easily checks, its involutive normal
form isy219 = 0. As this integrability condition is of class we must check now
two non-multiplicative prolongations. The one with respect?oyields nothing
new, as it is trivially reducible by the second equation. Buttherolongation
yields the new equatiom,;; = 0 which is in involutive normal form.

This integrability condition is of class$, too, and therefore we must check
two non-multiplicative prolongations. As before, thé-prolongation is trivially
reducible but the:3-prolongation yields after some computations the new equation
ya00 = 0. It leads to two further equationg;;g = 0 andysg; = 0. The first
one is involutively reducible with respect to the equatign, = 0 and all non-
multiplicative prolongations of the second one are involutively reducible, too, so
that we are finally done.

Thus the involutive completion of our system has lead to the fifth order system:

Yooz + 22200 = 0, Y020 =0, Y210 =0,
Y100 =0, yo21 =0, y211 =0, Y401 = 0.

Only the first two obstructions to involution are integrability conditions in the clas-
sical sense; the remaining three are reducible although not involutivedy.

Strictly speaking, we have described here the construction of a so-called Pom-
maret basis of the given system. Other kinds of involutive bases arise by using
different rules for the assignment of multiplicative variables; for a detailed discus-
sion of these notions we refer to [17,46]. Furthermore, we ignore here the problem
of §-regularity (which concerns the termination of the described completion algo-
rithm in certain “bad” coordinate systems), as it is related to characteristics and
thus of minor importance for elliptic systems. Details (and a constructive solution)
are contained in [21].

Involutive systems possess many pleasant properties. For lack of space, we
only mention one. In the analytic category, we have a general existence and unique-
ness theorem for initial value problems, tBartan-Kahler theorenmgeneralising
the well-known Cauchy-Kovalevskaya Theorem (for its proof all obstructions to
involution and not only the classical integrability conditions are decisive). Not
much is currently known about existence and regularity of solutions in larger
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function spaces. In the case of linear systems, it is not difficult to generalise the
unigueness theorem of Holmgren to arbitrary involutive systems. An existence and
uniqueness theorem for smooth solutions of hyperbolic systems with elliptic con-
straints is contained in [47].

3.2 Completion and Equivalence

An important point in the completion to involution is to what extent we may say
that the completed system is equivalent to the original one. Intuitively equivalence
means that the solution space remains unchanged, but obviously this idea depends
on what kind of solutions we are treating. The simplest clas$oaneal solutions
Here it is clear that the completion does not change the solution space, as any for-
mal solution trivially satisfies any integrability condition independent of its order.
This extends trivially toanalytic solutionsas these are nothing but converging
formal solutions.

Furthermore, the same argument generalisesrtooth solutionsbecause of
their infinite differentiability, they automatically satisfy any integrability condition
constructed during the completion. The same holds true fomeak solutiorthat
may be understood in a distributional sense, as distributions are again infinitely
differentiable.

The situation is somewhat more complicated for solutions possessing only a
finite differentiability. If we assume that the original system was of ordand
that the completion lead to a system of orgler- ¢, then a strong solution of class
C? of the original system becomes a weak solution of the completed system.

Finally, we must discuss the effect of the completion on the data, i. e. the right
hand side of a linear system and its coefficients. If we study an inhomogeneous
systemAy = f, then the completion leads to a systelm = f where the right
hand sidef consists of linear combinations of components'aind their deriva-
tives up to a finite order. Again this provides no real problems, if it is possible to
interpret the derivatives in a distributional sense.

In contrast, the situation is much less clear, if the coefficients of the operator
A are not sufficiently often differentiable. Here we cannot simply argue with dis-
tributional derivatives. Therefore we will assume in the sequel that the completion
does not require more differentiations than the regularity of the coefficients permit.

More generally, we consider two systems of differential equations as equiva-
lent, if a bijection between their solution spaces exists (requiring again a precise
specification of the used function spaces). This notion of equivalence allows us to
study more complex operations on differential equations like reduction to first or-
der or to one dependent variable (see Section 7) where the number of independent
and/or dependent variables changes. For a more formal definition of equivalence,
see the discussion in [15].

3.3 Compatibility Conditions and the Fundamental Principle

Given an inhomogeneous overdetermined system= f, it will generally not
possess solutions for arbitrary right hand sigesSolutions will exist only, if f
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satisfies certain differential equations knowncaspatibility conditiongthe dif-
ferential analogue to syzygies). For an involutive system it is straightforward to
determine a complete generating set of these conditions.

Recall from our discussion above that in an involutive system the involutive
normal form of any equation obtained by a differentiation with respect to a non-
multiplicative variable is zero. This implies that the equation can be written as a
linear combination of multiplicative prolongations. Let us denote the class of the
sth equation of the system y. ThenAy = 0 is an involutive system, if and only
if functions B,/ (x) andC}” () exist such that for alf > k,

0,1 (Ay)s =Y | Y Byl ()0, (Ay). + CF (2)(Ay),

t \i<ke

These relations trivially imply that a necessary condition for the existence of solu-
tions of the inhomogeneous systety = f is that the right hand sid¢ satisfies
the linear differential equations

Ouifs = Y. B (@)oufi+C()fe | - (11)

t \i<k:

Example 3.4f we consider Maxwell's equations for the electric figikland the
magnetic fieldB

E,~VxB=J, B+VxE=0, V-E=p, V-B=0, (12)
then the compatibility condition is the well-known continuity equation
pr—V-J=0
describing the conservation of chargex

The fundamental principlestates that the conditions (11) are not only neces-
sary but also sufficient. Of course, the correctness of this statement depends again
on the considered function spaces. Using the theory of involutive bases it is fairly
straightforward to show that the principle is correct at the level of formal solu-
tions. Ehrenpreis and Malgrange showed that the principle also holds for smooth
and distributional solutions, if we restrict to linear equations with constant coeffi-
cients. These are, however, highly non-trivial results; see [35, 36] for an extensive
discussion of this and related issues.

We may express these considerations in a somewhat more abstract way using
differential sequences. L&; (F;) be some spaces of sections of bundigslf A;
represents the compatibility operator for a given linear differential operdgor
then the sequence

A() Al
fo(Eo) E—— .7:1(E1) E—— fQ(EQ)

defines by construction a complex, iim Ay C ker A;. In other words, the dif-
ferential equatioyy = f may possess for a given right hand sile 7 (F;)
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a solutiony € Fo(Ey) only, if A;f = 0. The fundamental principle concerns
the question whether or not the sequence is exact, i. e. whethég = ker A;.

In this case every solutiofi € F;(E,) of the equatiord; f = 0 is of the form

f = Apy for some functiony € Fo(Ejp).

4 Elliptic Symbols
4.1 Ellipticity and its Generalisations

Let us consider again the general linetir order differential operator and its prin-
cipal symbol:

Ay = Z a,(x)o'y and oA = Z a,(x)Eh .

[n1<q [ul=q

Definition 4.1 The differential operatord or the principal symbob A, resp., is
calledelliptic, if the mapcA : Ey — E; is injective for all§ € R\ {0}.

Note that, sinc€ is intrinsically defined as a one-form, the property of being
elliptic is independent of the choice of coordinates. Ellipticity is equivalent to the
absence of characteristic vectors, so that we recover the familiar idea of an elliptic
system as a system without real characteristics.

Note that Definition 4.1 excludes systems where m, i. e. systems with less
equations than unknown functions; such a system is obviously underdetermined.
While its symbol may still have full rank, it cannot have fablumnrank. In [15]
such operators are callegerators with constant defeds a simple example of
an underdetermined system with full rank, we take the sy&feny = 0 defining
divergence free vector fields iR™. For a given vectog € R™ the principal
symbol is simply the matrig? which has obviously full row rank for any # 0.

Underdetermined systems with full rank appear mainly as subsystems of larger
systems. In the Maxwell system (12) the first two equations (six scalar equations)
form a (symmetric) hyperbolic system in Cauchy-Kovalevskaya form; the last two
equations form an underdetermined system with full rank. This full rank condition
is very important for the analysis of the whole system, see [47] or [45, Sect. 5.6]
for a discussion of its role in proving an existence and uniqueness theorem for
smooth solutions.

Independent of these considerations, we have the following interesting relation
between a full rank symbol and involution (note that we do not require here full
rank for all vectorg but only for one).

Proposition 4.2Let £k < m and assume that there exists at least one vettgr
& € R™ such thatr A has full rank. Ther is involutive.

Proof We perform a linear change of the independent variables > subject to
the sole condition that™ = (&, 2-). Obviously this is always possible for a non-
vanishing vectog. After such a change, we can transform the systegm= 0
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with the help of some linear operations and possibly a renumbering of the depen-
dent variableg/* into a new system where théh equation isy), ,, = f* and
where the functiong® do not depend on pure®-derivatives of they’ of order
greater than or equal t9; for 1 < j < k. We may consider this as an under-
determined Cauchy-Kovalevskaya form (for= m thisis the classical Cauchy-
Kovalevskaya form) and such a system is trivially involutive, as no equation has a
non-multiplicative variable. O

In the sequel we will restrict to systems with> m, as for applications this
is the most interesting case. By the same reasoning as used in the above proof,
one sees immediately that if such a system is elliptic, it must be either in Cauchy—
Kovalevskaya form or overdeterminéd.

4.2 On Genericity

From a certain degree of overdeterminacy on, linear systems are generically el-
liptic. The following result, although rather elementary, seems to be new. Let us
consider the generath order operatod as in (1).

Proposition 4.3 The operatorA is generically elliptic, ifn +m < k + 2.

Proof Recalling (3) linking the geometric and the principal symbol, we may state
the condition of ellipticity as follows. The operatdris elliptic, if and only if the
following algebraic system fof € R™ andv € R™ has only the trivial solutions

& = 0, v arbitrary orv = 0, £ arbitrary:

(0 AW = My(57® L)y = My (5@ v) = 0. (13)

Itis convenient to write these equations in a different way. To this end let us intro-
duce matrice$s; € R™*™ by writing the rows of}/, as matrices. More precisely,
we set

(Bj)i = (au);
where(B;); denotes théth row of B;. With the help of the matriceB; we can
write the conditions in (13) as

(89, Bju) =0, 1<j<k.

As these equations are homogeneousand linear inv, we may normalis¢| =
|v| = 1. Together with the equations above this makeis 2 equations. Since we
haven 4+ m unknowns, the claim follows. O

5 Opposed to common belief, a system with> m may very well be underdetermined.
Examples are gauge theories in elementary particle physics; see e. g. [45, Sect. 3.3] for a
rigorous discussion.
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It is somewhat surprising that the result does not depend on the order of the
system. Protter [38, p. 74] proved that a first order differential system is generically
elliptic if m(n 4+ 1)/2 < k. Our result is sharper, except that fer= 1 we have
the boundk > n while Protter hag > (n + 1)/2. However, Protter’s statement
is false in this case and our bound is in fact optifha@his can be seen directly as
follows. Form = ¢ = 1 we have

cA = le

where M, € R**™, Ellipticity is now equivalent to the injectivity of\/; which
implies thatt > n.

5 DN-Elliptic Systems

In order to generalise the notion of ellipticity (and to solve such problems like
the reduction of the Laplace equation to first order mentioned in the introduction),
Douglis and Nirenberg [12] introduced the concepivefghtsof a system, see also

[4, §3.2b] for a discussion. The weights of a system are two sets of integers: we
denote bys; the weights for the equation$,< ¢ < k, and¢; the weights for the
unknowns,l < j < m. They must be chosen such that

sit+ 15 2 qij

whereg;; is the maximal order of a derivative of thiéh unknown function in the
ith equation of the system.

Definition 5.1 Theweighted (principal) symbadf the differential operatod is
(UwA)i,j = Z (G’H('r))i’jg'u :
|pl=si+t;

Note thator,, A = o A, if we choose
s1=+-=85,=0 and t1=---=t,=¢q. (14)

Obviously, the weighted symbel, A remains unchanged, if we replace all weights
s; by s; + c and all weightg; by t; — c for somec € Z. Hence we may always
suppose that; < so <--- < s =0andty >ty > --- > t,, > 0. Furthermore,
let us define indices, |;, j;, J; as follows:

S1 = =85 < S 41 == Si14ip < < Siyjqetig 41 = - =8,=0,
tp ==ty >t = =ty > > by i1 = =t
lp =0, =i 4+,
Jo=0, =g+ +a.
(15)

(o2}

For seeing why Protter’s argument fails examine the méfrix [38, p. 74].
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Finally, we define, andj, by k = i3 + --- + i, andm = j; + - -+ + jp. With
these conventions,, A can be written as a block matrix:

Ay Aga .. Ay
Agy Agp ... Ay

owA = . ) (16)
Aal Aa2 v Aab

Here the blockA,;, is ani; x j, matrix and its entries are homogeneous polyno-
mials in¢ of degree, = s, + ¢, . Now, conversely given some degregs, can
we solve for the corresponding weights?

Lemma 5.2If we fix s, = 0, choose arbitrary values for,;, and v;;, and set
v, = v + v — v, then there exist unique weightsandt; corresponding to
this choice.

Proof By definition,s; +t;, = v, = v;1 +v1, —v11. FiXing s, = 0 leaves us with

k + m — 1 unknowns (weights). We obtain now the solution simply as follows:
first s, +tj = tj = Vg1 + V15 — V11, thens; = v;; + Vij — Vi1 — tj = Vi1 — Vi1

O

For a fixed vectot € R™, the weighted symbol may also be interpreted as a
mapo,A : Ey — E;. Thisleads to the following generalised notion of ellipticity.

Definition 5.3 The differential operatorl is DN—elliptic, if we can find weights;
andt; such that its weighted symbe), A is injective for all{ € R\ {0}.

Note that an operator is DN—elliptic, fomechoice of relevant weights exists
and in general there are many different possible choices. In particular, the property
of being DN-elliptic isnot independent of the choice of coordinates. Also it may
not be easy to effectively find suitable weights/coordinates. Quantifier elimination
allows an algorithmic solution of the problem of weight determination [48].

In particular, a system is elliptic in the usual sense, if it is DN—elliptic with
respect to the weights (14). Two other special cases are worth mentioning. Let us
denote byy; the order of theth equation and by; the maximal order of the vari-
abley’ in the whole system. Hence, by our conventions; max ¢; = max ¢;.

Definition 5.4 A reduced (principal) symbaif the operatorA4, denoted by, A,
is a weighted symbol with all weights equal. APetrovskij (principal) symbabf
the operatorA, denoted by, A, is a weighted symbol with all weights equal.
If 0, A is injective, the operato# is said to beP—elliptic (elliptic in the sense of
Petrovskij [4]).

Of course, in the reduced case the most natural choice of weights is
si=¢q—q and ty ==ty =¢q (7)
and in the Petrovskij case

s; =0 and t; = Qj s (18)
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respectively. If we speak in the sequeltbé reduced othe Petrovskij symbol, we
always mean the weighted symbol with respect to this particular choice. Referring
to the block matrix (16), we see that in the “reduced case” we havd while in

the “Petrovskij case” we have= 1.

Remark 5.9 et 0,. A be the reduced symbol of the operatband lets € A* be a
syzygy of the transposed matiix,. A)*. We associate with a differential operator

$ by substitutingd®s for &;. Then the expressiosf Ay is a linear combination of
differential consequences of the original systdm = 0 and, because of the fact
thats is a syzygy, the highest order terms cancels. Thus such linear combinations
may be considered as generalised cross-derivatives and the result is possibly an
integrability condition (depending on whether or not it reduces to zero modulo
Ay = 0). In particular, adding the equatighAy = 0 to the original system may
increase the column rank of the reduced symbol, as we have already seen in the
introductory example of the first order form of the Laplace equation.

We will later formulate the proof of our main theorem solely on the basis of
such syzygy considerations. As the purpose of any completion method is the detec-
tion of all hidden integrability conditions, it must check for all syzygieg@fA)?
whether they lead to an integrability condition.dner-like approaches are ex-
plicitly formulated this way (recall tha§-polynomial is an abbreviation for syzygy
polynomial); in other approaches like exterior systems theory this fact is rather ob-
scured. Nevertheless, this technique of proof ensures that our results remain true
for any completion theory. <

It is easily seen that differentiating (some of) the equations of a system pre-
serves DN—ellipticity.

Lemma 5.6 Suppose that the operatar is DN—elliptic. Let the weight of thiah
equation bes;. Let A’ be the operator obtained from by adding all equations
obtained by differentiating th&h equationc times with respect to each variables.
ThenA’ is DN-elliptic for the following weightss; is set to zero, the weights for
the new equations arg + ¢, and all other weights are as fod.

Proof Letv = (&5,...,£%). Let us denote by, A); theith row in o, A. Now
apply the derivativé); to theith equation and set the weight of this new equation
to s; +c. Doing this for eacly and adding all these equations to the original system
we get the new operatot’. But clearly in terms of the symbols, this corresponds
to adding the rows ® (awA)Z- to the original weighted symbol. Hence, choosing
weights forA’ as described in the statement of the Lemma, we see thatdfhas

full rank, theno,, A’ has full rank, too. O

Informally, we may describe the content of the Lemma as follows. From the
point of view of analysing the rank properties of the symbol we may replace
(owA)Z- by v ® (awA)i. As a further consequence, one may without loss of gen-
erality suppose that all equations in a DN-elliptic system are of ayaenenever
it is convenient. In particular, the above Lemma gives the following simple result.
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Corollary 5.7 Let a reduced symbal,. A be elliptic and lets = max; s;. Then the
operator A’ obtained by differentiating thih equations — s; times with respect
to all variables (including all mixed derivatives) has an elliptic symbd! .

Lemma 5.8 Assume that all rows i are of orderq and that the weights are
ordered as in(15). If o, A is DN—elliptic, then

(i) s1 +t1 =gqandA;; =0forl <l <gq;
(i) Ay is an elliptic symbol; i. erank (A1) = j; and in particulari; > ji;
(i) ¢,, > 0 and without loss of generality we may suppose that- 1.

Proof If s; + t1 < ¢, then the first; equations could not be of order On the
other hand, ifs; +¢; > ¢, then the first block column would be zero, so the system
could not be DN—elliptic. Thus; + ¢t; = ¢ and for alli > i; we haves; +t; > ¢
implying A;; = 0for1 < < a. If rank (A1) < j1, then(o,, A)v = 0 for some
nonzero vector of the form

v=(v1,...,v5,0,...,0).

As this is impossible for an DN—elliptic symbol, we must haye> j;. Finally,
for t,, < 0 the last block column would be zero, and the system could not be
DN-elliptic.

Suppose that,, = 0 and let us call the variablgg+>-1, ..., y™ algebraic
variables because no derivatives of these variables appear in the system. Moreover,
the firstl,_; equations do not depend on these variables. Hence thd first
equations form a DN-elliptic system with variablgs . ..,y -*. Becaused,;
is of full column rank, the algebraic variables can be solved in terms of other
variables. In casé = 1, A,; is of full column rank and we can again solve the
algebraic variables in terms of other variables, and hence obtain a system without
algebraic variables. O

So, whenever it is convenient, one may suppose that

A11A12...A1b A11 0 ... 0
0 Aoy ... Ao AL AL A
A= | . T and A= | tTEITTR
0 Ap ... Ay A AL, A,

6 Ellipticity and Completion

Our goal in this section is to show that if weights exists such that the linear differ-
ential operatord is DN—-elliptic, then the completion of leads to an equivalent
operator that is elliptic without weights. Thus we may dispense with the introduc-
tion of weights, if we always complete to involution before the classification. In
addition, we will show with some concrete examples that the approach via weights
is not sufficient, as it sometimes fails to properly recognise elliptic systems.



Overdetermined Elliptic Systems 19

6.1 Preliminary results

Let us consider the general linear systdm= f defined in (1), and from now on
we will suppose thak > m.

Proposition 6.1 1f during the completion to involution a reduced symbol becomes
elliptic at some stage, then it will remain elliptic until the end of the completion.

Proof The completion to involution is based on the addition of the arising ob-
structions to involution. At the level of reduced symbols this leads to the addition
of further rows. If a reduced symbol has already full column rank, then such fur-
ther rows cannot change the rank and the completion does not affect its ellipticity.
Note that involutive head autoreductions and similar algebraic computations per-
formed during the completion do not matter here, as they correspond at the level
of reduced symbols to elementary row operations.

Remark 6.8y Corollary 5.7, it is trivial to go from an operator with an elliptic
reduced symbol to an equivalent elliptic operator: we must only add derivatives of
the lower order equations. Hence for all practical purposes it suffices to show that
a reduced symbol becomes elliptic at some stage of the completion proeess.

Example 6.3Consider the system
1,2 2 _¢2
A: yio 202 0, and 0,4 = ( 1 52) )
y'+y?=0, L

Obviously the reduced symbel. A is elliptic. Differentiating the last equation
twice with respect to both variables we obtain the elliptic system:

Y30 — Yoo =0, & -8

AW Syl +u3 =0,  and 0AW = (& &
2 /2

y62+y32207 52 62

Remark 6.4n Section 3.1 we gave an algebraic introduction to the notion of in-
volution. There also exists a geometric approach based on jet bundles. Within this
approach, the completion consists of two basic operations: prolongation and pro-
jection. A projection corresponds to the addition of integrability conditions; hence
it preserves ellipticity by the same argument as in the proof of Proposition 6.1.
In a prolongation, all equations in the system are differentiated with respect to all
independent variables. It also preserves ellipticity, as the following simple argu-
ment shows. Le# be a linear differential operator andl the operator obtained

by adding toA all the differentiated equations. Then clearly

§10A
oA = | =¢edA.
EnoA
Thus the prolonged symbelA’ has full column rank for alf # 0, if and only if

the originalo A has full column rank. This implies that Proposition 6.1 holds for
the geometric approach, too<
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6.2 The Petrovskij Case

Before treating the general case, let us make a few remarks about the Petrovskij
case. Using the indicel defined in (15), we introduce vectog§) by

y(l):(y1+J1—1’_”’le)7 l=1,....b. (19)

In this way, the general operatdrin (1) may be written as

b
Ay =>" Ay . (20)
=1

Using this decomposition, the Petrovskij symbol may be written as
opA = (crA1 oAy -+ O’A(,) .
Lemma 6.5If A is P—elliptic, then each operatot; in (20)is elliptic.

Proof Suppose that somé; is not elliptic. Then there is some nonzefd < R
such thar 4,0 = 0. Let

v=(0,...,0,0,0,...,0) € R
Thenv is nonzero ando,A)v =0. O

The converse to this result is obviously false. Anyway, since P—elliptic systems
are constructed as sums of systems which are elliptic in the ordinary sense, it seems
natural that the completed system should also be elliptic.

Example 6.68Consider the system

I —2=0 2 _
A yfo y2 ’ and o,A = <£§ 1) :
y02+y :O, 52 1

Obviously A is P—elliptic. Taking cross derivatives we obtain an elliptic system:

s —y* =0, & 0
AW Gyl +y2=0,  and oAM= (& 0

2, ¢2
Y30 + Y2 =0, 0 & +&
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6.3 General case

Let us first consider some examples.
Example 6.7Consider the system
yio +y' +ay® +by® =0,
A yss + ey’ +dy® =0,
Y+l +uo1 =0,

depending on four real parametersb, ¢ and d. With the following choice of
weightss; = s = —1, 83 = 0,t; =4, to = t3 = 1 the symbols are

& ab &00
owA =& c d and cA=[&00
0 & & 000

It is easy to see that is DN—elliptic, if and only if the following polynomial has
no real zeros:
p(z) =azt —b2® —cz+d. (22)
Clearly this is possible for suitable values of the parameters,be=gc = 0 and
ad > 0.
Then by differentiating the system with convenient operators which can easily
be found by inspection and then eliminating the highest order equations we obtain

Y30+t +ay® +by® =0,
Yos + ey +dy® =0,
AW Y + i+ =0,
~Yo1 + Y30 — aygy + Y — byg =0,
Ytz — cyio + ¥gs — dylo =0
So the symbols are now

g a b &0 0
& ¢ d & 0 0
oAV =0 & & and cAD =10 0 0
0 & &6 0 & &6
0 6165 & 0 6165 &5
with WGightSsl =59 = —3,83 = —2,84, =55 = 0,t1 = 6,1ty = t3 = 3.

Note thatr A is still not elliptic, as the second and the third columns are linearly
dependent. But differentiating the last two equations of the systety = 0 and
subtracting one from another yields

yio +y' +ay® +by® =0,

Yos +cy’ +dy? =0,

A@) . yi1 +yio + Y5 =0,

—Yo1 + Y30 — aygy + ¥ — byg =0,
Ytz — cyio + Yoz — dyio =0,

Yo3 + aygs — cyo +bygs — dyo = 0.
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The principal symbol is now

& 0 0
55’ 0 0
0 0 0
A — ,
7 o & €26
0 &8 £

€3 a8 — c&} be3 — d&}

which is elliptic, if and only if the polynomial (21) has no real zeros. Thus, we
have transformed the operatdrto an equivalent operatot(® which is elliptic,
if and only if the operator is DN-elliptic. <

Example 6.8 et us rewrite the Helmholtz operatéfy = Ay + cy = 0forn = 2
as a first order operator:

R y%O_yQZOv
H: Sy —y*=0, (22)
eyt +ylo + 5 =0.

Then choosing; = so = —1,s3 =0,t; = 2,ts = t3 = 1 gives

. 51 -10 R 51 00
owH=1& 0 —1 and cH=1& 00
0 & & 0 & &

So the operato is DN—elliptic. Adding the hidden integrability condition gives
an elliptic system:

yio—y> =0, &0 0
1 3 _

HD . Yor —y" =0, and oHW = 00
eyt +yio+u =0, 0& &
Yor — Yl =0, 0 & —&

As the following two examples demonstrate, it is not only that the completion
to involution avoids the search for appropriate weights. In some cases the original
system is not DN—elliptic, although the system becomes elliptic after the comple-
tion to involution. Thus we may conclude that the weights are neither necessary
nor sufficient for deciding ellipticity of a differential operator.

Example 6.9Consider the systemy = V x y + y = 0. While A is not DN—
elliptic, adding the integrability conditiok - y = 0 gives the symbol

0 & —&

M _|—& 0 &
oA = & —& 0
&1 & &

which is obviously elliptic. <
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Example 6.10 et us consider the following system

Yo + Y30 + aygy +yi =0,
A yh +yh eyl +us, =0,
Yo+ Y50 — ¥l =0.
Some relevant information is contained in the first order terms in the first two
equations. As second order derivativegdhre present in these equations, it is not

possible to choose weights such that these terms enter the symbol, and therefore
the system cannot be DN-elliptic. Adding the integrability condition gives

Yz + Y30 +ayg + vt =0,
A . Y +yh eyl Hude =0,

Yo1 +Yio — Yo =0,

cy%o - al/gz =0.

Then the reduced principal symbol is:

& & £1§2
AW — §1&2  && &
7 &2 &1 —&1
0 cf2—at2 0
This is evidently DN—elliptic wheneveic < 0. Hence simply differentiating once
the third equation produces an elliptic systemd

In all the examples we have considered we found suitable operators by inspec-
tion and applying these operators to the original system we obtained the integra-
bility conditions. As already indicated in Remark 5.5, the general procedure can
be conveniently described with syzygies. In the proof of the main result we will
need the following technical lemma. Recall that= K[£].

Lemma 6.11Suppose thaB3 = (By,C1), By € AFX™i ¢y € AbXm2 m =

mq + mo, and let
I Bl 0
5= <32 ST01>

whereS is the syzygy matrix 87 and B, an arbitrary matrix of appropriate size.
Thenker(B(¢)) = {0} for all £ # 0 impliesker(B’(€)) = {0} for all £ # 0.

Proof Note that, by Remark 2.3 # 0. Suppose now that there is a vector
€ # 0 such thatker(B'(€)) # {0}. Then there exists a = (,4) # 0 with

B'(§v = 0 implying that By (£)5 = 0. Sinceker(B(¢)) = {0}, we have
ker(B1(€)) = {0} and then it follows thab = 0. Thus we ges” (€)C1(€)0 = 0
andCy (€)d € ker(ST(€)). Sinceker (B; (¢ )) = {0} for aII ¢ # 0, we may apply
Proposition 2.7 which implies thatr (S7(¢)) = im(B; ) So there is somé
such thatB; (€)i + C1(€)0 = 0. Puttingu = (@, 9) # 0 implies thatB(&)u = 0.
But this contradicts our assumption thiat (B(¢)) = {0} forall{ # 0. O
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Finally, we are in the position to prove the main result of this article.

Theorem 6.12If an operator A is DN—elliptic, then its completion to involution
will lead to an equivalent elliptic operator.

Proof Consider a DN—elliptic operatot. Then using the decomposition (20) with
variablesy¥) partitioned as in (19), the weighted principal symbol of the operator
A may be decomposed into reduced symbols

owA = (0,41,...,0.4p)

with weightst;, > t;, > --- > t;, andsomss;,i =1,..., k.
Let S be the syzygy matrix of the matrixr,. A;)”. By Remark 2.35 # 0. Let
I be the number of the columns of the matfixThe columns of5 are denote by
v",r =1,...,1. Since the entries b, A;)” are homogeneous polynomials, for
eachr there is somen, such that the degree of ism, — s; or v} is zero.
Substitutingd*s for the variablet; in the matrixS, we construct the differen-
tial operatorS. Let us now consider the operatdf!) = (A4, ST A). If we choose
tg.l) =t;+1forj > Jg, s,(clﬁr =m, —1,r=1,...,1, and all other weights as in
owA, then its weighted principal symbol is of the form

1 _ U,-Al 0
owA < B ST(UTA27...,UTA1,))

with some matrixB of appropriate size. This choice of weights is consistent with
the definition of weights since the orders of derivatives of variap(®sin therth
equation of the systeri” Ay = 0 is smaller than or equal g, +m, — 1.
Since the symbak,, A is DN—elliptic, using Lemma 6.11 in the caBe= R
we get that the symbat,, A" is also DN—elliptic. So we can apply the same
arguments to the operater’) and so on until we obtain an operatdf”) such
thatt;, = tﬂ;’).7 Thus in a finite number of steps we have reduced a DN—elliptic
operator withb block columns to an equivalent operator with 1 block columns.
Continuing in this fashion, we get after a finite number of steps an operator
which is equivalent to the original operator and which has an elliptic reduced sym-
bol. But, by Remark 6.2, this suffices to prove our clain

Remark 6.130f course, in the proof of Theorem 6.12 for a DN—elliptic operator

an equivalent elliptic operatot was constructed in a very different manner than
the completion to involution outlined in Section 3.1. However, every equation ap-
pearing in the final operatot is a differential consequence of the original system
A. Thus by Definition 3.1 of an involutive system, the involutive normal form of
every equation inl with respect to the involutive completioff of A vanishes. At

the level of the principal symbols this implies that any rowsid equals a linear
combination of rows inr A’ with coefficients that are polynomials §n Thus ifo A

has full column rank, thea A’ must possess full column rank, too.

" In our general case = t;, — t,,. But sometimes it is possible to Sﬂéﬁr =m,—c
with somec > 1forallr =1, ..., Inthis case we havg, = tﬁg) for somev < tj, —t,,.
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Moreover, it is not really necessary for our purposes that the involutive normal
form of each equation il vanishes. We only need that each row in the principal
symbolo A is expressible as a linear combination of the rows itf. This prop-
erty holds not only for involutive systems as defined in Section 3.1 but also for
systems obtained via other approaches to completion. This includes in particular
passive systems in Janet-Riquier theory [25,43], Mansfield's differentizbrigr
bases [33], Reid’s reduced involutive form [41], or the geometric Cartan-Kuranishi
completion [45]. <

Example 6.14Consider the system

Yor + i —y> =0,
Yio + Y50 U + 42 =0,
Yio + Y2 + ¥de +¥01 =0,
Y33 + Yo + ¥oa = 0
and its weighted principal symbol
€ 0 -1 0
0&4¢ 1 0
& 0 & 0
0 &€ 08+
with weightst; = to = 4,t3 = t4 = 2,81 = s = —2, 83 = 0, 54, = 2. This
system is DN—elliptic sincéet (o, A) = (£24£2)(£1 +£3)2. We write the system
and its symbol asly = A;yM + A,y ando, A = (0,41, 0, As).
Computing with SNGULAR [19] the syzygy matrix of o, 4;)T, we get

oA =

& 0

3¢3

S = 7(2% 51052
0 —&-¢

Thus in the notation of Theorem 6.12 we haug = 2 andmsy = 4. Computing
further with SNGULAR, we find that

rad(1(S)) =rad(I((0,A1)7)) = (&1,&) -

So in this example we have in fact equality and not just inclusion as in (5).
Using the differential operatds corresponding t&', we obtain

&T 4 . Y30 — Yis — Yo — Yoa — Y03 =0,
STA: 1 3 4 4 4 4
Yas + Y53 — Yo — Ya2 — Y21 — Yos =0 -

The weighted principal symbol of the operatf!) = (A4, ST A) is

12 0 0 0
0 &2 4¢2 0 0

4
) _ 4 0 0 0
7wl 0 &g o 0
0 &—-6& -6 -6 0

&g 0 6 (T +&)E +&)

~—
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with Weightstél) = tff) =3, sél) =m;—1=1, sél) = mg —1 = 3 and all other
weights as inv,, A.
Sincet; and tgl) are not equal, we now compute the syzygy magixof

(o, AT This yields

0 0 5% 0

0 & -6 0 &&

0 0 0 -g-&

0 -1 0 £

-1 0 0 0

Thus we deduce thaizgl) =3, m;” =1, mgl) =2 andmff) = 4. In this case
we also find the same Fitting ideals as before:

rad(I(Sl)) = rad(f((UrAgl))T)) = (&1, &) -
Operating now withS?', we get
Yis — Y33 — Yos + Ydo + Vi T Uss + Yds + Y04 =0,
Yio — Yo + Yo T Yoa + Y30 — Ui + 403 =0,
Y30 — Y34 — Yio — You — Yoz =0,
Yas — Yis — Yor + Y5 — Yeo — Yiz — Yaa — 2406 = 0.

ngA(l) :

This gives for the operatat® = (A1, ST AM) the weighted principal symbol
& 0 0 0

0 &g+& 0 0

! 0 0 0

0 §i¢3 0 0

5 4

o A® = g A — ‘11055’ 3 05152 8 8
0 6163 —&36 (G +E)(E + &)

-6 0 &+8& 0

0 &-&& 0 0

513 0 =g -& 0

with Weightst§2) = tf) = 4, 3(72) = mgl) -1=2, sg) = mél) -1=0,
s =m{” —1=1,52 =m{Y — 1 =3 and all other weights as im, A,

So the reduced symbol of the operatd?) is elliptic, i. e. we have transformed
the DN-elliptic operatord into an equivalent operatot(®) with an elliptic reduced
symbol. By Lemma 6.2, the involutive form of the operatd®) is elliptic. <

Example 6.18Consider the system
Y30+ Y30 — Yo +¥° =0, & —&1

A Yoz + yl1 Y50 =0, and o, A= & & 0
i 9 =0, 66 01
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In this case we havdy = A;y' 4+ A,y%+ Asy3. Thisis clearly a P—elliptic system
with weightst; = 3, to = 1 andts = 0. Computing with SNGULAR the syzygy
matrix of (¢ A41)7, we get

0 —¢&
s=[¢& o
—& &

and thusn; = 1 andmy = 2. So we have the system

4T 4 - Y3 + Y30 — Yo =0,
—Y3o + Yoz + Y30 — Yo = 0.

We setd() = (A, ST A) as usual and get for the weighted principal symbol
&0 0
& 0 0
o, AV = &€ 0 0
& & —&
—163 6 & - &
with Weightstgl) =2, tgl) =1,s4 =0, s5 = 1, and all other weights as i, A.
It is evident that the operatot(!) is DN-elliptic. Note that its weighted principal
symbol has still the fornw,, AV = (5,41, 6, 45", 0, AV) but now we have
ty — 5 < ¢, — t,. Now we get for the syzygy matrix of, A{"

00 0 —&
0& 0 0
S1 0-& & 0
& 0 =& &
1 0 0 O
This yieldsm!") = 1 forallr = 1, ..., 4. Now operating withST gives

Y31 + Yo + Y30 — 2Up = 0,
T 4 Ya1 T Y50 — Y51 =0,
! —Y51 + Yo T3 =0,
—yh + Y30+ Y — ¥ — U6 = 0.

We setd®) = (AW ST AM). The second equation in the systéfidDy = 0
is equal to the first equation in the systéh Ay = 0. So we can drop one of these
equations and the weighted principal symbol of the operatéris

& 0
3
Eéﬁ%

@ _ | &
AT = e
0 &&+8¢&—26
0 —£36 &3
-6 & —&162

o O o oo
o O o o
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with weightst; = tf) = 3, t§2) =2, = 0,7 = 6,...8, and all other
weights as inr,, A It is evident that the operatot(®) is DN-elliptic. Hence,
we transformed the P—elliptic system with three blocks into the DN-elliptic system

1
ARy = A§2) <ZQ) + AéQ)y3 with two blocks with the help of syzygy matrices.

Computing the syzygy matrix 0an§2), we find

00 0 —&0 0
0& 0 00 0
0-& & 0 0 0
Sy = & 0 =& & & 0
10 0 00 &
00 0 00 &
00 0 0¢& &
00 0 0 &—-&i&
Som!? =1,r=1,...,5andm{® = 2. Then we get the system

Y31+ Y35 + Y50 — 245, =0,

Ya1 + Y30 —¥o1 =0,

STA® —y% + y§2 + yio = 037 ,

—Ya1 + Y30 + Y02 — Y11 —¥n =0,
Y31+ Y33 + Y50 — 295, =0,

Yo — Y32 T Yoa T Y30 Tyl = 0.

Consider the operato® = (A ST A2), Again in the systemd®)y = 0
some equations appear twice. Removing the duplicates, we obtain

Y30 +Ys0 — Yo Ty =0,

Yoz +yl +uio =0,

yla +9> =0,

Ya1 + Y30 — Y01 =0,

A®) —Yao + Yoz + Y50 —Yoe =0,

Y31 + Yoz + Ydo — 2Yg2 = 0,

Y31 T Yo Tyl =0,

~Ya1 + Y30 + Yoo — Y1 — Yo =0,
Yo — Yd2 + You + Y30 + Ui = 0.
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The weighted principal symbol of the operatéf®) is

& 0 0
&3 0 0
13%3 0 0
16 0 0
0w A®) = | —2¢2 0 0
0 &&+6 0
0 —&2& 0
—&36 & 0
0 0 &-8g8+8

with weightst; = ¥ =) = 3,5, = 0,i =1,...4,6,...8, 55 = 59 = L.
Obviously, this reduced symbol is elliptic. Hence according to Corollary 5.7 we
obtain an elliptic system from(3)y = 0 by differentiating some equations of it.

Computing withMuPAD? [5] an involutive completion ofdy = 0, we get

Y30 + Y30 — ¥ +¥°> =0,

Yo3 +uli Y5 =0,

Yia +y° =0,

Yo1 T Y50 — Y01 =0,

Y31 T Y3 T Y50 — 295, =0,

Y30 + Y30 + Yoo — ¥t — 2451 =0,
951—982_9%0:07
y§27y337y§’1:0,

Yo — Yo +Ubs F Yt T Y3 = 0.

One easily verifies that it is equivalent48?). <

Remark 6.16 et us finally compare our reduction process to the one proposed by
Cosner [11]. Consider the Laplace equation in 2 dimensions written as a first order
system, i. e. our system (22) with= 0. After adding the integrability condition,

we obtained the following elliptic system:

Z/%o_yz:()a
Yo — > =0,
Yl + v =0,
Y — vl = 0.

8 www.mupad.de
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However, Cosner’s approach produces the system

Yio + Y =0,
~yt+y* =0,
—y?+yt =0,
yio—y* =0,
yor —yt =0,
2181_9%0:()’
—ylo + 45 =0,
Yo + Y5 =0,
—yio + vl =0,
Y51 + Yo =0,

which is elliptic in the sense of Definition 4.1, i. e. without weights. Hence, at least
for this particular example, our approach produces a much smaller equivalent el-
liptic system than Cosner’s construction. Furthermore, while Cosner is exclusively
concerned with the question of ellipticity, we have embedded this problem in the
general context of completion which is useful in many other respects, too. As al-
ready mentioned in the Introduction, any system of differential equations should
be completed to involution before any subsequent analysis and our results show
that this automatically takes care of the question of ellipticity

7 Some Reductions for Elliptic Systems

In this section we consider two classical operations with differential systems: the
reduction to a lower order system and the reduction to one dependent variable. Our
goal is to show explicitly that in both cases ellipticity is preserved.

7.1 Preliminaries

In Section 2.2 we introduced the special differential opergtanapping a func-
tiony = (y',...,y™) to its derivatives up to ordey. Let us consider the case
m = 1. Obviously, j¢ is an overdetermined operator with= d, andm = 1.
We will now apply the results of Section 3.3 to it and determine its compatibil-
ity operator® It is a trivial exercise to verify thaj? is an involutive operator so
that for the construction of the compatibility conditions we must only study the
non-multiplicative derivatives of each equation.

Let us writej¢y = 2. Thus the right hand sideis a vector of dimensiod,,
and we will denote its components b{ wherey: € Nij runs over all multi indices

% An intrinsic description of this compatibility condition, which is sometimes called the
Spencer operatgiis contained in [15,49].
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with 0 < |u| < ¢. The compatibility conditions (11) take now the form

23
Opzh 1t |yl =q, i >clsp, k=clspu . (23)

Dyt = {z“*li 0<|ul<g1<i<n,

These equations define a differential operd®§r As both;j¢ and DY are linear
operators with constant coefficients, we may apply the fundamental principle. It
tells us that at the level of smooth or distributional solutiens j%y, if and only
if DIz =0.

We have describeg! and DY only for the casen = 1, but obviously for sev-
eral unknown functions one must simply take one copp$for each component
7, as there is no interaction between the different components. Thus in the general
case the compatibility operator is of the foldf © I,,, wherel,, is them x m
identity matrix.

We continue with determining the principal symbols of the operatérand
D1i. Recall that=7 is the vector of all monomials ig of degreej; in particular
=1 = ¢ Then we find for the principal symbotsj? = <:0q> ® Ipy,.

The situation is slightly more complicated for the operafgr. The compat-
ibility systems splits naturally into two parts: the first subsystem corresponds to
the first line in (23), i. e. the functiong* with |u| < ¢; the second subsystem to
the second line, i. e. the function$ with |u| = ¢. If we sort the equations by
ascending length qf, then the symbol of the first subsystem is simply 1, _, .
We denote the operator defined by the second subsystdn{.ashere does not
seem to exist a simple closed-form description of its symbol.

Example 7.1Let us taken = ¢ = 2. The operatorj? has already been given in
(2). If we write 9%y = z#, then the corresponding compatibility systéMz = 0
consists of the following eight equations:
91200 = 210 5,200 = ;01 9 10 _ 20 5 10 _ 11 5 01 _ 11
09200 =292 0 9,220 — 9121 =0, G2t — 9,292 =0.

If we sort the unknown functiong* asz%, 219, 201, 220 »11 :02 then the prin-
cipal symbol has the form

& —&
& —&

Lemma 7.2ker(0 D{) = span(=Z9) and consequentlyer(oc D{) = span((2,)).

=a
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Proof By construction,D{ is the compatibility operator of the differential opera-
tor given by allgth order derivatives. As botb{ and this operator consist only of
derivatives of the same order, the respective principal symbols look like the oper-
ators. Thus the rows of the matrxD{ form a basis of the first syzygy module of
the ideal generated by the entries®f. But this observation immediately entails
the first claim. The second claim is a trivial consequence of the simple form of the
symbol of the first subsystem of the compatibility syst®fx = 0. O

7.2 Reduction to Lower Order System

Let us again consider a differential operatbof orderg as in (1). We want to write
AasA = AW o it with an operatod®) of orderl for 0 < ¢ < q. In the limiting
case! = g we can sefd(?) = A. The most important casefis= 1, but the general
case has also some interest. Let us further defifie: = (A2, (DI ®1,,)z).

We may constructl(¥) as follows. In the equatiody = 0 all derivativeSy/{
with || < ¢ may appear. We introduce new dependent variables for all derivatives
of order less than or equal to— ¢ and denote them as above by* with multi
indices|u| < ¢ — ¢. The operatorA(“) is now obtained fromA by performing the
following substitution in the equatioAy = 0:

Yy, . ) (24)
otzz0kif |u| > q — L where|uy| = ¢ — Canduy + po = .

j { il <a—.
Obviously there are many ways to perform such a substitution, as there are many
ways to split the multi indexu into two parts. However, for our purposes any
choice is fine.

Lemma 7.3 The operatorsd and A() are equivalent in the smooth category.

Proof This lemma is a straightforward consequence of the fundamental principle.
As already mentioned above, for any order- 0 every smooth solution of the
equation(D} ® I,,,)z = 0 is of the formz = j"y for a smooth functiory.

Let y be a solution ofdy = 0. The definition of the operatad® entails
immediately that = j7~‘y is a solution ofA) z = 0 asA)z = Ay and(D? ‘@
I,,)z = 0 by the definition of the compatibility operatdi?‘f’z ® I,. Conversely,
let = be a solution of4(®) z = 0. This implies in particular thatD? * ® I,,)z = 0
and thus by the consideration above that j9—‘y. But then0 = A®z = Ay
andy is a solution ofAy = 0. Hence the operatgf—¢ defines a bijection between
the smooth solution spaces of the differential operatbesd A). 0O

For simplicity, we stated this result in the smooth category. But as already men-
tioned in Section 3.3, in the case of operators with constant coefficients the fun-
damental principle remains true for distributional solutions. Thus the equivalence
also holds in much larger function spaces and in particular for weak solutions.
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For analysing the ellipticity of the operators®), we need their symbols. To
this end let us introduce matricés, by the requiremeng?*! = =, =%, Hence
we can write

1

q

(84

o1 51 (25)
Evidently the choice of the matriceS, can be done in many ways; however,
fixing the rules used in the substitutions in (24) fixes the matrices, and conversely
choosing some matrices fixes the substitutions.

We can represent the symbelsl(‘) as matrices of sizé x mdq—¢ which are
of the formo A¥) = (0,0B®)) ando B is of sizek x mng_,. In the limiting
cases we have 3(”) = M,, i. e. the geometric symbol, andd(?) = ¢ 4, i. e. the
principal symbol of the original operator.

(1

Lemma 7.4 The principal symbols of the operatass?) are given by

0 oBW®
O'TA(Z) = f@ Imdq_e_l 0
0 o(DI " © 1,,)

wherea BY) = My (5,1 Z4—¢ @ Iy).
Proof We prove only the formula fas B(), SinceA = A®) o j9—¢, the symbols
satisfyocA = 0 A® . 5j9=¢ and as mentioned abowg?* = <:Se> ® I,.
Then we obtain using (3) and (25) -
CA=M,(Z9® 1) = My(Z,21297 ' @ 1) = My(Z4—1 @ 1) (E97 ' @ I,,,)
=My(Zg-1 @ L) -+ (Sqme @ L) (27 @ Iy)
=My(Eg-1 Zqe @ L) (27 @ 1y)
=(0, Mg(Eg—1-+ Eqe ® Iy))j?"
implying our claim. O

ocBW
(DI ® 1)
symboleo, A®) is equivalent to ellipticity of the symbat,C'©).

Let us sets,C0) = ( ) . It is evident that ellipticity of the
g

Example 7.9 et us take the Laplacian iR3. Then

&1
My=(101001) | c= |6l
&3
0 0 &;
0& 0 &1 & &3
- 0& 0 = M=, 0 —& &
=1 = §3% R UTC(I)_<UD%>_ ‘, 05_651 7
& 00 —& & 0
& 00

CA=MyZ16 =& + &+ 65 .
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Note that the first row of,.C'(!) corresponds to the divergence and the remaining
ones to the curl of a vector field. Hence from the Laplacian in three dimensions we
get canonically theurl-div system when we rewrite it as a first order systera

Theorem 7.61f the operatorA® is elliptic for some/, then the operatorsi®
are elliptic forall0 < ¢ < q.

Proof Now suppose thatl is not elliptic. Then there is a vector=# 0 such that
cAv = 0. Letv¥) = (9 ¢ @ I,,,)v = 597 @ v. Obviouslyv®) # 0 for & # 0,
ando (D¢~ @ I,,,)v® = 0 by Lemma 7.2. But then
oBOvO) = M (Z,1- - 5,00 1,)(E7 @)
=My(E'®@v)=M(E'®I,)v=0Av=0.
This implies thatr,C“v®) = 0 and henced® is not elliptic.

On the other hand suppose thf) is not elliptic. Hence there is &) # 0
such thaw,,Cv(® = 0. In particular thers(D?~“ @ I,,,)v® = 0. But then by
Lemma 7.2 = (59-* @ I,,,)v for somev # 0 and we get

oAV =My(Ey1... 516 @ In)v = My(54-1... 54059 @)
=My(5y1.. Bt @) (5 ®@0v) =cBYyD =0 .

Hence the operatof is not elliptic either. O
As a consequence we have the following
Theorem 7.7 Any P—elliptic system is equivalent to an elliptic system.

Proof Consider the system (20) where each operdtois elliptic. Let us set =

t,, > 1. By Theorem 7.6 we may replacg by AE‘Z) which is also elliptic. The
reduced symbol of the resulting operatth) is

aﬁge) O'Aé[) . Uf_ll(ﬁ)l oAy
oDV @ 1;,) 0 . 0 0
o, A® = 0 oD @) ... 0 0
. . . _:Z .
0 0 oD @I, ) 0

This is clearly elliptic. O

7.3 Reduction to One Unknown Function

With the help of a little trick apparently due to Drach [13], one may rewrite any
system of differential equations in several unknown functions as a system in only
one unknown function. It requires the introduction of one new independent vari-
able for each unknown function and raises the order of the system by one.



Overdetermined Elliptic Systems 35

Assume that the original linegth order systemiy = f contains as usual the
independent variables!, ..., z" and the dependent variablgs, ...,y™. Then
we introducen additional independent variables and one new dependent vari-
abley related to the old ones by the relation

g=ay 4ot Emy™
This allows us to represent any derivative!y/ /0x# asdl#1+1g/0x" 03 ;. If we
perform the corresponding substitutions in our system and if we add the equation
*y
0%;0%,
then we obtain a new system of orde# 1 in only one dependent variable; the
new operator thus obtained will be denotedAyAny solution of it has the form

0, jk=1,...,m, (26)

G2, 2) = 21y' (@) + -+ Emy™ (2) + Al2) (27)

where/A(z) is an arbitrary function angl(x) a solution of the original system. One
may consider the appearance of the functibas a kind of “gauge symmetry”. It
is not difficult to show that the new system is involutive, if and only if the original
system is involutive [45, App. A.3].

Let us analyse the symbol of the transformed systerbenote the dual vari-
ables for the new independent variablestbfhen it is not difficult to see that

. A€
oA = <0§2£> .

Obviously, 4 is not elliptic, because the symbol vanishes for any fi¢) with

¢ = 0. Obviously, this is due to the appearance of the arbitrary function)

in (27) and hence removing this arbitrariness should lead to an elliptic system. A
simple possibility consists of adding the “gauge fixing” condition

m

> digs, —9=0. (28)
j=1

It follows trivially from (27) that this equation is compatible with the operatoas

its sole effect is to requird = 0. Furthermore, the augmented system is equivalent

to our original system, as now the solutions are in a one-to-one correspondence.
The addition of (28) still does not make the system elliptic. But as the aug-

mented system is no longer involutive, we must complete it. We show now that the

completed system is elliptic. It is convenient to state the problem in ideal theoretic

terms. LefR[¢, é] be the polynomial ring and introduce the polynomials

The first polynomial is thdull symbol of the “gauge fixing” condition (28); the
remaining ones are the entries of the reduced principal symbbl The analysis

of the idealZ generated by these polynomials yields some information about the
principal symbol of the augmented system.
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Lemma 7.8If the principal symbob A is a square matrix, then the idedl con-
tains the polynomiallet(c A) € R[£].

Proof Let p denote the vector with the entrigs andadj(cA) the adjoint ma-
trix of the principal symboloA. Then (i, adj(cA)p) = (&, adj(cA)ocAf) =
det(0A)(z, ) by definition of the adjoint. Thuset(cA) = (i, adj(cA)p) —
det(c A) po implying our claim. O

Theorem 7.91f the linear operatorA is elliptic, then the involutive completion of
the linear system consisting of the Drach transformed operatand the equation
(28)is elliptic, too.

Proof Let us first consider the case thatis a square operator. By the previous
lemma, we know that during the completion of the transformed system an integra-
bility condition arises the principal part of which is given &yt (o A). The princi-
pal symbol of the corresponding system is elliptic, as by assumgtitia A) # 0
forall ¢ # 0 and=2 # 0 for all £ # 0. As ellipticity is preserved during the
completion, we are done.

If the operatorA is not square, then its ellipticity implies that we may choose
for each vectog # 0 a square subsysteri suchdet(cA’) # 0. It follows now by
the same argument as in the proof of the lemma above, that during the completion
of the transformed system an integrability condition arises the principal part of
which isdet(cA’). As this argument holds for all vectogs# 0, the completion
must lead to an elliptic symbol.O0

Example 7.1@Consider the modified Cauchy-Riemann system
Yio — Yo +y' =0,
Yor +yio +y>=0.
The Drach transformation with gauge fixing yields the second order system
91010 — Yo101 + Yoo1o = 0,
Y0110 + Y1001 + Yooor =0,
2190010 + Z2Yooo1 — Y =0,
Y0020 = Yoo11 = Yoooz = 0 .

Note that we have now four-dimensional multi indices where the first two entries
correspond to derivatives with respectith 2 and the last two entries to deriva-
tives with respect ta, Z>. We have

po =161 +d2ba —1, pr=6él—Ebs, po=E& & .
Then we compute
E1(&1p1 + Eap2) + B2(—Eap1 + E1p2) — |€]Ppo = |€)?

indicating that the completion of the transformed system is elliptic. Indeed, if we
perform the same computation with the full differential equations, we obtain the
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following result. Denote the equation (28) By and the equations of the system
by f, and f>. Then we find

21(0p1 f1 + Op2 fo) + Bo(—0p2 f1 + Opr fo) — (021 + 022) fo =
92000 + Fo200 + 21 (F1010 + Fo101) + L2 (1001 — Jo110) =
92000 + Yo200 + 241000 + 9 =0

The symbol of this integrability condition is clearlg|? which is the determinant
of the principal symbol of our modified Cauchy-Riemann systera.

8 Conclusions

Agmon [1, pp. 63—67] developed a regularity theory for overdetermined elliptic
systems in one dependent variable. As shown in Section 7.3, we may rewrite any
overdetermined system in an arbitrary number of dependent variables as an equiv-
alent one in one dependent variable. Furthermore, ellipticity is preserved by this
operation, if we perform the mentioned “gauge fixing”. Thus we may extend Ag-
mon’s results to arbitrary elliptic systems. Of course one can formulate such results
directly without Drach’s transformation. In [15] and [50] one can find some rele-
vant a priori estimates in terms of Sobolev space norms which show precisely the
regularity of the solution in terms of the data. In fact in these estimates the weights
needed in DN—elliptic symbols get a rather natural interpretation. Evidently to get
the relevant estimates one should also specify correct boundary conditions. It turns
out in addition of ellipticity of the operator the boundary operators should satisfy
the Shapiro—Lopatinskigondition. Discussing this condition is beyond the scope

of the present paper and we just refer to [4,15] for definitions.

Anyway we have shown that in general it is necessary first to transform the
given system to involutive form before one can decide whether or not it is elliptic.
This is consistent with the observation that whatever property of the system one is
interested in, it is in general necessary to compute the involutive form before the
analysis. Of course in some situations the full involutive form may not be necessary
but on the other hand there are situations where it is rather clear that the problems
encountered are only due to the fact that the given system is not involutive. As an
example we might cite the problems in the numerical solution of DAEs [52,53]
and the spurious solutions in computational electromagnetics [26].

Moreover we have seen that the notion of DN—ellipticity, while perhaps con-
venient in certain situations, does not define a larger class of systems than elliptic
ones. Its apparent generality is only a consequence of restricting attention to square
systems. Square systems are convenient in many ways, but the property of “square-
ness” is in no way intrinsic, so this restriction is conceptually rather artificial.

References

1. S. AgmonLectures on Elliptic Boundary Value Problemén Nostrand Mathematical
Studies 2. Van Nostrand, New York, 1965.



38

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Katsiaryna Krupchyk et al.

S. Agmon, A. Douglis, and L. Nirenberg. Estimates near the boundary for solutions of
elliptic partial differential equations satisfying general boundary conditiorGomm.
Pure Appl. Math,.12:623-727, 1959.

. S. Agmon, A. Douglis, and L. Nirenberg. Estimates near the boundary for solutions of

elliptic partial differential equations satisfying general boundary condition€dinm.
Pure Appl. Math.17:35-92, 1964.

. M.S. Agranovich. Elliptic boundary problems. In M.S. Agranovich, Yu.V. Egorov, and

M.A. Shubin, editorsPartial Differential Equations IXEncyclopaedia of Mathemati-
cal Sciences 79, pages 1-144. Springer-Verlag, Berlin/Heidelberg, 1997.

. J. Belanger, M. Hausdorf, and W. Seiler. A MuPAD Library for Differential Equa-

tions. In V.G. Ghanza, E.W. Mayr, and E.V. Vorozhtsov, edit@smputer Algebra in
Scientific Computing — CASC 20Qikges 25-42. Springer-Verlag, Berlin/Heidelberg,
2001.

. F. Boulier, D. Lazard, F. Ollivier, and M. Petitot. Representation for the radical of a

finitely generated differential ideal. In A.H.M. Levelt, editétoc. ISSAC '95pages
158-166. ACM Press, New York, 1995.

. W.C. Brown. Matrices Over Commutative RingsPure and Applied Mathematics.

Marcel Dekker, New York, 1993.

. R.L. Bryant, S.S. Chern, R.B. Gardner, H.L. Goldschmidt, and P.A. Griffithae-

rior Differential Systems Mathematical Sciences Research Institute Publications 18.
Springer-Verlag, New York, 1991.

. J. Calmet, M. Hausdorf, and W.M. Seiler. A constructive introduction to involution. In

R. Akerkar, editorProc. Int. Symp. Applications of Computer Algebra — ISACA 2000
pages 33-50. Allied Publishers, New Delhi, 2001.

E. CartanLes Systmes Diférentielles Exérieurs et leurs Applications &nétriques
Hermann, Paris, 1945.

C. Cosner. On the definition of ellipticity for systems of partial differential equations.
J. Math. Anal. Appl.158:80-93, 1991.

A. Douglis and L. Nirenberg. Interior estimates for elliptic systems of partial differen-
tial equationsComm. Pure Appl. Math8:503-538, 1955.

J. Drach. Sur les syghes compgtement orthogonaux dans I'espace dimensions

et sur la eduction des sy8mmes diferentielles les pluséaypéeraux. Compt. Rend. Acad.
Sci, 125:598-601, 1897.

M. Dubois-Violette. The theory of overdetermined linear systems and its applications
to non-linear field equations.. Geom. Phys1:139-172, 1984.

P.I. Dudnikov and S.N. Samborski. Linear overdetermined systems of partial differ-
ential equations. Initial and initial-boundary value problems. In M.A. Shubin, editor,
Partial Differential Equations VII| Encyclopaedia of Mathematical Sciences 65, pages
1-86. Springer-Verlag, Berlin/Heidelberg, 1996.

D. EisenbudCommutative Algebra with a View Toward Algebraic Geomedanaduate
Texts in Mathematics 150. Springer-Verlag, New York, 1995.

V.P. Gerdt. Completion of linear differential systems to involution. In V.G. Ghanza,
E.W. Mayr, and E.V. Vorozhtsov, editor§omputer Algebra in Scientific Computing
— CASC 1999ages 115-137. Springer-Verlag, Berlin/Heidelberg, 1999.

G.-M. Greuel and G. PfisterA SINGULAR Introduction to Commutative Algehra
Springer-Verlag, Berlin/Heidelberg, 2002.

G.-M. Greuel, G. Pfister, and H. Sofemann. BIGULAR 2.0. a computer algebra
system for polynomial computationkttp://www.singular.uni-kl.de .

M. Hausdorf and W.M. Seiler. Perturbation versus differentiation indices. In V.G.
Ghanza, E.W. Mayr, and E.V. Vorozhtsov, edit@emputer Algebra in Scientific Com-
puting — CASC 20QYages 323-337. Springer-Verlag, Berlin, 2001.



Overdetermined Elliptic Systems 39

21.

22.

23.

24.

25.

26.

27.

28.

20.

30.

31.
32.

33.
34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

M. Hausdorf and W.M. Seiler. An efficient algebraic algorithm for the geometric com-
pletion to involution.Appl. Alg. Eng. Comm. Comp3:163-207, 2002.

G.N. Hile and M.H. Protter. Properties of overdetermined first order elliptic systems.
Arch. Ration. Mech. Anal66:267-293, 1977.

R.A. Horn and C.R. Johnsofiopics in Matrix AnalysisCambridge University Press,
Cambridge, 1994.

E. Hubert. Notes on triangular sets and triangulation-decomposition algorithms. Il
Differential systems. In F. Winkler and U. Langer, edito@ymbolic and Numeri-

cal Scientific Computatigri_ecture Notes in Computer Science 2630, pages 40-87.
Springer-Verlag, Berlin, 2003.

M. Janet. Sur les Syshes dEquations aux Brivees PartiellesJ. Math. Pure Appl.
3:65-151, 1920.

B. Jiang, J. Wu, and L. Povinelli. The origin of spurious solutions in computational
electromagnetics]. Comput. Phys7:104-123, 1996.

E. Kahler. Einfuhrung in die Theorie der Systeme von Differentialgleichungeub-

ner, Leipzig, 1934.

E.R. Kolchin.Differential Algebra and Algebraic Groupgcademic Press, New York,
1973.

I.S. Krasilshchik, V.V. Lychagin, and A.M. VinogradoGeometry of Jet Spaces and
Nonlinear Partial Differential EquationsGordon & Breach, New York, 1986.

M. Kuranishi. On E. Cartan’s prolongation theorem of exterior differential systems.
Amer. J. Math.79:1-47, 1957.

S. Lang Algebra Addison-Wesley, Reading, 1984.

G. LeVey. Some remarks on solvability and various indices for implicit differential
equationsNum. Algo, 19:127-145, 1998.

E.L. Mansfield Differential Grobner BasesPhD thesis, University of Sidney, 1991.

B. Mohammadi and J. Tuomela. Simplifying numerical solution of constrained PDE
systems through involutive completion. M2AN Math. Model. Numer. Anal., to appear.
U. Oberst. Multidimensional constant linear systemsta Appl. Math. 20:1-175,
1990.

V.P. Palamodo\inear Differential Operators with Constant Coefficien@&undlehren

der mathematischen Wissenschaften 168. Springer-Verlag, Berlin, 1970.

J.F. PommareSystems of Partial Differential Equations and Lie Pseudogro@s-

don & Breach, London, 1978.

M.H. Protter. Overdetermined first order elliptic systems. In P.Wafécheditor,
Proc. Maximum Principles and Eigenvalue Problems in Partial Differential Equations
Pitman Research Notes in Mathematics 175, pages 68—81. Longman Scientific & Tech-
nical, Harlow, 1988.

D.G. Quillen.Formal Properties of Over-Determined Systems of Linear Partial Differ-
ential Equations PhD thesis, Harvard University, Cambridge, 1964.

G.J. Reid, P. Lin, and A.D. Wittkopf. Differential elimination-completion algorithms
for DAE and PDAE.Stud. Appl. Math.106:1-45, 2001.

G.J. Reid, A.D. Wittkopf, and A. Boulton. Reduction of systems of nonlinear partial
differential equations to simplified involutive formg&ur. J. Appl. Math, 7:635-666,
1996.

M. Renardy and R.C. Roger&An Introduction to Partial Differential EquationsTexts

in Applied Mathematics 13. Springer-Verlag, New York, 1993.

C. Riquier.Les Systmes dEquations aux Deriges Partielles Gauthier-Villars, Paris,
1910.



40

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Katsiaryna Krupchyk et al.

W.M. Seiler. Indices and solvability for general systems of differential equations. In
V.G. Ghanza, E.W. Mayr, and E.V. Vorozhtsov, edit@@smputer Algebra in Scientific
Computing — CASC 199pages 365-385. Springer-Verlag, Berlin, 1999.

W.M. Seiler. Involution — the formal theory of differential equations and its ap-
plications in computer algebra and numerical analysis. Habilitation thesis, Dept. of
Mathematics, Universitt Mannheim, 2001. (manuscript accepted for publication by
Springer-Verlag).

W.M. Seiler. A combinatorial approach to involution asdegularity |: Involutive
bases in polynomial algebras of solvable type. Preprint Unigrsiannheim, 2002.
W.M. Seiler. Completion to involution and semi-discretisatioAgppl. Num. Math.
42:437-451, 2002.

W.M. Seiler and A. Weber. Deciding ellipticity by quantifier elimination. In V.G.
Ghanza, E.W. Mayr, and E.V. Vorozhtsov, edit@smputer Algebra in Scientific Com-
puting — CASC 20Q%ages 347-355. TU thchen, 2003.

D. Spencer. Overdetermined systems of linear partial differential equaBahsAm.
Math. So¢75:179-239, 1969.

N. N. TarkhanovComplexes of differential operatgrglume 340 oMathematics and

its Applications Kluwer Academic Publishers Group, Dordrecht, 1995.

J. Tuomela. On singular points of quasilinear differential and differential-algebraic
equationsBIT, 37:968-977, 1997.

J. Tuomela and T. Arponen. On the numerical solution of involutive ordinary differen-
tial systemsIMA J. Num. Anal.20:561-599, 2000.

J. Tuomela and T. Arponen. On the numerical solution of involutive ordinary differen-
tial systems: Higher order methodBIT, 41:599-628, 2001.



