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Overdetermined Elliptic Systems

We show that the weights classically used for the definition of ellipticity are not necessary, as any differential system
that is elliptic with weights becomes elliptic without weights during its completion. Furthermore, there are systems
which are not elliptic for any choice of weights but whose completed form is nevertheless elliptic.

1. Introduction

An important task in the theory of partial differential equations is their classification into elliptic and hyperbolic
systems. For the former ones boundary value problems are usually well-posed and their solutions show typically
a very high regularity. In the latter ones a distinguished direction (“time”) exists and one considers initial value
problems for them; even for regular data the solution may exhibit shocks. The classification is a local problem and
thus for simplicity we consider here only linear systems with constant coefficients. In more general situations, the
behaviour of the system may be different at different points or along different solutions.

The classical definition of ellipticity via the principal symbol has problems when higher order equations are rewritten
as first order systems. As a solution, Douglis and Nirenberg [3] introduced a weighted symbol. Cosner [2] showed
later that any system elliptic with respect to some weights may be transformed into an equivalent first order system
that is elliptic without weights. In our opinion, a reasonable analysis of an overdetermined system is only possible
after its completion, i.e. after all its integrability conditions have been added (see also [4]). There exist different
approaches to the completion (see [5] and references therein), but our results are largely independent of this choice.
Full details of our results can be found in a forthcoming paper [6].

2. Square Elliptic Systems

Let L = ZO§|M|SCI A, 0" be a linear differential operator of order ¢ with coefficients 4, € IR™>*™. Here u € INy is
a multi index with one entry for each independent variable. The principal symbol is oL = Z‘ sl=q A &H for a real
vector £ € IR", i.e. the highest order part considered as a polynomial in £. The operator L is elliptic, if det oL # 0
for all £ # 0. For the weighted principal symbol one chooses integer weights s; for each equation and ¢; for each
unknown function. If g;; is the maximal order of a derivative of the jth unknown function in the ith equation,
then they must satisfy s; +t; > g;;. The weighted principal symbol is now again a matrix with polynomial entries:
(owl)ij = Z|#|:Si+t]’ A,&*. The operator L is DN-elliptic, if weights exist such that det o, L # 0 for all § # 0.

The prototypical example of an elliptic system is Laplace’s equation Lu = ugz + uy, = 0. Its principal symbol is
oL = & + & and only vanishes for & = 0. Rewriting it as a first order system, we obtain v = u,, w = u, and
vy +wy = 0. With the weights s; = so = —1, s3 =0, t; = 2, to = t3 = 1, we find for the corresponding operator L

& 0 0 & -1 0
O'L1 = gy 0 0 5 O'le = fy 0 -1 . (1)
0 & & 0 & &

As detoL; = 0, we obtain the paradoxical result that seemingly the first order form of Laplace’s equation is not
elliptic, although the reduction to first order does not change the properties of the solution space. In contrast, we
obtain for the used weights that det o, L1 = &2 + fg = oL. Hence Ly is DN-elliptic.

3. Overdetermined Elliptic Systems

We proceed to the general case with A, € IRF*™ where we always assume that k > m, i.e. that we have at least
as many equations as unknown functions. The definition of the (weighted) principal symbol is not affected by this
generalisation. The operator L is (DN-)elliptic, if its (weighted) principal symbol is injective for all non-vanishing
vectors £. In the case k = m this is equivalent to the above condition on the determinant.
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If we consider again Laplace’s equation in its first order form, then we see that there exists a hidden integrability
condition: v, = w,. Adding this equation yields a complete system whose principal symbol is injective for any non-
vanishing vector £&. Thus there is no need to introduce weights for checking the ellipticity. This is not an accident
but a general fact, as the following theorem asserts.

Theorem 1. Let the operator L be DN-elliptic. Then its completion L' is elliptic.

The proof of this result proceeds in two steps. One first shows that if the operator L is DN-elliptic, then it may
be transformed via differentiations and algebraic manipulations into an equivalent elliptic operator L. In a second
step one shows that ellipticity is preserved during the completion and that all rows in L are direct differential
consequences of rows in the completed operator L’. Hence L’ is elliptic, too. In the second step it does not really
matter which approach to the completion is taken, as any reasonable approach leads to a completed operator L'
with the required properties.

As a second example we consider the system Lu =V X u 4+ u = 0. One readily checks that it is not possible to find
any weights such that this system is DN-elliptic. However, if we add the obvious integrability condition V -u = 0,
we obtain a system whose principal symbol is injective for any non-vanishing vector £. Thus the system is elliptic,
but the approach via weights is not able to detect this.

4. Conclusions

Weights partially simulate the effect of a completion. They allow lower order terms to enter the principal symbol and
in some cases these are precisely the terms leading to integrability conditions. This happens for Laplace’s equation
in first order form. However, in general not all relevant terms can be reached via weights, as our second example
demonstrates. In any case we may conclude that weights are neither necessary nor sufficient for deciding ellipticity.

Completion to involution is a basic operation with overdetermined systems that is not only important for the
classification but for any subsequent analysis like existence and uniqueness theory or the numerical treatment.
While Cosner’s results [2] are based on an ad hoc construction; our results rely on a standard computation. They
show that the sole problem in detecting ellipticity lies in taking all integrability conditions into account.

Adding all appearing integrability conditions one can show that the reduction to first order preserves ellipticity. The
same holds for the Drach transformation to a system in only one unknown function (provided one adds a suitable
“gauge fixing”). This allows us to apply Agmon’s regularity results [1] entailing in particular that any elliptic system
with smooth coefficients is hypoelliptic.
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