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We present a constructive solution of the inverse syzygy problem over arbitrary coherent rings and show how it can be used
to compute certain extension groups.
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1 The inverse syzygy problem

In algebraic systems theory, linear systems are mathematically modelled by modules over a ring D (typically a ring of linear
differential or difference operators) and control theoretic properties of a system are related to homological properties of the
corresponding module. In this note, we are mainly concerned with controllability and show that for a very large class of rings
it is equivalent to torsionlessness of the system module. The latter property in turn can be effectively verified via an inverse
syzygy problem provided that over D it is possible to solve effectively the direct syzygy problem.

Due to lack of space, we can only present some results; for proofs and more details we refer to [1]. From a very theoretical
point of view, the inverse syzygy problem was already solved by Auslander and Bridger [2]. An effective solution was first
presented by Oberst [3] who also noticed the connection to controllability. Like all subsequent works (see e. g. [4]), our results
are based on Oberst’s algorithm but significantly enlarge the class of admissible rings D. This algorithm can be extended
to a construction of certain extension groups of the system module. In [5–7] one can find discussions of various notions of
controllability and their relation to the vanishing of extension groups.

In the sequel, we will only assume that D is a coherent ring, i. e. that any finitely generated left or right ideal of D can
also be finitely presented (in other words, its syzygy module is also finitely generated). In particular, we do not assume that
D is some sort of (possibly non-commutative) polynomial ring and we explicitly allow that D may contain zero divisors:
in contrast to previous works, we do not need the existence of a quotient field of D. For a D-module M, we denote by
M∗ = HomD(M,D) its dual module (note thatM∗ is a right D-module for a left D-moduleM). All considered modules
are assumed to be finitely generated.

LetM, N be two free left D-modules and β :M→N a module homomorphism. The direct syzygy problem consists of
finding a free left D-module P and a homomorphism α : P →M such that im (α) = ker (β), whereas in the inverse syzygy
problem we search for a free left D-module Q and homomorphism γ : N → Q such that im (β) = ker (γ).

Since we are dealing with homomorphisms between free modules, these can be represented by matrices with entries in D:
we write β(P) = PB with a matrix B of appropriate dimensions and β∗(Q∗) = BQ∗ for the dual map β∗ : N ∗ → M∗.
Solving the direct syzygy problem for β corresponds to computing the left syzygies of the rows of B. For many classes of
rings effective algorithms are known for this task; in particular, Gröbner bases can be used for polynomial rings.

2 Oberst’s algorithm

Obviously, the inverse syzygy problem corresponds to the direct problem with the arrows reverted and a dualisation reverts
arrows. Unfortunately, dualisation is not an exact functor and hence it is a priori not clear whether one can determine this way
a solution. In fact, it turns out that opposed to the direct syzygy problem, the inverse problem is not always solvable.

Oberst [3] proposed the following algorithm (originally only for the case that D is the usual commutative polynomial ring)
consisting of five steps:

1. Dualisation: Consider β∗ : N ∗ →M∗ and ker (β∗) ⊆ N ∗.
2. Syzygy computation: Let γ∗ : Q∗ → N ∗ be such that im (γ∗) = ker (β∗).
3. Dualisation: Consider γ : N → Q and ker (γ) ⊆ N .
4. Syzygy computation: Let β̂ : M̂ → N be such that im (β̂) = ker (γ).
5. Check whether im (β̂) = im (β); if yes, return γ.
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2 Dynamics and Control

The last two steps verify whether the map γ determined in the previous step provides indeed a solution of the inverse syzygy
problem (unique up to isomorphism); otherwise no solution exists. The algorithm is illustrated by the following diagram,
where the vertical arrows symbolise dualisation:
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The correctness of the algorithm is guaranteed by the following theorem. Compared with earlier works, a key difference
is the use of the notion of torsionlessness instead of torsionfreeness. Recall that a D-moduleM is torsionfree, if it does not
contain non-zero torsion elements, i. e. elements m ∈M such that a non zero divisor d ∈ D exists with dm = 0, whereasM
is torsionless, if the natural homomorphism η :M→M∗∗ is injective. For many rings D, both notions are equivalent, but in
general torsionlessness is a stricter condition (see [1] for a more detailed discussion).

Theorem 2.1 Let D be a coherent ring and β :M→N a homomorphism of left D-modules. If the map β̂ is constructed
as outlined above, then the following three statements are equivalent.

1. There exists a finite free left D-module Q and a left D-module homomorphism α : N → Q such that im (β) = ker (α);
in other words, the inverse syzygy problem is solvable.

2. The left D-module coker (β) = N/ im (β) is torsionless.
3. The equality im (β) = im (β̂) holds.

3 Determination of extension groups

One can show that one always has the inclusion im (β) ⊆ im (β̂) and that the quotient im (β̂)/ im (β) is isomorphic to the
extension group Ext1D

(
D(C),D

)
where D(C) denotes the Auslander-Bridger dual of the module C = coker (β). Hence

Oberst’s algorithm provides us with a mean to determine effectively this group. Extending the diagram (1) in an obvious
manner, one obtains the following diagram where the bottom row provides a free resolution of D(C) and where there are
isomorphisms Exti+1
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By reverting the role of β and its dual map β∗ one can use the same approach to determine the extension groups ExtiD(C,D),
since D

(
D(C)

)
= C.
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