
Proceedings in Applied Mathematics and Mechanics, 2 May 2016

Resolutions and Betti Numbers of Polynomial Modules via Involutive
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We describe a novel approach to the computation of free resolutions and of Betti numbers of polynomial modules based on
a combination of the theory of involutive bases with algebraic discrete Morse theory. This approach allows for the first time
to compute Betti numbers (even single ones) without determining a whole resolution which in many cases drastically reduces
the computation time.
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1 Introduction

Computing (minimal) free resolutions of polynomial modules is a fundamental task in commutative algebra and algebraic
geometry. Resolutions are e.g. used to determine derived functors like Ext or Tor. The Betti numbers which encode the size of
the minimal resolution contain important geometric and topological information. Furthermore, many homological invariants
like the Castelnuovo-Mumford regularity or the projective dimension are defined via the minimal resolution. They represent
important complexity measures for modules.

Unfortunately, computing free resolutions is a rather expensive task. As a rough rule of thumb one may say that each
module in the resolution requires one Gröbner basis computation (the usually applied algorithms do not really work this way,
but the total computation time is similar). In principle, determining only the Betti numbers should be much cheaper, as one is
interested only in the ranks of the modules appearing in the resolution and not in the explicit form of the differentials. But all
existing computer algebra systems need about the same time for the two tasks. The reason is simply that internally a resolution
is determined from which the Betti numbers are derived. In fact, even for computing the regularity or the projective dimension
often a whole resolution is used.

In this short note, we briefly survey some recent results of the authors on a novel approach to compute resolutions and Betti
numbers; for more details and the proofs we refer to [1, 2]. It is based on a combination of the theory of involutive bases and
algebraic discrete Morse theory. This approach provides an explicit formula for the differential of a (generally non-minimal,
but highly structured) resolution and thus also allows for computing only arbitrary parts of it. Furthermore, it leads to the first
algorithm to determine only the Betti numbers without computing the whole resolution. It is even possible to obtain individual
Betti numbers. We briefly comment on a first implementation of this approach in the COCOALIB and on some benchmarks
comparing its performance with the corresponding functions in MACAULAY2 and SINGULAR.

2 Involutive Bases and Free Resolutions

Involutive bases represent a special kind of (typically non-reduced) Gröbner bases with additional combinatorial properties.
They were introduced by Gerdt and Blinkov [3] who combined ideas from the Janet-Riquier theory of differential equations
with the classical Gröbner bases theory; for an in depth discussion of their basic properties see [4] or [5, Chapts. 3&4]. In
such a basis one associates with each generator a subset of the variables as multiplicative variables (determined by the chosen
involutive division) and it is then only allowed to multiply this generator by polynomials in these variables. Every involutive
basis defines a Stanley decomposition of the ideal (or submodule) generated by it and thus yields immediately the Hilbert
function. For computing involutive bases one uses algorithms different from the Buchberger algorithm and in benchmarks it
was shown that, even if one is only interested in the reduced Gröbner basis, these are highly competitive.

In [6], it was shown that in particular Pommaret bases lead to a much closer intertwining of theoretical and computational
commutative algebra than standard Gröbner bases, as many important invariants like the regularity or the depth are imme-
diately visible from a Pommaret basis. The main reason is their syzygy theory. By the involutive Schreyer theorem one
obtains a Pommaret basis of the first syzygy module by considering the involutive standard representation of the products of
the generators with their respective non-multiplicative variables. As with the classical Schreyer theorem, iteration leads then
to a free resolution. The crucial difference to the classical situation is that here one can make precise statements about the
shape of the arising resolution without any further computations. In particular, one immediately obtains upper bounds for the
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Betti numbers which in the special case of a componentwise linear ideal are even the exact values. This leads to the following
result which trivially entails Hilbert’s syzygy theorem.

Theorem 2.1 ( [6, Theorem 6.1]) Let H be the Pommaret basis of the submodule U ⊆ Pm over the polynomial ring P =

k[x1, . . . , xn] and denote by β(k)
0 the number of generators in H with k multiplicative variables. If d = min {k | β(k)

0 > 0},
then there exists a free resolution

0 −→ Prn−d −→ · · · −→ Pr0 −→ U −→ 0 (1)

where the ranks of the free modules are given by

ri =

n−i∑
k=1

(
n− k
i

)
β
(k)
0 . (2)

For notational simplicity, we omitted here the gradings of the free modules and thus gave only a bound for the total Betti
numbers. It is, however, trivial to provide a bigraded version of this theorem. The formula for the ranks is a consequence of
the fact that, although we do not explicitly know the higher syzygies without further computations, we can predict the leading
terms of the Pommaret bases of each syzygy module. The resolution (1) is in general non minimal (the minimal resolution is
obtained only for componentwise linear modules). However, its “bounding box” is optimal: it has always the same length and
the same maximal breadth as the minimal resolution.

Theorem 2.2 ( [6, Theorems 8.11 & 9.2]) In the situation of Theorem 2.1, the projective dimension of the submodule U is
n− d and its Castelnuovo-Mumford regularity equals the maximal degree of a generator in the Pommaret basisH.

Theorem 2.1 also holds for some other involutive bases, e. g. for Janet bases which possess from a computational point
some advantages over Pommaret bases. In the recent paper [7], we developed a term order free version of this result using
so-called marked bases which are of considerable interest for the construction of Hilbert schemes. An axiomatic framework
unifying and generalising these different variants based on the novel concept of a resolving decomposition is contained in [8].
However, in all these generalisations one looses Theorem 2.2, as one now only obtains simple bounds for the projective
dimension and the regularity from the given basis. In the case of Janet bases, we showed in [2] with an explicit example that
the difference in the breadth of the resolution can even become arbitrarily large. However, in benchmarks with ideals more
typical for applications, it turned out that very often one still obtains an optimal “bounding box” and in the few cases where
this was not the case, the difference was very small.

3 Algebraic Discrete Morse Theory

Algebraic discrete Morse theory was independently developed by Sköldberg [9] and by Jöllenbeck and Welker [10]. It pro-
vides techniques for the explicit reduction of non-minimal resolutions based on graph theoretical considerations. With every
resolution a graph is associated which encodes the positions of the non-vanishing entries of the differentials. Any Morse
matching in this graph allows then the construction of a smaller resolution. In particular, this approach even allows for the
reduction of infinite resolutions to finite ones in one step.

In a later work [11], Sköldberg showed how a finite resolution can be obtained for any polynomial module admitting a
presentation of a special form. The starting point is a two-sided Koszul complex which defines a resolution of finite length
by with modules of infinite rank. Then it is assumed that the given polynomial moduleM has initially linear syzygies (for a
given term order), i. e. that it possesses a presentation

0 −→ ker η −→
m⊕
α=1

Pwα
η−→M −→ 0 (3)

where the leading module lt ker η is generated by elements of the form xiwα. If xiwα is a generator of lt ker η, then the
variable xi is called critical for wα. Any such presentation induces a Morse matching on the two-sided Koszul complex that
leads to finite resolution of the submodule U . One can derive an explicit closed form expression for the differential in this
resolution which we only sketch here. We denote the free generators of the `th module in the resolution by vIwα where
I = (i1, . . . , i`) is an ascending integer sequence 1 ≤ i1 < · · · < i` ≤ n such that for each entry ik the variable xik is critical
for the generator wα. Then the differential can be expressed in the form

d(vIwα) =
∑
K,µ,γ

∑
J,β

∑
π

ρπ
(
QI,αK,µ,γvKη(x

µwγ)
)

(4)

where the ranges of the various summations follow from the Morse graph associated to the resolution and in particular π
ranges over certain reduction pathes in this graph (depending on J and β). The determination of the maps ρπ and of the
constants QI,αK,µ,γ ∈ k requires some normal form computations.
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Sköldberg did not consider the question when a presentation of the special form (3) actually exists and how one could find
it. Given an arbitrary presentationM ∼= Pm/U with a polynomial submodule U ⊆ Pm, any resolution of U immediately
yields one ofM. We showed in [1] that any Pommaret basis of U automatically induces a presentation of U of the required
form where the critical variables are just the non-multiplicative variables of the generators. Thus given a Pommaret basis of a
submodule U , it have now two resolutions available: the one given by Theorem 2.1 and the one given by Sköldberg’s approach
with differential (4). Although the underlying construction principles appear very different, we have the following result.

Theorem 3.1 ( [1]) The two resolutions are isomorphic. More precisely, Sköldberg’s construction yields for each syzygy
module a Pommaret basis with the same leading terms as in the resolution (1).

The first statement is simple to prove, as the relation between critical and multiplicative variables, respectively, immediately
implies that the two resolutions have the same shape and then the claim follows from standard arguments (see e. g. [12,
Theorem 1.16]). The second statement is considerably harder and it implies that the two resolutions are essentially the same.
There can only be some irrelevant differences in the tail terms of the various Pommaret bases. By combining Sköldberg’s
construction with Pommaret bases, it is thus transformed from a theoretical tool to a fully effective algorithm for the explicit
determination of free resolutions of polynomial modules.

4 Betti Numbers

“Morally”, it should be much cheaper to determine only the Betti numbers instead of a whole resolution, as the Betti numbers
encode only the shape of the minimal resolution without any information about the differential. However, in practise one
observes that in every computer algebra system the time to compute a Betti diagram is essentially the same as the time for a
whole resolution. The reason is simple. The standard approach to determine Betti numbers is as follows. A not necessarily
minimal resolution is computed and then tensored with the ground field k considered as P-module. Then elementary linear
algebra over k yields the Betti numbers. The effect of the tensoring is that all non-constant terms in the differential and thus
most of the data just computed are immediately thrown away.

In our approach, we have the explicit formula (4) for the differential of our resolution. A closer analysis of it (detailed
in [1]) reveals that one can derive very simple criteria which summands will lead to constant entries in the differential. This
observation makes it feasable to compute directly only the constant part of the differential without any other terms in the
differential. This leads to a drastic reduction in the computation time. In fact, it is even easily possible to compute individual
Betti numbers, as one can simply determine only the relevant portion of the constant part of the differential.

A more theoretical and technically rather involved analysis of the differential (4) shows that in principle it even suffices
to determine a very small number of constant entries (one per generator in the Pommaret basis). All other constant entries
are identical with these up to at most a sign. Currently, it is not yet clear to what extent this result can be used for a further
acceleration of the computations.

5 Implementation and Benchmarks

We implemented the above described approach to computing resolutions and Betti numbers in the C++ library COCOALIB
[13] underlying the computer algebra system COCOA specialised in commutative algebra. This library also contains an
implementation of Janet bases by the authors. More detailed information about the implementation can be found in [2]. We
performed a large number of benchmark computations using standard test examples in Gröbner bases theory. We compared
the performance of our implementation for both computing minimal resolutions and computing only Betti numbers with
MACAULAY2 [14] and SINGULAR [15]. Detailed tables with timing and a lot of other data can be found in [1, 2]. Here we
only comment on some basic observations.

For the medium sized examples used as benchmarks, our implementation was often slower for determining minimal reso-
lutions. The main reason is that the resolution induced by a Pommaret basis is sometimes much larger than the minimal one
and then considerable time has to be spent for minimising it (a process for which we currently use a very simple method which
probably can still be optimised). It turned out that the crucial parameter is the size of the Pommaret basis compared to the
size of the minimal Gröbner basis. In particular for modules with a structure similar to toric ideals, the Pommaret basis can
be much larger. However, it could also be observed that our approach scales much better than the traditional ones and hence
the larger the examples are the more competitive our implementation becomes. One should also remark that our approach can
be trivially parallelised in a massive way. In principle, one could use for the determination of each entry of the differential a
different core, as the required computations are independent of each other.

If one is only interested in the Betti numbers, the outcome was completely different. For most examples, our implemen-
tation was not just a bit faster but by orders of magnitude. Thus it was possible to consider much larger examples and the
already above mentioned scaling effect became even more pronounced. Of course, these results are not really surprising, as
the constant part represents usually only a very small portion of the whole resolution and thus the total size of the resolution
becomes much less relevant. We may conclude that currently our approach represents for most examples the by far fastest
method for determining Betti numbers.
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Based on the above mentioned observations, one approach for further improvements consists of using alternative involutive
bases which lead to smaller bases in typical examples. Here some progress has been made in recent years by Gerdt and
Blinkov like the introduction of the alex division [16] and some generalisations of involutive bases [private communication].
In all cases it follows from the results in [8] that our approach remains valid, but we have not yet a working implementation.
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