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We present an intrinsic definition of a (possibly time-dependent) Hamiltonian
differential equation as a submanifold of the first-order jet bundle over a fibred
cosymplectic manifold. The equivalence of the standard constraint algorithm in
mechanics to the completion procedure in differential equations theory is explicitly
demonstrated. As an application, we study covariant classical mechanics. Finally,
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1. Introduction

Hamiltonian systems are of great interest in mathematical physics. They exhibit a
rich geometric structure and form the basis of quantisation. One typically has met them
first in the form of a system of ordinary differential equations

dqi

dt
=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

. (1)

Here H(t, q, p) is the Hamiltonian of the system, usually interpreted as the total energy.
The functions qi(t) and pi(t) represent positions and momenta, respectively. Solutions
of (1) describe trajectories of the system.

For autonomous systems, i. e. systems where ∂H/∂t = 0, symplectic geometry pro-
vides a convenient framework for an intrinsic description. One considers a 2n-dimensional
manifold M equipped with a closed, non-degenerate 2-form Ω. Often, the equation

ιXHΩ = dH (2)

is called the “equation of motion” of the system. Strictly speaking, this is not correct:
(2) is an algebraic relation that associates a vector field XH on M with the function H;
the equation of motion is the flow equation of this vector field.

[1]
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The goal of this article is to present a unified framework combining the differential
equations approach of (1) with the intrinsic geometric approach of (2). Since time appears
in (1), it is not surprising that such a framework automatically covers time-dependent
systems, too. Thus on the geometric side we need cosymplectic instead of symplectic
manifolds. For the intrinsic description of differential equations we use jet bundles and
not tangent bundles. There are two reasons for this. Firstly, this is more natural for
time-dependent systems and, secondly, we believe that jet bundles provide a better basis
for a later generalisation to field theories.

Such a unified framework is particularly of interest for systems with constraints. It is
well-known that such a system might contain hidden constraints which must be exhibited
by a constraint algorithm. One of us has shown earlier that these algorithms correspond
to the completion procedures in differential equations theory [19, 20, 21]. While the
completion theory can also handle arbitrary systems of partial differential equations, we
are not aware of any general constraint algorithm for field theories.

The geometric completion of ordinary differential equations within the tangent bundle
formalism has already been studied by a number of authors. We mention [10, 11, 12]
where the resulting theory has also been applied to constrained Hamiltonian systems. But
also several numerical analysts have studied this problem under the name of differential
algebraic equations [14, 15, 22].

The article is organised as follows. The next section briefly reviews the formal theory
of differential equations. It contains a direct construction of the first-order jet bundle
simplifying many constructions. Cosymplectic manifolds and their use for the modelling
of time-dependent Hamiltonian systems are the topic of Sect. 3. The following section
contains the main results of the article: we give an intrinsic definition of Hamiltonian
differential equations as fibred submanifolds of the first-order jet bundle, show its equi-
valence to the classical approach and prove that the usual constraint algorithm coincides
with the completion procedure for ordinary differential equations. As a larger example
covariant classical mechanics is briefly studied in Sect. 5. Some problems of an extension
of our results to field theories are discussed in Sect. 6. Finally, some conclusions are given.

2. Differential Equations and Jet Bundles

Jet bundles over fibred manifolds provide a natural geometric framework for studying
differential equations [17]. Traditionally, they are introduced via truncated power series
as equivalence classes of smooth sections. For our purposes, a different approach turns
out to be more convenient.

Definition 1. Let π :M→ B be a fibred manifold. The first-order jet bundle over
M is the affine bundle π1

0 : J1M→M whose fibre at the point ξ ∈M with π(ξ) = x is

(J1M)ξ =
{
λ ∈ T ∗xB ⊗ TξM | Tξπ ◦ λ = idTxB

}
.

This definition is related to the classical one as follows. Let σ : B →M be a section.
It induces the section j1σ : B → J1M defined by j1σ(x) =

(
σ(x), Txσ

)
. Thus we may
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identify each point (ξ, λ) ∈ J1M with the equivalence class of sections

(ξ, λ) ∼=
{
σ : B →M | σ ◦ π(ξ) = ξ, Tπ(ξ)σ = λ

}
.

Let (xi, uα) be adapted local coordinates on M. We may then use as coordinates
on J1M tuples (xi, uα, uαi ). The map λ defined by the fibre component of the point
(xi, uα, uαi ) ∈ J1M takes in these coordinates the form (ẋi) 7→ (ẋi, uαi ẋ

i) where the (ẋi)
are induced coordinates in TxB and where we have used the summation convention.

The geometry of the jet bundle is to a large extent determined by its contact structure.
It can be described in many different ways. We use the contact map

Γ1 :
{
J1M×B TB −→ TM

(ξ, λ, v) 7−→
(
ξ, λ(v)

)
which in our approach becomes a simple evaluation map. In local coordinates, it is easier
to describe Γ1 as a map J1M→ T ∗B⊗TM defined by (xi, uα, uαi ) 7→ dxi⊗(∂xi+uαi ∂uα).

An important property of the first-order jet bundle is that each section γ :M→ J1M
defines a connection on the fibred manifold M (and vice versa). Its horizontal space at
the point ξ ∈M is Hξ = Γ1

(
γ(ξ), Tπ(ξ)B

)
. Alternatively, we use the vertical projector

V[γ] :

{
TM −→ VM
(ξ, w) 7−→

(
ξ, w − Γ1

(
γ(ξ), Tξπ(w)

)) (3)

where VM = kerTπ denotes the vertical bundle. If the section γ is locally written as
(xi, uα) 7→

(
xi, uα, gαi (x, u)

)
, then V[γ](xi, uα; ẋi, u̇α) =

(
xi, uα; 0, u̇α − gαi (x, u)ẋi

)
.

We omit a rigorous introduction of the higher-order jet bundles. They can be con-
structed in several ways; for example one may naturally identify J2M with a fibred
subbundle of J1(J1M) and then iterate. For our purposes it suffices to mention that the
higher-order jet bundles form a natural hierarchy πrq : JrM→ JqM for r > q and that
each jet bundle is also a fibred manifold πq : JqM→ B.

Definition 2. A differential equation is a fibred submanifoldRq ⊆ JqM. A solution
is a section σ : B →M such that Im(j1σ) ⊆ Rq.

Note that this definition does not distinguish between scalar equations and systems.
Locally, such a submanifold can always be represented as the zero set of some system
of equations which brings us back to the traditional picture of differential equations.
Similarly, a section σ : B → M is locally of the form (xi) 7→

(
xi, sα(x)

)
. Hence its

prolongation j1σ is of the local form (xi) 7→
(
xi, sα(x), (∂sα/∂xi)(x)

)
and we get the

usual notion of a solution.
A special situation arises for first-order ordinary differential equations. If they are of

the local form u̇α = gα(xi, uβ), then we can write (at least locally) R1 = Im γ for some
section γ :M→ J1M. Hence any such equation defines a connection.

Two natural operations with differential equations are projection and prolongation.
The first one lowers the order, R(r)

q−r = πqq−r(Rq) ⊆ Jq−rM, whereas the second one
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raises it, Rq+r = JrRq ∩ Jq+rM. Projection is difficult to describe in local coordinates,
as it requires the elimination of all derivatives of order greater than q − r. In contrast,
prolongation means simply to differentiate all equations r times.

One could be tempted to think that projection and prolongation are some kind of
inverse operations, but this is not the case. If we first prolong a differential equation Rq
to order q + r and then project back to order q, we will obtain in general an equation
R(r)
q = πq+rq (Rq+r) ⊆ Rq which is only a submanifold of the original equation Rq.

This effect is due to the appearance of previously hidden integrability conditions. Such
conditions represent obstructions to the construction of formal power series solutions.

Definition 3. The differential equation Rq ⊆ JqM is called formally integrable, if
R(1)
q+r = Rq+r for all r ≥ 0.

Formal integrability is in general difficult to check, as its definition poses infinitely
many conditions. However, we will see below that for ordinary differential equations this
is no problem. In contrast, for partial differential equations no one has yet been able to
derive a finite criterion for formal integrability. One must use the stronger concept of
an involutive system; for details on it we refer to the literature [5, 13, 18]. Here we only
remark that every involutive system is formally integrable but not vice versa.

It is straightforward to show that formally integrable equations possess formal power
series solutions which explains the name. Given an analytic equation, one can even
prove that, for appropriate analytic initial data, the formal series converge. This is the
Cartan–Kähler Theorem generalising the classical Cauchy–Kovalevskaya Theorem. Thus
it is of advantage to deal with a formally integrable or even better an involutive system.
Fortunately, this can always be achieved under some fairly mild regularity assumptions.

Cartan–Kuranishi Theorem 1. Let Rq ⊆ JqM be a sufficiently regular differen-
tial equation. There exist two finite integers r, s ≥ 0 such that R(s)

q+r ⊆ Jq+rM is an
equivalent involutive differential equation.

Here equivalent means that the formal solution spaces of the two equations are iden-
tical. Note that in general the involutive equation R(s)

q+r = πq+r+sq+r (Rq+r+s) is of higher
order than the original one; a concrete example for this effect will be given in Sect. 6.
The proof of the Cartan–Kuranishi Theorem even provides a concrete algorithm for the
completion to an involutive equation. We briefly sketch it here; it requires the (geomet-
ric) symbol Gq = Vq−1(Rq) ⊆ Vq−1(JqM) of a differential equation Rq ⊆ JqM where
Vq−1(JqM) = kerTπqq−1 ⊂ TJqM. We cannot detail this construction here; especially,
we cannot explain what an involutive symbol is. For all these details we refer again to
the literature cited above.

The completion algorithm consists essentially of two nested loops. At the beginning
we set s = r = 0. In the inner loop we prolong the equation, i. e. we increase r, until we
reach an equation with an involutive symbol. One can show that this always happens
after a finite number of prolongations. The thus obtained equation R(s)

q+r is prolonged

once more and then projected back, i. e. we determine R(s+1)
q+r . If the two manifolds are
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equal, we stop, as then R(s)
q+r is the sought involutive equation. Otherwise we increase s

and iterate. By a Noetherian argument the algorithm terminates.
In the special case of ordinary differential equations, in which we are mostly interested

in this article, this completion algorithm can be considerably simplified. The inner
loop is no longer necessary, as the symbol of an ordinary differential equation is always
involutive. This implies that the final equation has always the same order as the original
one. Furthermore, we can reverse the order of the operations in the algorithm. In the
general case we always first prolong and then project; for ordinary differential equations
it suffices to first project, i. e. to explicitly exhibit the constraint manifold, and then to
prolong just this manifold. Thus we construct, starting with R(0)

q = Rq, the sequence of
differential equations

R(s+1)
q = R(s)

q ∩ J1R(s+1)
q−1 , (4)

until we find R(s+1)
q = R(s)

q . This happens at the latest after dimRq iterations.
This difference between ordinary and partial differential equations has a very simple

explanation. In a system of ordinary differential equations only one mechanism for the
generation of integrability conditions exists: the system contains equations of differing
orders and the prolongation of the lower order ones leads to new equations. These
equations of lower order describe the constraint manifold R(s+1)

q−1 on the right hand side

of (4); its prolongation is J1R(s+1)
q−1 .

In a system of partial differential equations a second mechanism exists, a generalisa-
tion of the classical cross-derivative: we take a linear combination of prolonged equations;
if the linear combination is such that all derivatives of maximal order cancel, we obtain
an integrability condition of lower order. Obviously, it is crucial here that we first pro-
long and then project; otherwise we might overlook integrability conditions. As simple
examples like uzz+yuxx = 0 = uyy demonstrate, we might need several prolongations for
the cross-derivative and the integrability conditions (here uxxy = 0 and uxxxx = 0) might
be of higher order than the original system. Involution of the symbol Gq is concerned
with the maximal number of prolongations needed.

3. Time-dependent Hamiltonian Systems and Cosymplectic Manifolds

In the literature one can find a number of approaches for dealing with time-dependent
Hamiltonian systems. The most convenient one for our purposes uses cosymplectic ge-
ometry, an extension of symplectic geometry to odd-dimensional manifolds. As we will
see below, a cosymplectic manifold provides us in a natural way with a clock.

Definition 4. A cosymplectic manifold is a (2n+1)-dimensional manifoldM equip-
ped with a closed 2-form Ω and a closed 1-form η such that Ωn ∧ η is a volume form.

The cosymplectic structure induces the vector bundle isomorphism [1]

χ :
{

TM −→ T ∗M
(ξ, w) 7−→ ιwΩξ + (ιwηξ)ηξ

(5)
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generalising the musical isomorphism [ on a symplectic manifold. Furthermore, there
exists a unique vector field R onM, the Reeb vector field, such that ιRΩ = 0 and ιRη = 1;
it is given by R = χ−1(η). The Darboux theorem for cosymplectic manifolds asserts that
locally there always exists a coordinate system (qi, pi, t) such that Ω = dqi ∧ dpi, η = dt
(and hence R = ∂t).

Example 1. Every symplectic manifold can trivially be extended to a cosymplectic
manifold as follows. Let (M,Ω) be a symplectic manifold and dt the canonical one-form
on IR. Then the product manifoldM× IR together with the forms pr∗1Ω and pr∗2dt (here
pri denotes the projection on the ith factor) is a cosymplectic manifold.

On a cosymplectic manifold we associate three different types of “gradient fields” [2]
with a function H :M→ IR:

1. Cosymplectic gradient : gradH = χ−1(dH) = Ht∂t +Hpi∂qi −Hqi∂pi .

2. Hamiltonian vector field : XH = χ−1
(
dH −R(H)η

)
= Hpi∂qi −Hqi∂pi .

3. Evolution vector field : EH = R+XH = ∂t +Hpi∂qi −Hqi∂pi .

One can show that the Hamiltonian vector fields form an involutive distribution. If we
assume that π :M→ B is a fibred manifold such that dimB = 1 and Tξπ(Rξ) 6= 0 for all
ξ ∈ M, i. e. the Reeb vector field R is everywhere transversal to the fibration, then the
Hamiltonian vector fields span the vertical bundle VM. Hence R defines the horizontal
spaces of a connection on M. The corresponding vertical projector is

V[R] :
{

TM −→ VM
(ξ, w) 7−→ (ξ, w − µRξ)

(6)

where the coefficient µ ∈ IR is determined by the relation Tξπ(w) = µTξπ(Rξ).
One possibility to model a time-dependent Hamiltonian system consists of using a

cosymplectic manifold (M,Ω, η) and a Hamiltonian H : M → IR. The manifold M is
often called the extended phase space. The Reeb vector field provides us with an intrinsic
clock;1 it serves as “reference” for the evolution of the system determined by the evolution
vector field EH . Trajectories of the system correspond thus to integral curves of EH .

Alternatively, we may combine the cosymplectic structure and the Hamiltonian by
introducing the 2-form ΩH = Ω + dH ∧ η. One easily checks that (M,ΩH , η) is again
a cosymplectic manifold. Its Reeb vector field RH is just the evolution vector field EH
associated to H with respect to the original cosymplectic structure. This formulation
turns out to be convenient for the analysis of systems with constraints.

Assume we are given a time-dependent Hamiltonian system modelled by the cosym-
plectic manifold (M,ΩH , η); constraints correspond to a submanifold N ⊆ M. It is

1With this interpretation, it appears natural from a physical point of view to require that the Reeb
vector field R is even projectable. This condition is automatically satisfied, if η = π∗η̂ where η̂ is a
one-form on B, as is the case with most physical applications. However, for our mathematical results
this assumption is not necessary.
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well-known that a constrained system is not necessarily consistent, as the given con-
straints may lead to further ones. It is the task of the so-called constraint algorithm to
extract all hidden constraints.

This algorithm may be formulated in many different ways but the basic idea is very
simple: we require that the vector field RH must be everywhere tangent to the constraint
manifoldN , as otherwise its integral curves and thus the trajectories of the system cannot
stay in N . This leads to a sequence of submanifolds Ns with N1 = N and

Ns+1 =
{
ξ ∈ Ns | RHξ ∈ TξNs

}
. (7)

This description can be applied to arbitrary vector fields, the cosymplectic struc-
ture plays no role here. But given this structure, we may reformulate (7) similar to
the Gotay–Nester formulation of the Dirac theory [6]. We first introduce the cosymplec-
tic complement (TξN )⊥ =

{
w ∈ TξM | 〈χH(w), TξN〉 = 0

}
where χH is the bundle

isomorphism (5) for the cosymplectic structure given by ΩH and η. Then we get [3]

Ns+1 =
{
ξ ∈ Ns | 〈ηξ, (TξNs)⊥〉 = 0

}
.

However, we will not need this formulation in the sequel.
Note that the above description slightly simplifies the situation actually encountered

in the modelling of constrained mechanical systems. There the Hamiltonian H is well-
defined only on the (primary) constraint manifold N . This may be taken into account by
allowing that H depends on parameters. Thus instead of a single vector field RH we are
dealing with a whole pencil of vector fields and at each step of the constraint algorithm
tangency may now be achieved either by shrinking the pencil or the constraint manifold.
In Dirac’s terminology we are using the “total Hamiltonian” HT = H + µαφα where the
functions φα are the primary constraints defining N .

4. Hamiltonian Differential Equations

Let (M,Ω, η) be a cosymplectic manifold that at the same time is the total space of
the fibration π :M→ B with dimB = 1. Again we assume that the Reeb vector field R
is everywhere transversal to the fibration. Let furthermore R1 ⊆ J1M be a first order
ordinary differential equation. We assume for the moment that we are dealing with a
system without constraints, i. e. R1 = Im γ for a section γ :M→ J1M.

This implies that now we have two connections: one stems from the cosymplectic
structure and has as vertical projector V[R] given by (6); the other one comes from
the differential equation and has as vertical projector V[γ] given by (3). We can thus
associate with the differential equation R1 the vector field X on M defined by

X : ξ 7−→ −V[γ](Rξ) = V[R]
(

Γ1

(
γ(ξ), Tξπ(Rξ)

))
. (8)

Xξ is the difference between the horizontal lifts of the vector Tξπ(Rξ) with respect to
the two different connections. Hence X is a vertical field.
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Definition 5. The differential equation R1 ⊆ J1M is Hamiltonian with respect to
the cosymplectic structure onM, if the vector field X defined by (8) is Hamiltonian, i. e.
if a function H :M→ IR exists such that X = XH .

As the Hamiltonian vector fields span the vertical bundle, Darboux coordinates
(t, qi, pi) on the cosymplectic manifold M are automatically adapted coordinates for
the fibred manifold π : M → B. In these coordinates, the differential equation R1 is
locally represented by equations q̇i = f i(t, q, p), ṗi = gi(t, q, p). The vector field X is
then given by −V[γ](∂t) = f i∂qi + gi∂pi and we recover that Hamiltonian differential
equations have the familiar local form (1).

Theorem 2. A section σ : B → M is a solution of the Hamiltonian differential
equation R1 in the sense of Definition 2, if and only if Imσ is an integral curve of the
evolution vector field EH = R+XH .

Indeed, it follows from (8) that (EH)ξ = Γ1

(
γ(ξ), Tξπ(Rξ)

)
. If the section σ is a

solution, then γ ◦ σ = j1σ. Thus, by definition of the contact map, we get at the point
ξ = σ(x) that (EH)ξ = Txσ · Tξπ(Rξ) ∈ Tξ(Imσ) and Imσ is an integral curve of EH .
Conversely, it follows from the transversality of EH that every integral curve is (at least
locally) the image of a section σ : B →M. Applying the same argument backwards, we
see that γ ◦ σ = j1σ.

Next we study the effect of constraints. Assume we are given a cosymplectic manifold
(M,ΩH , η) and a submanifold N ⊆ M. With the help of the contact map, the vector
field RH uniquely induces a section γ : M→ J1M whose image defines a Hamiltonian
equation R̄1. The constrained system is then realised by the differential equation

R1 =
{

(ξ, λ) ∈ R̄1 | ξ ∈ N
}
.

Thus R(1)
0 = N . Now we are going to compare the cosymplectic constraint algorithm

with the generic completion algorithm for differential equations described in Sect. 2. It
leads to a sequence of constraint manifolds R(s)

0 such that

R(s+1)
0 = π1

0

(
R(s−1)

1 ∩ J1R(s)
0

)
⊆M .

Theorem 3. Both algorithms are equivalent and yield the same sequence of con-
straint manifolds, i. e. R(s)

0 = Ns for all s ≥ 1.

This theorem is a simple consequence of our definition of the first-order jet bun-
dle. The basic idea is to describe the manifolds R(s)

0 in a similar manner as (7). By
construction, the equality

Γ1

(
γ(ξ), Tξπ(RHξ )

)
= RHξ (9)

holds. The section γ defines what one calls in the numerical analysis literature an underly-
ing differential equation, i. e. a differential equation that for initial data on the constraint
manifold has the same solution as our constrained system. In fact, it would suffice, if (9)
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held only for all ξ ∈ N , i. e. we could take any section such that R1 ⊆ Im γ. It is now
easy to see that

R(s+1)
0 =

{
ξ ∈ R(s)

0 | γ(ξ) ∈ J1R(s)
0

}
.

This formulation is in close analogy to (7). Assume that γ(ξ) = (ξ, λ) ∈ J1R(s)
0 which

means that λ ∈ T ∗π(ξ)B ⊗ TξR
(s)
0 according to our definition of the jet bundle. Applying

(9) shows that this is equivalent to RHξ ∈ TξR
(s)
0 , as for such a λ the contact map Γ1

maps to the tangent space TξR(s)
0 . Hence ξ ∈ R(s)

0 implies ξ ∈ Ns and vice versa.
It is easy to see that the theorem remains true, if we are dealing with a parametrised

Hamiltonian as discussed at the end of Sect. 3. In this case the section γ is parametrised,
too, and we always encounter the same conditions on either the parameters or the con-
straint manifolds. Note that for our theorem the cosymplectic structure is actually
irrelevant; instead of the vector field RH we could have taken any vector field. What
we have proven is the general equivalence of the completion in the jet bundle and in
the tangent bundle. As mentioned in the introduction, the latter one has already been
studied by many authors.

5. Covariant Classical Mechanics

As a larger example of our approach we consider covariant classical mechanics [7, 8].
It leads naturally to the geometric structures considered in this article. The theory pos-
tulates six fundamental geometric objects: (i) an oriented four-dimensional manifold, the
classical spacetime E ; (ii) an oriented one-dimensional affine space modelled on a vector
space T, the absolute time T ; (iii) a surjective submersion t : E → T , the time fibration;
(iv) a scaled Riemannian metric on the fibres of spacetime, the spacelike metric g; (v) a
linear connection on spacetime that preserves the time fibration and the spacelike metric
and whose curvature has the symmetries of Riemannian connections, the gravitational
field K\ and (vi) a scaled closed 2-form on the spacetime, the electromagnetic field f .
“Scaled” means that these objects are tensorialised by a suitable scale factor accounting
for the appropriate units of measurement. In particular, T denotes the vector space
associated with time units. As phase space for a classical particle we take the first-order
jet space J1E over the spacetime fibration; it plays the role of the fibred manifold M in
the previous sections.

Note that we assume a fibration of spacetime over time, but, according to the principle
of general relativity, not a distinguished splitting of spacetime into space and time. An
observer is a section o : E → J1E and thus defines a connection on spacetime inducing
such a splitting. Consequently, we do not assume the existence of distinguished observers.

The six above postulated objects induce in a covariant way two further objects [7, 8]:
the time form dt : E → T ⊗ T ∗E on the spacetime and a 2-form Ω\ : J1E → Λ2(T ∗J1E)
on the phase space. Here, the symbol \ denotes objects derived from the gravitational
field. The pair (Ω\, dt) defines a scaled cosymplectic structure on the phase space [16].

Given a particle of mass m and charge q, we can get rid of any choice of length
and mass units of measurement by “normalising” the spacelike metric and the electro-
magnetic field. Accordingly, all objects derived from the normalised objects include the
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mass and the charge of the particle. It is now convenient to add the gravitational and
electromagnetic objects in a covariant way according to the formula Ω = Ω\ + F where
F is the normalised electromagnetic field. The total 2-form Ω encodes the full structure
of spacetime (metric, gravitational and electromagnetic field) and hence plays a central
role in the theory. Moreover, (J1E ,Ω, dt) is a scaled cosymplectic manifold [16].

Classical mechanics can now be described as follows. The scaled cosymplectic struc-
ture yields a scaled Reeb vector field % : J1E → T

∗ ⊗ TJ1E . Because of the scaling, the
field % may be interpreted as a section J1E → J1(J1E) (we have T ∗T ∼= T ⊗T∗). Thus,
Im % is a differential equation over M = J1E and the two approaches, vector field on a
cosymplectic manifold or differential equation in a jet bundle, coincide!

Of course, by construction, Im % is a Hamiltonian differential equation in the sense
of Definition 5 with respect to the cosymplectic structure (Ω, dt) for the Hamiltonian
H ≡ 0. But obviously, this is not a very interesting point of view. Hamiltonian dynamics
is concerned with the time evolution on the spacetime. Thus we need an observer o in
order to embed T in the spacetime E .

As an observer o is a section E → J1E , its first prolongation o(1) is the unique map
J1E → J1(J1E) satisfying o(1) ◦ j1σ = j1(o ◦ σ) for all sections σ : T → E . However,
o(1) is not a section; but it becomes a section, if we compose it with a certain natural
involution r : J1(J1E) → J1(J1E) [9].1 Thus r ◦ o(1) defines a connection on J1E which
may be used to split, at least locally, the total 2-form Ω into two parts. Indeed, locally a
scaled function Ho : J1E → T

∗⊗ IR exists such that the scaled vector field %o = %−XHo

spans the horizontal distribution of the connection defined by r ◦ o(1). It is easy to check
that the 2-form Ωo = Ω− dHo ∧ dt (here we naturally identify dHo ∧ dt with an unscaled
2-form via the pairing of T∗ and T) defines together with dt an alternative cosymplectic
structure on J1E and %o is the corresponding Reeb vector field.

We may write Ω = ΩHoo with the notation introduced in Section 3. For any choice
of the observer o, Im % is a Hamiltonian differential equation with respect to the cosym-
plectic structure (Ωo, dt) and the Hamiltonian Ho. The vector field % is obviously the
evolution vector field EHo = %o +XHo .

6. Field Theories

We already mentioned above that the completion of partial differential equations is
more involved than that of ordinary differential equations. This obviously affects the
generalisation of our results to field theories. Instead of discussing such an extension, we
only present two examples of “pathological” Lagrangians exhibiting some of the arising
problems. Both examples are completely artificial and do not lead to meaningful physical
theories. However, from a mathematical point of view they represent valid Lagrangians
and any constraint theory for field theories should be able to handle them.

The first example shows that naive generalisations of the completion theory for ordi-
nary differential equations do not suffice for checking the consistency of a theory. Such
approaches have a long tradition in the physical literature; already Dirac [4] applied one

1This is exactly the same problem as with the tangent map of a vector field which defines a vector
field on the tangent bundle only after the swapping of certain components.
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in his analysis of a Hamiltonian form of the Maxwell equations. He simply followed the
same strategy as in the finite-dimensional case: always compute the Poisson brackets
of the constraints with the Hamiltonian. However, taking Poisson brackets corresponds
to computing time derivatives. Thus this approach can only find integrability condi-
tions arising from cross-derivatives including at least one time derivative; integrability
conditions arising from purely spatial cross-derivatives are not detected.

Let the fields φ, λ and µ be defined on a (2 + 1)-dimensional space-time with coordi-
nates (x, y, t) and consider the family of Lagrangian densities

L[φ, λ, µ] =
1
2
φ2
t + λ

(
φx − F (φ)

)
+ µ

(
φy −G(φ)

)
where F and G are yet arbitrary functions. It leads to the Euler–Lagrange equations

φtt + λx + µy + λF ′(φ) + µG′(φ) = 0 , (10)
φx − F (φ) = 0 , φy −G(φ) = 0 . (11)

An obvious integrability condition of this system is F ′(φ)G(φ) = F (φ)G′(φ). If it is not
automatically satisfied due to the properties of the functions F and G, the theory is either
inconsistent or admits only a constant field φ as solution. This condition arises from a
purely spatial cross-derivative of the equations in (11); no time derivative is involved.

It is easy to check that using the Dirac approach one cannot find this condition [21]
and thus possibly fails to notice that one is working with an inconsistent theory. This
example clearly demonstrates the importance of using a covariant approach that treats
differentiations with respect to time and space in the same way.

The second example concerns the problem that the completion may lead to higher-
order equations; it shows that this is not only a theoretical possibility but actually may
happen in systems derived from variational principles. In such a situation it becomes
very difficult to give a Hamiltonian interpretation of the field equations.

With the same fields as above, we study the Lagrangian density

L[φ, λ, µ] =
1
2
φ2
t +

1
2
yφ2

x + λyφy + λµ .

Its Euler–Lagrange equations are

φtt + yφxx + λyy = 0 ,
φyy − µ = 0 , λ = 0 .

Without going into any details, we state that applying the above outlined Cartan-
Kuranishi completion algorithm leads after six prolongations and four projections to
a formally integrable fourth-order system:

φtt + yφxx = 0 , φyy − µ = 0 , λ = 0 , (12)
2φxxy + yµxx + µtt = 0 , µytt + yµxxt + 3µxx = 0 , (13)

µtttt − 2φxxxx + 2yµxxtt + y2µxxxx = 0 . (14)
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Note in particular that (14) is of fourth order in time! Rewriting the Euler-Lagrange
equations as a Hamiltonian system via a Legendre transformation does not change any-
thing; one obtains a similar rise in order.

7. Conclusions

The goal of this article was to unify differential equation theory and geometric me-
chanics in an intrinsic manner. We have shown that this is possible for finite-dimensional
Hamiltonian systems using cosymplectic manifolds. As an additional benefit the arising
theory handles non-autonomous systems without the introduction of any artificial con-
structions like an extended configuration space.

The natural next step consists of extending this approach to field theories. As we
indicated in the last section based on two examples, completely new problems emerge.
Some of them can probably be resolved in a multi-symplectic framework, but in particular
the interpretation of systems of higher order remains a puzzle. We want to stress again
that although both examples are completely artificial, any constraint algorithm for field
theories must either be able to handle them or at least detect that they are pathological.
The popular naive generalisations of the Dirac theory achieve neither.
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et de contact. J. Geom. Phys., 6:627–649, 1989.

[2] F. Cantrijn, M. de León, and E.A. Lacomba. Gradient vector fields on cosymplectic mani-
folds. J. Phys. A: Math. Gen., 25:175–188, 1992.

[3] D. Chinea, M. de León, and J.C. Marrero. The constraint algorithm for time-dependent
Lagrangians. J. Math. Phys., 35:3410–3447, 1994.

[4] P.A.M. Dirac. Lectures on Quantum Mechanics. Belfer Graduate School Monograph Se-
ries 3. Yeshiva University, New York, 1964.

[5] M. Dubois-Violette. The theory of overdetermined linear systems and its applications to
non-linear field equations. J. Geom. Phys., 1:139–172, 1984.

[6] M.J. Gotay, J.M. Nester, and G. Hinds. Presymplectic manifolds and the Dirac-Bergmann
theory of constraints. J. Math. Phys., 19:2388–2399, 1978.
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