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Abstract Complementary decompositions of monomial ideals – also known as Stan-
ley decompositions – play an important role in many places in commutative algebra.
In this article, we discuss and compare several algorithms for their computation. This
includes a classical recursive one, an algorithm already proposed by Janet and a con-
struction proposed by Hironaka in his work on idealistic exponents. We relate Janet’s
algorithm to the Janet tree of the Janet basis and extend this idea to Janet-like bases
to obtain an optimised algorithm. We show that Hironaka’s construction terminates, if
and only if the monomial ideal is quasi-stable. Furthermore, we show that in this case
the algorithm of Janet determines the same decomposition more efficiently. Finally,
we briefly discuss how these results can be used for the computation of primary and
irreducible decompositions.
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1 Introduction

Combinatorial decompositions of polynomial ideals often appear in commutative al-
gebra, as they are very useful for many theoretical considerations [34]. Actually, they
were first prominently used by Riquier [25] and Janet [22] in their works on general
systems of partial differential equations and Janet also provided effective algorithms
for their determination. Within commutative algebra, such decompositions were stud-
ied with an emphasis on complementary ones only much later: first by Rees [24] in a
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generic situation and then generally by Stanley [31] in the context of Hilbert function
computations. Algorithms for the construction of complementary decompositions were
presented e. g. by Sturmfels and White [33]. A particular combinatorial decomposi-
tion was also crucial for Dubé’s analysis of the complexity of Gröbner bases without
genericity assumptions [12]. Combinatorial decompositions were also studied recently
by Ceria [10].

As the theory of involutive bases (see [30] for a general introduction and an overview
of applications) was developed by Gerdt and Blinkov [18] following ideas underlying
the Janet-Riquier theory of differential equations, it is not surprising that involutive
bases are closely related to combinatorial decompositions. Any (strong) involutive basis
induces a direct sum decomposition of the ideal as linear space and thus allows for the
immediate construction of the volume function of the ideal (and indirectly of its Hilbert
function). Complementary decompositions, i. e. decompositions of the factor ring, are
a bit harder to get, but the two types of involutive bases most often used in practise,
Janet and Pommaret bases, also induce such decompositions. We will show that Janet-
like bases – which may be considered as a condensed version of Janet bases introduced
by Gerdt and Blinkov [20,19] – provide a more efficient algorithm for the construction
of a (condensed) complementary decomposition than Janet’s original algorithm.

In his work on idealistic exponents, Hironaka [21] constructed a complementary de-
composition for monomial ideals in generic position. We will show that his construction
terminates with a finite decomposition, if and only if the monomial ideal is quasi-stable,
i. e. we find here a by now well studied genericity condition. This observation also im-
plies that Hironaka essentially just rediscovered Rees’ decomposition. We will show
furthermore that Janet’s algorithm presented almost 50 years before Hironaka’s work
constructs the same decomposition more efficiently.

This article is structured as follows. The next section collects and recalls the basic
notations and concepts used later on. Section 3 discusses a classical recursive algorithm
for the construction of a complementary decomposition. We determine its complexity
and describe an iterative variant of it. The construction of complementary decompo-
sition following Janet’s ideas is the topic of Section 4. We formulate his algorithm
in a graph theoretical language showing that it corresponds to a simple breadth-first
traversal of the Janet tree associated with the given monomial ideal. This observa-
tion immediately gives us its complexity. We then show how Janet-like bases can be
used for obtaining a more efficient version of the algorithm. In Section 5, we recall
Hironaka’s construction and relate it to Pommaret bases and thus quasi-stable ideals.
We then proceed to discuss in the following section the relation of complementary de-
compositions with primary and irreducible decompositions. We show that Hironaka’s
construction yields as a by-product a primary decomposition and explain how an ir-
reducible decomposition can be extracted from a complementary one. Finally, some
conclusions are given.

2 Preliminaries

We review some basic definitions and notations from the theory of Gröbner and invo-
lutive bases which are used throughout the article. We consider the polynomial ring
P = K[X] = K[x1, . . . , xn] over a field K. Let f1, . . . , fk ∈ P be some polynomials
and I = 〈f1, . . . , fk〉 the ideal generated by them. We denote the total degree and the
degree with respect to the variable xi of a polynomial f ∈ P by deg(f) and degi(f),
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respectively. If Y = {y1, . . . , yk} ⊆ X is a subset of variables, then we denote by
TY = {yµ1

1 · · · y
µk
k | µi ∈ N0, 1 ≤ i ≤ k} the monoid of all terms in P depending only

on the variables in Y . We write shortly T = TX , if all variables are considered. A term
ordering on T is denoted by ≺. The leading term of a given polynomial f ∈ P with
respect to ≺ is denoted by lt(f). If F ⊂ P is a finite set of polynomials, we denote by
lt(F ) the set {lt(f) | f ∈ F}.

A finite set G ⊂ P is called a Gröbner basis for I with respect to ≺, if it satisfies
lt(I) := 〈lt(f) | f ∈ I〉 = 〈lt(G)〉. Gröbner bases and the first algorithm to compute
them were introduced by Buchberger in his PhD thesis [8], for more details on them
see e. g. [11]. A key property of them is given by the following result due to Macaulay
which will allow us to restrict in the rest of this article to monomial ideals (which we
will identify with the set of terms contained in them).

Proposition 1 ([11, Prop. 4, pp. 250]) Let G be a Gröbner basis of the ideal ICP.
Then, the factor ring P/ I is isomorphic as a K-linear space to the space generated by
all terms t /∈ 〈lt(G)〉.

Involutive bases are a special kind of Gröbner bases with additional combinatorial
properties. We recall some basic notions; for more details see [17,30].

Definition 2 An involutive division L on T associates to any finite set U ⊂ T of terms
and any term u ∈ U a set of L-non-multipliers L̄(u, U) given by the terms contained in
a prime monomial ideal. The variables generating this prime ideal are called the non-
multiplicative variables NML(u, U) ⊆ X of u ∈ U . The set of L-multipliers L(u, U)
is given by the order ideal T \ L̄(u, U); defining the set of multiplicative variables
ML(u, U) = X \ NML(u, U), we have T \ L̄(u, U) = TML(u,U). For any term u ∈ U ,
its involutive cone is defined as CL(u, U) = u · L(u, U). Finally, L must satisfy the
following conditions:

1. For two terms v 6= u ∈ U with CL(u, U) ∩ CL(v, U) 6= ∅, we have u ∈ CL(v, U) or
v ∈ CL(u, U).

2. If a term v ∈ U lies in an involutive cone CL(u, U), then L(v, U) ⊆ L(u, U).
3. For any term u in a subset V ⊂ U , we have L(u, U) ⊆ L(u, V ).

We write u |L w for a term u ∈ U and an arbitrary term w ∈ T , if w ∈ CL(u, U). In
this case, u is called an L-involutive divisor of w and w an L-involutive multiple of u.

Definition 3 For a finite set of terms U ⊂ T and an involutive division L on T , the
involutive span of U is the union CL(U) =

⋃
u∈U CL(u, U). The set U is involutively

complete or a weak involutive basis of the ideal generated by U , if CL(U) = T · U . For
a (strong) involutive basis the union must be disjoint, i. e. every term in CL(U) has a
unique involutive divisor. An involutive division is Noetherian, if every monomial ideal
in P possesses an involutive basis.

One of the simplest involutive divisions is the Pommaret division:

Definition 4 Define the class of a term xµ ∈ T with exponent vector µ = (µ1, . . . , µn)
as the index cls (xµ) = min {i | µi 6= 0}. The Pommaret division P is defined as follows:
Any variable xi with i ≤ cls (xµ) is P-multiplicative for xµ 6= 1. For x(0,...,0) = 1, all
variables are multiplicative.
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Remark 5 The Pommaret division P is a global division, i. e. the assignment of multi-
plicative variables to a term xµ is independent of any ambient set xµ ∈ U ⊂ T . The
Pommaret division is not Noetherian, as e. g. the ideal I = 〈x1x2〉 does not possess a
finite Pommaret basis, as it does not contain any element of class 2.

Each finite set U ⊂ T contains a unique minimal subset A ⊆ U such that 〈A〉 = 〈U〉
as monomial ideals, but no term a ∈ A is Pommaret divisible by any other term
b ∈ A\{a}. We say that A is derived from U by the process of Pommaret autoreduction.

The fact that the Pommaret division is not Noetherian singles out those monomial
ideals which do have a finite Pommaret basis. It turns out that this class of monomial
ideals is already well-known, as it appears in many different contexts. Its classical
characterisation is of a combinatorial nature.

Definition 6 Amonomial ideal I ⊂ P is called quasi-stable, if for any term xµ ∈ I and
for any index k = cls (xµ) < i ≤ n an exponent s ≥ 0 exists such that xsix

µ/xk ∈ I.

Proposition 7 ([30, Prop. 5.3.4]) A monomial ideal I possesses a finite Pommaret
basis, if and only if it is quasi-stable.

One of the most important involutive divisions is the Janet division which like the
Pommaret division was already introduced by Janet [22, pp. 16-17].

Definition 8 Let U ⊂ P be a finite set of terms. For each sequence d1, . . . , dn of
non-negative integers and for each index 1 ≤ i ≤ n, we introduce the corresponding
Janet class as the subset

U[di,...,dn] =
{
u ∈ U | degj (u) = dj , i ≤ j ≤ n

}
⊆ U . (1)

The variable xn is Janet multiplicative (or shorter J -multiplicative) for the term u ∈ U ,
if degn (u) = max {degn (v) | v ∈ U}. For i < n the variable xi is Janet multiplicative
for u ∈ U[di+1,...,dn], if degi (u) = max {degi (v) | v ∈ U[di+1,...,dn]}.

Remark 9 In contrast to the Pommaret division, the Janet division is Noetherian [30,
Lem. 3.1.19], but not global.

Example 10 1. The ideal 〈x1x2〉 ⊆ K[x1, x2] has the one-element set {x1x2} as Janet
basis.

2. The ideal 〈x21, x22〉 has the set {x21, x21x2, x22} as smallest possible Janet basis. Note
that, for example, also {x21, x21x2, x22, x32} is another Janet basis of the same ideal.

To improve the computation of Gröbner bases for ideals where the Janet basis is
much larger than the reduced Gröbner basis, Gerdt and Blinkov in [19] introduced a
generalisation of Janet bases, the so-called Janet-like bases.

Definition 11 Let U ⊂ T be a finite set of terms. For any term u ∈ U and any index
1 ≤ i ≤ n, we set

hi(u, U) = max
{

degi (v) | u, v ∈ U[di+1,...,dn]

}
− degi (u) .

If hi(u, U) > 0, the power xkii with

ki = min
{

degi (v)− degi (u) | v, u ∈ U[di+1,...,dn],degi (v) > degi (u)}
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is called a non-multiplicative power of u for the Janet-like division. The set of all non-
multiplicative powers of u ∈ U is denoted by NMP(u, U). The elements of the set

NM(u, U) = {v ∈ T | ∃w ∈ NMP(u, U) : w | v}

are called the J-non-multipliers for u ∈ U . The terms outside of it are the J-multipliers
for u. An element u ∈ U will be called a Janet-like divisor of w ∈ T , if w = u · v with
v a J-multiplier for u.

Example 12 Consider the set U = {x33, x32x3 , x1x2x3} ⊂ K[x1, x2, x3]. We can deter-
mine the Janet-like non-multiplicative powers of the elements of U as follows:

1. x33 has maximal x3-degree in U . This implies immediately that no non-multiplicative
power exists for it at the variable x3; moreover, since its x3-degree is unique in
U , no Janet class of U containing this term will contain any other term. Hence,
NMP(x33, U) = ∅.

2. x32x3 and x1x2x3 both have x3-degree 1. Comparing with x33, it follows that x
2
3 ∈

NMP(x32x3, U)∩NMP(x1x2x3, U), 2 being the difference of the x3-degrees. Since
x22x3 has the highest x2-degree in U , we can conclude NMP(x22x3, U) = {x23}.

3. Looking at the Janet class U[1] = {x32x3, x1x2x3}, we observe a difference of 2 in the
x2-degrees. Hence, x22 ∈ NMP(x1x2x3, U). Now, noting that U[1,1] = {x1x2x3},
we conclude that NMP(x1x2x3, U) = {x22, x23}.

The Janet-like division is not an involutive division, because it assigns sets of non-
multipliers that are generated by powers of variables instead of only variables. Nev-
ertheless, it preserves all algorithmic properties of the Janet division and allows for
the construction of Janet-like bases and in turn Gröbner bases. Indeed, the main algo-
rithmic idea for the construction of Janet-like bases is similar to that of Janet bases,
instead of multiplying with non-multiplicative variables one now multiplies with non-
multiplicative powers. One can show that any ideal has a Janet-like basis which is a
subset of its Janet basis [20, Thm. 3].

2.1 The Janet Tree

The lattice of the Janet classes together with the set theoretic inclusion relation pos-
sesses a natural tree structure for any finite set U ⊂ T of terms. Following Gerdt et al.
[15], we call this tree the Janet tree of U , although our tree is not the same as theirs.
As their main concern was efficiency, they presented immediately a representation as
binary tree which somewhat obscures the very natural underlying mathematical struc-
ture. Our presentation follows [30, Addendum §3.1] adapted to our purposes here. One
should note that the bar codes of Ceria encode essentially the same information in
a different manner [9]. Janet trees allow us to perform many operations relevant for
Janet bases – like determining multiplicative variables or finding an involutive divisor
– in a very efficient manner. We will show later that one can read off a complementary
decomposition without any further computations by simply traversing the Janet tree.

Each node in the Janet tree corresponds to a non-empty Janet class and the edges
represent inclusions. It turns out to be convenient to represent the Janet class U[di,...,dn]

by the term xdii · · ·x
dn
n (although this term is not necessarily contained in the class!).

Furthermore, we store in each node a list of variables which are multiplicative for any
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term contained in the class so that each node is a pair (xν , V ) consisting of a term and
a subset of the variables X.

Assume that U = {xµ1 , . . . , xµm} where µi = (µi1, . . . , µin) for each i and xµ1 ≺lex
· · · ≺lex xµm with x1 ≺lex · · · ≺lex xn. We divide the tree into n + 1 levels with the
root being at level n + 1 and all leaves at level 1. The root contains the term 1
(corresponding to the Janet class U[] = U) and the empty set. Its children correspond
to the non-empty classes U[dn] with 0 ≤ dn ≤ µmn and each contains the term xdnn and
the empty set except for dn = µmn which contains the set {xn}, as xn is multiplicative
for all terms in this Janet class. Then we continue recursively. Assume that we have a
node (xν , V ) at level i+ 1 with i < n, i. e. clsxν ≥ i+ 1. Then its children correspond
to the non-empty Janet classes represented by terms of the form xai x

ν and they all
contain the same set V except for the one with the maximal value of a where xi
is added to V . We sort the children according to increasing values of a, so that it
is always the rightmost child which obtains the additional multiplicative variable xi.
The nodes at level 1 contain then in lexicographic order the terms in U together
with their Janet multiplicative variables. Figure 1 shows the Janet tree of the set
U =

{
x1x2x3, x

3
2x3, x

3
3

}
⊂ K[x1, x2, x3].

(1, ∅)

(x3, ∅)

(x2x3, ∅)

(x1x2x3, {x1})

(x32x3, {x2})

(x32x3, {x1, x2})

(x33, {x3})

(x33, {x2, x3})

(x33, {x1, x2, x3})

Fig. 1 Janet tree of U = {x1x2x3, x32x3, x33} ⊂ K[x1, x2, x3].

2.2 The Janet-like Tree

To adapt this tree representation to the Janet-like division, we add to each node a set
M of Janet non-multipliers and obtain what we call the Janet-like tree of U . Assume
as above that at level i+ 1 we have the node (xν , V,M) and that it has ` children rep-
resented by the terms xaji x

ν where a1 < a2 < · · · < a`. Then the first `−1 children are
given by the nodes (x

aj
i x

ν , V,M∪{xaj+1−aj
i }) and the last child is (xa`i x

ν , V ∪{xi},M).
We find then again at level 1 the terms of U in lexicographic order together with
their multiplicative variables and their non-multiplicative powers. Figure 2 contains
the Janet-like tree of the set U =

{
x1x2x3, x

3
2x3, x

3
3

}
⊂ K[x1, x2, x3].

3 Complementary Decompositions from Arbitrary Generating Sets

In this section, we recall the definition of complementary decompositions and give a
more efficient variant of a well-known recursive approach for their construction for the
special class of monomial ideals, for more details see [30, pp. 168-175].
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(1, ∅, ∅)

(x3, ∅, {x23})

(x2x3, ∅, {x22, x23})

(x1x2x3, {x1}, {x22, x23})

(x32x3, {x2}, {x23})

(x32x3, {x1, x2}, {x23})

(x33, {x3}, ∅)

(x33, {x2, x3}, ∅)

(x33, {x1, x2, x3}, ∅)

Fig. 2 Janet-like tree of U = {x1x2x3, x32x3, x33} ⊂ K[x1, x2, x3].

Definition 13 A cone is a set of the form CY (t) = TY ·t for some term t ∈ T , its vertex,
and some set of multiplicative variables Y ⊆ X. A cone decomposition of an arbitrary
subset S ⊆ T is a representation as a disjoint finite union of cones: S =

⊔
(t,Y )∈D CY (t)

for some finite set D of pairs (t ∈ T , Y ⊆ X).

In the above definition, we consider arbitrary subsets S ⊆ T . In practice, two cases
are particularly relevant: S = I ∩T consists of the terms contained in a monomial
ideal I or S is the complement of such a set, i. e. S consists of the terms contained
in an order ideal. In this work, we are mainly concerned with the second case which
we call a complementary decomposition of the monomial ideal I. By Proposition 1, a
complementary decomposition corresponds to a decomposition of the factor ring P/ I
as a K-linear space. Complementary decompositions are often called Stanley decom-
position, as Stanley [31] used them for computing the Hilbert function of an ideal I
(actually, this approach to Hilbert functions goes back already to Janet [22]). Rees [24]
considered already earlier the special case where all sets Y of multiplicative variables
are of the special form Y = {xi, xi+1, . . . , xn} for some index i; one then speaks of a
Rees decomposition.

Given any finite complementary decomposition D of an ideal I, it is indeed straight-
forward to read off the Hilbert series and the Hilbert polynomial of I. Given a cone
induced by the pair (t, Y ) ∈ D, we write qt = deg (t) for the degree of its vertex and
kt = |Y | for its dimension. The Hilbert series of I is then given by

HSI(λ) =
∑

(t,Y )∈D

λqt

(1− λ)kt

and the Hilbert polynomial by

HPI(q) =
∑

(t,Y )∈D
kt>0

(
q − qt + kt − 1

kt − 1

)
.

This follows immediately from the disjointness required from a cone decomposition and
from the fact that the above binomial coefficient gives the number of terms of degree q
in the cone (t, Y ) (for degrees q ≥ qt). For the Hilbert function, one must enforce that
the cone (t, Y ) contributes nothing for any degree q ≤ qt. Hence, using the Kronecker-
Iverson symbol [·] which yields 1 if the condition in the bracket is satisfied and 0
otherwise, we can write

HFI(q) =
∑

(t,Y )∈D
kt>0

[q ≥ qt]

(
q − qt + kt − 1

kt − 1

)
+

∑
(t,Y )∈D
kt=0

[q = qt] . (2)
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Thus complementary decompositions provide us with an elementary proof of the fact
that the Hilbert function of any ideal is of polynomial type and the maximal value of
qt bounds the Hilbert regularity. In [7], one can find a number of further results on
Hilbert series that can be derived via complementary decompositions stemming from
Pommaret bases.

Remark 14 By definition, any involutive basis of a monomial ideal I induces a cone
decomposition of I. As we will discuss in more details in the subsequent sections,
Janet and Pommaret bases also induce complementary decompositions. In the case of
a Pommaret basis, both the decomposition of I and the complementary decomposition
are Rees decompositions, see [30, Cor. 5.1.9].

The subject of computing complementary decompositions for monomial ideals has
a long tradition, see e. g. [31,32,33,30]. The recursive Algorithm 1 represents a slightly
optimised form of an approach which seems to be folklore. It can be found implicitly in
[11] or explicitly in [33] (see also [30, Alg. 5.1] or [26] for variants). However, it seems
that its complexity has never been studied. We shall note that in the sequel, the order
of variables that we use for the recursive process is x1, . . . , xn, however, we can impose
any order of the variables that we might want to use.

Algorithm 1: RecursiveComplementaryDecomposition
Data: Generating set U = {t1, . . . , tm} of monomial ideal I E P
Result: Finite complementary decomposition D of I

1 begin
2 (λ0, λ1, . . . , λ`)←− sequence of x1-degrees of terms ti with λ0 < λ1 < · · · < λ`
3 if U = ∅ then
4 return

{
(1, {x1, . . . , xn})

}
5 else if n = 1 and λ0 = 0 then
6 return ∅
7 else if n = 1 and λ0 6= 0 then
8 return

{
(1, ∅), (x1, ∅), . . . , (xλ0−1

1 , ∅)
}

9 D ←− ∅
10 if λ0 6= 0 then
11 D ←−

{
(xλ1 , {x2, . . . , xn}) | λ = 0, . . . , λ0 − 1

}
12 for i from 0 to ` do
13 U ′λi ←− {t ∈ K[x2, . . . , xn] | t · xλi1 ∈ U}
14 D′λi ←− RecursiveComplementaryDecomposition(

⋃i
j=0 U

′
λj

)

15 if i = ` then
16 D ←− D ∪

{
(u[1] · xλ`1 , u[2] ∪ {x1}) | u ∈ D′λi

}
17 else
18 D ←− D ∪

{
(u[1] · xλ1 , u[2]) | u ∈ D′λi , λ = λi, . . . , λi+1 − 1

}
19 return D

Theorem 15 Algorithm 1 terminates in finitely many steps and is correct. Its arith-
metic complexity is O

(
(λm)n

)
where

λ = max
{
λ
(i)
0 , λ

(i)
1 − λ

(i)
0 , . . . , λ

(i)
` − λ

(i)
`−1 | i = 1, . . . , n

}
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with λ
(i)
0 < λ

(i)
1 < · · · < λ

(i)
` the sequence of the xi-degrees of the terms tj used to

generate the ideal I.

Proof The termination and the correctness follow from [30, Prop. 5.1.3]. To prove the
complexity bound, we first note that one can construct the Janet tree of U using
O(m2 +nm) comparisons, see [23, Thm. 4.2]. Now, it suffices to show (by an induction
over the number n of variables) that at each iteration the number of constructed cones
in D is O

(
(λm)n

)
. Here, following the notations used in the algorithm, we may assume

without loss of generality that the elements of U are distributed uniformly and thus
U ′λi contains m/(` + 1) elements for each i. If n = 1, then there is nothing to prove.
Assume now that the assertion holds for n − 1. Then the for-loop is repeated ` + 1
times and in each iteration the set

⋃i
j=0 U

′
λj

has (i+ 1)m/(`+ 1) elements. Thus, by

the lines 16 and 18, the number of cones in D is λ×
∑`
i=0O

(
(λ(i+1)m/(`+1))n−1

)
∼

O
(
λ(` + 1)(λm)n−1

)
. It follows from the fact that ` + 1 ≤ m that the total number

of elements added to D is O
(
(λm)n

)
. Finally, we may assume that λ,m, n ≥ 2 and

therefore (λm)n is the dominant factor in the complexity O
(
(λm)n +m2 + nm

)
and

this ends the proof. ut

Example 16 Let us consider the ideal I = 〈x21x2x3, x32x3, x33〉 in the polynomial ring
P = K[x1, x2, x3]. By considering x1 as the first variable, we have λ0 = 0, λ1 = 2,
U ′0 = {x32x3, x33} and U ′2 = {x2x3}. By applying the algorithm to U ′0, we get

D′0 =
{

(1, ∅), (x3, ∅), (x23, ∅), (x2, ∅), (x2x3, ∅), (x2x
2
3, ∅), (x22, ∅),

(x22x3, ∅), (x22x
2
3, ∅), (x32, {x2})

}
.

Thus, by multiplying the first component of the elements of this set by both 1 and x1,
we obtain the first version of D. Now, we continue with λ1. Here, one observes that

U ′λ0
∪ U ′λ1

= {x2x3, x32x3, x33}

and the ideal generated by this set is 〈x2x3, x33〉. Applying the algorithm to it, on ob-
tains its complementary decomposition

{
(1, ∅), (x3, ∅), (x23, ∅), (x2, {x2})

}
and finally

D ∪
{

(x21, {x1}), (x21x3, {x1}), (x21x
2
3, {x1}), (x21x2, {x1, x2})

}
defines a complementary decomposition for I.

For a better understanding of the structure of the recursive Algorithm 1, we describe
now an iterative variant of it: Algorithm 2. In it, we first order the set U according
to the lexicographical order and then construct sets Di,j , where – with the notations
used in the algorithm – Di,j provides a complementary decomposition for the ideal
〈tj , . . . , tm〉|x1=···=xi−1=1. Thus, D1,1 defines the desired complementary decomposi-
tion for the given ideal I.

Theorem 17 Algorithm 2 terminates for any input and is correct. Its arithmetic com-
plexity is O

(
γm(λm)n−1

)
where

λ = max
{
λ
(i)
0 , λ

(i)
1 − λ

(i)
0 , . . . , λ

(i)
` − λ

(i)
`−1 | i = 1, . . . , n

}
with λ(i)0 < λ

(i)
1 < · · · < λ

(i)
` being the sequence of the xi-degrees of the generators tj

and γ = λ
(n)
` .
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Algorithm 2: ComplementaryDecomposition
Data: Generating set U = {t1, . . . , tm} of monomial ideal I E P
Result: Finite complementary decomposition D of I

1 begin
2 Sort U = {t1, . . . , tm} such that tm ≺lex · · · ≺lex t1 with xn ≺ · · · ≺ x1
3 (λ

(i)
1 , λ

(i)
2 , . . . , λ

(i)
m )←− sequence of xi-degrees of elements of U

4 for j from 1 to m do
5 λ←− min

{
λ
(n)
j , . . . , λ

(n)
m

}
6 Dn,j ←−

{
(1, ∅), (xn, ∅), . . . , (xλ−1

n , ∅)
}

7 for i from n− 1 to 1 do
8 Di,m ←−

{(
xλi , {xi+1, . . . , xn}

)
| λ = 0, . . . , λ

(i)
m − 1

}
∪{(

u[1]x
λ
(i)
m
i , u[2] ∪ {xi}

)
| u ∈ Di+1,m

}
9 Reorder U such that λ(i)1 ≥ λ

(i)
2 ≥ . . . ≥ λ

(i)
m

10 for j from m− 1 to 1 do

11 Di,j ←−
{(
u[1]x

λ
(i)
j

i , u[2] ∪ {xi}
)
| u ∈ Di+1,j

}
∪{(

u[1]xsi , u[2]
)
| u ∈ Di+1,`, ` = j + 1, . . . ,m, s = λ

(i)
`−1, . . . , λ

(i)
` − 1

}
12 if λ(i)m 6= 0 then
13 Di,j ←− Di,j ∪

{(
xλi , {xi+1, . . . , xn}

)
| λ = 0, . . . , λ

(i)
m − 1

}
14 return (D1,1)

Proof Since this algorithm is a non-recursive variant of Algorithm 1, its finite ter-
mination and correctness follow from those of Algorithm 1. To prove the arithmetic
complexity, we mainly follow the lines of the proof of Theorem 15. We proceed to find
the number of cones in the decomposition ∪mj=1Di,j for each index i = n, . . . , 1 and the
total number of constructed cones determines the complexity of the algorithm. We ob-
serve that for i = n the number of constructed cones is O(γm). It follows from line 11
by applying a simple induction, that the number of cones in Di,j is O

(
γ(λm)n−i

)
.

Thus, the total number of constructed cones is γm+ γm(λm) + · · · γm(λm)n−1. We
may assume that λm ≥ 2 and this shows the claim. ut

Remark 18 One can see that arithmetic complexity of this algorithm is very close to
that of Algorithm 1. However, at each iteration of Algorithm 2, we get complemen-
tary decompositions for the ideals 〈tj , . . . , tm〉|x1=···=xi−1=1 which provide additional
information about the input ideal. More precisely, for each 1 ≤ i ≤ n and 1 ≤ j ≤ m,
the set Di,j , constructed during the algorithm, forms a complementary decomposition
for this ideal.

The following example illustrates the steps of the algorithm.

Example 19 Let us consider the ideal I = 〈U〉 in the polynomial ring P = K[x1, x2, x3]

with U = {x21x2x3, x32x3, x33}. Obviously, we have λ(3)1 = 1, λ(3)2 = 1, and λ(3)3 = 3. We
get D3,3 =

{
(1, ∅), (x3, ∅), (x23, ∅)

}
and D3,2 = D3,1 =

{
(1, ∅)

}
. Note that D3,2 = D3,1

since x3 ∈ 〈x3, x33〉. Entering into the main for-loop, we must consider in the iteration
with i = 2 the three terms x2x3, x32x3, x

3
3 ∈ K[x2, x3] and hence obtain λ

(2)
1 = 1,
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λ
(2)
2 = 3, λ(2)3 = 0. The algorithm then yields

D2,3 =
{(

1, {x2}
)
,
(
x3, {x2}

)
,
(
x23, {x2}

)}
,

D2,2 =
{

(1, ∅), (x3, ∅), (x23, ∅), (x2, ∅), (x2x3, ∅), (x2x23, ∅), (x22, ∅),

(x22x3, ∅), (x22x23, ∅),
(
x32, {x2}

)}
,

D2,1 =
{

(1, ∅), (x3, ∅), (x23, ∅),
(
x2, {x2}

)}
.

It is worth noting that we may simplify the construction of D2,1 by removing the extra
term x32x3 and considering only the two terms x2x3, x33. For i = 1, we consider the
given set U and obtain λ(1)1 = 2, λ

(1)
2 = λ

(1)
3 = 0. Thus,

D1,3 = {1, {x1, x2}), (x3, {x1, x2}), (x23, {x1, x2})} ,

D1,2 = {(1, {x1}), (x3, {x1}), (x23, {x1}), (x2, {x1}), (x2x3, {x1}), (x2x
2
3, {x1}),

(x22, {x1}), (x22x3, {x1}), (x22x
2
3, {x1}), (x32, {x1, x2}), } ,

D1,1 =
{

(1, ∅), (x3, ∅), (x23, ∅), (x2, ∅), (x2x3, ∅), (x2x
2
3, ∅), (x22, ∅), (x22x3, ∅),

(x22x
2
3, ∅),

(
x32, {x2}

)
, (x1, ∅), (x1x3, ∅), (x1x

2
3, ∅), (x1x2, ∅),

(x1x2x3, ∅), (x1x2x
2
3, ∅), (x1x

2
2, ∅), (x1x

2
2x3, ∅), (x1x

2
2x

2
3, ∅),(

x1x
3
2, {x2}

)
,
(
x21, {x1}

)
,
(
x21x3, {x1}

)
,
(
x21x

2
3, {x1}

)
,
(
x21x2, {x1, x2}

)}
.

D = D1,1 is the constructed complementary decomposition for I. Finally, we note that
since the sequence of the x1-degrees in U is 2, 0, we do not need to construct D1,3.

4 Complementary Decompositions from Janet and Janet-like Bases

Janet [22, Sect. 15] presented an algorithm for the construction of a complementary
decomposition from a Janet basis. Gerdt [14, Lem. 24] proposed a version that related
the form of the cones to the Janet division. However, his proof is not completely correct.
Algorithm 3 corresponds to the version appearing in [30, Alg. 5.2] (more precisely,
an improved form contained in the errata to [30] obtainable at the web page of the
author). It has been formulated in a manner that makes it apparent that this algorithm
does nothing but a breadth-first transversal of the Janet tree associated to the given
monomial ideal. Thus this algorithm does not need any real computations, but simply
writes down a complementary decomposition. All computations have already taken
place when the Janet tree was determined as an extended form of the Janet basis.

Theorem 20 Let the ideal I be generated by the terms t1, . . . , tm. Algorithm 3 ter-
minates in finitely many steps and is correct. Its arithmetic complexity is O(nm2λ2n)
where

λ = max
i,j

degi(tj) .

Proof It follows from [30, Lem. 3.1.19] that the set

{xµti | i = 1, . . . ,m, xµ | lcm(t1, . . . , tm)/ti}
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Algorithm 3: Complementary decomposition (from Janet tree of Janet basis)
Data: Janet tree JT of Janet basis of monomial ideal I E K[x1, . . . , xn]
Result: Finite complementary decomposition D of I

1 begin
2 D ←− ∅
3 for k = n, . . . , 1 do
4 foreach node (xν , V ) at level k + 1 in JT do
5 let (xmk x

ν ,W ) be the left most child of (xν , V )

6 if m > 0 then
7 N ←− {x1, . . . , xk−1} ∪ V
8 for i = 0, . . . ,m− 1 do
9 D ←− D ∪

{
(xikx

ν , N)
}

10 return D

contains a Janet basis of I. The maximal number of elements in this set is mλn. On
the other hand, the construction of the Janet tree corresponding to the Janet basis of
I needs O(m2λ2n + mnλn) comparisons, see [23, Thm. 4.2]. By the structure of the
algorithm, it is seen that the number of constructed cones is at most nmλn+1. These
arguments show that the arithmetic complexity of the algorithm is O(nm2λ2n). ut

Remark 21 If we compare the algorithmic complexity of the Algorithms 1 and 2 on
the one hand and of Algorithm 3 on the other hand (and in particular the number
of constructed cones), then we see that in the algorithms from the last section the
cardinality m of the generating set of I is the decisive factor, as it appears in the
form mn. For the algorithm using a Janet basis, the maximal degree λ in an individual
variable is the dominant factor, whereas m plays only a minor role. Thus for ideals
with a large number of generators it should be preferable. One should also note that
the factor mλn coming from the use of [30, Lem. 3.1.19] is generally much larger than
the actual size of the Janet basis.

If the monomial ideal I E P is quasi-stable and H is its Pommaret basis, then H
is also the minimal Janet basis of I by [16, Thm. 17]. In this situation, for each term
t ∈ H, we have the equality MJ (t,H) = MP(t) of the sets of Janet and Pommaret
multiplicative variables. This means that in order to compute a complementary decom-
position for a quasi-stable ideal, we can apply Algorithm 3 to the minimal Pommaret
basis of I.

Remark 22 Note that we can apply Algorithm 3 to any Janet basis H, i. e. also to
non-minimal bases. Since the minimal Janet basis Hmin is a subset of any other Janet
basis H of the same ideal, each Janet class of the minimal basis Hmin is also a Janet
class of H. This observation implies that each leftmost child node chosen in Line 5 of
Algorithm 3 when applied to Hmin is also chosen when the algorithm is applied to H.
Hence, in the complementary decomposition obtained from the basis H, we get at least
as many cones as in the decomposition obtained from Hmin. Since a term t ∈ Hmin

possesses potentially less Janet-multiplicative variables when considered as element
of the non-minimal basis H, some of these cones may be of smaller dimension than
their counterparts in the decomposition obtained from Hmin. Hence the decomposition
obtained from H will contain in general strictly more cones than the decomposition
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obtained from Hmin. So we may speak of the minimal Janet complementary decompo-
sition which is obtained from the minimal Janet basis Hmin.

In the remainder of this section, we will describe how we can obtain the Janet
complementary decomposition of a monomial ideal I already from its minimal Janet-
like basis, which is always a subset, and most often a proper subset, of the minimal
Janet basis of I. As a starting point, we recall the following result which explains how
the minimal Janet-like basis is related to the minimal Janet basis.

Proposition 23 Given a Janet-like basis U ⊂ T of the monomial ideal I = 〈U〉 E P,
a Janet basis U ′ of the same ideal is defined by

U ′ =

{
t · xµ | t ∈ U ∧ xµ |

∏
xpaa ∈NMP(t,U)

xpa−1
a

}
.

Proof The assertion follows immediately from elementary properties of the Janet and
Janet-like division, respectively. See also [20, Thm. 3], a related, though not identical,
statement. ut

Algorithm 3 traverses the Janet tree of the minimal Janet basis and adds for each
node which is the left-most node of its parent certain cones to the complementary
decomposition. The Janet-like tree of the same ideal can be regarded as a subtree of
this tree. To be able to read off the Janet complementary decomposition already from
this subtree, one needs to relate the minimal child nodes of the larger tree to certain
nodes of the smaller tree. This is indeed possible with Proposition 23.

Proposition 24 Let I E P be a monomial ideal with Janet basis U ′ and Janet-like
basis U . We denote by JT and JLT its Janet and Janet-like tree, respectively. Moreover,
for any tree S, we denote by Lefti(S) the set of nodes at level i which are the minimal
children of their respective parent nodes. Then for each i with 1 ≤ i ≤ n the sets
Lefti(JT ), Lefti(JLT ) are related by

Lefti(JT ) =

{
(t, V ) | ∃(s, V,M) ∈ Lefti(JLT ) : s | t ∧ (t/s) |

∏
xhaa ∈M,
a>i

xha−1
a

}
. (3)

Proof Let (t, V ) ∈ Lefti(JT ) be a minimal child node at level i in the Janet tree. The
term t is of the form t̃|x1=···=xi−1=1, with t̃ ∈ U ′. Then, by Proposition 23, there is a
term s̃ ∈ U such that s̃ | t̃. We can consider its projection s := s̃|x1=···=xi−1=1; this
term is contained in a node (s, V,M) ∈ JLT . Moreover, again by Proposition 23, we
have the degree conditions degj(s) ≤ degj(t) < degj(s) + hj , where hj is defined by

x
hj
j ∈M , for all j > i with xj /∈ V . Now, if degi (s) < degi (t) were true, then s̃ would

induce a term x
degi (s)
i (t̃/x

degi (t)
i ) in the Janet basis U ′, a contradiction to (t, V ) ∈

Lefti(JT ). Hence degi (s) = degi (t). In addition, if (s, V,M) were not in Lefti(JLT ),
then there would be a node (u,W,N) ∈ Lefti(JLT ) with degi (u) < degi (s) but with
degj (u) = degj (s) for all j > i. In particular, we would have N ∩K[xi+1, . . . , xn] =
M ∩ K[xi+1, . . . , xn]. Hence it would induce a node (v,W ) ∈ JT with degi (v) =
degi (u) and degj (v) = degj (t) for all j > i. This is again a contradiction to (t, V ) ∈
Lefti(JT ). Thus, we have shown the inclusion ⊆ in equality (3).
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Conversely, if (s, V,M) ∈ Lefti(JLT ) and (t, V ) ∈ JT is a node in the Janet tree
derived from it by the rules stated in equality (3), then, using a basic fact about the
Janet-like division [20, Prop. 2], it is not hard to see that (t, V ) is indeed in Lefti(JT ),
proving the inclusion ⊇ and finishing the proof. ut

The very technical Proposition 24 has the benefit that the Janet complementary
decomposition of a monomial ideal I can, with its help, be read off already from
its Janet-like tree. Moreover, the cones come in a natural grouping. This grouping
helps to write the decomposition down in a much better readable way. The cones of
the decompositions are sorted into groups. The cones in each group have the same
multiplicative variables and there is one cone in the group whose vertex divides all
other cone vertices of the group:

Corollary 25 Let I E P be a monomial ideal and let JLT be its Janet-like tree.
Let MinNodes(I) denote the set of nodes in JLT which are minimal children of their
respective parent nodes. For each such node (xν , V,M), let k denote its level in the tree.
Then, a complementary decomposition of I is given by

D =
⋃

(xν ,V,M)∈MinNodes(I)
with parent (xρ,V ′,M ′)

{(
xρ · xµ, {x1, . . . , xk−1} ∪ V ′

)
| xµ | xνk−1

k

∏
xhaa ∈M ′

xha−1
a

}
. (4)

Proof The assertion is an immediate consequence of Proposition 24 and the correctness
of Algorithm 3. ut

Corollary 25 induces Algorithm 4 computing a complementary decomposition of a
monomial ideal from a Janet-like basis of it.

Algorithm 4: Complementary decomposition (from Janet-like basis)
Data: Janet-like tree JLT of monomial ideal I E K[x1, . . . , xn]
Result: Finite complementary decomposition D of I

1 begin
2 D ←− ∅
3 for k = n, . . . , 1 do
4 foreach node (xρ, V ′,M ′) at level k + 1 in JLT do
5 let (xmk x

ρ, V,M) be the left most child of (xρ, V ′,M ′)
6 if m > 0 then
7 N ←− {x1, . . . , xk−1} ∪ V ′

8 D ←− D ∪
{
(xρxµ, N) | xµ | xm−1

k

∏
x
ha
a ∈M′

xha−1
a

}
9 return D

The following example serves to illustrate how Proposition 24 can be applied.

Example 26 Let I = 〈xn1 , . . . , xnn〉 ⊂ P. Its minimal Janet basis has 1+n+· · ·+nn−1 =

(nn−1)/(n−1) elements and its Janet tree has, including the root, (
∑n−2
k=0

∑k
`=0 n

`)+
2(nn−1)/(n−1) = O(nn−1) nodes. There are nn−1 nodes in the tree which contribute
cones to the Janet complementary decomposition. They are all at the lowest level 1
of the tree, and they are of the form (t, V,M) with deg1 (t) = n and V ⊆ {x1}. This
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means that each of them contributes exactly n zero-dimensional (one-element) cones
to the complementary decomposition of I.

By contrast, the minimal Janet-like basis of I is equal to its minimal generating
set, it has n elements and its Janet-like tree has (counting also the root) n+(n2 +n)/2
nodes, of which exactly one contributes cones to the complementary decomposition. It
is the node

(
xn1 , ∅, {xn2 , . . . , xnn}

)
at level 1. It yields the complementary decomposition

of I without any further computation:

D =
{

(xµ, ∅) | xµ | xn−1
1 · · ·xn−1

n

}
.

If I ⊂ P is a monomial ideal, then its complementary decomposition obtained
from its Janet-like tree as described in (4) can be used to derive a representation of the
Hilbert polynomial and function of I as linear combinations of binomial coefficients.
By (4), the cones of the Janet complementary decomposition D of I can be collected
into groups. Each group contains all cones of the form (t · s, Yt) where (t, V,M) is a
node in the Janet-like tree of I and the term s varies in the complement of a zero-
dimensional irreducible monomial ideal At = 〈x`1a1

, . . . , x`rar 〉 E K[xa1 , . . . , xar ] ⊂ P.
Note that, according to (4), the generators of At are the non-multiplicative powers M
of the node (t, V,M) together with xνkk , where (xν , Ṽ , M̃) is the minimal child node of
(t, V,M) at level k. The main point here is that all cones in such a group have the same
set of multiplicative variables Yt. Define the compressed decomposition Dc ⊆ D which
contains for each such group only its minimal representative (t, Yt) together with the
irreducible ideal At. The Hilbert function of At has non-zero values only for integers
i in the range 0 ≤ i ≤ mt :=

∑r
j=1(`j − 1). Additionally, we write again qt = deg (t)

and kt = |Yt|. Summing up, we then obtain:

Proposition 27 With the above notations and assumptions, the Hilbert function of
the monomial ideal I is

HFI(q) =
∑

(t,Yt,At)∈Dc
kt>0

mt∑
i=0

[
q ≥ qt + i

]
HFAt(i)

(
q − (qt + i) + kt − 1

kt − 1

)

+
∑

(t,Yt,At)∈Dc
kt=0

mt∑
i=0

[
q = qt + i

]
HFAt(i) .

(5)

Moreover, the Hilbert polynomial of I is obtained by simply dropping the contributions
of zero-dimensional cones and all Kronecker-Iverson symbols:

HPI(q) =
∑

(t,Yt,At)∈Dc
kt>0

mt∑
i=0

HFAt(i)

(
q − (qt + i) + kt − 1

kt − 1

)
. (6)

If we compare (5) with the expression obtained by applying (2) to the Janet com-
plementary decomposition, then it will in general have much less summands. However,
it is not fully explicit, as the numbers HFAt(i) (the h-vectors of the zero-dimensional
ideals At) have to be computed for each vertex t. Thus, one may say that Prop. 27
reduces the problem of computing the Hilbert function of an arbitrary monomial ideal
to the determination of the Hilbert function of zero-dimensional irreducible ideals. As
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these are very special ideals, it is not difficult to obtain the required values. For sim-
plicity, we work with A = 〈x`11 , . . . , x

`r
r 〉 E K[x1, . . . , xr]. It is easy to see that the

Hilbert series of the ideal A is

HSA(z) =
r∏
i=1

`i−1∑
j=0

zi .

Hence, the values to be computed are just the coefficients of zk in HSA(z) for all
0 ≤ k ≤

∑r
i=1(`i − 1). One way to proceed is to use known fast algorithms for

polynomial multiplication, using fast Fourier transforms and related techniques.
However, irreducible monomial ideals are highly structured and possess a symmetry

which can be exploited to achieve a lower complexity. Observe that the map

f : T \ A → T \ A, u 7→
( r∏
i=1

x`i−1
i

)
/u

is a bijection with inverse f−1 = f . This implies HFA(k) = HFA

((∑r
i=1(`i−1)

)
−k
)

for all integers 0 ≤ k ≤
∑r
i=1(`i − 1). Hence the computation of the first half of

the values HFA(k) suffices. Assume now that we have already expanded the Hilbert
series of the “truncated” ideal Ã = 〈x`11 , . . . , x

`r−1

r−1 〉 E K[x1, . . . , xr−1] in one variable

in the explicit form HSÃ(z) =
∑d̃
j=0 cjz

j and want to compute now the Hilbert

series HSA(z) =
∑d
j=0 djz

j of the original ideal A. This is then easily achieved by

multiplying HSÃ with (1 + z + · · · + z`r−1). The coefficients are dj =
∑j
k=0 ck for

0 ≤ j ≤ `r − 1 and dj =
∑j
k=j−`r+1 ck for `r − 1 ≤ j ≤ dd/2e. This implies that all

these new coefficients can be obtained by either one single addition or by an addition
followed by a subtraction. The number of required additions and subtractions is O(d).
Overall, building up the Hilbert series HSA(z) step by step, we see that O

(
r2 · `

)
additions are needed, where ` = max{`i | i = 1, . . . , r}.

5 Hironaka’s Construction

Using ideas of Hironaka [21, §4], one can design an algorithm for the computation of a
complementary decomposition of a quasi-stable monomial ideal. Before giving the al-
gorithm, let us first recall Hironaka’s combinatorial definitions, leading to a description
of a complementary decomposition via projection operators.

Construction 28 (Hironaka’s construction) Let I E P = K[x1, . . . , xn] be a
monomial ideal and let k ∈ {0, 1, . . . , n}. Consider the projection

prk : T → T , t 7→ t|x1=···=xk=1 .

For t ∈ T , define the monomial cone Ck(t) = C{x1,...,xk}(t). Finally, let Nk(I) :=
C{xk+1}(prk+1(I) ∩ T ) \ prk(I). Then, a complementary decomposition of the ideal I
is given by T \ I =

⊔n−1
k=0 Ck(Nk(I)), where Ck(Nk(I)) =

⋃
s∈Nk(I) Ck(s).

Construction 28 works for arbitrary monomial ideals I, but the decompositions
obtained by it can be infinite; more precisely, the set

⋃n−1
k=0 Nk(I) can be infinite.
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Example 29 Consider first the monomial ideal I := 〈x1x2〉 E K[x1, x2]. Since no
multiindex of class 2 is contained in I, this ideal is not quasi-stable. Observe that
pr1(I) ∩ T = {x`2 | ` ≥ 1} and pr2(I) ∩ T = {1}. Hence, Hironaka’s construction
yields the two sets

N0(I) = Cx1

(
{x`2 | ` ≥ 1}

)
\ I =

{
xk1x

`
2 | k ≥ 0, ` ≥ 1

}
\ I = {x`2 | ` ≥ 1} ,

N1(I) = Cx2

(
{1}
)
\ pr1(I) =

{
x`2 | ` ≥ 0

}
\
{
x`2 | ` ≥ 1

}
= {1}.

Thus we obtain the infinite complementary decomposition

T \ I =
(⊔
n∈N
C0(xn2 )

)
t C1(1) .

Consider now the quasi-stable ideal J = 〈x1x2, x22〉 = 〈I, x22〉. As for I, we have
pr1(J )∩T = {x`2 | ` ≥ 1} and pr2(J )∩T = {1}, but this time Hironaka’s construction
yields the two sets

N0(J ) = Cx1

(
{x`2 | ` ≥ 1}

)
\ J =

{
xk1x

`
2 | k ≥ 0, ` ≥ 1

}
\ J = {x2} ,

N1(J ) = Cx2

(
{1}
)
\ pr1(J ) =

{
x`2 | ` ≥ 0

}
\
{
x`2 | ` ≥ 1

}
= {1} .

This time we obtain the finite complementary decomposition

T \ J = C0(x2) t C1(1) .

In the remainder of this section, we show show that those monomial ideals for which
Hironaka’s construction yields a finite complementary decomposition are exactly the
quasi-stable monomial ideals (or equivalently, by Proposition 7, the ideals with finite
Pommaret bases).

First, we present Algorithm 5, which computes the complementary decomposition
from Construction 28 given a minimal Pommaret basis as input. Recall from Remark 5
the notion of Pommaret autoreduction, which we call as a subroutine in Algorithm 5.

Algorithm 5: Complementary decomposition à la Hironaka
Data: Minimal Pommaret basis H of the monomial ideal I = 〈H〉 E P
Result: Finite complementary decomposition D of I

1 begin
2 D ←− ∅
3 H ←− H
4 for k = 1, . . . , n do
5 A←− {xµ ∈ H | cls(xµ) = k}
6 B ←− {xν |xk=1 | xν ∈ A}
7 foreach xν ∈ A do
8 for i = 0, . . . , νk − 1 do
9 D ←− D ∪

{(
xik · (x

ν |xk=1), {x1, . . . , xk−1}
)}

10 H ←− PommaretAutoreduction
(
(H \A) ∪B

)
11 return D
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Proposition 30 Given the minimal Pommaret basis of a quasi-stable monomial ideal
as input, Algorithm 5 terminates and its output is exactly the decomposition from Hi-
ronaka’s construction.

Proof The algorithm obviously terminates on its input. Let k ∈ {1, . . . , n}. We will
show iteratively that:

– At the start of the kth iteration of the outer for loop, H is the minimal Pommaret
basis of prk−1(I).

– During this iteration of the outer for loop, exactly the cones Ck−1

(
Nk−1(I)

)
from

Hironaka’s decomposition of I are added to D.
– At the end of this iteration of the outer for loop, H is the minimal Pommaret basis

of prk(I).

So let k = 1. Obviously, H = H is the minimal basis of the input ideal I = pr0(I)
at the start of the first iteration of the outer for loop. The elements of class 1 are
collected in A and the set pr1(A) is assigned to B. Let xµ ∈ pr1(I) be a term in the
first projection ideal. Then xµ is divisible by either an element of B = pr1(A) or by an
element of pr1(H\A), but not by any element of A, proving that (H\A)∪B generates
pr1(I). Let xν ∈ I with pr1(xν) = xµ; then xν possesses a Pommaret divisor xρ ∈ H.
One can easily show that pr1(xρ) is a Pommaret divisor of pr1(xν) = xµ. Putting
things together, (H\A)∪B is a Pommaret basis of pr1(I) and its autoreduction then
yields the minimal Pommaret basis of pr1(I). Note that, by these arguments, we have
shown that pr1(I) is quasi-stable.

Now we consider the cones that are added to D in this iteration of the loop. It is
obvious that their vertices are elements of C{1}(pr1(I)), but not of pr0(I) = I. So all
added cones are of the form C0

(
N0(I)

)
from Hironaka’s construction. Conversely, let

xζ ∈ N0(I). Then xζ /∈ I, but there exists an exponent ` > 0 such that x`1 · xζ ∈ I.
For the minimal ` with this property, we have that x`1x

ζ is an element of the minimal
Pommaret basis of the input ideal I, since otherwise x`−1

1 · xζ ∈ I, contradicting the
minimality of `. Now, in order to see that C0(xζ) is added to D in this iteration of the
loop, it only remains to be shown that cls (x`1 · xζ) = 1. But this is clear, since ` > 0.
So, this multiindex is of class 1 and an element of the minimal Pommaret basis of the
input ideal, proving that xζ is a (zero-dimensional) cone added to D in this iteration
of loop.

If k > 1, similar arguments lead to the desired result, since the for loop gets the
input H, which at this point of the algorithm is the minimal Pommaret basis of the
quasi-stable ideal prk−1(I). ut

Example 31 We illustrate how Algorithm 5 works by applying it to the quasi-stable
monomial ideal I = 〈H〉 E K[x1, x2, x3] generated by the minimal Pommaret basis

H =
{
x33, x

3
2x3, x

3
2x

2
3, x1x2x3, x1x

2
2x3, x1x2x

2
3, x1x

2
2x

2
3

}
.

– In the first iteration of the outer for loop, we have

A =
{
x1x2x3, x1x

2
2x3, x1x2x

2
3, x1x

2
2x

2
3

}
, B =

{
x2x3, x

2
2x3, x2x

2
3, x

2
2x

2
3

}
and the cones C0

(
{x2x3, x22x3, x2x23, x22x23}

)
are added to D. The set

(H \A) ∪B =
{
x33, x

3
2x3, x

3
2x

2
3, x2x3, x

2
2x3, x2x

2
3, x

2
2x

2
3

}
is involutively autoreduced to the minimal Pommaret basis

{
x33, x2x3, x2x

2
3

}
.



Complementary Decompositions of Monomial Ideals and Involutive Bases 19

– In the second iteration of the outer for loop, we have A = {x2x3, x2x23} and
B = {x3, x23} and the cones C1

(
{x3, x23}

)
are added to D. The set (H \ A) ∪ B =

{x33, x3, x23} is involutively autoreduced to the minimal Pommaret basis {x3}.
– In the third iteration of the outer for loop, we have A = {x3} and B = {1}. The

cone C2
(
{1}
)
is added to D. The set (H \ A) ∪ B = {1} is computed. (This is a

general property of the algorithm: In the last instance of the outer for loop, always
the set {1} is obtained.)

Since we can apply Algorithm 3 to a Janet basis of an arbitrary monomial ideal, it
also works for quasi-stable ideals where any Janet basis is simultaneously a Pommaret
basis. Moreover, since the Janet algorithm only performs a traversal of the Janet tree,
it has a lower complexity than Algorithm 5 performing Pommaret autoreductions in
intermediate steps. Hence, for the computation of a complementary decomposition, it
is preferable to apply Algorithm 3 whenever possible. The following result states that
in the considered situation the outputs of both algorithms are identical.

Theorem 32 Given the minimal Pommaret basis H of the quasi-stable ideal I as
input, Algorithms 3 and 5 produce the same output.

Proof Choose an index k ∈ {1, . . . , n} and let xµ ∈ H be a term contained in the Janet
class H[µk+1,...,µn] with µk minimal. Algorithm 3 adds all cones of the form

(
xik · (x

µ|x1=···=xk=1), {1, . . . , k − 1}
)

with i ∈ {0, . . . , µk−1} to D. If we can show that Algorithm 5 does the same, then we
are done: under this assumption, the algorithm adds at least all cones to the comple-
mentary decomposition which are found by Algorithm 3, but then, by the disjointness
of such decompositions, it cannot add any additional cones, meaning the decompo-
sition produced by Algorithm 5 is exactly the same as the decomposition found by
Algorithm 3. Moreover, we may assume that µk > 0, since if µk = 0, then xµ does not
contribute any monomial cones to D during Algorithm 3.

Define Iq as the ideal generated by H at the very end of the qth iteration of the
outer for loop of Algorithm 3. Certainly, tµ := xµ|x1=···=xk−1=1 ∈ Ik−1. We need to
show that no strict Pommaret divisor of tµ is in Ik−1, since if this is the case, then
tµ belongs to H also at the beginning of the kth iteration of the outer for loop of
Algorithm 3 (that is, after Pommaret autoreduction) applied to H, and the desired
monomial cones are then added to D in this loop iteration.

So let us suppose tν := xνkk x
νk+1

k+1 · · ·x
νn
n ∈ H with νk < µk and tν |P tµ. Observe

that if s > 0, then tν |xk=1 = tµ|xk=1. Let xρ ∈ K[x1, . . . , xk−1] be a term such that
xν := xρ · tν ∈ H — such a term must exist, because in order to construct Ik−1

during Algorithm 3, coming from elements of H, one only divides out powers of the
first k − 1 variables or leaves out some superfluous terms during autoreductions. We
must distinguish several cases:

– cls(xν) ≥ k: This case cannot occur, since xν would be a strict Pommaret divisor
of xµ in this case: xρ = 1 and xν = tν |P tµ |P xµ. This is a contradiction to
xµ ∈ H.

– cls(xν) < k and νk > 0: Then xν is in the Janet class H[µk+1,...,µn] and νk < µk,
a contradiction to the minimality of µk.
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– cls(xν) < k and νk = 0: If also tν |xk=1 = tµ|xk=1, then xν is in the Janet
class H[dk+1,...,dn] and νk = 0, which is a contradiction to the minimality of
µk (recall that µk > 0). If tν |xk=1 6= tµ|xk=1, then the nontrivial Pommaret-
nonmultiplicative prolongation xρ · (tµ|xk=1) of xν possesses a unique Pommaret
divisor xτ in H. If cls(xτ ) < k, then xτ is in the Janet class H[µk+1,...,µn] and
τk = 0, again a contradiction to the minimality of µk. And finally, cls(xτ ) ≥ k

cannot occur, since then xτ would be a proper Pommaret divisor of xµ, impossible
because of the Pommaret autoreducedness of H. ut

Example 33 Consider, as in Example 31, the quasi-stable ideal I = 〈x33, x32x3 , x1x2x3〉.
We follow the steps of Algorithm 3 for I to see that it produces indeed the same output
as Algorithm 5. Note that I has the minimal Janet (and Pommaret) basis

H =
{
x33, x

3
2x3, x

3
2x

2
3, x1x2x3, x1x

2
2x3, x1x2x

2
3, x1x

2
2x

2
3} .

– For k = 3, we have the non-empty Janet class H[] = H at level k + 1 = 4. It
corresponds to the root of the Janet tree and its leftmost child node is (x3, ∅). We
add the cone

(
1, {x1, x2}

)
to D.

– For k = 2, we have the non-empty Janet classes H[3], H[2], H[1] at level k+ 1 = 3

and their left-most child nodes are
(
x33, {x3}

)
, (x2x

2
3, ∅), and (x2x3, ∅). For the first

node, no cone is added, since the x2-degree of its first entry is zero. The two cones
that are added are

(
x23, {x1}

)
and

(
x3, {x1}

)
.

– For k = 1, we have the non-empty Janet classes

H[0,3], H[3,1], H[3,2], H[1,1], H[2,1], H[1,2], H[2,2]

at level k + 1 = 2. Only the last four classes yield leftmost child nodes that con-
tribute cones to D, namely

(
x1x2x3, {x1}

)
,
(
x1x

2
2x3, {x1}

)
,
(
x1x2x

2
3, {x1}

)
and(

x1x
2
2x

2
3, {x1}

)
. The added cones are, accordingly,

(x2x3, ∅), (x22x3, ∅), (x2x23, ∅), (x22x23, ∅) .

Remark 34 As just mentioned, Algorithms 3 and 5 produce the same number of cones
(see Theorem 20). However, since in the latter algorithm we apply a Pommaret autore-
duction procedure, its complexity is not easily determined.

Proposition 35 Let I be a monomial ideal. Hironaka’s construction yields a finite
complementary decomposition of I, if and only if I possesses a finite Pommaret basis.

Proof If I is quasi-stable, then Hironaka’s construction is realised by Algorithm 5,
which obviously yields a finite output. The correctness proof of the algorithm (see
Proposition 30) then finishes this direction of the proof.

If Hironaka’s construction applied to I yields a finite decomposition, then it is a
complementary decomposition of I of the form

T \ I =
n−1⊔
k=0

Ck
(
Nk(I)

)
. (7)

Define the set H :=
⋃n−1
k=0

(⋃
`>k

(
x` · Nk(I)

))
∩ I ⊂ I. This set is obviously finite.

We will now show that it is a Pommaret basis of I.
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Let t ∈ T ∩ I be an arbitrary term in I and set a := cls (t). There is a minimal
integer ` ∈ {a, a+ 1, . . . , n} such that pr`(t) /∈ I (assume I 6= P; if I = P, then it is
obviously quasi-stable) . Since pr`−1(t) ∈ I, there is an integer d with 0 ≤ d < deg` (t)

such that s := xd` pr`(t) /∈ I and x` · s = xd+1
` pr`(t) ∈ I. We claim that there is an

integer k ≤ ` such that s ∈ Nk(I).
Since s /∈ I, there is some integer b ∈ {0, 1, . . . , n− 1} and a term u ∈ Nb(I) such

that s ∈ Cb(u) by equality (7). If b ≤ `, then obviously u = s and s ∈ Nb(I), and
setting k := b yields the claim. Otherwise, b > `. From definition of Nb(I), we know
that u /∈ prb(I), but u ∈ C{b+1}(prb+1(I)). In particular, cls(u) ≥ b+1. By definition
of u, we must also have degr(u) = degr(s) for all r ≥ b+ 1. But now it is clear that u
is exactly prb(s), and since s = xd` pr`(t), we then have u = prb(s) = prb

(
xd` pr`(t

)
) =

prb(t), contradicting u /∈ prb(I). Thus we have proven the claim.
Now, obviously x`s = xd+1

` pr`(t) ∈ H is a Pommaret divisor of t. Since t was
an arbitrary element of I, this observation finally proves that H is a finite Pommaret
basis of I and we are done.

6 Primary and Irreducible Decompositions

The cone decompositions of the complements of monomial ideals that we have studied
so far are not the only way in which one can decompose such a complement. Primary
and irreducible decompositions of monomial ideals are representations of such an ideal
as the intersection of associated ideals with an easier structure. Dually, they can be
interpreted as a representation of the complement of the decomposed ideal as a union
of the complements of ideals that are easier to study. In this section, we review the
definitions of these different types of decompositions, study how they are related to
each other and finally give an algorithm to compute minimal primary decompositions
of quasi-stable ideals using Pommaret bases.

Remark 36 A monomial ideal I E P is prime if and only if it can be generated by a
set of variables. A monomial ideal Q is primary to I = 〈xi1 , . . . , xir 〉, if and only if it
has a generating set that only depends on the variables generating I and that contains
for each xij a pure power xkjij . The associated primes of a monomial ideal are again
monomial ideals. A primary decomposition of a monomial ideal I is a representation
I = Q1 ∩ · · · ∩ Qk with each Q` a primary monomial ideal. Such a decomposition is
called minimal, if the associated primes

√
Q` are pairwise different and none of the Q`

can be omitted in the representation.

Definition 37 A monomial ideal Q E P is called irreducible, if there is a term xµ ∈ T
such that Q = 〈xµii | 1 ≤ i ≤ n, µi > 0〉. An irreducible decomposition of a monomial
ideal I E P is a decomposition I = Q1∩· · ·∩Qk of I into irreducible monomial ideals
Q1, . . . ,Qk. Such a decomposition is called irredundant, if none of the ideals Q` can
be omitted in the decomposition.

Remark 38 Since irreducible monomial ideals are obviously primary, it is clear that
one can obtain a minimal primary decomposition from an irredundant irreducible de-
composition by simply collecting, for each appearing prime, the irreducible components
primary to it. Hence, irreducible decompositions can be regarded as being finer than
primary ones. In turn, if an irredundant irreducible decomposition I = Q1∩· · ·∩Qk of
the monomial ideal I is known, then obviously T \I = (T \Q1)∪· · ·∪(T \Qk) provides
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a decomposition of the complement of I into sets which are easy to describe. A term
xν is in the complement T \Q of a monomial irreducible ideal Q, if and only if νi < µi
for each variable xi dividing the term xµ describing Q. This decomposition is of course
not disjoint, unless I is itself irreducible. Since cone decompositions are disjoint, they
can be regarded as an even finer type of decomposition than the irreducible ones.

We now present a way of obtaining irreducible decompositions from cone decom-
positions. The key point is the following lemma.

Lemma 39 Let I E P be a monomial ideal and {(t,Xt) | t ∈ U} a complementary
cone decomposition of it, where U ⊆ T \I is some subset. Then a (generally redundant)
irreducible decomposition of I is given by:

I =
⋂
t∈U
〈xµi+1
i | t = xµ, xi /∈ Xt〉 . (8)

Proof We show the equivalent statement

T \ I =
⋃
t∈U

(
T \ 〈xµi+1

i | t = xµ, xi /∈ Xt〉
)
. (9)

First, let xν /∈ I be a term from the complement. Since {(t,Xt) | t ∈ U} decomposes
T \ I, there is a term t = xµ ∈ U and a term xρ ∈ K[Xt] such that xν = xµxρ. This
implies, for each variable xi /∈ Xt, νi ≤ µi, and hence xν /∈ 〈xµi+1

i | xi /∈ Xt〉. Thus,
the inclusion ⊆ in (9) follows.

Now, let t = xµ ∈ U be a term appearing in the cone decomposition of T \ I and
let xν /∈ 〈xµi+1

i | xi /∈ Xt〉. An immediate consequence are the inequalities νi ≤ µi for
each index i with xi /∈ Xt. Moreover, multiplying with powers of the variables from
Xt, we find a term txρ ∈ tK[Xt] such that xν divides txρ. Observe that txρ /∈ I and
hence also xν /∈ I. This proves the inclusion ⊇ in (9), finishing the proof. ut

Once we have obtained an irreducible decomposition, we can always extract an
irredundant decomposition by discarding redundant components. Note that, if the ir-
reducible ideals Qµ,Qν with

√
Qµ =

√
Qν are described by the terms xµ, xν , then

Qµ ⊆ Qν if and only if xν divides xµ. In this case we can discard the larger one, Qν .
This means we have to keep those components Qµ with xµ maximal with respect to
the partial order of divisibility. This amounts to a form of monomial autoreduction. It
is desirable to be able to detect a number of redundant components already from the
structure of the cone decomposition. This can be done via Janet-like bases.

Proposition 40 Let U ⊆ T be the minimal Janet-like basis of the monomial ideal
I = 〈U〉 E P. Let the partial multiindex M = [µk, . . . , µn] belong to a minimal node
in the Janet-like tree of V induced by the term xµ ∈ U and contributing cones to the
complementary decomposition of I. Then at most one of the cones belonging toM leads
to an irredundant component in the irreducible decomposition of I. This component is
given by the irreducible ideal

Q =
〈
xµkk
〉

+
〈
xµ`+b`` | ` > k ∧ xb`` ∈ NMP(xµ, U)

〉
. (10)

Proof By Corollary 25, the cones contributed to the complementary decomposition by
the partial multiindex M all have the same set of multiplicative variables. Moreover,
they are supported on terms of the form xikx

µk+1+ak+1

k+1 · · ·xµn+ann with 1 ≤ i < µk
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and xak+1

k+1 · · ·x
an
n |
∏
xb`` ∈NMP(xµ,U) x

b`−1
` . Among them, there is only one term which

is maximal with respect to divisibility, namely

xµk−1
k x

µk+1

k+1 · · ·x
µn
n ·

∏
`>k,x

b`
` ∈NMP(xµ,U)

xb`−1
` .

Hence, applying Lemma 39, we are done. ut

Remark 41 The algorithm for the computation of irreducible decompositions implied
by Proposition 40 can be seen to be largely equivalent to an algorithm developed by
Gao and Zhu [13, Alg. 1]. There, also tree structures of monomial bases are exploited.
While the authors report good performance for highly non-generic monomial ideals
[13, Sect. 7], their algorithm is not the fastest available. Roune’s slice algorithm [27,
28] shows overall better performance. However, his algorithm contains Gao and Zhu’s
approach as a special case for some choices of splitting strategies [27, Sect. 5.2]. For
another approach to the computation of irreducible decompositions via corner sets
see [5].

With the results of the present paper in mind, it is not surprising that algorithms
specialised to computing the irreducible decomposition will show better performance
than algorithms based on tree structures or Janet-like bases, because these give not only
irreducible decompositions but also the finer disjoint complementary decompositions
and hence compute more information.

Example 42 Let us revisit the ideal of Examples 31 and 33 and compute an irredundant
irreducible decomposition for it. One can easily check that U = {x21x2x3, x32x3, x33} is
already the minimal Janet-like basis of the ideal I = 〈U〉. The minimal nodes in the
Janet tree are given by the partial multiindices [1], [1, 1], and [2, 1, 1]. These are all
induced by xµ = x21x2x3 ∈ U with NMP(xµ, U) = {x22, x23}. Applying Proposition 40,
we get the candidates J1 = 〈x3〉, J2 = 〈x2, x33〉, and J3 = 〈x21, x32, x33〉 for components
of the irreducible decomposition. Their associated primes are pairwise different, so the
decomposition cannot be reduced any further and we are done: I = J1 ∩ J2 ∩ J3 is
the desired irredundant irreducible decomposition.

We now specialise to quasi-stable monomial ideals. If we want to compute minimal
primary decompositions for them, we can apply an extended version of Algorithm 5,
which not only gives such a decomposition, but also Pommaret bases for each compo-
nent, thus also proving that the components are quasi-stable, too.

Remark 43 From the operations performed during the first iteration of the for loop in
Algorithm 5, it is immediately clear that after it, H is the minimal Pommaret basis
of the saturation I : 〈x1〉∞. By one of the many equivalent characterisations of quasi-
stable ideals, see e. g. [30, Prop. 5.3.4(iii)], we know that for I the chain of inclusions

I : 〈x1〉∞ ⊆ I : 〈x2〉∞ ⊆ · · · ⊆ I : 〈xn〉∞ (11)

holds. From it and by a well-known property of ideal quotients, we get for any 1 ≤ i < n

the inclusions (I : 〈xi〉∞) : 〈xi+1〉∞ ⊆ I : 〈xi+1〉∞. Since the saturations on the left
hand side commute, we even get an equality. Hence Algorithm 5 computes in the kth
iteration of its for loop a Pommaret basis of the saturation I : 〈xk〉∞.

Now, let d be the smallest class of a term in the Pommaret basis H of I and let
D be maximal among the indices j such that no pure power xpjj appears in H and for
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d ≤ j ≤ D let sj be the maximal exponent of the variable xj appearing in any term
of H. Then, by [30, Prop. 5.3.9], a minimal primary decomposition of I is given by⋂

d≤j≤D
j∈Q

Qj ,

where Q ⊆ {d, d + 1, . . . , D} is the subset of those indices 1 ≤ j ≤ n for which we
have a proper inclusion I : 〈xj〉∞ ( I : 〈xj+1〉∞ and where Qj = I : 〈xj〉∞ +
〈xsj+1

j+1 , x
sj+2

j+2 , . . . , x
sD
D 〉. Note that Qj is a 〈xj+1, xj+2, . . . , xn〉-primary ideal.

To test the condition I : 〈xj−1〉∞ ( I : 〈xj〉∞ in Algorithm 5, we note that
it is equivalent to the condition that at least one term of class j appears in the
Pommaret basis of I : 〈xj−1〉∞. This means that in the current iteration the set
C 6= ∅ is not empty. Whenever this condition is satisfied, we can add the primary ideal
〈H, xsjj , x

sj+1

j+1 , . . . , x
sD
D 〉 to the primary decomposition to be computed. For a concrete

computation, see Example 44.

From Remark 43, we get Algorithm 6, an adapted version of Algorithm 5, which
computes a minimal primary decomposition for a quasi-stable monomial ideal, instead
of a complementary decomposition.

Algorithm 6: Minimal Primary Decomposition from Pommaret Basis
Data: Minimal Pommaret basis H of the monomial ideal I = 〈H〉 E P
Result: Finite number of monomial primary ideals Qj such that I =

⋂
j Qj

1 begin
2 d←− min {cls(t) | t ∈ H}
3 D ←− min {i | ∃ki ∈ N∃xkii ∈ H} − 1
4 for ` = d, . . . , D do
5 s` ←− max {deg`(t) | t ∈ H}
6 H ←− H
7 for k = d, . . . , D do
8 A←− {xµ ∈ H | cls(xµ) = k}
9 if A 6= ∅ then

10 B ←− {xν |xk=1 | xν ∈ A}
11 Qk ←− 〈H, x

sk
k , . . . , x

sD
D 〉

12 H ←− PommaretAutoreduction
(
(H \A) ∪B

)
13 else
14 Qk ←− P

15 return Qd, . . . ,QD

Example 44 Consider, as in Example 31, the quasi-stable ideal I = 〈x33, x32x3, x1x2x3〉.
Note that I has the minimal Pommaret basis

H = {x33, x32x3, x32x23, x1x2x3, x1x22x3, x1x2x23, x1x22x23} .

We show how to obtain a minimal primary decomposition of this ideal using the com-
putations performed in Algorithm 5. We use the arguments described in Remark 43.
First, note that 1 is the least class of an element of H and 2 is the maximal index such
that no pure power of its corresponding variable appears in H. We have the maximal
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exponents s1 = 1 and s2 = 3. Since there is a term of class 1 in H, already in the
first loop iteration we need to add 〈H, x1, x32〉 = 〈x1, x32, x33〉 to the minimal primary
decomposition. The minimal Pommaret basis of the saturation I : 〈x1〉∞ is computed
as H1 = {x33, x2x3, x2x23} (cf. Example 31). It has a term of class 2. Hence, we need to
add 〈H1, x

3
2〉 = 〈x32, x2x3, x2x23, x33〉 to the minimal primary decomposition as a new

component. The minimal Pommaret basis of the saturation I : 〈x2〉∞ is computed as
H2 = {x3} (cf. again Example 31). It has a term of class 3 and hence we must add
〈H2〉 = 〈x3〉 as a third component to the minimal primary decomposition. The algo-
rithm stops after this loop iteration. Hence, all in all, we obtain the minimal primary
decomposition I = 〈x1, x32, x33〉 ∩ 〈x32, x2x3, x2x23, x33〉 ∩ 〈x3〉.

Example 45 Consider the quasi-stable ideal I = 〈x1x3, x2x3, x23〉 E K[x1, x2, x3]. We
compute a minimal primary decomposition of I using Algorithm 5 and Remark 43. Note
first that I is already given by its minimal Pommaret basis H = {x1x3, x2x3, x23}.
There is a term of class 1 in H, so d = 1, and the maximal index j such that no
pure xj-power appears in H is D = 2. Moreover, we have the maximal degrees s1 = 1
for x1 and s2 = 1 for x2. Since there is a term of class 1, we must immediately add
the primary ideal 〈H, xs11 , x

s2
2 〉 = 〈x1, x2, x23〉 as a first component to the primary

decomposition. Algorithm 5 now computes the minimal Pommaret basis H1 = {x3}
of I : 〈x1〉∞. There is no term of class 2 in H1, so no component is added to the
primary decomposition in this loop iteration. In the next iteration, simply 〈x3〉 is
added and the algorithm terminates. Thus, we get the minimal primary decomposition
I = 〈x1, x2, x23〉 ∩ 〈x3〉, in which no 〈x2, x3〉-primary ideal appears.

7 Conclusions

In [34, pp. 23], Vasconcelos called complementary decomposition an approach that is
not greatly useful computationally but it is often nice theoretically. We believe that the
first part of his assessment is not really correct. Involutive bases have proven to be a
very useful computational tool for many purposes and the key idea underlying both
their theory and their algorithmics are combinatorial decompositions. The simplest
application is that because of these induced decompositions one can straightforwardly
read off Hilbert function and polynomial of the ideal generated by an involutive basis.
But also deeper applications like the existence of an induced free resolution with a
special structure (see e. g. [1,2,3] and references therein) rely strongly on these disjoint
decompositions.

In this work, we discussed and compared different approaches to complementary
decompositions proposed in the literature, in particular with respect to their complex-
ity. It turned out that the oldest approach, namely the one presented by Janet almost
100 years ago, is the most efficient one, in particular in the novel optimised form based
on Janet-like bases presented here. As already remarked above, the presented complex-
ity of the algorithms using Janet(-like) bases includes and is dominated by the cost for
computing the basis; the decomposition itself requires essentially only the operations
needed to write it down. We considered here only monomial ideals. In actual appli-
cations, these typically arise as the leading ideals of polynomial ideals and either a
Gröbner or a Janet(-like) basis is used to determine them. In this case, the advantage
of Janet’s approach is even more pronounced.

When Gerdt and Blinkov [20,19] introduced Janet-like bases, they were mainly con-
cerned with the algorithmic advantages of this “condensed” form of Janet bases. But
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they also noted that it is possible to read off Hilbert function and polynomial directly
from a Janet-like basis. However, they did not use a complementary decomposition,
but instead computed the Hilbert function as the difference of the volume functions of
the full polynomial ring and the ideal, respectively (this approach is applicable for any
involutive basis, as one needs only a cone decomposition of the ideal itself). Further-
more, they did not use any compressed form, but provided for the volume function of
the ideal a sum containing as many summands as the Janet basis obtained by expand-
ing the Janet-like basis contains elements. Thus strictly speaking, they did not really
use the Janet-like basis, but derived exactly the same expression one obtains from the
Janet basis. By contrast, our Proposition 27 is based on a compressed complementary
decomposition and the expression for the Hilbert function given there contains gen-
erally much less summands than the one by Gerdt and Blinkov. Although it is not
completely explicit, we have shown that it can be evaluated very efficiently.

We did not consider specifically Rees decompositions [24], i. e. decompositions where
the sets of the multiplicative variables are always of the form {x1, x2, . . . , xk} for some
index k depending on the vertex of the cone, which are of interest for some theoret-
ical applications. Their construction requires some generic choices and an expensive
algorithm was presented by Sturmfels and White [33]. Bayer [6] studied already ear-
lier complementary Rees decompositions for the special case of Borel ideals under the
name wild card partition. It is much simpler to obtain such decompositions directly
from a Pommaret basis using Janet’s algorithm (the generic choices appear then in
the construction of the Pommaret basis); a direct comparison with the algorithm of
Sturmfels and White can be found in an appendix of [29]. We also mention that a
rather redundant Rees decomposition can be immediately written down in closed form
from any Pommaret basis [30, Prop. 5.1.6]. However, the decompositions obtained by
Janet’s algorithm contain usually much less cones.

Our results on Hironaka’s construction are mainly of theoretical interest. First of
all, they clarify the meaning of his genericity condition (called Hironaka’s box condition
in [4] where it plays an important role). By Proposition 35, the construction yields a
finite decomposition only for ideals from a well-known class, namely for quasi-stable
ideals. This observation shows again that Hironaka worked implicitly frequently with
Pommaret bases. Then Theorem 32 shows that Janet’s algorithm produces for such
ideals the same result as Hironaka’s construction, but typically much more efficiently.
However, as we discussed in the last section, Hironaka’s construction actually provides
more than just a complementary decomposition. Using Algorithm 6, a slight exten-
sion of Hironaka’s construction, it determines as “by-product” Pommaret bases of the
chain of saturations associated with any quasi-stable ideal and this chain contains all
information required to write down an irreducible primary decomposition of the ideal.
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