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Abstract

We present efficient algorithmic methods to detect Hopf bifurcation fixed
points in chemical reaction networks with symbolic rate constants, thereby
yielding information about the oscillatory behavior of the networks. Our
methods use the representations of the systems on convex coordinates that
arise from stoichiometric network analysis. One of our methods then reduces
the problem of determining the existence of Hopf bifurcation fixed points to a
first-order formula over the ordered field of the reals that can then be solved
using computational logic packages. The second method uses ideas from
tropical geometry to formulate a more efficient method that is incomplete in
theory but worked very well for the examples that we have attempted; we
have shown it to be able to handle systems involving more than 20 species.
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1. Introduction

The dynamics of (bio)-chemical systems are usually described by power-
law kinetics, i.e. the reaction rates are proportional to some power of the
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species concentrations involved. If it is assumed that these (bio)-chemical
systems follow mass action kinetics then the dynamics of these reactions can
be represented by ordinary differential equations (ODE) for systems with-
out additional constraints or by differential algebraic equations (DAEs) for
systems with constraints. In complex systems it is sometimes difficult to
estimate the values of the parameters of these equations, so simulation stud-
ies involving the kinetics constitute a daunting task. Nevertheless, quite a
few conclusions regarding the dynamics can be drawn from the structure of
the reaction network itself. In this context, there has been a surge in the
development of algebraic methods that are based on the structure of the
network and the associated stoichiometry of the chemical species. These
methods are aimed at understanding the qualitative behavior (e.g., steady
states, stability, bifurcations, and periodic orbits) of the network. In partic-
ular, the analysis of chemical reaction networks by detecting the occurrence
of Hopf bifurcations was a topic of considerable research effort in the last
decade due to its relation to oscillatory behavior. A fully algebraic method
for the computation of Hopf bifurcation fixed points for systems with poly-
nomial vector fields has already been introduced by El Kahoui and Weber
[1] using the powerful technique of quantifier elimination on real closed fields
[2]. This technique has already been successfully applied to the mass ac-
tion kinetics of few dimensions [3]. Although the method is complete in
theory it fails in practice for systems of higher dimensions and for systems
with constraints which occur in chemical and biochemical systems. Using
ideas from so called stoichiometric network analysis (SNA) [4], it is possible
to analyze the system dynamics in flux space instead of the concentration
space and to represent the space of the steady states with a combination of
subnetworks using methods from convex geometry. Methods for detecting
Hopf bifurcations using similar approaches have been used in several “hand
computations” in a semi-algorithmic way for parametric systems, the most
elaborate of which is described in [5].

In this paper we present efficient algorithmic methods to detect Hopf
bifurcation fixed points in chemical reaction networks with symbolic rate
constant; our methods are based on combinations, enhancements and exten-
sions of these previous methods. In the first algorithmic method presented
in this paper we applied a combination of the known (and already demon-
strated) algorithmic reduction to quantifier elimination problems over the
reals and the algorithmic solutions of these problems with techniques arising
from stoichiometric network analysis, such as the use of convex coordinates.
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Technically this combination will yield an existentially quantified problem
that consists of determining Hopf bifurcation fixed point with empty unsta-
ble manifold involving the conjunction of the following condition: an equality
condition on the principal minor ∆n−1 = 0 of the Jacobian of the vector field
in conjunction with inequality conditions on ∆n−2 > 0 ∧ · · · ∧ ∆1 > 0 and
positivity conditions on the variables and parameters.

Another method for the parametric detection of Hopf bifurcations that
also uses techniques of stoichiometric networks analysis is presented as the
second algorithm in this paper. This algorithm builds on the basic observa-
tion that the condition for existence of Hopf bifurcation fixed points when
using convex coordinates is given by the single polynomial equation ∆n−1 = 0
(together with positivity conditions on the convex coordinates) and (drop
resp. delaying a test for the existence of unstable empty manifolds on al-
ready determined witness points for Hopf bifurcations). Therefore the main
algorithmic problem is to determine whether a single multivariate polyno-
mial can have a zero for positive coordinates. For this purpose we provide
heuristics on the basis of the Newton polytope that ensure the existence of
positive and negative values of the polynomial for positive coordinates.

We evaluate our methods on a variety of examples—some of which con-
cern a number of dimensions even higher than 20. Considering the perfor-
mance of our methods we could even analyze some networks in their unre-
duced forms, a task for which the only previously available approach was the
analysis of quasi-steady state approximations.

2. Chemical Reaction Networks

In chemical and biochemical systems, reactions networks can be repre-
sented as a set of reactions. A chemical reaction occurs when two or more
chemical species react to become new chemical species. This process is usu-
ally represented by an equation in which the reactants are given on the left-
hand side of an arrow and the products on the right-hand side; the numbers
next to the species, called stoichiometric coefficients, present the relative
amounts in which the chemical species participate in a reaction; and the pa-
rameter on the arrow, called the rate constant, stands for an experimental
constant that influences the reaction velocity. A chemical reaction is called
irreversible if it proceeds only in one direction and is called reversible, if it can
proceeds in either direction. In order to be compatible with thermodynamics,
in reversible reactions, the difference between the kinetic exponents of the
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reverse and forward reactions must be equal to the stoichiometric coefficient
for each species; this is referred to as mass-action kinetics.

An example of a chemical reaction, as it usually appears in the literature,
is the following:

A+B
k−→ 3A+ C

In this reaction, one unit of chemical species A and one of B react (at reaction
rate k) to form three units of A and one of C. The concentrations of these
three species, denoted by xa,xb and xc, will change in time as the reaction
occurs. Under the assumption of mass-action kinetics, species A and B
react at a rate proportional to the product of their concentrations, where
the proportionality constant is the rate constant k. Noting that the reaction
yields a net change of two units in the amount of A [6, 7, 5], we obtain the
following corresponding differential equations:

ẋa = 2kxaxb

ẋb = −kxaxb
ẋc = kxaxb (1)

A chemical reaction network can be defined as a finite set of chemical
reactions. It can be presented as a finite directed graph whose vertices are
labeled with complexes and whose edges are labeled with parameters (reac-
tion rate constants). Specifically, the digraph is denoted as G = (V,E), with
vertex set V = {1, 2, ...,m} and edge set E ⊆ {(i, j) ∈ V ×V : i 6= j}. A net-
work is reversible if the graph G is undirected, in which case each undirected
edge has two labels kij and kji [7, 6].

2.1. Flux Cone and Convex Parameters

The usual way to understand the behavior of mass-action chemical sys-
tems is to observe the time evolution of the species concentration. This can
be mathematically represented by a system of coupled differential equations,
where each equation represent a change in a corresponding species concentra-
tion. With this approach, the analysis of chemical systems in concentration
space increases in difficulty as the number of species increases.

In 1980, Clarke introduced a new method, called stoichiometric network
analysis (SNA), to analyze the stability of mass-action chemical reaction
systems[4]. The idea of SNA is to observe the dynamics of the system in
reaction space instead of concentration space. This leads to the expansion of
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the steady state into a combination of subnetworks that form a convex cone
in flux-space, called a flux cone [8].

To analyze a chemical system one is interested in its stationary reac-
tion behavior, which is observable in experiments, e.g., one investigates the
solution set of

Sv(x, k) = 0. (2)

where S represents the stoichiometric matrix and v(x, k) represents the flux
vector. As long as we split each reversible reaction into two irreversible
reactions (corresponding to the forward and backward directions) the flux
through these reactions must be greater than or equal to zero, i.e.,

v(x, k) ≥ 0 (3)

The set of all possible stationary solutions over the network N that fulfil
the equation (2) and the constraint (3) defines a convex polyhedral cone,
called flux cone [4, 9]. The minimal set of generating vectors E , which can be
geometrically interpreted as the edges of the flux cone are known in chemistry
as extreme fluxes or extreme currents . Each flux vector satisfying the steady-
state equations can be represented in flux space as a linear combination of
the extreme currents E with nonnegative coefficients ji called the convex
parameters .

2.2. Modeling Chemical Systems with Pseudolinear Ordinary Differential Equa-
tions

The differential equations in chemical reaction networks are usually con-
strained reflecting various physical conservation laws. The systems with lin-
ear constraints that are often found in chemical reaction networks can easily
be generalized to pseudolinear ordinary differential equations . The basic un-
derlying property of the considered differential equations is captured by the
following definition.

Definition 1. We call an autonomous system of ordinary differential equa-
tions ẋ = φ(x) for an unknown function x : R → R

n pseudolinear, if its
right hand side can be written in the form φ(x) = Nψ(x) with a constant
matrix N ∈ Rn×m and some vector valued function ψ : Rn → R

m.

Obviously, any polynomially nonlinear system can be written in such a
form, if we take as ψ(x) the vector of all terms appearing on the right-hand
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side of the system. As one can see from the following two lemmata, the
pseudolinear structure is of interest only in the case that the matrix N does
not possess full row rank and thus, the range of N is not the full space Rn.
In the following, we will always assume that the function ψ satisfies m ≥ n,
as this is usually the case in applications like reaction kinetics.

Lemma 1. For a pseudolinear system ẋ = Nψ(x) any affine subspace of the
form Ay = y + imN ⊆ Rn for an arbitrary constant vector y ∈ Rn defines
an invariant manifold.

Proof. Obviously, we have ẋ(t) ∈ imN for all times t and TxAy = imN
for all points x ∈ Ay by the definition of an affine space. Thus, if x(0) ∈ Ay,
then the entire trajectory remain in Ay. �

For application to reaction kinetics, the following minor strengthening of
Lemma 1 is of interest. Assume that the function ψ additionally satisfies
ψ(x) ∈ Rm

≥0 for all x ∈ Rn
≥0 which is for example trivially the case when

each component of ψ is a polynomial with positive coefficients. If we solve
our differential equation for non-negative initial data x(0) = x0 ∈ Rn

≥0, then

the solution always remains in the convex polyhedral cone x0 +
{∑m

i=1 λini |
∀ i : λi ≥ 0

}
where the vectors ni are the columns of the matrix N . Indeed,

in this case the tangent vector ẋ(t) along the trajectory is trivially always a
non-negative linear combination of the columns of N .

Lemma 2. Let vT ·x = Const for some vector v ∈ Rn be a linear conserva-
tion law of a pseudolinear system ẋ = Nψ(x) such that imψ is not contained
in a hyperplane. Then v ∈ kerNT . Conversely, any vector v ∈ kerNT in-
duces a linear conservation law.

Proof. Let us first assume that v ∈ kerNT . Then

d

dt

(
vT · x

)
= vTNψ(x) =

(
NTv

)T
ψ(x) = 0 .

If vT · x = Const is a conservation law, then differentiation with respect

to time yields
(
NTv

)T
ψ(x) = 0. Because of our assumption regarding the

function ψ, this implies that NTv = 0. �
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By a classical result in linear algebra (the four “fundamental spaces” of a
matrix), we have the direct sum decomposition Rn = imN ⊕ kerNT , which
is an orthogonal decomposition with respect to the standard scalar product.
Therefore we may consider Lemma 1 as a corollary to Lemma 2, as the above
described invariant manifolds are simply defined by all the linear conservation
laws produced by Lemma 2.1

Gatermann and Huber [10] speak of a conservation law only in the case
that vi ≥ 0 for all components vi of the vector v. In mathematics, we are not
aware of such a restriction and cannot see any physical reasons to impose it.

3. Hopf Bifurcations and Invariant Manifolds

3.1. Hopf Bifurcations

Consider a parameterized autonomous ordinary differential equation of
the form ẋ = f(u, x) with a scalar parameter u. By a classical result of
Hopf, at the point (u0, x0), this system exhibits a Hopf bifurcation, i. e. an
equilibrium transforms into a limit cycle, if f(u0, x0) = 0 and if the Jacobian
Dxf(u0, x0) has a simple pair of purely imaginary eigenvalues and no other
eigenvalues with zero real parts [11, Thm. 3.4.2].2 The proof of this result
is based on the center manifold theorem. From a physical point of view,
the most interesting case is that the unstable manifold of the equilibrium
(u0, x0) is empty. However, for the mere existence of a Hopf bifurcation, this
assumption is not necessary.

In [1], it is shown that for a parameterized vector field f(u, x) and the
autonomous ordinary differential system associated with it, there is a semi-
algebraic description of the set of parameter values for which a Hopf bifur-
cation (with an empty unstable manifold) occurs. Specifically, this semi-
algebraic description can be expressed by the following first-order formula:

∃x(f1(u, x) = 0 ∧ f2(u, x) = 0 ∧ · · · ∧ fn(u, x) = 0

∧ an > 0 ∧ ∆n−1(u, x) = 0 ∧ ∆n−2(u, x) > 0 ∧ · · · ∧ ∆1(u, x) > 0)(4)

1Note that in the special case most relevant for us, namely that each component of ψ
is a different monomial, the assumption made in Lemma 2 is always satisfied.

2We ignore here the non-degeneracy condition that this pair of eigenvalues crosses the
imaginary axis transversally, as it is always satisfied in realistic models.
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In this formula an is (−1)n times the Jacobian determinant of the matrix
Df(u, x), and ∆i(u, x) is the ith Hurwitz determinant of the characteristic
polynomial of the same matrix Df(u, x).

The proof uses a formula of Orlando [12], which is also discussed in several
monographs, e.g. in [13] and [14]. However, a closer inspection of the two
parts of the proof of [1, Theorem 3.5] shows the following: for a fixed point
(given in possibly parameterized form) the condition that there is a pair of
purely imaginary eigenvalues is given by the condition ∆n−1(u, x) = 0 and
the condition that each other eigenvalue has a negative real part is given
by ∆n−2(u, x) > 0 ∧ · · · ∧ ∆1(u, x) > 0. This statement (without referring
to parameters explicitly) is also contained in [15, Theorem 2], in which a
different proof technique is used.

Therefore, if we drop the condition for Hopf bifurcation points that they
have empty unstable manifolds, a semi-algebraic description of the set of
parameter values for which a Hopf bifurcation occurs for the system is given
by the following formula:

∃x(f1(u, x) = 0 ∧ f2(u, x) = 0 ∧ · · · ∧ fn(u, x) = 0

∧ an > 0 ∧ ∆n−1(u, x) = 0) (5)

Notice that when the quantifier elimination procedure yields sample points
for existentially quantified formulae—as is the case for the virtual-substitution
based method provided by Redlog—then the condition ∆n−2(u, x) > 0 ∧
· · · ∧ ∆1(u, x) > 0) can be tested for the sample points later on, i.e. one can
then test whether this Hopf bifurcation fixed point has an empty unstable
manifold.

Example: Lorenz system. The famous “Lorenz system” [17, 11, 18] is given
by the following system of ODEs:

ẋ(t) = α (y(t)− x(t)) (6)

ẏ(t) = r x(t)− y(t)− x(t) z(t) (7)

ż(t) = x(t) y(t)− β z(t) (8)

It is named after Edward Lorenz at MIT, who first investigated this system
as a simple model arising in connection with fluid convection.

After imposing positivity conditions on the parameters the following an-
swer is obtained using a combination of Redlog and formula simplification
using SLFQ for the test of a Hopf bifurcation fixed point:
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(−α2 − αβ + αr − 3α− βr − r = 0 ∨ −αβ + αr − α− β2 − β = 0) ∧
−α2 − αβ + αr − 3α− βr − r ≤ 0 ∧

β > 0 ∧ α > 0 ∧ −αβ + αr − α− β2 − β ≥ 0 (9)

When testing for Hopf bifurcation fixed points with empty unstable man-
ifolds, we obtain the following formulae:

α2 + αβ − αr + 3α + βr + r = 0∧
αr − α− β2 − β ≥ 0 ∧
2α− 1 ≥ 0 ∧ β > 0 (10)

These two formulae are not equivalent, and therefore, for the case of the
Lorenz system not all Hopf bifurcation fixed points have unstable empty
manifolds.

3.2. Reduction to Invariant Manifolds

As already discussed in Sec. 2.2, chemical reaction systems with linear
conservation laws can easily be generalized to pseudolinear ordinary differen-
tial equations. However the existence of these constraints makes the Jacobian
matrices singular and thus leads to incorrect computations of Hopf bifurca-
tions. We present here a method to tackle these singularities by reduction to
invariant manifolds. The following material represents a slight generalization
of results already well-known for systems in reaction kinetics (see, e. g. [10]
and references therein).

If a dynamical system admits invariant manifolds, we may consider a sys-
tem of lower dimension by reducing to such a manifold. However, in general
it may not be possible to explicitly derive the reduced system. Nevertheless,
for many purposes, such as stability or bifurcation analysis, one can easily
reduce to smaller matrices. The following result describes such a reduction
process in the linear case. It represents an elementary exercise in basic linear
algebra. To avoid the inversion of matrices, we consider Rn here to be a
Euclidean space with respect to the standard scalar product.
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Lemma 3. Let A be the matrix of a linear mapping Rn → R
n for the stan-

dard basis, and let U ⊆ Rn be a k-dimensional A-invariant subspace. If the
columns of the matrix W ∈ Rn×k define an orthonormal basis of U , then the
restriction of the mapping to the subspace U with respect to the basis defined
by W is given by the matrix W TAW ∈ Rk×k.

Proof. Considered as a linear map Rk → U ⊆ Rn, the matrix W defines a
parametrization of U with inverse W T : U → R

k. Indeed, W TW = 1k, since
the columns of W are orthonormal. If v ∈ U , then v = Ww for some vector
w ∈ Rk and thus W Tv = (W TW )w = w implying that (WW T )v = Ww =
v, i. e. the matrix WW T ∈ Rn×n describes idU . By standard linear algebra,
the matrix W TAW therefore describes the restriction of A to U . �

As a simple application, we note that in the case of a pseudolinear system
ẋ = Nψ(x) the stability properties of an equilibrium xe of the pseudolinear
system ẋ = Nψ(x) are determined by the eigenstructure of the reduced
Jacobian

J = W TNJac
(
ψ(xe)

)
W ∈ Rk×k

where the columns of W form an orthonormal basis of imN . If parameters
are present, then for a bifurcation analysis the eigenstructure of this matrix
and not of the full Jacobian (which is an n-dimensional matrix), is relevant.

3.3. Stability and Bifurcations for Semi-Explicit DAEs

The considerations indicated in the previous section can be easily ex-
tended to more general situations, as they appear in the theory of DAEs.
For simplicity (and because it suffices for our purposes), we assume that we
are dealing with an autonomous system in the semi-explicit form

ẋ = f(x) , 0 = g(x) (11)

where f : Rn → R
n and g : Rn → R

n−k. Furthermore, we assume that
the above system of ordinary differential equations is involutive,3 i. e. that it
already contains all its integrability conditions. This assumption is equivalent
to the existence of a matrix valued function M(x) such that

Jac
(
g(x)

)
· f(x) = M(x) · g(x) . (12)

3See [19] for an introduction to the theory of involutive systems.
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Therefore, one may say that the components of g are weak conservation laws,
as their time derivatives vanish modulo the constraint equations g(x) = 0.

Let xe be an equilibrium of (11), i. e. we have f(xe) = 0 and g(xe) = 0.
We introduce the real matrices

A = Jac
(
f(xe)

)
∈ Rn×n , B = Jac

(
g(xe)

)
∈ R(n−k)×n .

For simplicity, we assume in the following that the matrix B has full rank
(or, in other words, that our algebraic constraints are independent) and thus
that kerB is a k-dimensional subspace. The proof of the next result clearly
demonstrates why the assumption that the system (11) is involutive is im-
portant, as the relation (12) is crucial for it.

Lemma 4. The subspace kerB is A-invariant.

Proof. Set M̄ = M(xe). Differentiating (12) and evaluating the result
at x = xe yields the relation BA = M̄B. Thus, if v ∈ kerB, then also
Av ∈ kerB because B(Av) = M̄(Bv) = 0. �

In the case that (11) is a linear system, i. e. we may write f(x) = Ax and
g(x) = Bx by assuming that xe = 0 , we can easily revert the argument in
the proof of Lemma 4 and thus conclude that now (11) is involutive, if and
only if kerB is A-invariant.

Proposition 5. Let the columns of the matrix W ∈ R
n×k define an or-

thonormal basis of kerB. The linear stability of the equilibrium xe is then
decided by the eigenstructure of the matrix W TAW .

Proof. Linearization around the equilibrium xe yields the associated vari-
ational system ż = Az, Bz = 0. We complete W to an orthogonal matrix Ŵ
by adding some further columns and perform the coordinate transformation
z = Ŵy. This yields the system ẏ = Ŵ TAŴy, BŴy = 0. Because the
columns of W span kerB by construction, the second equation implies that
only the upper k components of y may be different from zero. Furthermore,
Lemma 4 implies that the matrix Ŵ TAŴy is in block triangular form with
the left upper k×k block given by W TAW . If we denote the upper part of y
by ỹ, we thereby obtain the equivalent reduced system ˙̃y = W TAW ỹ which
implies our claim. �
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Let v ∈ Rk be a (generalized) eigenvector of the reduced matrix W TAW ,
i. e. we have (W TAW − λ1k)

`v = 0 for some ` > 0 and λ ∈ R. Because
W TW = 1k and WW T defines the identity map on kerB (see the proof of
Lemma 3), we obtain W T (A − λ1n)`Wv = 0 implying that Wv ∈ Rn is a
(generalized) eigenvector of A for the same eigenvalue λ, since the matrix W T

defines an injective map. Therefore every eigenvalue of the reduced matrix
W TAW is also an eigenvalue of A.

It is also not difficult to interpret the remaining (generalized) eigenvectors
of A. By construction, they are transversal to the constraint manifold defined
by g(x) = 0 and they describe whether this manifold is attractive or repulsive
for the flow of the unconstrained system ẋ = f(x). While this is for example,
of considerable importance to the numerical integration of (11), as it describes
the drift off the constraint manifold arising from rounding and discretization
errors, it has no influence on the stability of the exact flow of (11).

The irrelevance of the remaining (generalized) eigenvectors of A also be-
comes apparent from the following argument. Recall that the differential
part of (11) defines what is often called an underlying differential equation
for the DAE, i. e. an unconstrained differential equation which possesses for
initial data satisfying the constraints the same solution as the DAE. Consider
now the modified system obtained by adding to the right hand side of the
differential part an arbitrary linear combination of the algebraic part. It is
easy to see that the arising DAE (which simply has a different underlying
equation)

ẋ = f(x) + L(x)g(x) , 0 = g(x) ,

where L(x) is a matrix valued function of appropriate dimensions, possesses
exactly the same solutions as (11); in particular xe is still an equilibrium.
If we proceed as above with the linear stability analysis of xe, the matrix
B remains unchanged, whereas A is transformed into the modified matrix
Ã = A + L̄B with L̄ = L(xe). Obviously, kerB is also Ã-invariant, and
furthermore W T ÃW = W TAW , if the columns of W form a basis of kerB
as in Proposition 5.

Therefore, all (generalised) eigenvectors lying in kerB are equal for A
and Ã, so the stability of xe is not affected by this transformation. However,
the remaining (generalised) eigenvectors may change arbitrarily. One can
for example show that by a suitable choice of the matrix L one may always
achieve that the constraint manifold becomes attractive.
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4. HoCoQ: An Algorithm for Computing Hopf Bifurcations using
Convex Coordinates and Quantifier Elimination

In this section we present an algorithmic approach for computing the
Hopf bifurcations in chemical systems using convex coordinates instead of
concentration coordinates. It is based on two methods already presented in
this paper: stoichiometric network analysis and manifold reduction for sys-
tems with conservation laws. It also makes fundamental use of real quantifier
elimination on a real closed field. Figure 1 elucidates the workflow of the al-
gorithm, which is explained in detail in the following subsections and in the
pseudo-code presented in Algo. 4.5

Figure 1:

13



4.1. Pre-processing

To begin the analysis of a chemical network we need two significant pieces
of information to describe all reaction laws. The first piece of information de-
scribes the occurrence of the species in each reaction. This can be presented
by a stoichiometric matrix S, in which the species form the rows and the re-
actions form the columns. Each entry of the matrix presents the difference in
the number of produced and consumed molecules of the corresponding species
in the corresponding reaction. The second piece of information describes the
velocities of the reactions. This can be presented by a flux vector v(x, k)
or by a kinetic matrix K. The entries of this matrix indicate whether the
species is a reactant and therefore effects the velocity of the reaction (entry =
stoichiometric coefficient of species) or not (entry = 0). To enable the com-
putational analysis of a chemical network the reactions should be presented
in a format that enables the accurate representation of the network and al-
lows the computational extraction of required data. For our computations
we use the XML-based format SBML [20], which is widely used in biological
research. As pre-processing step we parse the SBML file that presents the
chemical network and generate the necessary algebraic data using our PoCaB
platform [21]. PoCaB is a software infrastructure and data base that is used
to explore algebraic methods for bio-chemical reaction networks. It provides
tools to extract relevant algebraic entities from the network description such
as stoichiometric matrices and their factorizations, kinetic matrices, polyno-
mial systems, deficiencies and differential equations.

4.2. Polyhedral Computations

The advantage of stoichiometric network analysis is the ability to analyze
subnetworks separately instead of analyzing the whole complex network. The
first step in the analysis is the computation of extreme currents. We must
therefore include algorithms that are capable of dealing with polyhedral com-
putations. There are several software packages for such computations and
in computational geometryin particular, there are two efficient tools that we
use in our current implementation, namely, the Java tool polco4 and the
program polymake5, which was written in Perl and C++ and designed for
the algorithmic treatment of polytopes and polyhedra [22].

4http://www.csb.ethz.ch/tools/polco
5http://www.polymake.org/doku.php
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Enumerating extreme currents E is the basis for simplifying the analysis
of chemical networks by decomposing the network into minimal steady-state
generating subnetworks. The influence of a subnetwork on the full network
dynamics (i.e., how much the given subnetwork plays a part in creating a
certain steady state) depends on the convex parameters ji [4, 23]. From a
chemical perspective, Hopf bifurcations occur mostly in the spaces formed
by two or three adjacent extreme currents, i.e detecting Hopf bifurcations in
subsystems can be restricted to the subsystems that are formed by combining
2-faces or 3-faces of the flux cone. As step 3 of our algorithms, we compute all
subsystems generated by the 2- and 3-faces using polymake. Our algorithm
can also handle d-faces for d > 3 yielding a complete method in theory, but
the restricted case of d = 2, 3, 4 will be of the greatest practical interest.

4.3. Computation of the Hopf Condition

The central task of this approach is to formulate a condition for the
existence of Hopf bifurcations using convex coordinates and based on the
Routh-Hurwitz criterion for each computed subsystem . We first compute
the Jacobian in reaction space using convex parameters, if the Jacobian is
singular, we reduce the subsystem to the invariant manifold, we compute a
semi-algebraic formula expressing the condition for the occurrence of Hopf
bifurcations, and finally, we generate the first-order existentially quantified
formula.

4.3.1. Computation of the Jacobian in Reaction Space

Gatermann et al. [5] proved that the Jacobian of the reaction coordinates
z can be transformed into the following form:

Ĵac(z) = Sdiag(z)Kt (13)

If x is a steady state we transform into convex coordinates ji with z =∑d
i jiEi where d is the dimensionality of the face. When we replace Ĵac(z) in

equation (13) we obtain the new Jacobian in reaction space:

Jac(x) = SĴac(j)diag(
d∑
i

jiEi)Ktdiag(1/x1, ..., 1/xm) (14)

.
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4.3.2. Jacobian on the Reduced Manifold

Chemical reaction networks with conservation laws give rise to a singular-
ity of the Jacobian of the entire polynomial system that presents the network
and also of some Jacobian matrices of the computed subsystems. To com-
pute the Hopf condition the Jacobian matrices should be transformed into
nonsingular matrices. Therefore, we reduce them by computing the Jacobian
Jaci on the reduced manifolds using the method presented in sect. 2.2.

4.3.3. Semi-Algebraic Description of Hopf Bifurcations

We compute the Hopf condition based on the Hurwitz-Hopf criterion.
Therefore, we compute the Hurwitz matrix and the Hurwitz determinants
∆i. The Hopf condition of a subsystem can be expressed in reaction space
using the semi-algebraic description shown in [1] by the following first-order
formula:

∃x(an > 0 ∧ ∆n−1(j, x) = 0 ∧ ∆n−2(j, x) > 0 ∧ · · · ∧ ∆1(j, x) > 0) (15)

where n denotes the number of species in the reaction network.
Our method then involves the solution of these existentially quantified

formulae, which can be computed using general packages for quantifier elim-
ination on real closed fields yielding an answer of true or false, or packages
to test for the satisfiability of the existentially quantified formulae yielding
an answer of satisfiable (sat) or unsatisfiable (unsat).

Notice that real quantifier elimination and formula simplification are
known to be computationally hard problem [24, 25]; there has been con-
siderable and quite successful research on efficient implementations of these
problems during the past decades.

4.4. Integration of Computational Logic Tools

We integrated into our computations the systems listed below, which are
all capable of solving formula (15). Because of the modular structure of our
approach, we will be able to integrate other packages—either elements of
commercial systems or novel developments—easily.

Redlog6 [26, 27], which was originally motivated by the efficient im-
plementation of quantifier elimination based on virtual substitution methods
[24, 28, 29]. Redlog also includes CAD and Hermitian quantifier elimination

6http://www.redlog.eu/
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[30, 31, 32] for the reals as well as quantifier elimination for various other do-
mains [33] including the integers [34, 35]. The development of Redlog was
initiated in 1992 by one of the authors (T. Sturm) of this paper and continues
until today. Redlog is included in the computer algebra system REDUCE,
which is open source.7 In addition to regular quantifier elimination methods
for the reals, Redlog includes several variants of quantifier elimination. In
particular, these variants include extended quantifier elimination [36], which
additionally yields sample solutions for existential quantifiers, and positive
quantifier elimination [37, 3], which includes powerful simplification tech-
niques based on the knowledge that all considered variables are restricted to
positive values. In chemical systems, the region of interest is the positive
cone of the state variables, and the parameters of interest are known also to
be positive, positive quantifier elimination is therefore of special importance
and will be used for our computations.

qepcad [38] implements partial cylindrical algebraic decomposition (CAD).
The development of qepcad started with the early work of Collins and
his collaborators on CAD circa 1973 and continues to this today. qepcad
is supplemented by another software package called SLFQ for simplifying
quantifier-free formulas using CAD. Both qepcad and SLFQ are freely avail-
able.8

The SLFQ system9 uses qepcad as a black box for simplifying quantifier-
free formulas. qepcad is able to simplify formulae, but its time and space
requirements become prohibitive when input formulae are large. SLFQ es-
sentially breaks large input formulae into small pieces, uses qepcad to sim-
plify the pieces, and starts a process of combining simplified subformulae
and applying qepcad to simplify the combined subformulae. Eventually
this process produces a simplification of the entire initial formula.

The commercial computer algebra system Mathematica includes an effi-
cient implementation of CAD-based real quantifier elimination by Strzebon-
ski [39, 40], the development of which began circa 2000.

Z3 is a new and efficient SMT solver that is freely available from Microsoft

7http://reduce-algebra.sourceforge.net/
8http://www.usna.edu/Users/cs/qepcad/B/QEPCAD.html
9Available at http://www.cs.usna.edu/˜qepcad/SLFQ/Home.html
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Research10. It uses novel algorithms for quantifier instantiation and theory
combination [41]. The first external release of Z3 was in 2007.

RSolver11 is a program for solving quantified inequality constraints. Prob-
lems like projecting the solution set of a set of inequality constraints to two
dimensions, or the parametric robust stability of linear differential equations
can be directly formulated as such constraints.

In our software we integrated all the tools listed above. However, in this
paper, we present only results obtained with the freely available tools Red-
log and Z3, which provided the best computation time. Redlog returns
true and Z3 returns sat if the condition for the occurrence of Hopf bifurca-
tion is satisfied. If the condition is not satisfied, they return false and unsat,
respectively.

4.5. Pseudo-Code of the HoCoQ algorithm

Alg. 1 summarizes the steps discussed above and outlines our method
HoCoQ in an algorithmic fashion.

10http://z3.codeplex.com/
11http://rsolver.sourceforge.net/
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Algorithm 1: HoCoQ Method for Computing Hopf Bifurcations in
Reaction Space.

Input: A chemical reaction network N with dim(N ) = n.

Output: The algorithm returns a statement concerning the existence
of a Hopf bifurcation

1 begin
2 R:= false;

3 generate the stoichiometric matrix S and kinetic matrix K from
the reaction network

4 compute the minimal set E of the vectors generating the flux cone

5 for d = 1 . . . n do
6 compute all d-faces (subsystems) {Ni}i of the flux cone

7 for each subsystem Ni do
8 compute from K, S the transformed Jacobian Jaci of Ni in

terms of convex coordinates ji;
9 if Jaci is singular then

10 compute the reduced manifold of Jaci calling the result also
Jaci

11 compute the characteristic polynomial χi of Jaci;

12 compute the Hurwitz determinants of χi;

13 compute the Hopf existence condition for Ni;
14 generate the first-order existentially quantified formula Fi

expressing the Hopf existence condition, the constraints on the
concentrations and the constraints on the cone coordinates;

15 reduce and simplify the generated formula Fi
16 R:= R ∨ Fi

17 return R

4.6. Computation of Examples using HoCoQ Method

We have applied our algorithm HoCoQ on various chemical reaction net-
works that have been discussed in various monographs and for which the
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existing algorithms for the symbolic computations approach fails. We were
able to detect the existence of Hopf bifurcations in some of them, which are
listed below. We thereby demonstrate the results provided by Redlog and
Z3.

4.6.1. Example1: Phosphofructokinase reaction

As a first example, we consider the main example used in the hand compu-
tation presented in [5]—the phosphofructokinase reaction. There are 3 chemi-
cal species and 7 reactions. S1 denotes the product Fructose-1,6-biphosphate,
S2 denotes the reactant Fructose-6-phosphate, and the extension S3 stands for
another intermediate that is in equilibrium with Fructose-1,6-biphosphate.
The network (16) represents the phosphofructokinase reaction.

2S1 + S2
k1−→ 3S1

S2

k5−⇀↽−
k4

0
k2−⇀↽−
k3

S1

k6−⇀↽−
k7

S3. (16)

This chemical reaction system yields the following stoichiometric matrix
S1 and kinetic matrix K1:

S1 =

 1 1 −1 0 0 −1 1
−1 0 0 1 −1 0 0

0 0 0 0 0 1 −1


K1 =

 2 0 1 0 0 1 0
1 0 0 0 1 0 0
0 0 0 0 0 0 1


The flux cone is spanned by the following four vectors (extreme currents):

E1 =
(

0 1 1 0 0 0 0
)
,

E2 =
(

0 0 0 1 1 0 0
)
,

E3 =
(

0 0 0 0 0 1 1
)
,

E4 =
(

1 0 1 1 0 0 0
)
.

This problem has previously been investigated using its formulation in
reaction coordinates in [3]. Using currently available quantifier elimination

20



packages, the problem could not be solved in its parametric form. Only
when using existential closure on the parameters could it be shown by suc-
cessful quantifier eliminations performed in Redlog that there exist positive
parameters for which there exists a Hopf bifurcation fixed point in the posi-
tive orthant. When replicating the experiments we found that the situation
described in [3] still applies.

The results on the subsystems involving 1-faces, 2-faces, 3-faces, and 4-
faces are summarized in Table 1. A Hopf bifurcation can be found using the
1-face E4 and most of the subsystems extending it in less than one second.
While Z3 provides no results for the 4-face E1E2E3E4 after 10000 seconds
computation time, Redlog requires only a few seconds of computation time
to find a Hopf bifurcation fixed point.

Table 1: Computation of Hopf bifurcations in the phosphofructokinase reaction using
HoCoQ algorithm

Subsystem
Redlog Z3

Result Time(s) Result Time(s)
E1 false < 1 unsat < 1
E2 false < 1 unsat < 1
E3 false < 1 unsat < 1
E4 true < 1 sat < 1
E1E2 false < 1 unsat < 1
E1E3 false < 1 unsat < 1
E1E4 true < 1 sat < 1
E2E3 false < 1 unsat < 1
E2E4 true < 1 sat < 1
E3E4 true < 1 sat < 1
E1E2E3 false < 1 unsat < 1
E1E2E4 true < 1 sat < 1
E1E3E4 true 1 sat < 1
E2E3E4 true 2.5 sat < 1
E1E2E3E4 true 6 no result > 10000

4.6.2. Example 2: Enzymatic transfer of calcium ions

Our second example is a biochemical model that was investigated in [5]—
the enzymatic transfer of calcium ions, Ca++, across cellmembranes. It in-
cludes as shown in network (17) six reactions and four species, where S1
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stands for cytosolic Ca++, S2 stands for Ca++ in the endoplasmic reticulum,
S3 denotes the enzyme catalyzing the transport of Ca++ into the endoplas-
mic reticulum, and S4 denotes the enzyme-substrate complex. This system
is autocatalytic insofar as the concentration of cytosolic Ca++ stimulates the
release of stored Ca++ from the endoplasmic reticulum [5].

0
k12−−⇀↽−−
k21

S1

S1 + S2
k43−−→ 2S1

S1 + S3

k56−−⇀↽−−
k65

S4
k76−−→ S2 + S3 (17)

The following stoichiometric matrix S2 and kinetic matrix K2 represent
the kinetic description of the network (17).

S2 =


−1 1 1 1 −1 0

0 0 −1 0 0 1
0 0 0 1 −1 1
0 0 0 −1 1 −1



K2 =


1 0 1 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 1



E1 =
(

1 1 0 0 0 0
)
,

E2 =
(

0 0 1 0 1 1
)
,

E3 =
(

0 0 0 1 1 0
)
.

For this system the Jacobian matrix is singular—therefore, in the classical
sense there are no Hopf bifurcations. However, in the reduced system we find
that there are Hopf bifurcations—and we can compute them in concentration
space as well as using convex coordinates. The results and computation times
are summarized in Table 2.
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Table 2: Enzymatic transfer of calcium ions: Computation of Hopf bifurcations using
HoCoQ algorithm

Subsystem
Redlog Z3

Result Time(s) Result Time(s)
E1 false < 1 unsat < 1
E2 false < 1 unsat < 1
E3 false < 1 unsat < 1
E1E2 true < 1 sat < 1
E1E3 false < 1 unsat < 1
E2E3 false < 1 unsat < 1
E1E2E3 true 11 no result > 10000

4.6.3. Example 3: Model of calcium oscillations in the cilia of olfactory sen-
sory neurons

As the next example, we consider the model for calcium oscillations in the
cilia of olfactory sensory neurons discussed in [42]. The underlying mecha-
nism of this model is based on direct negative regulation of cyclic nucleotide-
gated channels by calcium/calmodulin and does not require any autocatalysis
such as calcium-induced calcium release. Reidl et al. presented a mathemat-
ical model for this example in [42] and gave predictions for the parameter
ranges in which oscillations should be observable. This model contains a
fractional exponent ε, as shown in the following differential equations.

ẋ = k1 − k5xz

ẏ = k2x− 4k3y
2 + 4k4z − k6y

ε

ż = k3y
2 − k4z

The model yields the following stoichiometric matrix S3 and kinetic ma-
trix K3:

S3 =

 1 0 0 0 −1 0
0 1 −4 4 0 −1
0 0 1 −1 0 0


K3 =

 0 1 0 0 1 0
0 0 2 0 0 ε
0 0 0 1 1 0
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The representative vectors of the flux cone of this model are:

E1 =
(

0 1 0 0 0 1
)
,

E2 =
(

0 0 1 1 0 0
)
,

E3 =
(

1 0 0 0 1 0
)
.

Table 3: Model of Calcium Oscillations: Computation of Hopf bifurcations using HoCoQ
algorithm

Subsystem
Redlog Z3

Result Time(s) Result Time(s)
E1 false < 1 unsat < 1
E2 false < 1 unsat < 1
E3 false < 1 unsat < 1
E1E2 false < 1 unsat < 1
E1E3 false < 1 unsat < 1
E2E3 false < 1 unsat < 1
E1E2E3 true < 1 sat < 1

In concentration space the solution of a quantifier elimination problem is
valid only for integer values of the parameter ε; this is because ε appears in
the exponent, and the techniques of quantifier elimination over the ordered
field of the reals is restricted to polynomials (or rational functions).

However, in the formulation in reaction coordinates the parameter ε ap-
pears as a variable with values in the real closed field used in the computa-
tions.

Therefore for a given subsystem we cannot ask only whether a Hopf bi-
furcation fixed point exists, but we can formulate the question with a free
parameter ε.

The answer—a quantifier free formula involving ε—gives the condition for
ε for which a Hopf bifurcation occurs for the subsystem. When investigating
subsystems resulting from 2-faces we found no Hopf bifurcations, but for the
parametric question on 3-faces we obtained the following answer in less than
10sec of computation time using a combination of Redlog and qepcad:

ε+ 2 > 0 ∧ 4ε− 1 < 0
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Thus for ε ∈ (−2, 0.25) we have shown that Hopf bifurcation fixed points
exist (for suitable reaction constants). Using numerical simulations of this
model Reidl et al. [42] could not find Hopf bifurcations for values of the
parameter ε larger than approximately 0.05.

5. HoCaT : Algorithm for Computing Hopf Bifurcations using Convex
Coordinates and Tropical Geometry

The algorithmic method HoCoQ discussed in Sect 4 enabled us to de-
termine the existence of Hopf bifurcations in various (bio-)chemical reaction
networks even for those with conservation laws. For some chemical networks
with complex dynamics, however, it remained difficult to process the final ob-
tained quantified formulae with the currently available quantifier elimination
packages.

In this section we present an efficient algorithmic approach, called Ho-
CaT, which is sketched in Fig. 2. This algorithm uses the basic ideas of
the previous algorithm HoCoQ, namely stoichiometric network analysis and
manifold reduction method for systems with conservation laws. However,
when the discussion provided in Sect. 3.1 for a criterion for the occurrence of
Hopf bifurcations without requiring empty unstable manifolds is carried over
to convex coordinates, the new condition for the existence of Hopf bifurca-
tions is given by ∆n−1(j, x) = 0 only. Solving such single equations enables us
to refrain from utilizing quantifier elimination techniques. Instead, the main
algorithmic problem is to determine whether a single multivariate polynomial
has a zero for positive coordinates.

For this purpose, in Sect. 5.1, we provide heuristics on the basis of the
Newton polytope that ensure the existence of positive and negative values of
the polynomial for positive coordinates, in Sect. 5.2 we present a summary
of the HoCaT Algorithm, and in Sect. 5.3 we apply our method to several
(bio)chemical reaction networks.
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Figure 2:

5.1. Sufficient Conditions for a Positive Solution of a Single Multivariate
Polynomial Equation

The method discussed in this section is summarized in an algorithmic
way in Alg. 2, which uses Alg. 3 as a subalgorithm.

Given f ∈ Z[x1, . . . , xm], our goal is to heuristically certify the existence
of at least one zero (z1, . . . , zm) ∈ ]0,∞[m for which all coordinates are strictly
positive. To start with, we evaluate f(1, . . . , 1) = f1 ∈ R. If f1 = 0, then we
are done. If f1 < 0, then by the intermediate value theorem, it is sufficient to
find p ∈ ]0,∞[m such that f(p) > 0. Similarly, if f1 > 0 it is sufficient to find
p ∈ ]0,∞[m such that (−f)(p) > 0. This algorithmically reduces our original
problem to finding, for given g ∈ Z[x1, . . . , xm], at least one p ∈ ]0,∞[m such
that g(p) = f2 > 0.

26



Algorithm 2: pzerop

Input: f ∈ Z[x1, . . . , xm]

Output: One of the following:

(A) 1, which means that f(1, . . . , 1) = 0.

(B) (π, ν), where ν = (p, f(p)) and π = (q, f(q)) for p, q ∈ ]0,∞[m, which
means that f(p) < 0 < f(q). Then there is a zero on ]0,∞[m by the
intermediate value theorem.

(C) +, which means that f has been identified as positive definite on
]0,∞[m. Then there is no zero on ]0,∞[m.

(D) −, which means that f has been identified as negative definite on
]0,∞[m. Then there is no zero on ]0,∞[m.

(E) ⊥, which means that this incomplete procedure failed.

1 begin
2 f1 := f(1, . . . , 1)
3 if f1 = 0 then
4 return 1

5 else if f1 < 0 then
6 π := pzerop1(f)
7 ν := ((1, . . . , 1), f1)
8 if π ∈ {⊥,−} then
9 return π

10 else
11 return (ν, π)

12 else
13 π := ((1, . . . , 1), f1)
14 ν ′ := pzerop1(−f)
15 if ν ′ = ⊥ then
16 return ⊥
17 else if ν ′ = − then
18 return +

19 else
20 (p, f(p)) := ν ′

21 ν := (p,−f(p))
22 return (ν, π)
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Algorithm 3: pzerop1

Input: f ∈ Z[x1, . . . , xm]

Output: One of the following:

(A) π = (q, f(q)), where q ∈ ]0,∞[m with 0 < f(q).

(B) −, which means that f has been identified as negative definite on
]0,∞[m. Then there is no zero on ]0,∞[m.

(C) ⊥, which means that this incomplete procedure failed.

1 begin
2 F+ := { d ∈ frame(f) | sgn(d) = 1 }
3 if F+ = ∅ then
4 return −
5 foreach (d1, . . . , dm) ∈ F+ do
6 L := {d1n1 + · · ·+ dmnm − c = 0}
7 foreach (e1, . . . , em) ∈ frame(f) \ F+ do
8 L := L ∪ {e1n1 + · · ·+ emnm − c ≤ −1}
9 if L is feasible with solution (n1, . . . , nm, c) ∈ Qm+1 then

10 g := the principal denominator of n1, . . . , nm
11 (N1, . . . , Nm) := (gn1, . . . , gnm) ∈ Zm

12 f̄ := f [x1 ← ωN1 , . . . , xm ← ωNm ] ∈ Z(ω)
13 assert lc(f̄) > 0 when using non-exact arithmetic in the LP

solver
14 k := min{ k ∈ N | f̄(2k) > 0 }
15 return ((2kN1, . . . , 2kNm), f̄(2k))

16 return ⊥
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Figure 3: We consider g0 = −2x6
1 + x3

1x2 − 3x3
1 + 2x1x

2
2. The left hand shows the variety

g0 = 0. The right hand side shows the frame, the Newton polytope, and a separating
hyperplane for the positive monomial 2x1x

2
2 with its normal vector.

We will accompany the description of our method with the example g0 =
−2x6

1 + x3
1x2 − 3x3

1 + 2x1x
2
2 ∈ Z[x1, x2]. Fig. 3 shows an implicit plot of this

polynomial. In addition to its variety, g0 has three sign invariant regions,
one bounded one and two unbounded ones. One of the unbounded regions
contains our initial test point (1, 1), for which we find that g0(1, 1) = −2 < 0.
Therefore our goal is to find one point p ∈ ]0,∞[2 such that g0(p) > 0.

In the spirit of tropical geometry—and we refer to [43] as a standard
reference with respect to its application for polynomial system solving—we
take an abstract view of

g =
∑
d∈D

adx
d :=

∑
(d1,...,dm)∈D

ad1,...,dmx
d1
1 · · ·xdm

m

as the set frame(g) = D ⊆ Nm of all exponent vectors of the contained
monomials. For each d ∈ frame(g), we are able to determine sgn(d) :=
sgn(ad) ∈ {−1, 1}. The set of vertices of the convex hull of the frame is
called the Newton polytope newton(g) ⊆ frame(g). In fact, the existence
of at least one point d∗ ∈ newton(g) with sgn(d∗) = 1 is sufficient for the
existence of p ∈ ]0,∞[m with g(p) > 0.

In our example, we have frame(g0) = {(6, 0), (3, 1), (3, 0), (1, 2)} and
newton(g0) = {(6, 0), (3, 0), (1, 2)} ⊆ frame(g0). We are particularly inter-
ested in d∗ = (d∗1, d

∗
2) = (1, 2), which is the only point that has a positive

sign as it corresponds to the monomial 2x1x
2
2.

To understand this sufficient condition, we are now going to compute
from d∗ and g a suitable point p. We construct a hyperplane H : nTx = c
containing d∗ such that all other points of newton(g) are not contained in H
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and lie on the same side of H. We choose the normal vector n ∈ Rm such
that it points into the halfspace that does not contain the Newton polytope.
The vector c ∈ Rm is such that c

|n| is the offset of H from the origin in the
direction of n.

In our example H is the line x = 1 given by n = (−1, 0) and c = −1.
Fig. 3 depicts the situation.

Considering the standard scalar product 〈·|·〉, it turns out that generally
〈n|d∗〉 = max{ 〈n|d〉 | d ∈ newton(g) }, and that this maximum is strict. For
the monomials of the original polynomial g =

∑
d∈D adx

d and a new variable
ω this observation translates via the following identity:

ḡ = g[x← ωn] =
∑
d∈D

adω
〈n|d〉 ∈ Z(ω).

Therefore, plugging a number β ∈ R into ḡ corresponds to plugging the
point βn ∈ Rm into g and from our identity, we see that in ḡ the exponent
〈n|d∗〉 corresponding to our chosen point d∗ ∈ newton(g) dominates all other
exponents, so for large β, the sign of ḡ(β) = g(βn) equals the positive sign of
the coefficient ad∗ of the corresponding monomial. To find a suitable β, we
successively compute ḡ(2k) for increasing k ∈ N.

In our example we obtain ḡ = 2ω−1− 2ω−3− 2ω−6, and we obtain ḡ(1) =
−2, but already ḡ(2) = 23

32
> 0. In terms of the original g this corresponds

to plugging in the point p = 2(−1,0) =
(

1
2
, 1
)
∈ ]0,∞[2.

It remains to be clarified how to construct the hyperplane H. Consider
frame(g) = { (di1, . . . , dim) ∈ Nm | i ∈ {1, . . . , k} }. If sgn(d) = −1 for all
d ∈ frame(g), then we know that g is negative definite on ]0,∞[m. Otherwise,
assume, without loss of generality, that sgn(d11, . . . , d1m) = 1. We write down
the following linear program:

(
d11 . . . d1m −1

)
·


n1
...
nm
c

 = 0,

 d21 . . . d2m −1
...

. . .
...

...
dk1 . . . dkm −1

·


n1
...
nm
c

 ≤ −1.

This is feasible if and only if (d11, . . . , d1m) ∈ newton(g). In the negative
case, we know that (d11, . . . , d1m) ∈ frame(g) \ newton(g), and we iterate
with another d ∈ frame(g) with sgn(d) = 1. If we finally fail on all such d,
then our incomplete algorithm has failed. In the positive case, the solution
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provides a normal vector n = (n1, . . . , nm) and the offset c for a suitable
hyperplane H. Our linear program can be solved with any standard LP
solver. For our purposes here, we have used Gurobi12; the dual simplex of
GLPSOL13 also performs quite similarly on the input considered here.

For our example g0 = −2x6
1 + x3

1x2 − 3x3
1 + 2x1x

2
2, we generate the linear

program

n1 + 2n2 − c = 0

6n1 − c ≤ −1

3n1 + n2 − c ≤ −1

3n1 − c ≤ −1,

for which Gurobi computes the solution n = (n1, n2) = (−0.5, 0), c = −0.5.
Notice that the solutions obtained from the LP solvers are typically floats,
which we lift to integer vectors by suitable rounding and GCD computations.

Note that we do not explicitly construct the convex hull newton(g) of the
frame(g) although there are advanced algorithms and implementations like
QuickHull14 available for this purpose. Instead we favour a linear program-
ming approach for several reasons. Firstly, we do not require that compre-
hensive information, instead, it is sufficient to find one vertex of the covex
hull that has a positive sign. Secondly, for the application dicussed here,
it turns out that there typically exist only a few (approximately 10%) such
candidate points. Finally, it is known that for high dimensions, the subset
of frame(g) establishing vertices of the convex hull gets comparatively large.
Practical experiments using QuickHull on our data support these theoretical
considerations.

5.2. Summarizing the HoCaT Algorithm

The steps involving the pre-precessing procedure, polyhedral computa-
tion, and computation of the reduced Jacobian that we previously used for
the HoCoQ method and discussed in Sect. 4 remain the same. After comput-
ing the characteristic polynomial of the Jacobian matrix of each subsystem,
we compute the (n− 1)th Hurwitz determinant of the characteristic polyno-
mial, and we apply Alg. 2 to check for positive solutions of the respective

12www.gurobi.com
13www.gnu.org/software/glpk
14www.qhull.org
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polynomial equations ∆n−1(j, x) = 0. Alg. 4 outlines our efficient approach
in an algorithmic fashion.
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Algorithm 4: HoCaT Method for Computing Hopf Bifurcations in
Reaction Space.

Input: A chemical reaction network N with dim(N ) = n.

Output: (Lt, Lf , Lu), which are defined as follows: Lt is a list of
subsystems containing a Hopf bifurcation, Lf is a list of
subsystems in which the occurrence of Hopf bifurcations is
excluded, and Lu is a list of subsystems for which the
incomplete sub-procedure pzerop fails.

1 begin
2 Lt = ∅
3 Lf = ∅
4 Lu = ∅
5 generate the stoichiometric matrix S and the kinetic matrix K of

N
6 compute the minimal set E of the vectors generating the flux cone
7 for d = 1 . . . n do
8 compute all d-faces (subsystems) {Ni}i of the flux cone

9 for each subsystem Ni do
10 compute from K, S the transformed Jacobian Jaci of Ni in

terms of convex coordinates ji
11 if Jaci is singular then
12 compute the reduced manifold of Jaci calling the result also

Jaci
13 compute the characteristic polynomial χi of Jaci
14 compute the (n− 1)th Hurwitz determinant ∆n−1 of χi
15 compute Fi := pzerop(∆n−1(j, x)) using Algorithm 2
16 if Fi = 1 or Fi is of the form (π, ν) then
17 Lt := Lt ∪ {Ni}
18 else if Fi = + or Fi = − then
19 Lf := Lf ∪ {Ni}
20 else if Fi = ⊥ then
21 Lu := Lu ∪ {Ni}

22 return (Lt, Lf , Lu)
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5.3. Computation of Examples using the HoCaT Method

In this section, we will demonstrate the efficiency of our novel approach
HoCaT by analyzing several chemical networks with different dimensions.
We will first compute Hopf bifurcations in the reaction networks already
discussed in 4.6 using the HoCaT method. We will also wish to discuss
and detect the occurrence of Hopf bifurcations in higher dimensional net-
works. We will therefore apply our new method to the 5-dimensional sys-
tem of electro-oxidation of methanol presented in [44], to the well-known 9-
dimensional example MAPK discussed in [45] and in other papers and to the
22-dimensional network modeling the control of DNA replication in fission
yeast [46]. We will also compute Hopf bifurcations in the family of original
models that describe a gene regulated by a polymer of its own protein, which
are well-studied using the quasi-steady state approximation method in [47].

5.3.1. Example1: Phosphofructokinase reaction

As the first example we consider the phosphofructokinase reaction dis-
cussed in 4.6.1.

Table 4: Computation of Hopf bifurcations in the phosphofructokinase reaction using
HoCaT algorithm

Subsystem Result Time
E1 unsat < 1
E2 unsat < 1
E3 unsat < 1
E4 sat < 1
E1E2 unsat < 1
E1E3 unsat < 1
E1E4 sat < 1
E2E3 unsat < 1
E2E4 sat < 1
E3E4 sat < 1
E1E2E3 unsat < 1
E1E2E4 sat < 1
E1E3E4 sat < 1
E2E3E4 sat < 1
E1E2E3E4 sat < 1
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As shown in Table 4, using the HoCaT algorithm, we were able to detect
the occurrence of Hopf bifurcations in less than 1 second for all computed
faces. For comparison, in the case of 4-faces the HoCoQ method requires 6
seconds.

5.3.2. Example 2: Enzymatic transfer of calcium ions

The computation of Hopf bifurcations in the model of the enzymatic
transfer of calcium ions discussed in Sect. 4.6.2 using the HoCaT method
yields the results presented in Table 5.

Table 5: Computation of Hopf bifurcations in the model ‘Enzymatic transfer of calcium
ions’ using HoCaT algorithm

Subsystem Result Time(s)
E1 unsat < 1
E2 unsat < 1
E3 unsat < 1
E1E2 sat < 1
E1E3 unsat < 1
E2E3 unsat < 1
E1E2E3 sat < 1

While the HoCoQ method requires 11 seconds of computation time for
the 3-faces, the HoCaT method needs less than 1 second.

5.3.3. Example 3: Model of calcium oscillations in the cilia of olfactory sen-
sory neurons

Table 6 shows the results of computing Hopf bifurcations in the model
calcium oscillations in the cilia of olfactory sensory neurons discussed in Sect.
4.6.3.
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Table 6: Model for Calcium Oscillations in the cilia of olfactory sensory neurons: Compu-
tation of Hopf bifurcations using HoCaT algorithm

Subsystem Result Time
E1 unsat < 1
E2 unsat < 1
E3 unsat < 1
E1E2 unsat < 1
E1E3 unsat < 1
E2E3 unsat < 1
E1E2E3 sat < 1

5.3.4. Example 4: Electro-oxidation of methanol

Sauerbrei et al. [44] developed a model for a mechanism for the kinetic
instabilities observed in the galvanostatic electro-oxidation of methanol. To
keep the model simple, they neglected the side reactions and assumed that the
whole process runs through HCO and CO. They then proposed the reaction
network (18), which involves five essential species (nonessential species are
enclosed in square brackets).

[MeOHb] + 3∗ k1,Φ−−→ HCO +
[
3H+

]
+ 3e−

HCO
k2−→ CO + 2∗+

[
H+
]

+ (e−)

[H2O] + ∗ k3,Φ−−→ O +
[
2H+

]
+ (2e−)

CO + O
k4−→ 2∗+ [CO2][

2H+
]

+ (2e−) + O
k5,−Φ−−−→ ∗+ [H2O]. (18)

Electrochemical reactions depend exponentially on the double layer po-
tential Φ, so there is no power law kinetics initially. The system can, however,
be transformed into power laws forms by using x3 = ek6Φ as a variable. By
performing certain substitutions as shown in [44] the model yields the follow-
ing differential equations and matrices. Note that this model has a negative
exponent.
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ẋ1 = −3k1x
2
1x3 + 2k2x4 − k3x1x3 + 2k4x2x5 + k5x2x

−1
3

ẋ2 = k3x1x3 − k4x2x5 − k5x2x
−1
3

ẋ3 = k6k7x3 − k1k6x
2
1x

2
3

ẋ4 = k1x
2
1x3 − k2x4

ẋ5 = k2x4 − k4k2x5 (19)

S4 =


−3 2 −1 2 1 0 0
0 0 1 −1 −1 0 0
0 0 0 0 0 −1 1
1 −1 0 0 0 0 0
0 1 0 −1 0 0 0



K4 =


2 0 1 0 0 2 0

0 0 0 1 1 0 0
1 0 1 0 −1 2 1
0 1 0 0 0 0 0
0 0 0 1 0 0 0


The stoichiometric matrix S4 yields the following extreme currents:

E1 =
(

0 0 1 0 1 0 0
)
,

E2 =
(

1 1 1 1 0 0 0
)
,

E3 =
(

0 0 0 0 0 1 1
)
.

We applied the HoCaT algorithm to all possible faces and we were able
to find the occurrence of Hopf bifurcations in the 2-faces E2E3 and the 3-faces
E1E2E3 as shown in Table 8.
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Table 7: Computation of Hopf bifurcations in ‘electro-oxidation of methanol’ using HoCaT
algorithm

Subsystem Result Time(s)
E1 unsat < 1
E2 unsat < 1
E3 unsat < 1
E1E2 unsat < 1
E1E3 unsat < 1
E2E3 sat < 1
E1E2E3 sat < 1

5.3.5. Example 5: Methylene Blue Oscillator System

As the next example we apply the HoCaT method on the well-known
complex autocatalytic methylen blue oscillator (MBO) system. We attempted
to compute Hopf bifurcations in all subsystems of this model that involve 2-
faces and 3-faces using our original HoCoQ approach, but the generated
quantified formulae could not be solved by quantifier elimination, even with
main memory of up to 500 GB and computation times of up to one week.
The MBO model is described by the reaction network (20):
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MB+ + HS− −→ MB + HS

H2O + MB + HS− −→ MBH + HS + OH−

HS + OH− + MB+ −→ MB + S + H2O

H2O + 2MB −→ MB+ + MBH + OH−

HS− + O2 −→ HS + O−2
HS + O2 + OH− −→ O−2 + S + H2O

2H2O + HS− + O−2 −→ H2O2 + HS + 2OH−

O−2 + HS + H2O −→ H2O2 + S + H2O

H2O2 + 2HS− −→ 2HS + 2OH−

MB + O2 −→ MB+ + O−2
HS− + MB + H2O2 −→ MB+ + HS + 2OH−

OH− + 2HS −→ HS− + S + H2O

MB + HS −→ MBH + S

H2O + MBH + O−2 −→ MB + H2O2 + OH−

−→ O2 (20)

The MBO reaction system contains 15 reactions and 11 species O2, O−2 ,
HS, MB+, MB, MBH, HS−, OH−, S, and H2O2. It may be reduced to a
six dimensional system by considering only the essential species MB, MB+,
HS, MBH, O2, and O−2 . The pre-processing step of our algorithm yields the
following two matrices describing the reaction laws: stoichiometric matrix S
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and kinetic matrix K.

S5 =


1 −1 1 −2 0 0 0 0 0 −1 −1 0 −1 1 0
−1 0 −1 1 0 0 0 0 0 1 1 0 0 0 0

1 1 −1 0 1 −1 1 −1 2 0 1 −2 −1 0 0
0 1 0 1 0 0 0 0 0 0 0 0 1 −1 0
0 0 0 0 −1 −1 0 0 0 −1 0 0 0 0 1
0 0 0 0 1 1 −1 −1 0 1 0 0 0 −1 0



K5 =


0 1 0 2 0 0 0 0 0 1 1 0 1 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 1 0 0 0 2 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 1 0

 .

The flux cone of this model is spanned by 28 extreme currents. There are
187 subsystems of 2-faces and 549 subsystems of 3-faces. Using our new
approach HoCaT we were able to detect Hopf bifurcations in the extreme
current E = (0 0 1 0 0 0 0 0 1 1 0 0 1 1 1) and in 105 cases of
2-faces. The following table summarize the results.

Table 8: Results of the computation of Hopf bifurcations in 1-face and 2- faces using
HoCaT

Subsystems Number of cases Satisfied Unsatisfied Unknown
1-face 28 1 27 0
2-faces 187 105 66 15

All computations on a single instance required at most 350 milliseconds
of CPU time.

Recall that a positive answer for at least one of the cases guarantees the
existence of a Hopf bifurcation for the original system in spite of the fact
that there are cases without a definite answer.

5.3.6. Example 6: mitogen-activated protein kinase ( MAPK)

We next consider a well-studied model in cell biology that describes the
activity of mitogen-activated protein kinase (MAPK ). This model is known
to exhibit bistability, namely it has up to two stable equilibria, if the param-
eter vector is located in an appropriate region of parameter space [48, 49].
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Conradi et al. also studied this model in [45] and mentioned that finding
these regions, for example by using numerical tools like bifurcation analysis,
is a non-trivial task as it amounts to searching the entire parameter space.
They show that for a model of a single layer of a MAPK cascade it is pos-
sible to derive analytical descriptions of these regions through the use of
mass action kinetics. As an example, we compute Hopf bifurcations in the
extensively studied 9-dimensional network (21) that belongs to a family of
network structures that has been postulated as a model for a single layer of
a MAPK cascade. We use here the same notations as in [45]. We use A as
a placeholder for either MAPKK or a MAPK, E1 for mono-phosphorylated
MAPKKK or double-phosphorylated MAPKK, and E2 for MAPKK ‘ase or
MAPK ‘ase.

A + E1

k1−⇀↽−
k2

AE1
k3−→ Ap + E1

k4−⇀↽−
k5

ApE1
k6−→ App + E1,

App + E2
k7−⇀↽−
k8

AppE2
k9−→ Ap + E2

k10−−⇀↽−−
k11

ApE2
k12−−→ A + E2. (21)

The MAPK network (21) involves twelve reactions and nine species, A,
E1, AE1, Ap, ApE1, App, E2, AppE2, and ApE2. The appropriate stoichio-
metric matrix S6 and kinetic matrix K6 are as follows:
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S6 =



−1 1 0 0 0 0 0 0 0 0 0 1
−1 1 1 −1 1 1 0 0 0 0 0 0

1 −1 −1 0 0 0 0 0 0 0 0 0
0 0 1 −1 1 0 0 0 1 −1 1 0
0 0 0 1 −1 −1 0 0 0 0 0 0
0 0 0 0 0 1 −1 1 0 0 0 0
0 0 0 0 0 0 −1 1 1 −1 1 1
0 0 0 0 0 0 1 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 −1



K6 =



1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1


.

The flux cone of the MAPK network is spanned by the following six
vectors of extreme currents:

E1 =
(

1 1 0 0 0 0 0 0 0 0 0 0
)
,

E2 =
(

0 0 0 1 1 0 0 0 0 0 0 0
)
,

E3 =
(

0 0 0 0 0 0 1 1 0 0 0 0
)
,

E4 =
(

0 0 0 0 0 0 0 0 0 1 1 0
)
,

E5 =
(

0 0 0 0 0 0 0 0 0 1 0 1
)
,

E6 =
(

0 0 0 1 0 1 1 0 1 0 0 0
)
.

Although it is difficult to compute Hopf bifurcations in the MAPK net-
works, we we were able to detect the occurrence of a Hopf bifurcation using
our algorithm in the subsystem generated by the 3-face of E1, E5, and E6 in
34 seconds of computation time. For all the subsystems generated by 1-faces
or by 2-faces we could exclude them.
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Figure 4: A gene regulated by a polymer of its protein [47]

5.3.7. Example 7: Models of Genetic Circuits

Boulier et al. [47] studied the use of a rigorous quasi-steady state approx-
imation method to determine the existence of Hopf bifurcations in a family
of models describing a gene regulated by a polymer of its own protein. This
family of models is dependent on an integer parameter n that expresses the
number of polymerizations and on featuring a negative feedback loop. The
model sketched in Fig. 4 describes a single gene regulated by a polymer that
is obtained by combining a protein n times. The variables G and H represent
the state of the gene. The mRNA concentration and the concentration of
the protein translated from the mRNA are represented by M and P, respec-
tively. The n types of polymers of P are denoted by G = P1,P2, . . . ,Pn.
Greek letters represent parameters [47].

The family of models yields the following reaction laws.

G + Pn

α−⇀↽−
θ

H, G
ρf−→ G + M, H

ρb−→ H + M,

M
β−→ M + P, M

δM−→ ∅, P
δP−→ ∅, Pi + P

k+
i−⇀↽−
k−i

Pi+1 (1 ≤ i ≤ n− 1).(22)

Applying a rigorous quasi-steady state approximation and several rescal-

43



ings of the variables and parameters yields the following family of ordinary
differential equations [47]:

˙G(t) = θ(γ0 −G(t)−G(t)P (t)n),
˙P (t) = nα(γ0 −G(t)−G(t)P (t)n) + δ(M(t)− P (t)),
˙M(t) = λ1G(t) + γ0µ−M(t), (23)

where n is a natural number.
Sturm et al. [37, 3] also analyzed the existence of Hopf bifurcations in

the 3-dimensional steady-state approximation of the models shown in (23).
They computed its occurrence in concentration space up to n = 10 and they
found the absence of Hopf bifurcations in the family of models for n ≤ 8 and
its existence for n ≥ 9.

We investigated the existence of Hopf bifurcations in the original family
of models for n = 2, . . . , 10, wherein we also considered the fast reactions.
Each model thus involved then 3 +n species and yields corresponding to the
stoichiometric matrix and kinetic matrix. The number of the vectors that
span the flux cone is dependent on the parameter n, which expresses the
number of polymerizations and effect that for increasing n. We applied our
HoCaT method to all 9 models and in contrast to the results of the quasi-
steady state method, we were able to detect the existence of Hopf bifurcations
for n ≥ 3 and its absence for n = 2.

To elucidate the cause of the occurrence of Hopf bifurcations for n ≥ 3
in the original state of the systems, we carefully analyzed the results of
the system with n = 3 polymerizations. The system yields the following
stoichiometric and kinetic matrices:
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S7 =


−1 1 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 −1 0 0 0 0 0
0 0 0 0 1 0 −1 −2 2 −1 1
0 0 0 0 0 0 0 1 −1 −1 1
−1 1 0 0 0 0 0 0 0 1 −1



K7 =


1 0 1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 2 0 1 0
0 0 0 1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 1

 .

The following six extreme currents represent the flux cone:

E1 =
(

0 0 0 0 1 0 1 0 0 0 0
)
,

E2 =
(

0 0 0 0 0 0 0 0 0 1 1
)
,

E3 =
(

1 1 0 0 0 0 0 0 0 0 0
)
,

E4 =
(

0 0 1 0 0 1 0 0 0 0 0
)
,

E5 =
(

0 0 0 1 0 1 0 0 0 0 0
)
,

E6 =
(

0 0 0 0 0 0 0 1 1 0 0
)
.

We observed the absence of Hopf bifurcations in the 1-faces and 2-faces
and its presence in one 3-face E1E2E5 generated by the vectors E1,E2, and E5,
where E5 represents a reversible fast reaction. We also detected its existence
in the trivial cases of 4-faces that contain the subsystem E1E2E5 and the
subsystem E1E3E5E6, where E6 also represent a reversible fast reaction. We
conclude that eliminating fast reactions in the system for quasi-steady state
approximation causes the disappearance of Hopf bifurcations for n ≥ 3.

5.3.8. Example 8: Control of DNA replication in Fission Yeast

As another high-dimensional example, we consider the 22 dimensional
model that describes the control of DNA replication in fission yeast. It is
described in [46] and stored as a curated model in the BioModels database [50]
with the ID BIOMOD0007. The stoichiometric matrix, the kinetic matrix,
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the set of extreme currents, and other algebraic data for this example can be
obtained from our database PoCaB (“platform to explore algebraic methods
for bio-chemical reaction networks”)15. The flux cone of this model is spanned
by 22 extreme currents and yields 230 2-faces and 1539 3-faces.

Using the HoCaT method we were able to detect the existence of Hopf
bifurcations in 69 cases of the 3-faces and its absence in the 2-faces. The
computation of this example also demonstrates the efficiency of our method,
as it enables even the analysis of a 22-dimensional system.
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