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This article continues the description of an implementation of involutive basis
techniques inMuPAD. We show how the methods for the “monomial case”
developed in the first part can be lifted to a large class of polynomial
(including non–commutative) algebras and modules over them. We present
categories and domains for dealing with such algebras and exploiting the rich
combinatorial structure of involutive bases.

Introduction

In the first part [11], the concept of aninvolutive divisionon multi indices of a fixed length was introduced. This
was just a rule restricting the normal divisibility relation by distinguishing for each member of a given finite set of
multi indices between allowed (multiplicative) and non–allowed (non–multiplicative) entries. This restriction led
to the notion ofinvolutive spanof the set consisting of all the multiples of the multi indices with respect only to the
multiplicative directions. We showed how tocompletea set by adding further multi indices such that the normal
and the involutive span coincide. As examples, we considered the two divisions most commonly used in practice,
theJanetand thePommaret division.

Since multi indices are equivalent to the terms of the polynomial ringk[x1, . . . , xn], we may speak of having
treated the “monomial case” of involutive bases. But their real power does not unfold until we have lifted these
methods to the “polynomial case”, that is to ideals ofk[x1, . . . , xn] (or more generally, to submodules of free
polynomial modules). What we will get are special non–reduced Gröbner bases which are advantageous in certain
situations for two reasons. Firstly, it has been shown that the involutive completion algorithm provides a compet-
itive alternative to the Buchberger algorithm (timings can be found, for example, in [10]). Secondly, involutive
bases carry a rich combinatorial structure allowing one to easily read off many invariants; especially with Pom-
maret bases, extensive structure analysis is possible [14]. AMuPAD-library for this task will be presented in a
follow-up to the current article.

In the first two sections of this article, we provide the necessary theoretical background. Since in the polynomial
case involutive bases depend solely on the leading terms with respect to a given term order, they can be defined for
a wide class of algebras resembling polynomial rings but not necessarily commutative – thepolynomial algebras
of solvable types. They were originally introduced by Kandry-Rody and Weispfenning [12] and comprise, for
example, linear differential and difference operators, the Weyl algebra or universal enveloping algebras of Lie
algebras. Here and in the following, we cite only the basic definitions and omit any proofs of the facts we use.
There exist several introductory articles on involutive bases containing the missing details [3, 7, 8, 13].
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Involutive basis methods are available for a variety of computer algebra systems (like, for example, the MAPLE

package “Janet” [1, 2] or the implementation for MATHEMATICA [6]). A very fast and efficientC++ program for
computing Janet bases is presented in [9, 10]. It is obvious what an implementation of the involutive techniques
making use of the domains concept inMuPAD must look like. Polynomial algebras of solvable type become a
category, the heart of which is a generic implementation of the involutive completion algorithm. Together with the
category and domains for involutive divisions from the first part, a domain for handling free modules and a domain
supplying a user interface for computations with involutive bases, the implementation presented here is the most
general so far.

Polynomial Algebras of Solvable Type

LetP = k[x1, . . . , xn] be a polynomial ring over a fieldk. We equip thek-algebraP with alternative multiplica-
tions, in particular with non-commutative ones. We allow that both the variablesxi do not commute any more and
that they operate on the coefficients. The usual multiplication is denoted either by a dot· or by no symbol at all.
Alternative multiplicationsP × P → P are always written asf ? g.

Like Gröbner bases, involutive bases are defined with respect to aterm order. It selects in each polynomialf ∈ P
a leading termlt≺f = xµ with leading exponentle≺f = µ.1 The coefficientr ∈ k of xµ in f is the leading
coefficientlc≺f and the productrxµ is theleading monomiallm≺f . Based on the leading exponents we associate
to each finite setF ⊂ P a set le≺F ⊂ Nn

0 to which we may apply the theory developed in the first part. But this
requires a kind of compatibility between the multiplication? and the chosen term order.

Definition 1 (P, ?,≺) is a polynomial algebra of solvable typefor the term order≺, if the multiplication? :
P × P → P satisfies three axioms.

(i) (P, ?) is a ring with unit1.

(ii) ∀r ∈ k, f ∈ P : r ? f = rf .

(iii) ∀f, g ∈ P : le≺(f ? g) = le≺f + le≺g.

Of course, the usual multiplication in a polynomial ring satisfies these conditions; for a non-trivial example, con-
sider a function fieldk containingn variables, e. g. the field of rational functionsk := C(y1, . . . , yn) equipped
with the correspondingn derivations with respect to the variables. We can then form the ringk[∂1, . . . , ∂n] of
linear differential operators. We have always∂i ? ∂j = ∂j ? ∂i and yi ? ∂j = ∂j ? yi for i 6= j, whereas
∂i ? yi = yi∂i + 1. Thus the product of two monomial operators is given by

a∂µ ? b∂ν =
∑

λ+κ=µ

(
µ

λ

)
a
∂|κ|b

∂yκ
∂λ+ν (1)

where
(
µ
λ

)
is a shorthand for

∏n
i=1

(
µi

λi

)
. For an arbitrary term order≺, we have

le≺
(
a∂µ ? b∂ν

)
= µ + ν = le≺

(
a∂µ

)
+ le≺

(
b∂ν

)
, (2)

as any term∂λ+ν appearing on the right hand side of (1) divides∂µ+ν and thus∂λ+ν � ∂µ+ν .

Because of Condition (iii) in Definition 1 we can define Gröbner bases for left ideals in algebras of solvable type.
The decisive point, explaining the conditions imposed onP, is that normal forms with respect to a finite setF ⊂ P
may be computed in precisely the same way as in the ordinary polynomial ring. In the next section we will see that
the involutive approach also works in this general setting.

1As in the first part, we use themulti indexnotationµ = (µ1, . . . , µn) for n-tuples of nonnegative integers.
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Involutive Bases

We proceed to define involutive bases for left ideals in polynomial algebras of solvable type. In principle, we could
at once consider submodules of free modules over such an algebra. But this just complicates the notation. So we
treat only the ideal case and show at the end of the section how the extension to the submodule case looks like.

How to Define Involutive Bases in the Polynomial Case

Definition 2 Let (P, ?,≺) be an algebra of solvable type over a fieldk andI ⊆ P a left ideal. A finite setH ⊂ P
is an involutive basisof I for an involutive divisionL on Nn

0 if no two elements have the same leading exponent
and le≺H is an involutive basis of the monoid idealle≺I.

In [11], we distinguished betweenweakandstrong involutive bases; our implementation uses only the latter, so
we restrict to them. The definition implies at once that involutive bases are Gröbner bases; in order to delve deeper
into the theory, we next lift the notions of multiplicative variables and involutive span to the polynomial case.

Definition 3 LetF ⊂ P be a finite set andL an involutive division onNn
0 . We assign each elementf ∈ F a set of

multiplicative variables
XL,F,≺(f) =

{
xi | i ∈ NL,le≺F (le≺f)

}
. (3)

Theinvolutive spanof F is then the set

〈 F 〉L,≺ =
∑
f∈F

k[XL,F,≺(f)] ? f ⊆ 〈F 〉 . (4)

A polynomialg ∈ P is involutively reduciblewith respect toF , if it contains a termxµ such thatle≺f |L,le≺F µ
for somef ∈ F . It is in involutive normal formwith respect toF , if it is not involutively reducible. The setF is
involutively autoreduced, if no polynomialf ∈ F contains a termxµ such that another polynomialf ′ ∈ F \ {f}
exists withle≺f ′ |L,le≺F µ.2

It often suffices, if one does not consider all terms ing but only the leading term lt≺g: the polynomialg is
involutively head reducible, if le≺f |L,le≺F le≺g for somef ∈ F . Involutively head autoreducedsets are defined
accordingly. It is clear from the definition that an involutive basis possesses this property, and from it important
results on the uniqueness of normal forms can be derived. We note that for an involutively head autoreduced set
F , the sum in (4) is direct3. It follows easily that for such anF everyg ∈ P has auniquenormal form. IfF is
an involutive basis, then the ordinary normal form from Gröbner basis theory and the involutive normal form even
coincide.

An important aspect of Gröbner bases is the existence of standard representations for ideal elements. For involutive
bases a similar characterisation exists.

Theorem 4 Let I ⊆ P be a non-zero ideal,H ⊂ I a finite set andL an involutive division onNn
0 . Then the

setH is an involutive basis ofI with respect toL and≺ if and only if every polynomialf ∈ I has a unique
involutive standard representation, i. e. it can be written in the formf =

∑
h∈H Ph ? h where the coefficients

Ph ∈ k[XL,H,≺(h)] satisfylt≺(Ph ? h) � lt≺f for all polynomialsh ∈ H.

2Note that the definition of an involutively autoreduced set cannot be formulated more concisely by saying that eachf ∈ F is in involutive
normal form with respect toF\{f}. If we are not dealing with a global division, the removal off fromF will generally change the assignment
of the multiplicative indices.

3The converse holds too.
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It is now obvious that for an involutive basisH of I, ordinary and involutive span are equal:〈H 〉L,≺ = 〈H 〉 = I.
The uniqueness of the standard representation, which does not hold for Gröbner bases, gives a first glimpse on why
involutive bases are very interesting also from a theoretical point of view. This property, among others, allows one
to thoroughly analyse the structure of the ideal under consideration.

Completion to Involution

The remaining important question is now whether any finite setF ⊂ P can becompletedto an involutive basis
of the ideal it generates. This problem can be tackled in exactly the same way as in the monomial case, and the
same restrictions also apply. Only for aNoetherianinvolutive division, the existence of an involutive bases is
always guaranteed. For non-Noetherian divisions, the completion algorithm that we will describe below does not
necessarily terminate. As briefly discussed in the first part, this means for our implementation that we can always
compute Janet bases, whereas Pommaret bases exist only forδ-regular coordinate systems.

For the completion algorithm, we proceed to lift the property oflocal involutionfrom multi indices to polynomial
algebras of solvable type. A finite setF ⊂ P is locally involutivefor the divisionL, if for every polynomial
f ∈ F and for every non-multiplicative variablexj ∈ X̄L,F,≺(f) the productxj ? f has an involutive standard
representation with respect toF . Note that for an involutively head autoreduced setF , we may equivalently
demand thatxj ? f ∈ 〈F 〉L,≺ or that its involutive normal form is0, respectively.

As in the monomial case, two additional conditions required by the used involutive division finally yield the
algorithm for computing an involutive basis (provided that it is finite).Continuity ensures that involution and
local involution are equivalent: if the finite setF ⊂ P is locally involutive for the continuous divisionL, then
〈 F 〉L,≺ = 〈 F 〉. Constructivityis needed for the correctness of the algorithm by telling us that it suffices to
consider only the products appearing in the definition of local involution. Again, we omit the rather technical
definitions.

Algorithm: Completion in(P, ?,≺)
Input: Finite subsetF ⊂ P, involutive divisionL
Output: Involutive basisH of I = 〈 F 〉 with respect toL and≺

/1/ H ← InvHeadAutoReduce L,≺(F)
/2/ loop
/3/ S ←

{
xj ? h | h ∈ H, xj ∈ X̄L,H,≺(h), xj ? h /∈ 〈H 〉L,≺

}
/4/ if S = ∅ then
/5/ return H
/6/ else
/7/ ḡ ← min≺ S
/8/ g ← NormalForm L,≺(ḡ,H)
/9/ H ← InvHeadAutoReduce L,≺(H ∪ {g})

/10/ end if
/11/ end loop

Figure 1: Involutive completion inP

The completion algorithm is shown in Fig. 1. As in the monomial case, in each iteration we check the condition
for local involution (line /4/): if there is a productxj ? h in the setS constructed in line /3/ which is not con-
tained in the involutive span ofH, it is obviously violated. We add toH the normal form of the smallest such
product with respect to≺ (lines /7/ – /9/). This is known as thenormal strategyin the computation of Gr̈obner
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bases; while it is known to work well there with degree compatible term orderings, it is now even crucial in the
termination proof of the completion algorithm. The newH has to be involutively head autoreduced (line /10/)
to ensure uniqueness of the normal forms. Since involutive reducibility is a restriction of ordinary reducibility,
the subalgorithmsNormalForm andInvHeadAutoReduce are simple modifications of the algorithms known
from Gröbner basis theory.

Involutive Bases for Submodules of Free Modules

The generalisation from the ideal to the submodule case is straightforward; one proceeds in the same way as for
Gröbner bases (outlined for example in [5]). We consider a free left moduleM of rank r over a polynomial
algebra of solvable type(P, ?,≺) and underlying polynomial ringk[x1, . . . , xn]. This means thatM has a basis
{e1, . . . , er}, and every element ofM can be expressed as a finite sum ofmonomialsof the formaµ,sx

µes. The
combinatorial information to be extracted consists thus of the multi indexµ and the integers for the position, i. e. it
lies inNn

0 × {1, . . . , r}. We introduce involutive divisions and term orders on it as follows:

• Let L be an involutive division onNn
0 and suppose we are given a finite setN = {(µ1, s1) . . . , (µk, sk)} ⊂

Nn
0 × {1, . . . , r}. Fors = 1, . . . , r, we form the setsNs := {µi | (µi, s) ∈ N} and defineNL,N (µi, si) to be

equal toNL,Nsi
(µi). We then have that(µi, si)|L,N (ν, t) if and only if si = t andµi|L,Nsi

ν.

• After fixing an ordering of the set{1, . . . , r}, we can compare two elements fromNn
0 × {1, . . . , r} by either

first looking at their position indices and breaking ties via applying≺ to the multi indices (position over term)
or vice versa (term over position). In both cases, we get an ordering onNn

0 × {1, . . . , r} which we will call
a module orderand with the help of which we can define all the usual notions like leading term, exponent,
monomial, etc.

This is everything that is needed to apply the theory developed above to submodules ofM.

The MuPAD Category for Polynomial Algebras of Solvable Type

For a generic implemention of the above described algorithms, especially the computation of involutive bases, the
categoryCat::SolvableAlgebra(K) representing all polynomial algebras of solvable type exists.K denotes
here the coefficient field of the underlying polynomial ringP. It follows from Def. 1 that the supercategories are
Cat::Ring andCat::LeftModule(K) . These are the methods provided by the category:

nForm(f,F,<Head>,<Coeffs>): computes a normal form of a domain elementf with respect to the do-
main elements contained in the listF. This is done by successively reducingf with elements ofF until this is
no longer possible.

autoreduce(F,<Head>) : returns a list of domain elements spanning the same ideal as those in the original
list F; no element can be further reduced by the others.

involutiveNForm(f,F,ID,<Head>,<Coeffs>): computes an involutive normal form off moduloF
with respect to the involutive divisionID .

involutiveAutoreduce(F,ID,<Head>) : performs an involutive autoreduction ofF using the involutive
division ID .

involutiveComplete(F,ID,<Head>,<Output>) : computes an involutive basis of the ideal spanned by
the elements ofF with respect to the involutive divisionID .
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With the optionHead, only head reductions are carried out. If the optionCoeffs is given for nForm or
involutiveNForm , the result is a list[nf,C] such thatnf is the (involutive) normal form andC contains
the factors by which the elements ofF have been multiplied during the reduction steps. This means that we obtain
a representationf=C[1]*F[1]+...+C[k]*F[k]+nf 4. The optionOutput displays some information on
the course of the completion algorithm like the intermediate sets, the multiplicative variables of their elements and
which non-multiplicative products are selected.

The following methods have to be supplied by the domains inCat::SolvableAlgebra(K) for extracting
and handling the underlying combinatorial information in the form of multi indices:

leader(f) : returns the “leading information” of the domain elementf , i. e. a list[lc,le] wherelc is the
leading coefficient andle the leading exponent off .

allMonomials(f) : returns a list containing for each monomial off an entry of the form[c,e] with its
coefficient and exponent.

exponentOrder(mu1,mu2) : compares the two multi indices with respect to the term order used by the do-
main; the result is1 if mu1>mu2, -1 if mu1<mu2, and0 if mu1=mu2.

exponent2monomial(mu) : converts the multi indexmuto a domain element consisting of a single monomial
with coefficient1 and exponentmu.

The implemented completion algorithm differs in some points from the one described in Fig. 1.involutive-
Complete actually even computes the uniqueminimal involutive basis, which is defined as follows: for multi
indices, a setN is called a minimal involutive basis if it is contained in every other involutive basisN ′ with the
same span. Obviously,N then must be unique. For the polynomial case, we simply lift this property by saying
that an involutive basis is minimal if its leading exponents form a minimal involutive basis. In [8] the computation
of such bases is described; we follow the algorithm given there. This includes also some optimisations based on an
involutive version of Buchberger’s second criterion; with its help one can recognise in advance if certain normal
form computations will yield zero.

Currently, there exist in theDOMAINS-library of MuPAD three domains that are members ofCat::Solvable-
Algebra . Dom::SolvablePolynomial is merely an interface so that one can use the involutive methods
for polynomials. It inherits directly fromDom::MultivariatePolynomial and justs adds the methods
needed by the category.Dom::LinearDifferentialOperator represents the linear differential operators
given as an example for polynomial algebras of solvable type above.Dom::WeylAlgebra contains, in some
sense, linear differential operators with polynomial coefficients; it is the free associative algebra generated by
x1, . . . , xn, ∂1, . . . , ∂n modulo the commutator relations for these variables. Thus the exponent vectors of elements
from Dom::WeylAlgebra have length2n. The entry mult inherited fromDom::MultivariatePoly-
nomial is overwritten byDom::LinearDifferentialOperator and Dom::WeylAlgebra with the
new non-commutative multiplication. Instances of all three domains are created by specifying the names of the
variables as list of identifiers as first and the coefficient field as second argument. The optional third argument
fixes the term order; it can either be an element ofDom::MonomOrdering or one of the optionsLexOrder ,
DegreeOrder , DegInvLexOrder providing the most commonly used orderings5.

The domainDom::SolvableModule represents free left modules over polynomial algebras of solvable type.
It is obviouslynot a member ofCat::SolvableAlgebra , since a multiplication of domain elements is not
defined (only a scalar multiplication between the coefficient ring and domain elements). Nevertheless, all the
methods described above are implemented and can be called in exactly the same way. The arguments required by
Dom::SolvableModule are the polynomial algebra of solvable typeS over which it is a module and the rank
r . The optional third argument defines how the term order fromS is extended to a module order: if it is"top"

4k is the number of elements in bothCandF.
5The default isDegInvLexOrder .
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(which is the default), then the strategy “term over position” is used; if it is"pot" , then “position over term”
is used. Internally, the representation is based on that ofDom::FreeModule , whereas the output of a domain
element consists of its coordinates with respect to the standard basis inSr and thus is a list of lengthr of elements
from S. Finally we note that everywhere the methods ofCat::SolvableAlgebra would expect or return a
multi index mu, Dom::SolvableModule uses a pair[mu,pos] consisting of the exponent vector and the
position of the term, i. e. the index of the respective basis vector.

Computations with Involutive Bases

Suppose that we are given elements from a polynomial algebra of solvable type or from a free module over it. We
want to compute an involutive basis of the ideal or submodule they generate, read off the combinatorial information
and carry out some basic commutative algebra computations directly related to basis. For this task, the domain
Dom::InvolutiveBasis exists. It is called with exactly the same arguments one normally would give to the
involutiveComplete command, i. e. the list of generators, an involutive division and the desired optional
arguments. From that, it computes an involutive basis. Thus an instance ofDom::InvolutiveBasis consists
of the involutive basis for the ideal or module the spanned by the generators passed as arguments and the various
data that can be read off it; the domain provides procedures for computations using this information.

As an example, we create a domain for analysing the ideal spanned by the linear differential operators∂2
x + y∂2

z

and∂2
y :

MuPAD

>> LDO := Dom::LinearDifferentialOperator([z,y,x], Dom::ExpressionField(normal)):
>> gens := map([D(z)^2+y*D(x)^2, D(y)^2], LDO):
>> PD := Dom::PommaretDivision(3, [3,2,1]):
>> IB := Dom::InvolutiveBasis(gens, PD):

IB is a domain representing a Pommaret basis of this ideal; we can print out the basis elements, their leading terms
and the corresponding multiplicative indices:

MuPAD

>> IB::basisElements;
>> IB::lTerms;
>> IB::multVars

Output

2 2 2 2 2 4 2

[D(y) , D(z) + y D(x) , D(x) D(y), D(y) D(z), D(x) , D(x) D(y) D(z),

4

D(x) D(z)]

2 2 2 2 4 2 4

[D(y) , D(z) , D(x) D(y), D(y) D(z), D(x) , D(x) D(y) D(z), D(x) D(z)]

[{2, 3}, {1, 2, 3}, {3}, {2, 3}, {3}, {3}, {3}]

The entrybasisInfo returns the combined information of these three calls (as a list of triples); the leading
exponent vectors can be obtained withlexps .
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With involutiveNForm , one can compute involutive normal forms with respect to the involutive basisIB ;
involutiveSRep returns, in addition, the coefficients of the involutive standard representation6:

MuPAD

>> IB::involutiveSRep(LDO(D(x)^3*D(y)^3*D(z)^3+D(x)*D(y)*D(z)))
Output

3 3 5 5

[[0, D(x) D(y) D(z), 0, - y D(x) D(y) - 3 D(x) , 0, 0, 0], D(x) D(y) D(z)]

The entries of the first element of the resulting list are the coefficients for the corresponding basis vectors, while
the second element is the involutive normal form.

One basic task where one uses Gröbner bases is the computation ofstandard monomials7, that is to determine the
setNn

0 \ le≺I, which forms ak-vector space basis for the factor moduleP/I when interpreted as monomials. On
the level of multi indices, one has to decompose the complement of le≺I into disjoint cones. This can be done
with the methodcombinatorialDecomposition from the categoryCat::InvolutiveDivision ; for
the Janet division, a simpler and more efficient algorithm exists, which can also be used for the Pommaret division.
The output looks like this:

MuPAD

>> IB::standardMonomials()
Output

[[D(y) D(z), {}], [D(x) D(y) D(z), {}], [D(z), {}], [D(x) D(z), {}],

2 3

[D(x) D(z), {}], [D(x) D(z), {}], [D(y), {}], [D(x) D(y), {}],

2 3

[1, {}], [D(x), {}], [D(x) , {}], [D(x) , {}]]

Each pair consists of a monomial and a set of variables giving the directions into which the cone with that monomial
as base point extends. For our example, thek-vector spaceP/I has finite dimension, and so the cones are zero-
dimensional.

We can formulate this another way: if the term order≺ is degree-compatible, the algebraP/I can be considered
as graded by degree; we have thus computed in the last paragraph aStanley decomposition, i. e. ak-vector space
isomorphismP/I ∼= ⊕t∈Tk[Xt] · t whereT is a set of terms fromP andXt ⊆ {x1, . . . , xn}. This fact allows us
to determine at once the Hilbert series of the graded moduleP/I; it can be read off the involutive basisH for the
involutive divisionL via the formula

HP/I(λ) =
1

(1− λ)n
−

∑
f∈H

λ|le≺f |

(1− λ)|NL,le≺H(f)| (5)

Dom::InvolutiveBasis possesses the methodshilbertSeries , hilbertFunction , hilbertPo-
lynomial andhilbertRegularity (the degree from which on the Hilbert function and the Hilbert poly-
nomial yield the same values) which compute those quantities of the factor module. For our example, the Hilbert
polynomial is of course 0, because the ideal under consideration is a zerodimensional ideal; for the Hilbert series
and regularity we get:

6For these two methods, the optionHead is again available.
7Originally, they were introduced by Buchberger for that purpose.
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MuPAD

>> IB::hilbertSeries(t); IB::hilbertRegularity()
Output

2 3 4

3 t + 4 t + 3 t + t + 1

5

Let us consider another example demonstrating the module case.SMrepresents the free module of rank two over the
polynomial ring in three variables; the terms are ordered first by position and then degree reverse lexicographically:

MuPAD

>> SP := Dom::SolvablePolynomial([x,y,z], Dom::Rational):
>> SM := Dom::SolvableModule(SP, 2, "pot"):
>> mgens := map([[x^2,x^2*z],[z*y,x^2]], SM):
>> JD := Dom::JanetDivision(3):
>> MIB := Dom::InvolutiveBasis(mgens, JD):
>> MIB::basisInfo

Output

2 2 2 2

[[[y z, x ], [y z, 0], {1, 2, 3}], [[x , x z], [x , 0], {1, 2}],

2 2 2 2 4 2 2

[[x z, x z ], [x z, 0], {1, 3}], [[0, - x + x y z ],

2 2

[0, x y z ], {1, 2, 3}]]

For the factor module we get as vector space basis:

MuPAD

>> MIB::standardMonomials();
Output

[[z, 0], {z}], [[x z, 0], {z}], [[1, 0], {y}], [[x, 0], {y}],

2 2 2

[[0, y z ], {y, z}], [[0, x y z ], {y, z}], [[0, z ], {x, z}],

[[0, 1], {x, y}], [[0, z], {x, y}]]

This output yields at once the Stanley decomposition (M denotes the original module spanned by the two genera-
tors inmgens):

k[x, y, z]/M∼= k[z] ·
(

z

0

)
⊕ k[z] ·

(
xz

0

)
⊕ k[y] ·

(
1
0

)
⊕ k[y, z] ·

(
0

yz2

)
⊕ k[y, z] ·

(
0

xyz2

)
⊕ k[x, z] ·

(
0
z2

)
⊕ k[x, y] ·

(
0
1

)
⊕ k[x, y] ·

(
0
z

)
. (6)

The corresponding Hilbert series, polynomial and the order of regularity fork[x, y, z]/U are also easily computed
from the information inMIB:
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MuPAD

>> MIB::hilbertSeries(t);
>> MIB::hilbertRegularity();
>> MIB::hilbertPolynomial(x);

Output

4

2 t + t + 2

------------

2

t - 2 t + 1

4

poly(5 x - 1, [x], Dom::Rational)

Finally, we show how to compute a set of generators of the first syzygy module; for a system of differential
equations, this corresponds to determining its compatibility conditions. We consider for our involutive basisH all
products of the formx?f wheref ∈ H andx is non-multiplicative forf with respect toH and compute involutive
standard representations for these products. The vectors containing the coefficients are the desired generators for
the syzygy module ([14]). For our examples, we get:

MuPAD

>> IB::syzygies();
>> MIB::syzygies()

Output

[[-D(z), 0, 0, 1, 0, 0, 0], [0, 0, -D(z), 0, 0, 1, 0],

2 2 2

[D(x) , 0, -D(y), 0, 0, 0, 0], [- y D(x) , D(y) , -2, -D(z), 0, 0, 0],

2

[0, 0, 0, 0, -D(z), 0, 1], [0, 0, D(x) , 0, -D(y), 0, 0],

2 2

[0, D(x) D(y), - y D(x) , 0, -1, -D(z), 0],

2 4 2

[0, 0, 0, D(x) , 0, -D(y), 0], [0, D(x) , 0, 0, - y D(x) , 0, -D(z)],

2

[0, 0, 0, 0, 0, D(x) , -D(y)]]

2

[[0, -z, 1, 0], [x , 0, -y, 1]]

By completing these syzygies to an involutive basis and iterating this process by again callingsyzygies , we
obtain a free resolution of the module we started with.

The domainDom::InvolutiveBasis , which we have now at our disposal, provides the basic methods for
computations with involutive bases in polynomial algebras of solvable type. The next step is to provide a variety
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of functions for the structure analysis of modules based on involutive techniques. The theoretical framework
is contained in [14]; especially Pommaret bases are suitable for reading off many important quantities used in
commutative algebra and algebraic geometry. As already mentioned, a library for this purpose will be the topic of
an upcoming article.
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