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This article continues the description of an implementation of involutive basis
techniques iMuPAD. We show how the methods for the “monomial case”
developed in the first part can be lifted to a large class of polynomial
(including non—commutative) algebras and modules over them. We present
categories and domains for dealing with such algebras and exploiting the rich
combinatorial structure of involutive bases.

Introduction

In the first part [11], the concept of anvolutive divisionon multi indices of a fixed length was introduced. This

was just a rule restricting the normal divisibility relation by distinguishing for each member of a given finite set of
multi indices between allowedn(ultiplicative and non—allowednon—multiplicativg entries. This restriction led

to the notion ofnvolutive sparof the set consisting of all the multiples of the multi indices with respect only to the
multiplicative directions. We showed how tompletea set by adding further multi indices such that the normal

and the involutive span coincide. As examples, we considered the two divisions most commonly used in practice,
the Janetand thePommaret division

Since multi indices are equivalent to the terms of the polynomial kipg, . .., z,], we may speak of having
treated the “monomial case” of involutive bases. But their real power does not unfold until we have lifted these
methods to the “polynomial case”, that is to idealskéf, ..., xz,] (or more generally, to submodules of free
polynomial modules). What we will get are special non-reduceib@ar bases which are advantageous in certain
situations for two reasons. Firstly, it has been shown that the involutive completion algorithm provides a compet-
itive alternative to the Buchberger algorithm (timings can be found, for example, in [10]). Secondly, involutive
bases carry a rich combinatorial structure allowing one to easily read off many invariants; especially with Pom-
maret bases, extensive structure analysis is possible [1MuPAD-library for this task will be presented in a
follow-up to the current article.

In the first two sections of this article, we provide the necessary theoretical background. Since in the polynomial
case involutive bases depend solely on the leading terms with respect to a given term order, they can be defined for
a wide class of algebras resembling polynomial rings but not necessarily commutativpehthemial algebras

of solvable types They were originally introduced by Kandry-Rody and Weispfenning [12] and comprise, for
example, linear differential and difference operators, the Weyl algebra or universal enveloping algebras of Lie
algebras. Here and in the following, we cite only the basic definitions and omit any proofs of the facts we use.
There exist several introductory articles on involutive bases containing the missing details [3, 7, 8, 13].
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Involutive basis methods are available for a variety of computer algebra systems (like, for example\rite M
package “Janet” [1, 2] or the implementation foaMHEMATICA [6]). A very fast and efficien€C++ program for
computing Janet bases is presented in [9, 10]. It is obvious what an implementation of the involutive techniques
making use of the domains conceptNtuPAD must look like. Polynomial algebras of solvable type become a
category, the heart of which is a generic implementation of the involutive completion algorithm. Together with the
category and domains for involutive divisions from the first part, a domain for handling free modules and a domain
supplying a user interface for computations with involutive bases, the implementation presented here is the most
general so far.

Polynomial Algebras of Solvable Type

Let P = Kk[zy,...,z,] be a polynomial ring over a field. We equip theék-algebraP with alternative multiplica-
tions, in particular with non-commutative ones. We allow that both the variablés not commute any more and
that they operate on the coefficients. The usual multiplication is denoted either by ardnt no symbol at all.
Alternative multiplications? x P — P are always written ag « g.

Like Grobner bases, involutive bases are defined with respedetoreorder It selects in each polynomigl € P
aleading termlt_ f = x* with leading exponente_ f = u.! The coefficient € k of 2* in f is theleading
coefficienic f and the productz* is theleading monomialm_ f. Based on the leading exponents we associate
to each finite sefr C P a set le;F C Njy to which we may apply the theory developed in the first part. But this
requires a kind of compatibility between the multiplicatioand the chosen term order.

Definition 1 (P, *, <) is a polynomial algebra of solvable tyder the term order=, if the multiplicationx :
P x P — P satisfies three axioms.

(i) (P, ) is aring with unitl.
(i) virek, feP:rxf=rf.

(iiiy Vf,g € P: lex(f*g)=le<f +leLg.

Of course, the usual multiplication in a polynomial ring satisfies these conditions; for a non-trivial example, con-
sider a function fieldk containingn variables, e. g. the field of rational functioks:= C(y,...,y,) equipped

with the corresponding derivations with respect to the variables. We can then form theltfy, .. ., 9,,] of

linear differential operators We have alway®); x 0; = 0; x 0; andy; x 9; = 0; x y; for ¢ # j, whereas

0; *xy; = y;0; + 1. Thus the product of two monomial operators is given by

||
adt x bo¥ = Z (u)aﬁ b@”\J”’ 1)

K
AtRr=p A ay

where(¥) is a shorthand fof];"_, (). For an arbitrary term ordex, we have

le< (ad" % b8”) = p + v = le< (ad*) + le (b3") )
as any ternd*+” appearing on the right hand side of (1) dividi#s™ and thusd)*t” < g+,

Because of Condition (iii) in Definition 1 we can defined®ner bases for left ideals in algebras of solvable type.
The decisive point, explaining the conditions imposediis that normal forms with respect to a finite getc P

may be computed in precisely the same way as in the ordinary polynomial ring. In the next section we will see that
the involutive approach also works in this general setting.

1As in the first part, we use thaulti indexnotationy = (u!, . .., u™) for n-tuples of nonnegative integers.
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Involutive Bases

We proceed to define involutive bases for left ideals in polynomial algebras of solvable type. In principle, we could
at once consider submodules of free modules over such an algebra. But this just complicates the notation. So we
treat only the ideal case and show at the end of the section how the extension to the submodule case looks like.

How to Define Involutive Bases in the Polynomial Case

Definition 2 Let (P, *, <) be an algebra of solvable type over a filddandZ C P aleftideal. A finite set{t C P
is aninvolutive basisof Z for an involutive divisionZ on N if no two elements have the same leading exponent
andleLH is an involutive basis of the monoid iddaLZ.

In [11], we distinguished betweemeakandstronginvolutive bases; our implementation uses only the latter, so
we restrict to them. The definition implies at once that involutive bases d@ten@r bases; in order to delve deeper
into the theory, we next lift the notions of multiplicative variables and involutive span to the polynomial case.

Definition 3 LetF C P be a finite set and an involutive division oilNg. We assign each elemefit= F a set of
multiplicative variables
XpF<(f)={zilic Npe r(lexf)} . 3)

Theinvolutive sparof F is then the set

(Flo<=Y KXpr<(Hl*fC(F). @)

fer

A polynomialg € P is involutively reduciblewith respect taF, if it contains a termz# such thatle_ f |1 e 7 p
for somef € F. Itis ininvolutive normal formwith respect taf, if it is not involutively reducible. The séf is
involutively autoreducedf no polynomialf € F contains a termx* such that another polynomigt € 7\ {f}
exists withe f' |1, je_ 7 112

It often suffices, if one does not consider all termsgitbut only the leading term ltg: the polynomialg is
involutively head reduciblef le< f |1, 1o, 7 le<g for somef € F. Involutively head autoreduceskts are defined
accordingly. It is clear from the definition that an involutive basis possesses this property, and from it important
results on the uniqueness of normal forms can be derived. We note that for an involutively head autoreduced set
F, the sum in (4) is direét It follows easily that for such arF everyg € P has auniquenormal form. If F is

an involutive basis, then the ordinary normal form frond@mer basis theory and the involutive normal form even
coincide.

An important aspect of @bner bases is the existence of standard representations for ideal elements. For involutive
bases a similar characterisation exists.

Theorem 4 LetZ C P be a non-zero ideafl{ C 7 a finite set andL an involutive division orNj. Then the

set’H is an involutive basis off with respect tol. and < if and only if every polynomiaf € Z has a unique

involutive standard representatione. it can be written in the fornf = >, .,/ P, x h where the coefficients
Py, € k[ X1 3 <(h)] satisfylt (P, x h) < It f for all polynomialsh € H.

2Note that the definition of an involutively autoreduced set cannot be formulated more concisely by saying tifate&dh in involutive
normal form with respect td\ { f }. If we are not dealing with a global division, the removalfdfom F will generally change the assignment
of the multiplicative indices.

3The converse holds too.
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It is now obvious that for an involutive basté of Z, ordinary and involutive span are equét{ ), « = (H) =T.

The unigueness of the standard representation, which does not holdfmmggbases, gives a first glimpse on why
involutive bases are very interesting also from a theoretical point of view. This property, among others, allows one
to thoroughly analyse the structure of the ideal under consideration.

Completion to Involution

The remaining important question is now whether any finite/Set P can becompletedo an involutive basis

of the ideal it generates. This problem can be tackled in exactly the same way as in the monomial case, and the
same restrictions also apply. Only forNpetherianinvolutive division, the existence of an involutive bases is
always guaranteed. For non-Noetherian divisions, the completion algorithm that we will describe below does not
necessarily terminate. As briefly discussed in the first part, this means for our implementation that we can always
compute Janet bases, whereas Pommaret bases exist ofHgefpriar coordinate systems.

For the completion algorithm, we proceed to lift the propertjoetl involutionfrom multi indices to polynomial
algebras of solvable type. A finite sét C P is locally involutivefor the division L, if for every polynomial
[ € F and for every non-multiplicative variable; € X, » ~(f) the productz; « f has an involutive standard
representation with respect t6. Note that for an involutively head autoreduced $&twe may equivalently
demand that; = f € (F ) < orthat its involutive normal form i, respectively.

As in the monomial case, two additional conditions required by the used involutive division finally yield the
algorithm for computing an involutive basis (provided that it is finit€ontinuity ensures that involution and
local involution are equivalent: if the finite sgt C P is locally involutive for the continuous divisioh, then
(F)r,< = (F). Constructivityis needed for the correctness of the algorithm by telling us that it suffices to
consider only the products appearing in the definition of local involution. Again, we omit the rather technical
definitions.

Algorithm:  Completion in(P, x, <)
Input: Finite subsetF C P, involutive divisionL
Output:  Involutive basisH of Z = ( F) with respect tal and<

1l 'H « InvHeadAutoReduce - (F)

12/ loop
13/ S—{zjxh|heH, zjeXpp<(h),zjxh¢ (H)L<}
141 if S=0then
151 return H
16l else
171 g<— mins S
18l g < NormalForm ;- (g, H)
19/ H « InvHeadAutoReduce 1 <(H U{g})
110/ end _if

111/ end _loop

Figure 1: Involutive completion ifP

The completion algorithm is shown in Fig. 1. As in the monomial case, in each iteration we check the condition
for local involution (line /4/): if there is a produat; * h in the setS constructed in line /3/ which is not con-
tained in the involutive span d#, it is obviously violated. We add té{ the normal form of the smallest such
product with respect tex (lines /7/ — /9/). This is known as theormal strategyin the computation of Gibner
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bases; while it is known to work well there with degree compatible term orderings, it is now even crucial in the
termination proof of the completion algorithm. The n&whas to be involutively head autoreduced (line /10/)

to ensure uniqueness of the normal forms. Since involutive reducibility is a restriction of ordinary reducibility,
the subalgorithmslormalForm andinvHeadAutoReduce are simple modifications of the algorithms known
from Grobner basis theory.

Involutive Bases for Submodules of Free Modules

The generalisation from the ideal to the submodule case is straightforward; one proceeds in the same way as for
Grobner bases (outlined for example in [5]). We consider a free left madiilef rank » over a polynomial

algebra of solvable typ€P, x, <) and underlying polynomial ring|x1, ..., z,]. This means thaM has a basis
{e1,...,e.}, and every element of1 can be expressed as a finite sunmainomialsof the forma,, ;2*€,. The
combinatorial information to be extracted consists thus of the multi ipdexd the integes for the position, i. e. it
liesinNj x {1,...,r}. We introduce involutive divisions and term orders on it as follows:

e Let L be an involutive division olNj and suppose we are given a finite 8ét= {(u1,51) ..., (ug, )} C
NG x {1,...,7r}. Fors = 1,...,r, we form the setd/; := {u; | (1, s) € N'} and defineVy, a(ui, s;) to be
equal toNy, w,, (u:). We then have thau;, s;)| . a (v, t) if and only if s; = t and ;| v, .

e After fixing an ordering of the sefl, ..., r}, we can compare two elements fraf} x {1,...,r} by either
first looking at their position indices and breaking ties via applyintp the multi indices fgosition over term
or vice versaterm over positiop In both cases, we get an ordering §fj x {1,...,r} which we will call
a module orderand with the help of which we can define all the usual notions like leading term, exponent,
monomial, etc.

This is everything that is needed to apply the theory developed above to submodies of

The MuPAD Category for Polynomial Algebras of Solvable Type

For a generic implemention of the above described algorithms, especially the computation of involutive bases, the
categoryCat::SolvableAlgebra(K) representing all polynomial algebras of solvable type exi€tienotes

here the coefficient field of the underlying polynomial riRg It follows from Def. 1 that the supercategories are
Cat::Ring andCat::LeftModule(K) . These are the methods provided by the category:

nForm(f,F,<Head>,<Coeffs>): computes a normal form of a domain eleménwith respect to the do-
main elements contained in the I5t This is done by successively reducihgvith elements of until this is
no longer possible.

autoreduce(F,<Head>) . returns a list of domain elements spanning the same ideal as those in the original
list F; no element can be further reduced by the others.

involutiveNForm(f,F,ID,<Head>,<Coeffs>): computes an involutive normal form 6f moduloF
with respect to the involutive divisiolD .

involutiveAutoreduce(F,ID,<Head>) . performs an involutive autoreduction Bfusing the involutive
divisionID .

involutiveComplete(F,ID,<Head>,<Output>) : computes an involutive basis of the ideal spanned by

the elements df with respect to the involutive divisiolD .
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With the optionHead, only head reductions are carried out. If the opti@aeffs is given fornForm or

involutiveNForm , the result is a lisfnf,C]  such thainf is the (involutive) normal form an@ contains
the factors by which the elementsi®have been multiplied during the reduction steps. This means that we obtain
a representatiofrC[1]*F[1]+...+C[K]*F[K]+nf 4. The optionOutput displays some information on

the course of the completion algorithm like the intermediate sets, the multiplicative variables of their elements and
which non-multiplicative products are selected.

The following methods have to be supplied by the domain€att:SolvableAlgebra(K) for extracting
and handling the underlying combinatorial information in the form of multi indices:

leader(f)  : returns the “leading information” of the domain elemént. e. a list[Ic,le] wherelc is the
leading coefficient anlk the leading exponent df.

allMonomials(f) . returns a list containing for each monomial fofan entry of the fornic,e]  with its
coefficient and exponent.

exponentOrder(mul,mu2) : compares the two multi indices with respect to the term order used by the do-
main; the result i€ if mul>mu2 -1 if mul<mu2 andO if mul=mu2

exponent2monomial(mu)  : converts the multi indermuto a domain element consisting of a single monomial
with coefficientl and exponentnu

The implemented completion algorithm differs in some points from the one described in igolutive-

Complete actually even computes the uniqmenimal involutive basis, which is defined as follows: for multi
indices, a setV is called a minimal involutive basis if it is contained in every other involutive hASisvith the

same span. Obviouslyy” then must be unique. For the polynomial case, we simply lift this property by saying
that an involutive basis is minimal if its leading exponents form a minimal involutive basis. In [8] the computation

of such bases is described; we follow the algorithm given there. This includes also some optimisations based on an
involutive version of Buchberger's second criterion; with its help one can recognise in advance if certain normal
form computations will yield zero.

Currently, there exist in thBOMAINSlibrary of MUPAD three domains that are membersZaft:: Solvable-

Algebra . Dom::SolvablePolynomial is merely an interface so that one can use the involutive methods
for polynomials. It inherits directly fronDom::MultivariatePolynomial and justs adds the methods
needed by the categorliom::LinearDifferentialOperator represents the linear differential operators
given as an example for polynomial algebras of solvable type akibuen::WeylAlgebra  contains, in some

sense, linear differential operators with polynomial coefficients; it is the free associative algebra generated by
T1,...,Ty,01,...,0, modulothe commutator relations for these variables. Thus the exponent vectors of elements
from Dom::WeylAlgebra  have lengti2n. The entry_mult inherited fromDom::MultivariatePoly-

nomial is overwritten byDom::LinearDifferentialOperator and Dom::WeylAlgebra  with the

new non-commutative multiplication. Instances of all three domains are created by specifying the names of the
variables as list of identifiers as first and the coefficient field as second argument. The optional third argument
fixes the term order; it can either be an elemenbom::MonomOrdering or one of the optionsexOrder
DegreeOrder , DeginvLexOrder providing the most commonly used orderifgs

The domainDom::SolvableModule represents free left modules over polynomial algebras of solvable type.

It is obviouslynot a member ofCat::SolvableAlgebra , since a multiplication of domain elements is not
defined (only a scalar multiplication between the coefficient ring and domain elements). Nevertheless, all the
methods described above are implemented and can be called in exactly the same way. The arguments required by
Dom::SolvableModule are the polynomial algebra of solvable typever which it is a module and the rank

r . The optional third argument defines how the term order f®i® extended to a module order: if it iop"”

4Kk is the number of elements in boBandF.
5The default isDegInvLexOrder
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(which is the default), then the strategy “term over position” is used; if ip@" , then “position over term”
is used. Internally, the representation is based on thBioofi::FreeModule , whereas the output of a domain
element consists of its coordinates with respect to the standard b&Sisind thus is a list of length of elements
from S. Finally we note that everywhere the method<Catt:: SolvableAlgebra would expect or return a
multi index my, Dom::SolvableModule uses a paifmu,pos] consisting of the exponent vector and the
position of the term, i. e. the index of the respective basis vector.

Computations with Involutive Bases

Suppose that we are given elements from a polynomial algebra of solvable type or from a free module over it. We
want to compute an involutive basis of the ideal or submodule they generate, read off the combinatorial information
and carry out some basic commutative algebra computations directly related to basis. For this task, the domain

Dom::InvolutiveBasis exists. It is called with exactly the same arguments one normally would give to the
involutiveComplete command, i.e. the list of generators, an involutive division and the desired optional
arguments. From that, it computes an involutive basis. Thus an instabmufinvolutiveBasis consists

of the involutive basis for the ideal or module the spanned by the generators passed as arguments and the various
data that can be read off it; the domain provides procedures for computations using this information.

As an example, we create a domain for analysing the ideal spanned by the linear differential opératgr®

andoz:

— MuPAD

>> LDO := Dom::LinearDifferentialOperator([z,y,x], Dom::ExpressionField(normal)):
>> gens := map([D(z) "2+y*D(x)~2, D(y)~2], LDO):

>> PD := Dom: :PommaretDivision(3, [3,2,1]):

>> IB := Dom::InvolutiveBasis(gens, PD):

L

IB is a domain representing a Pommaret basis of this ideal; we can print out the basis elements, their leading terms
and the corresponding multiplicative indices:

ﬁMuPAD

>> IB::basisElements;
>> IB::1Terms;
>> IB::multVars

Output

2 2 2 2 2 4 2
[D(y) , D(z) + y D(x) , D(x) D(y), D(y) D(z), D(x) , D(x) D(y) D(=2),
4
D(x) D(z)]
2 2 2 2 4 2 4

[D(y) , D(z) , D(x) D(y), D(y) D(z), D(x) , D(x) D(y) D(z), D(x) D(=)]

[{2, 3}, {1, 2, 3}, {3}, {2, 3}, {3}, {3}, {3}]
\

The entrybasisinfo returns the combined information of these three calls (as a list of triples); the leading
exponent vectors can be obtained wéeRkps .
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With involutiveNForm , one can compute involutive normal forms with respect to the involutive bBsis
involutiveSRep returns, in addition, the coefficients of the involutive standard represerftation

’7MUPAD
>> IB::involutiveSRep(LDO(D(x) ~3*D(y) ~3*D(z) ~3+D(x)*D(y)*D(z)))
Output
3 3 5 5

[[0, D(x) D(y) D(z), 0, -y D(x) D(y) - 3D(x) , 0, 0, 0], D(x) D(y) D(z)]
|

The entries of the first element of the resulting list are the coefficients for the corresponding basis vectors, while
the second element is the involutive normal form.

One basic task where one use$@er bases is the computationstindard monomials that is to determine the

setN}} \ le<Z, which forms ak-vector space basis for the factor mod#gZ when interpreted as monomials. On

the level of multi indices, one has to decompose the complement@fileto disjoint cones. This can be done

with the methodcombinatorialDecomposition from the categoryat::InvolutiveDivision ; for

the Janet division, a simpler and more efficient algorithm exists, which can also be used for the Pommaret division.
The output looks like this:

’7MUPAD
>> IB::standardMonomials ()

Output
[[D(y) D(z), {}], [D(x) D(y) D(=2), {}], [D(z), {}], [D(x) D(=), {}],
2 3
[D(x) D(z), {}], [D(&x) D(z), {}, DGy, {31, [D&) D(y), {}],
2 3
(1, {31, &), {3, D& , {}], D& , {}3]

Each pair consists of a monomial and a set of variables giving the directions into which the cone with that monomial
as base point extends. For our example,ltheector spacé”/Z has finite dimension, and so the cones are zero-
dimensional.

We can formulate this another way: if the term orders degree-compatible, the algelfsdZ can be considered
as graded by degree; we have thus computed in the last parag&iphley decomposition e. ak-vector space
isomorphisnP /Z = @®.c7k[X:] - t whereT is a set of terms fror® and X; C {z1,...,x,}. This fact allows us
to determine at once the Hilbert series of the graded moByIE it can be read off the involutive bastg for the
involutive divisionL via the formula

1 Ale< 7
Hpz(N) = —7 — D N o (5)
(1-=X) = (1= \)Negecn (D
Dom::InvolutiveBasis possesses the methduithertSeries , hilbertFunction , hilbertPo-
lynomial  andhilbertRegularity (the degree from which on the Hilbert function and the Hilbert poly-

nomial yield the same values) which compute those quantities of the factor module. For our example, the Hilbert
polynomial is of course 0, because the ideal under consideration is a zerodimensional ideal; for the Hilbert series
and regularity we get:

8For these two methods, the optiblead is again available.
Originally, they were introduced by Buchberger for that purpose.
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h MuPAD
>> IB::hilbertSeries(t); IB::hilbertRegularity()

Output

2 3 4
3t+4t +3t +t +1
5

Let us consider another example demonstrating the module 8&sepresents the free module of rank two over the
polynomial ring in three variables; the terms are ordered first by position and then degree reverse lexicographically:

— MuPAD |
>> SP := Dom::SolvablePolynomial([x,y,z], Dom::Rational):

>> SM := Dom: :SolvableModule(SP, 2, "pot"):

>> mgens := map([[x~2,x"2x*z], [z*y,x"2]], SM):

>> JD := Dom::JanetDivision(3):

>> MIB := Dom::InvolutiveBasis(mgens, JD):

>> MIB: :basisInfo

Output

2 2 2 2
[[[y z, x1, [y z, 0], {1, 2, 3}], [[x, x =z], [x, O], {1, 2}],
2 2 2 2 4 2 2
[x z,x =z1, [x =z, 0], {1, 3}, [[0, - x +x y=z],
2 2

0o, x yz1, {1, 2, 3311

For the factor module we get as vector space basis:

hMUF’AD
>> MIB: :standardMonomials () ;
Dutput
[[z, 0], {z}], [[x =z, o], {=z}], [[1, o], {y}], [[x, o1, {y}],
2 2 2
(o, y z1, {y, z}1, ([0, xy z 1, {y, z}], [[0, z 1, {x, z}],

(o, 11, {x, y}1, (o, =z1, {x, y}1

This output yields at once the Stanley decompositibhdenotes the original module spanned by the two genera-
tors inmgens):

ool m =kl (F) okt () ol (o) ot (%)
® Ky, 2] - (m;zz) ® klz, 7] - (;) ® klz,y] - <?> ® klz, y] - <2> ©6)

The corresponding Hilbert series, polynomial and the order of regularify[fary, z] /U are also easily computed
from the information inMIIB:
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’7MUPAD

>> MIB::hilbertSeries(t);
>> MIB::hilbertRegularity();
>> MIB::hilbertPolynomial (x) ;

Output

poly(5 x - 1, [x], Dom::Rational)

Finally, we show how to compute a set of generators of the first syzygy module; for a system of differential
equations, this corresponds to determining its compatibility conditions. We consider for our involutivé(ledkis
products of the formx x f wheref € H andx is non-multiplicative forf with respect td4 and compute involutive

standard representations for these products. The vectors containing the coefficients are the desired generators for
the syzygy module ([14]). For our examples, we get:

— MuPAD
>> IB::syzygiesQ;
>> MIB::syzygies()

Output

[[_D(Z) 5 O: 0: 1) O» O, O], [0) o: _D(Z) s o) Os 1: 0] >

2 2 2
(b(x) , 0, -D(y), 0, 0, 0, 0], [- y D&x) , D(y) , -2, -D(=), 0, 0, 0],
2
(o, o, o, o, -n(z), o, 11, [0, 0, D(x) , O, -D(y), O, O],
2 2

[0, D(x) D(y), - y D&x) , 0, -1, -D(=z), 0],

2 4 2
(o, o, o, b(x) , 0, -D(y), 01, [0, D(x) , 0, 0, -y D(x) , 0, -D(=)],

2

0, o, 0, 0, 0, D(x) , -D(y)1]]

2
[[O: -z, 1, O], [X > O: -y, 1]]

By completing these syzygies to an involutive basis and iterating this process by again sgtyigies , we
obtain a free resolution of the module we started with.

The domainDom::InvolutiveBasis , Which we have now at our disposal, provides the basic methods for
computations with involutive bases in polynomial algebras of solvable type. The next step is to provide a variety
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of functions for the structure analysis of modules based on involutive techniques. The theoretical framework
is contained in [14]; especially Pommaret bases are suitable for reading off many important quantities used in
commutative algebra and algebraic geometry. As already mentioned, a library for this purpose will be the topic of
an upcoming article.
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