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Abstract. The GVW algorithm computes simultaneously Gröbner bases of a given ideal and of the
syzygy module of the given generating set. In this work, we discuss an extension of it to involutive
bases. Pommaret bases play here a special role in several respects. We distinguish between a fully
involutive GVW algorithm which determines involutive bases for both the given ideal and the
syzygy module and a semi-involutive version which computes for the syzygy module only an
ordinary Gröbner basis. A prototype implementation of the developed algorithms in MAPLE is
described.

1. Introduction
Gröbner bases provide a powerful tool for a wide variety of problems in commutative algebra, alge-
braic geometry and many other areas of science and engineering. For example, it can be interpreted
as a generalization of the Gaussian elimination to the polynomial case [13]. In 1965, Buchberger
introduced the theory of Gröbner bases together with an algorithm to compute them [2]. Later, he
presented two criteria [3] to improve his algorithm by detecting superfluous reductions a priori. Since
then, many mathematicians like Lazard, Gebauer, Möller, Mora, Traverso, Faugère and Gao steadily
worked on finding more such criteria or new methods to compute Gröbner bases more efficiently. In
this direction, Lazard used techniques from linear algebra [13]. Gebauer and Möller [7] used syzy-
gies to find superfluous reductions by applying Buchberger’s criteria in an effective way. Moreover,
Möller, Mora and Traverso [16] described the first signature-based algorithm to compute Gröbner
bases. Faugère has found a signature-based algorithm, so-called F5, which is more efficient than the
previous algorithms [4]. Since then, several papers have been published trying to simplify the F5 al-
gorithm. The goal, of course, was also to develop an algorithm which is faster than F5 on benchmark
systems. Indeed, Gao, Guan, Volny invented the so-called G2V algorithm that seems to be (two to
ten times) faster than F5 on benchmark systems according to [5]. Based on G2V, the GVW algorithm
was created by Gao, Volny and Wang which again seems to be faster than G2V [6]. It is worth noting
that GVW not only computes a Gröbner basis of a given ideal but also one for the corresponding
syzygy module. Thus, it may be also applicable for computing free resolutions. Moreover, there are
various papers about adapting the GVW algorithm to different mathematical applications as well
as to make it more efficient. For instance, in [14], the authors are interested in adapting the GVW
algorithm to principal ideal domains. For efficiency, in [15], the authors use an approach from linear
algebra to implement the GVW algorithm with the help of matrix operations. There, they address
one major weakness of the GVW algorithm: all performed reductions must obey a certain restrict-
ing rule which leads to the fact that some elements that may be reduced according to other theories
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are not allowed to be reduced anymore. Thus, the algorithm becomes more inefficient as these el-
ements will lead to more multiples of generators that need to be considered. However, the authors
in [15] suggest a substitution method to create sparser matrices for signature-based algorithms by
storing equivalent but sparser polynomials. They also demonstrate the efficiency of their algorithm.
There are also so-called Hilbert-driven signature-based algorithms which use the Hilbert function to
make the algorithm more efficient [19]. Moreover, there are approaches to deal with inhomogeneous
ideals, too, introducing the concept of mutant pairs [20].

In this paper, we are interested in presenting a variant of the GVW algorithm for computing
involutive bases. These bases are indeed Gröbner bases with additional combinatorial properties.
They originate from the works of Janet on the algebraic analysis of partial differential equations
[12]. Zharkov and Blinkov introduced the notion of involutive polynomial bases using related works
of Pommaret [21]. Later, Gerdt and Blinkov introduced involutive divisions [9]. Of special interest
are Pommaret bases as one can read off many invariants of the ideals they generate like dimension,
depth and Castelnuovo-Mumford regularity [18]. These invariants remain unchanged after coordi-
nate transformations, which is very important theoretically as well as from a computational point
of view as Pommaret bases do not always exist [18, 10]. However, in [17] it is shown that a fi-
nite Pommaret basis of a homogeneous ideal for the degree reverse lexicographical order always
exists after finitely many linear coordinate transformations of a certain type (see also [10] for an
extensive discussion of this and related facts). Gerdt pointed out the special relationship between
the Janet and Pommaret divisions in [8]. From further works on the relationship, we know that a
Janet basis is also a Pommaret basis if the latter one exists (see [18, Thm. 4.3.15]). Thus, Seiler
presented two approaches for computing a Pommaret basis of homogeneous ideals for the degree re-
verse lexicographical order: One can compute a Janet basis which always exists as the Janet division
is Noetherian [18, Lem. 3.1.19]. If a Pommaret basis exists, we already have computed it. Otherwise,
he suggested to perform a coordinate transformation and compute a Janet basis of the transformed
system and iterate this procedure. The second approach is to compute a Pommaret basis in a direct
way and check during the algorithm whether a finite Pommaret basis exists, i.e. if the ideal is in
quasi-stable position. If it is not in quasi-stable position, one may interrupt the algorithm, perform a
coordinate transformation and start over again [18, p. 130].

Binaei et al. described in [1] a semi-involutive1 version of the GVW algorithm and proved the
termination by relating it to Gerdt’s algorithm [1, Thm. 6]. However, the proof is only given for
Noetherian divisions, and thus, not for the Pommaret division. Also, their claim in [1, Thm. 5] itself
has flaws which we will point out in this work.

Moreover, we will develop a semi-involutive version of the GVW algorithm, but also a fully
involutive variant, where we will compute a (weak) Pommaret basis of the syzygy module. Thus, we
will distinguish a ”fully involutive” and a ”semi-involutive” variant in the sequel. For both variants,
we will give a proof of correctness for the Pommaret division and Janet division. In the case of
the Pommaret division, we also give a proof of termination using coordinate transformations and a
bound for the regularity of the ideal; and for the Janet division, we refer to results in [1]. Therefore,
we can present two ways to compute a Pommaret basis of a homogeneous ideal: In both strategies,
we start using the Janet version of the involutive GVW algorithm. From there we get an upper bound
q for the regularity of the ideal [18, Cor 5.5.18]. Next, we check if the output is already a Pommaret
basis. If not, we perform a coordinate transformation. As transformed syzygies are still syzygies,
we can use them to make the algorithm in the next run more efficient because syzygies can be used
for detecting superfluous reductions. Nevertheless, we can proceed in two different ways from there.
First, we could iterate the Janet version. Secondly, we can use one of our Pommaret versions of the
GVW algorithm (going only at most to the degree bound q+2). We will introduce criteria where the
algorithm may stop earlier with an error message that the ideal (or, in the fully involutive case, its

1By this we mean that they aimed to compute an involutive basis of an ideal and a Gröbner basis of its syzygy module.
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syzygy module) is not in quasi-stable position. Then, we perform a coordinate transformation and
restart.

This paper is organized as follows: First of all, we recall the main ideas of the GVW algorithm
in the next section. Then, we will develop an involutive version of the GVW algorithm, first dis-
cussing the more complex Pommaret case. There, we also introduce an index of safety which helps
us finding a suitable coordinate transformation for the restart. In the subsequent section, we gain a
Janet version and prove its correctness. Afterwards, we give some remarks on implementation and
derive the index of safety. There, we also discuss the benefits and issues of the usage of a POT- or
TOP-lift and present some statistics from the implementation of the algorithm in Maple 2019. In the
last section, we summarize our obtained results and give an outlook for future works that may be
based on the presented theory.

Lastly, we want to note that large parts of this work are based on the Master’s thesis [11]. For
lack of space, we will omit in the sequel the proofs of a few simple, but technical lemmas. These
proofs and many more details can be found in the Master’s thesis2.

2. Preliminaries
In the context of the GVW algorithm, we are trying to find a Gröbner basis of an ideal I := 〈F 〉 in
the polynomial ring R := K[x1, . . . , xn] over a field K with char(K) = 0, and its syzygy module
Syz(F ) where F := {f1, . . . , fm}. The main idea is to operate on the set

M := {(u, v) ∈ Rm ×R | uTf = v},
where f is the vector with entries fi.

If v = 0, then u ∈ Syz(F ). Also, if we know u, then we can calculate v. Thus, if v is the
result of reduction steps of another element in I , u encodes the “history” of these reduction steps.

A major idea of the GVW algorithm is to combine the knowledge about the u-part and v-part
to speed up the computation of the two Gröbner bases mentioned above. For this, Gao et al. follow
a signature-based strategy.

We shall emphasise here that the signature of a pair (u, v) ∈ M is the leading term of the
u-part, i.e. lt≺2 u, where ≺2 is a term order on Tmn := {eixµ | µ ∈ Nn0 , 1 ≤ i ≤ m} and where
e1, . . . , em are the standard basis vectors of Rm. We also set Tn := T1

n.
As we are working on M , we can choose a different term order for the v-part. But we are only

interested in using ≺1=≺degrevlex as this is, to our knowledge, the only interesting term order in
the context of Pommaret basis computations. Furthermore, we will demand two properties. First, the
two term orders should be compatible in some sense, i.e.

lt≺2(u · v) = lt≺1(v) · lt≺2(u)

should apply for all vector terms u and terms v. The formal definition is the following.

Definition 2.1. Let ≺1 be a term order on R and ≺2 one on Rm. We say ≺2 is compatible to ≺1 if
for arbitrary terms xµ, xν in R the equivalence

xµ ≺1 x
ν ⇔ xµei ≺2 x

νei ∀ 1 ≤ i ≤ m

holds.

In the context of the GVW algorithm this is the only restriction to our term orders. In our
context, however, we also require the term order ≺2 to be of type ω, i.e. between any two (vector)
terms there are only finitely many terms.

2http://www.mathematik.uni-kassel.de/˜izgin/publications.php?lang=en.

http://www.mathematik.uni-kassel.de/~izgin/publications.php?lang=en
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Also, for the sake of simplicity, we shall drop the indices of the term orders and indicate the
different term orders by the usage of bold letters only for the u-part (i.e. for ≺2). Furthermore, we
write lt(v) = 0, if v = 0 and lt(u) = 0, if u = 0.

Now, having set the term orders, the next step is to introduce reduction steps. Here, we intro-
duce two classes of reduction steps that will play a major role for this theory.

Definition 2.2. Let p1 = (u1, v1), p2 = (u2, v2) ∈ Rm ×R. We say p1 is reducible by p2 if
(i) v1 6= 0 6= v2 and lt(v2) | lt(v1),

(ii) lt(tu2) � lt(u1) with t = lt(v1)
lt(v2)

.

We set c := lc(v1)
lc(v2)

. Then a reduction step of p1 by p2 is given by a reduction step in the v-part
performed on M , i.e.

p1 − ctp2 = (u1 − ctu2, v1 − ctv2) =
(
u1 − lm(v1)

lm(v2)
u2, v1 − lm(v1)

lm(v2)
v2

)
. (2.1)

If the signature of p1 does not change in a reduction step, the reduction is called regular, and super
otherwise.

Also, we call p1 regular/super reducible by N ⊆ Rm × R, if p1 is regular/super reducible by
some p ∈ N . Furthermore, we denote by Sig(N ) the set of all signatures of elements in N .

Lemma 2.3. A reduction step of p1 by p2 defined in (2.1) is super if and only if

lt(tu2) = lt(u1) and
lc(v1)

lc(v2)
=

lc(u1)

lc(u2)
.

Definition 2.4. Let p1, p2 ∈ Rm ×R with v2 = 0 (so u2 is a syzygy). We say p1 is reducible by a
syzygy p2 = (u2, 0) if

u1 6= 0 6= u2 and lt(u2) | lt(u1).

A reduction step of p1 by p2 is given by a reduction step of u1 by u2 performed on M , i.e.

p1 − lm(u1)
lm(u2)

p2 =
(
u1 − lm(u1)

lm(u2)
u2, v1

)
.

Such a reduction step always reduces the signature of p1, and hence, a reduction by a syzygy
is always called super.

Remark 2.5. We note that for any super reduction we have lt(u2) | lt(u1). Moreover, it is worth
mentioning that a syzygy, by definition, is only reducible by a syzygy.

Next, we want to “lift” the notion of a Gröbner basis to M .

Definition 2.6. A finite subset G ⊆M is called a strong Gröbner basis ofM , if every non-zero pair
in M is reducible by G.

Now we present an important proposition that justifies the notion of a strong Gröbner basis.
We will skip the proof, but it can be found in [5, 6].

Proposition 2.7. Let G = {(u1, v1), . . . , (uk, vk)} be a strong Gröbner basis of M . Then
(i) G0 := {ui | vi = 0, 1 ≤ i ≤ k} is a Gröbner basis of Syz(F ).

(ii) G1 := {vi | 1 ≤ i ≤ k} is a Gröbner basis of I = 〈F 〉.

With that proposition we are interested in knowing if one can calculate a strong Gröbner basis
efficiently. Indeed, Gao et al. presented an algorithm to compute a strong Gröbner basis as we are
going to see. In particular, in the next section we aim to lift the theorems to involutive divisions.

Definition 2.8. Let N ⊆ Rm ×R and p = (u1, v1) ∈M .
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• p is said to be eventually super reducible by N , if a regular normal form3 of p is super re-
ducible. As p can be regular irreducible, we call p also eventually super reducible, if it is
merely super reducible and not regular reducible at all.
• p is said to be covered by q = (u2, v2) ∈ N if lt(u2) | lt(u1) and lt(u1)

lt(u2)
lt(v2) ≺ lt(v1) hold.

We also may just say that p is covered by N .

If p is covered by q, this means that lt(u1)
lt(u2)

q has the same signature as p but a smaller v-part.
Hence, we have found a way to reduce p indirectly to a pair with smaller v-part and we may not have
to look at p anymore. But this is a claim worth proving. Indeed, the next theorem asserts that this is
a good way to look at it. But before we present it, we introduce one last notion.

Definition 2.9. Let p1 = (u1, v1), p2 = (u2, v2) ∈ Rm ×R and v1 6= 0 6= v2.
For i, j ∈ {1, 2} we set ti := lt(vi) and tij := lcm(ti, tj). Furthermore, we define

T := max
≺2

{ t12t1 lt(u1), t12t2 lt(u2)}.

Without loss of generality, let T = t12
t1

lt(u1). Moreover, let c = lc(v1)
lc(v2)

. If we have

lt( t12t1 u1 − c t12t2 u2) = T (2.2)

then we call t12t1 p1 the J-pair of p1 and p2. Moreover, a reduction step is given by

t12
t1
p1 − c t12t2 p2 = ( t12t1 u1 − c t12t2 u2,

1
lc(v1)

S(v1, v2)), (2.3)

and is regular by definition (see (2.2)). Here, S(v1, v2) is the S-polynomial of v1 and v2.

So instead of calling the pair in (2.3) J-pair, Gao et al. suggest to go one step back in the
reduction process and to call t12t1 p a J-pair. Doing so, we have two things worth pointing out: First,
we potentially do not have to look at all S-polynomials as some of them may not have come from
a regular reduction step and hence, will not satisfy (2.2). Moreover, by definition we can use the
property that a J-pair is at least once regular reducible. This will be important for the proof of the
next theorem. However, we will provide a proof for the involutive J-criterion in the next section.
Thus, we just refer to [6] for the proof in this section. Also, it might be interesting to mention at this
point that our involutive J-pairs in general will not be involutively regular reducible at least once.
Hence, we will have to give a proof for the involutive case where we cannot use that involutive
J-pairs are involutively regular reducible by definition.

But let us first focus on the given case. From the next theorem (see [6]), we will be able to
generate an algorithm for computing a strong Gröbner basis. We will give a pseudo code for the
involutive case and skip it here.

Theorem 2.10 (J-criterion). Let G := {(u1, v1), . . . , (uk, vk)} ⊆ M be a finite subset of M such
that 〈Sig(G)〉 = Tmn . Then the following statements are equivalent:

(i) G is a strong Gröbner basis of M .
(ii) Every J-pair of elements in G is eventually super reducible by G.

(iii) Every J-pair of elements in G is covered by G.

This theorem is the foundation for the proof of correctness of the GVW algorithm. Now, we
want to pick up some ideas of this theory to achieve similar results for the involutive case.

3A regular normal form is the result of only regular reduction steps until no regular reduction is possible anymore. A regular
normal form does not have to be unique as we are, in general, not reducing regular with respect to a Gröbner basis in the
v-part.
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3. Involutive GVW algorithm
As we are using involutive divisions from now on, it is crucial to have some knowledge about them
(in particular about the Pommaret and Janet division) and involutive bases. For such an overview we
refer to [18].

Throughout the rest of this article, let G ⊆M be a finite set and Bu ×Bv ⊆ Nn0 ×Nn0 , where
Bu is the set of exponent vectors of signatures in G and Bv the set of leading exponents of elements
in the v-part of G.

Definition 3.1. We write pi := (ui, vi) for i = 1, 2. Let in particular p1 ∈ M and p2 ∈ G. Finally,
let L be an involutive division.

a) p1 is involutively covered by p2 if

lt(u2) |L,Bu
lt(u1) and

lt(u1)

lt(u2)
lt(v2) ≺ lt(v1).

We say that p1 is involutively covered by G ⊆M if it is involutively covered by some element
in G.

b1) p1 is said to be involutively regular reducible by p2 if the following conditions hold:
(i) v1 6= 0 6= v2,

(ii) lt(v2) |L,Bv
lt(v1) and

(iii) for (u, v) := p1 − lm(v1)
lm(v2)

p2 we have lt(u) = lt(u1).
Moreover, we say that p1 is involutively super reducible by p2 if conditions (i), (ii), and
(iii’) lt(u2) |L,Bu

lt(u1) and lt(u) ≺ lt(u1)
are satisfied.

b2) If p2 is a syzygy, i.e. v2 = 0, then p1 is called involutively super reducible by p2 if

u1 6= 0 6= u2 and lt(u2) |L,Bu lt(u1).

For an involutively super reduction by a syzygy we perform a reduction of the u-part, namely

p1 −
lm(u1)

lm(u2)
p2.

b3) p1 is said to be involutively reducible by p2 if it is reducible in the sense of b1) or b2). Moreover,
p1 is involutively reducible by G if it is involutively reducible by some element in G.

c) A pair p ∈ M is called eventually involutively super reducible by G ⊆ M if there is a chain
– a length of zero is allowed – of involutively regular reduction steps by G leading to an
involutively regular normal form4 of p which in turn is involutively super reducible by G.

d) We write p2 |L,B p1 if lt(u2) |L,Bu lt(u1) and lt(v2) |L,Bv lt(v1).

Remark 3.2. Note that in b1) (iii’) the condition lt(u2) |L,Bu
lt(u1) is essential. Therefore, in

contrast to [6], the conditions b1) (i)–(ii) and
lm(v1)

lm(v2)
lt(u2) � lt(u1)

do not imply involutive reducibility. In particular, it can happen that from these conditions we en-
counter a super reduction which is not involutive, i.e. we have p2 | p1 but not p2 |L,B p1.

Next, we translate the definition of a strong Gröbner basis to the involutive case.

Definition 3.3. A finite setG ⊆M is called a strongL-basis5 ofM , if any non-zero pair (u, v) ∈M
is involutively reducible by G with respect to the involutive division L.

4This means that no more involutively regular reduction steps are possible.
5This notion of a strong L-basis is not related to strong or weak involutive bases. However, it can be shown, that from a strong
L-basis, two weak involutive bases will arise (see [11, Prop. 4.3.3], whose proof can easily be adapted to a general involutive
division L).
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Gao et al. developed a computational approach to obtain a strong Gröbner basis using S-poly-
nomials which are associated with a criterion for computing Gröbner bases [6]. For the involutive
analogue we refer to [18, Def. 4.1.1, Prop. 4.1.4]. Hence, we get the following definition for involu-
tive J-pairs.

Definition 3.4. Let p := (u, v) ∈ G and v 6= 0. Let X̄L,Bv (v) be the set of non-multiplicative
variables of lt(v). Then every element of the set

{xkp | xk ∈ X̄L,Bv
(v)}

is called involutive J-pair of p. Furthermore, a finite product of multiplicative variables for lt(u) or
lt(v) is called a multiplicative term for lt(u) or lt(v), respectively.

3.1. Involutive J-criterion (I) for the Pommaret Division
Next we list some rather technical, but simple lemmas whose proofs we skip here. We need them
to show a first involutive variant of the covered-criterion. It will later be discussed however that this
version will not be our basis for the implementation. Some of the following lemmas are just the
involutive version of results in [6].

Lemma 3.5. If a pair (u, v) ∈M with v 6= 0 is involutively super reducible by a syzygy (u1, 0) ∈ G
then it is also involutively covered by it.

Lemma 3.6. Let p := (u, v) ∈ M be involutively regular reducible at least once by G. If a regular
normal form (u′, v′) of p is an element of G, then p is involutively covered by (u′, v′).

Lemma 3.7. The relations “involutively covered by”, “involutively reducible by a syzygy” and
“involutively super reducible by a non-syzygy” are transitive on G.

For the next lemma, we have to extend the spectrum of our notions a bit.

Definition 3.8. If for (u, v) ∈M there is a (u′, v′) ∈ G with lt(u′) |L,Bu
lt(u), lt(v′) | lt(v), and

lt(u)
lt(u′) = lt(v)

lt(v′) , we call (u, v) pseudo reducible by (u′, v′).

The next lemma will mainly be used in later proofs for optimization of the final algorithms for
the Pommaret division. Hence, we will only prove it for this division, if not noted otherwise. Now,
as the Pommaret division is global, we are not bound by G.

Lemma 3.9. Let (u, v) ∈M with v 6= 0, G ⊆M finite and P be the Pommaret division.
a) If (u, v) is eventually involutively super reducible by G where at least one involutive reduc-

tion is regular, then it is involutively covered by G. This remains true for arbitrary involutive
divisions L.

b) If (u, v) is involutively covered by some pair (u′, v′) ∈ M which in turn is involutively super
reducible by G, then (u, v) is involutively covered by G.

c) If (u, v) is pseudo reducible by (u′, v′) ∈ M and if (u′, v′) is involutively covered by G, then
(u, v) is involutively covered by G.

Proof. ad a): We calculate an involutively regular normal form p1 := (u1, v1) of (u, v). Note that
lt(u) = lt(u1) and lt(v1) ≺ lt(v) since we only performed regular reduction steps. According to
our assumptions, p1 is involutively super reducible by some p2 := (u2, v2) ∈ G. In the case of
v2 = 0, this implies

lt(u2) |L,Bu lt(u1) = lt(u) and
lt(u1)

lt(u2)
lt(v2) = 0 ≺ lt(v).

Therefore p is involutively covered by p2. For v2 6= 0 it follows that

lt(u2) |L,Bu
lt(u1) = lt(u) and

lt(u1)

lt(u2)
lt(v2) =

lt(v1)

lt(v2)
lt(v2) = lt(v1) ≺ lt(v).
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Hence, p is always involutively covered by G.
ad b): If (u′, v′) is involutively super reducible by a syzygy (u2, 0), then (u, v) is involutively

covered by the same syzygy since lt(u2) |P lt(u′) |P lt(u). Hence, we assume as in part a) that
(u2, v2) is not a syzyzgy. Then lt(u2) |P lt(u′) and lt(u′)

lt(u2)
= lt(v′)

lt(v2)
. Because (u, v) is involutively

covered by (u′, v′) we have lt(u′) |P lt(u) and lt(u)
lt(u′) lt(v′) ≺ lt(v). Hence, we have

lt(u2) |P lt(u′) |P lt(u) and
lt(u)

lt(u2)
lt(v2) =

lt(u)

lt(u′) lt(v2)
lt(v′)

lt(v2) =
lt(u)

lt(u′)
lt(v′) ≺ lt(v),

and thus, (u, v) is involutively covered by G.
ad c): As p′ is involutively covered by G, there exists a pair (u2, v2) ∈ G such that

lt(u2) |P lt(u′) and
lt(u′)

lt(u2)
lt(v2) ≺ lt(v′).

From lt(u)
lt(u′) = lt(v)

lt(v′) it follows that

lt(u2) |P lt(u′) |P lt(u) and
lt(u)

lt(u2)
lt(v2) =

lt(u′) lt(v)
lt(v′)

lt(u2)
lt(v2) ≺ lt(v)

lt(v′)
lt(v′) = lt(v).

Therefore, we are done. �

The next lemma is very important for the Pommaret and Janet division. And of course, we aim
to find a computational approach to compute strong L-bases. The following lemma is the first step
towards this goal. Later, we will make a few more assumptions under which the statements indeed
are equivalent. Nevertheless, without any further assumptions being made, we already obtain the
following result.

Lemma 3.10. Let L be an involutive division. Let G ⊆ M be a finite set. Then the implications
“a)⇒ b)⇒ c)” hold, where

a) G is a strong L-basis of M .
b) Every involutive J-pair of elements of G is eventually involutively super reducible by G.
c) Every involutive J-pair of elements of G is involutively covered by G or involutively super

reducible by G.

Proof. We first prove “a)⇒ b)”. Suppose,G is a strong L-basis. Now let p be an involutive J-pair of
an element ofG. Since p ∈M , we know that p is involutively reducible. If the reduction is super, we
are done. Otherwise the reduction is regular, and we calculate an involutively regular normal form
which lies again in M . Therefore, it is still involutively reducible and now it must be an involutively
super reduction. Hence, b) is shown.

Now suppose b) is true. We write again p := (u, v) ∈ M for an arbitrary involutive J-pair. By
definition of a J-pair we know v 6= 0.
Applying b), we can conclude that p is eventually involutively super reducible by G. If no regular
reduction is possible, p is involutively super reducible and c) is true. However, if an involutively
regular reduction is possible, we apply lemma 3.9 a) and we are done. �

We need one more rather technical lemma before we come to the actual result of this section.

Lemma 3.11. Let L = P be the Pommaret division. Let G ⊆ M be a finite set. Suppose that every
J-pair in G is involutively covered or involutively super reducible by G.
Let (u, v) ∈M be non-zero and suppose there is a pair p1 := (u1, v1) ∈ G with v1 6= 0 such that

(i) lt(u1) |P lt(u) and
(ii) t lt(v1) := lt(u)

lt(u1)
lt(v1) is minimal among all elements in G that satisfy condition (i).
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Then the following statements are true:
a) tp1 is not involutively covered by G.
b) If t contains a non-multiplicative variable for lt(v1) then there exists a pair p′ := (u′, v′) ∈ G

such that v′ 6= 0 and tp1 is involutively super reducible by p′.
c) If G is involutively head autoreduced w.r.t. the v-part6 then tp1 is not involutively regular

reducible by G.

Proof. Since (u, v) 6= (0, 0) we conclude lt(u) 6= 0. Now let us consider the first statement.
ad a): Assuming that a) is false, we will arrive at a contradiction as follows. We assume that

tp1 is involutively covered by a pair (u2, v2) ∈ G. But this implies lt(u2) |P t lt(u1) = lt(u) and
lt(u)
lt(u2)

lt(v2) ≺ t lt(v1), violating condition (ii).
ad b): By our assumptions t is multiplicative for lt(u) and contains a non-multiplicative vari-

able for lt(v1). Let l := deg(t) and xk be the variable with the largest index occurring in t. Since
t contains a non-multiplicative variable, xk must be non-multiplicative for lt(v1), too. Note, that
xk |P t7. Furthermore, xkp1 is an involutive J-pair . By our assumptions there are now two possibil-
ities.

In the first case xkp1 is involutively covered by G. Then there exists (u2, v2) ∈ G such that

lt(u2) |P xk lt(u1) and
xk lt(u1)

lt(u2)
lt(v2) ≺ xk lt(v1).

But because xk |P t is true and t is multiplicative for lt(u1), we obtain

lt(u2) |P t lt(u1) and
t lt(u1)

lt(u2)
lt(v2) ≺ t lt(v1),

which contradicts a).
Thus, we now consider the second case and assume that xkp1 is involutively super reducible

by a pair p3 := (u3, v3) ∈ G. If v3 = 0, then xkp1 is also involutively covered by p3 because v1
is non-zero by our assumptions (see Lemma 3.5). But we have just shown in the first case that this
leads to a contradiction. Therefore, we have v3 6= 0. Now, by definition we obtain the relations

lt(v3) |P xk lt(v1) and lt(u3) |P xk lt(u1) |P t lt(u1).

If in addition to this the relation lt(v3) |P t lt(v1) is true, we are done since xkp1 and tp1 have the
same leading coefficients (which would show that tp1 is involutively super reducible by p3). So let
us suppose that this is not the case, i.e. there must be a non-multiplicative variable for lt(v3) left
in t

xk
. Then, we iterate our arguments, now taking the variable xh appearing in supp( t

xk
) with the

largest index and looking at the J-pair xh(u3, v3). Note that xh |P t
xk

, or equivalently xhxk |P t
holds (remember that h ≤ k).

Then, we end up again with a pair p4 := (u4, v4) ∈ G with v4 6= 0, from which we know that
it reduces xhp3 involutively super. In particular, we have

lt(v4) |P xh lt(v3) |P xhxk lt(v1) and lt(u4) |P xh lt(u3) |P xhxk lt(u1) |P t lt(u1).

Repeating this procedure, we finish after at most l = deg(t) steps, obtaining a pair which satisfies
all properties that we have claimed in b).

ad c): We prove this by contradiction. Suppose, that tp1 is involutively regular reducible by a
pair p2 := (u2, v2) ∈ G. Hence, v2 6= 0. Now,we are facing three cases.

Firstly, t = 1. This leads to lt(v2) |P lt(v1), and hence, to a contradiction because G is
involutively head autoreduced w.r.t. the v-part.

6This means, that the set of v-parts of G does not contain two elements v1, v2 such that lt(v1) |L,Bv lt(v2).
7In this work, every variable with an index smaller or equal to the class of a term t′, written cls(t′) := min{r : xr | t′}, is
Pommaret multiplicative for t′.
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Also, if t 6= 1 is a multiplicative term for lt(v1) we have trivially lt(v1) |P t lt(v1) and still
lt(v2) |P t lt(v1). Therefore, we must have lt(v2) |P lt(v1) or lt(v1) |P lt(v2) violating again our
assumption in c).

Hence, only one case is possible: t 6= 1 contains a non-multiplicative variable for lt(v1).
But in this case, we can apply part b) and obtain a pair p′ as described in b). Then, tp1 cannot be
involutively regular reducible by p′. So, we have p′ 6= p2. However, we have lt(v′) |P t lt(v1) and
lt(v2) |P t lt(v1). This again implies lt(v2) |P lt(v′) or vice versa, both violating the condition that
G is involutively head autoreduced w.r.t. the v-part. �

Note, that in Lemma 3.11 we only used the condition “G is involutively head autoreduced w.r.t.
the v-part” for the proof of part c). This will be very important for our following work. Because later,
it will turn out that we have to drop this condition as we cannot realize it for every input.

Nevertheless, we will prove as the first result of this paper an involutive version of the J-
criterion.

Theorem 3.12 (Involutive J-criterion (I)). Let P be the Pommaret division. Let G ⊆M be a finite
set and involutively head autoreduced w.r.t. the v-part. Moreover, assume that 〈Sig(G)〉P = Tmn .
Then the statements of Lemma 3.10 are equivalent, i.e. the statements

a) G is a strong P -basis of M .
b) Every involutive J-pair of elements of G is eventually involutively super reducible by G.
c) Every involutive J-pair of elements of G is involutively covered by G or involutively super

reducible by G.

Proof. Due to Lemma 3.10 we only must show the implication “c) ⇒ a)”. And we are doing this
by reductio ad absurdum. For this purpose, suppose that G is not a strong P -basis of M and that c)
holds. Then, by definition of a strong P -basis we know: There must exist a pair (0, 0) 6= (u, v) ∈M
which is not involutively reducible byG. We take the one with smallest signature. We set T := lt(u)
and observe that T 6= 0 as otherwise v would be 0, too. Now, as 〈Sig(G)〉P = Tmn is true by our
assumptions, we can choose a pair (u1, v1) ∈ G with the following two properties:

(i) lt(u1) |P lt(u) and
(ii) t lt(v1) := lt(u)

lt(u1)
lt(v1) is minimal among all elements in G that satisfy condition (i).

Note, that v1 6= 0 as otherwise (u, v) would be involutively reducible by a syzygy (u1, 0) due to
condition (i). Hence, we are in the position to apply part c) of Lemma 3.11, telling us that t(u1, v1)

is not involutively regular reducible by G. Next, we set c := lc(u)
lc(u1)

and

(u′, v′) := (u, v)− ct(u1, v1).

First, we observe that lt(u′) ≺ lt(u) = T . For the v-part, there are several cases to consider. If
lt(v) 6= t lt(v1), i.e. v′ 6= 0, we argue as follows: Because (u′, v′) has a smaller signature than
(u, v) it must be involutively reducible by G. For the moment, we reduce by syzygies if possible.
Doing so, we only can reduce the signature, and hence, the remainder is still involutively reducible
by G. But now, it is involutively reducible by a pair (u2, v2) with v2 6= 0. Also note that v′ has not
been changed during the reduction process so far.

Since lt(v) 6= t lt(v1), there are two cases.

• If lt(v) ≺ t lt(v1) is true, then we have lt(v′) = t lt(v1). Hence, we get the relations

lt(v2) |P lt(v′) = t lt(v1) and
t lt(v1)

lt(v2)
lt(u2) � lt(u′) ≺ T = t lt(u1),

which implies that t(u1, v1) is involutively regular reducible by G leading to a contradiction
to our result above obtained from Lemma 3.11 c).
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• If, on the other hand, t lt(v1) ≺ lt(v) is true, then we get lt(v′) = lt(v). Therefore we obtain

lt(v2) |P lt(v′) = lt(v) and
lt(v)

lt(v2)
lt(u2) � lt(u′) ≺ T = lt(u),

which now implies that (u, v) is involutively regular reducible by G leading once again to a
contradiction since (u, v) is not involutively reducible by G due to our assumptions from the
beginning of this proof.

Accordingly, there is only one possibility left, i.e. we have lt(v) = t lt(v1). If t = 1 or if t 6= 1

is a multiplicative term for lt(v1), then lt(v1) |P lt(v), lt(u1) |P lt(u) and lt(v)
lt(v1)

= lt(u)
lt(u1)

= t

and hence, (u, v) is involutively reducible by (u1, v1) ∈ G. But this is not possible. So t 6= 1
has at least one non-multiplicative variable for lt(v1). Applying part b) of Lemma 3.11 we obtain
a pair (u3, v3) ∈ G such that t(u1, v1) is involutively super reducible by (u3, v3). But because of
t lt(u1) = lt(u) and t lt(v1) = lt(v), this implies that (u, v) is involutive reducible by (u3, v3)(

not necessarily involutively super reducible since we might have lc(v)
lc(v1)

6= lc(u)
lc(u1)

)
, which is a con-

tradiction to our choice of (u, v). �

Remark 3.13. We shall keep in mind that if we can prove Lemma 3.11 c) under some other assump-
tions, the proof of Theorem 3.12 carries over. Also, we shall not forget that all elements in M with
smaller signature than tl(u1) = lt(u) would involutively reduce to (0, 0). Hence, the strong L-basis
is finished up to this signature. We will later refer to those two facts.

But for now, we will discuss why we should change our preconditions in the first place, and,
that we cannot just discard the condition “G is involutively head autoreduced w.r.t. the v-part”. We
will replace this condition by a weaker one, namely, that G is involutively regular autoreduced8.

For a term order satisfying e1 ≺ e2 we discuss the ideal 〈x2, x〉EK[x]. Next, we can check that
the set G := {(e1, x2), (e2, x)} is indeed involutively regular autoreduced with e1, e2 ∈ Sig(G).
However, there are no involutive J-pairs to consider and the modified version of Theorem 3.12 would
tell us that G is a strong P -basis. This is of course not true since there is no syzygy contained in G.

This shows that we cannot drop our assumptions in Theorem 3.12 so easily. But it shows simul-
taneously that there is no involutive reduction changing G into an involutively head autoreduced set
w.r.t. the v-part. The only possible reduction would increase the signature and, thus, by definition is
not involutive. Therefore, there are some ideals for which we cannot fulfill all needed assumptions in
Theorem 3.12. Moreover, we now know that replacing the condition by “G is involutively regularly
autoreduced” is not sufficient.

But fortunately, we will find a way around this problem by allowing some necessary, yet “for-
bidden” reduction steps. Of course, we want to avoid reduction steps as much as possible. Thus, we
will also aim to obtain some criteria how to decide whether or not a forbidden reduction shall be
done. Keep in mind that we want to do only regular reduction steps if possible, because this way we
have control over the signature which is very helpful for applying our J-criteria.

We want to point out that this small example is also a counterexample for Theorem 5 in [1],
where the authors left out preconditions for the v-part of G. Furthermore, they have used a weaker
criterion in statement c) since there, a J-pair can only be discarded if it is covered (remember that
they present the semi-involutive version), whereas we can discard involutively super reducible J-
pairs, too.

Now, it is of course useful to have some criteria optimizing the test of the statement c) of
Theorem 3.12. We have already found some of these criteria (e.g. Lemma 3.5), but there are more to
discover. We will find some of them in the next subsection.

8This means, that there is no element in G that can be involtuively regular reduced by G.
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3.2. Involutive J-criterion (II) for the Pommaret Division
To prepare the next result of this work, we will introduce some rather technical lemmas in order
to avoid an incomprehensible and long proof. In this section we set L = P to be the Pommaret
division, if not noted otherwise. Still, we shall note that some of the lemmas remain valid for arbitrary
involutive divisions even though we prove them only for L = P .

Lemma 3.14. If (u, v) ∈ M is involutively regular reducible by (u1, v1) ∈ G and involutively
super reducible by (u2, v2) ∈ G with v2 6= 0, then there is a multiplicative term t for lt(u2) and
lt(v2) such that lt(u) = t lt(u2), lt(v) = t lt(v2) and t(u2, v2) is involutively regular reducible by
(u1, v1).

Proof. Since (u, v) is involutively super reducible by (u2, v2) with v2 6= 0, it follows that there
exists a coefficient c ∈ K, a multiplicative term for lt(u2) and lt(v2) such that

lt(u2) |P lt(u), lt(v2) |P lt(v) and
lm(v)

lm(v2)
=

lm(u)

lm(u2)
= ct.

In particular, t lt(v2) = lt(v) and t lt(u2) = lt(u). Now, because (u, v) is involutively regular
reducible by (u1, v1), we get lt(v1) |P lt(v) = t lt(v2). Thus, there are two possibilities:

• t lt(v2)
lt(v1)

lt(u1) = lt(v)
lt(v1)

lt(u1) ≺ lt(u) = t lt(u2), and hence, t(u2, v2) is involutively regular
reducible by (u1, v1), or
• t lt(v2)

lt(v1)
lt(u1) = lt(v)

lt(v1)
lt(u1) = lt(u) = t lt(u2) and

lc(v)

lc(v1)
6= lc(u)

lc(u1)
. (3.1)

We have to prove now, that lc(v2)
lc(v1)

6= lc(u2)
lc(u1)

in order to show the claim of the lemma.
Because (u, v) is involutively super reducible by (u2, v2), we obtain

lc(v)

lc(v2)
=

lc(u)

lc(u2)
. (3.2)

Starting from (3.1), we know lc(v) 6= lc(u)
lc(u1)

lc(v1). Plugging in (3.2), we end up with

lc(u)

lc(u2)
lc(v2) 6= lc(u)

lc(u1)
lc(v1)

and hence, with
lc(v2)

lc(u2)
6= lc(v1)

lc(u1)
,

which is exactly what we needed to show. �

Lemma 3.15. Let L be an arbitrary involutive division. Let t ∈ Tn, (u, v) ∈ G and let t(u, v) ∈M
be involutively regular reducible by (u1, v1) ∈ G. If lt(v1) |L,Bv

lt(v) then (u, v) is involutively
regular reducible by (u1, v1).

Proof. We know that t(u, v) is involutively regular reducible by (u1, v1). This, by definition, implies
lt(v1) |L,Bv

t lt(v) and

t lt(v)

lt(v1)
lt(u1) ≺ t lt(u) or

(
t lt(v)

lt(v1)
lt(u1) = t lt(u) and

lc(v)

lc(v1)
6= lc(u)

lc(u1)

)
. (3.3)

In addition we have lt(v1) |L,Bv
lt(v). Hence, we can write (3.3) without “t” and we are done. �
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With this lemma we immediately can prove a first proposition aiming towards the next result of
this work. It collects some properties about the pair (u1, v1) from the proof of Theorem 3.12, some
of which are written down already in Lemma 3.11. Recall, that t lt(u1) was the smallest signature
belonging to a pair in M which is not involutively reducible by G. Also, we have discussed that we
may assume that G is at least involutively regular autoreduced.

Proposition 3.16. Let G ⊆ M be involutively regular autoreduced, (u1, v1) ∈ G and t multiplica-
tive for (u1, v1). Let t(u1, v1) not be involutively covered by G. Moreover, assume that (u, v) ∈M
involutively reduces to (0, 0) for all (u, v) with lt(u) ≺ t lt(u1).

If t(u1, v1) is involutively regular reducible by (u2, v2) ∈ G then t lt(v1) = lt(v2) and t 6= 1.

Proof. Let t(u1, v1) be involutively regular reducible by (u2, v2). Because G is involutively regular
autoreduced, we obtain t 6= 1. Since t is multiplicative for lt(v1) this implies lt(v1) |P t lt(v1)
and, as t(u1, v1) is involutively regular reducible, lt(v2) |P t lt(v1). Therefore, lt(v2) |P lt(v1) or
vice versa. In the first case, we can apply Lemma 3.15 and find that already (u1, v1) is involutively
regular reducible by (u2, v2) contradicting the assumption thatG is involutively regular autoreduced.
Accordingly, lt(v1) |P lt(v2) and lt(v1) 6= lt(v2) must hold. Then, by definition, there exists a
multiplicative term t′ 6= 1 for lt(v1) such that t′ lt(v1) = lt(v2). Because of the fact that t′ and t are
both multiplicative terms for lt(v1) and because of the relation

t′ lt(v1) = lt(v2) |P t lt(v1),

we know that t′ |P t. We now look at t′(u1, v1). Since t(u1, v1) is involutively regular reducible by
(u2, v2) and lt(v2) |P t′ lt(v1), we can apply Lemma 3.15 once again, returning the statement that
t′(u1, v1) is involutively regular reducible by (u2, v2).

Our aim now is to show, that t′ = t. Then we have shown everything claimed in the proposition.
For that we recall that we already know t′ |P t and thus, t′ � t. So, suppose that we have t′ ≺ t.
Then t′ lt(u1) ≺ t lt(u1). By our preconditions, this implies that t′(u1, v1) reduces involutively
to (0, 0) by G where at least one reduction is involutively regular. Performing first all involutively
regular reduction steps we see that t′(u1, v1) is eventually involutively super reducible by G. From
Lemma 3.9 a) we know that t′(u1, v1) is involutively covered by a pair (u3, v3) ∈ G. Thus, we have
lt(u3) |P t′ lt(u1) and

t′ lt(u1)

lt(u3)
lt(v3) ≺ t′ lt(v1). (3.4)

Because of t′ |P t and t is multiplicative for lt(u1) we obtain even lt(u3) |P t lt(u1). Finally,
multiplying t

t′ to (3.4), we conclude that even t(u1, v1) is involutively covered by (u3, v3) ∈ G, and
hence, a contradiction to our precondition. �

Now, having these results, we can tackle the main theorem. For that, we have to introduce a
certain subset of M .

Definition 3.17. Let G ⊂M be finite and involutively regular autoreduced. Let (u1, v1) ∈ G and t
be a term. Then, the pair t(u1, v1) is called a proxy of (u2, v2) if the following conditions hold:

(i) We have lt(v1) |P lt(v2) and t = lt(v2)
lt(v1)

,
(ii) t is a multiplicative term for lt(u1),

(iii) t(u1, v1) is involutively regular reducible by (u2, v2) and
(iv) t(u1, v1) is not involutively covered by G.

The set of all proxy pairs is denoted by PP (G). Furthermore, we call a proxy pair with smallest
signature an essential pair for G.

It may seem to be generic that PP (G) is the empty set because there are many conditions the
elements in PP (G) have to satisfy. However, it will turn out, that during the computations, this set
most likely is not empty and will play a major role. Nevertheless, our goal will be to obtain a set G
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at the end of the algorithm, where PP (G) = ∅ is true. We want also to mention why this notion of
proxy pairs is chosen. But this might be more reasonable when we start to formulate the algorithm.
Then, we will see, that they are indeed a “proxy” in some meaningful sense.

Now, we begin to show our next result. From our previous work we know that all we have to do
is to redo part c) of Lemma 3.11 under the new conditions which we will introduce in the following
proposition.

Proposition 3.18. Let P be the Pommaret division. Let G ⊆ M be finite and involutively regular
autoreduced. Moreover, assume that PP (G) = ∅. Furthermore, assume that every J-pair of elements
in G is involutively covered or involutively super reducible by G.

Let (u, v) ∈M be non-zero and suppose there is a pair p1 := (u1, v1) ∈ G with v1 6= 0 such
that

(i) lt(u1) |P lt(u) and
(ii) t lt(v1) := lt(u)

lt(u1)
lt(v1) is minimal among all elements in G that satisfy condition (i).

Moreover, assume that every (u′, v′) ∈ M with lt(u′) ≺ t lt(u1) involutively reduces to (0, 0) by
G. Then tp1 is not involutively regular reducible by G.

Proof. Let us suppose that tp1 is involutively regular reducible by (u2, v2) ∈ G. Then, applying
Lemma 3.11 a) we know that tp1 is not involutively covered by G.

For the moment, suppose that t is a multiplicative term for lt(v1). With Proposition 3.16 we
can conclude t lt(v1) = lt(v2) and t 6= 1. Hence, we collect the following properties:

• We have lt(v1) |P lt(v2) and t = lt(v2)
lt(v1)

.
• t is multiplicative for lt(u1).
• t(u1, v1) is involutively regular reducible by (u2, v2) and
• t(u1, v1) is not involutively covered by G.

Therefore, t(u1, v1) ∈ PP (G) = ∅ leads to a contradiction. Also note that indeed t(u1, v1) is an
essential pair for G since there cannot be any other pair in PP (G) with smaller signature because of
the following arguments: All pairs in PP (G) with smaller signature reduce involutively to zero and
there is always at least one involutively regular reduction by definition of PP (G). Hence, the pair
is eventually involutively super reducible and at least once involutively regular reducible. Applying
lemma 3.9 a) we know, that the pair would be involutively covered by G violating one condition for
being an element in PP (G).

Thus, t is not 1 and contains a non-multiplicative variable for lt(v1). With Lemma 3.11 b)
there exists a pair p′ := (u′, v′) ∈ G such that v′ 6= 0 and t(u1, v1) is involutively super reducible
by p′. Now, applying Lemma 3.14, we know that there exists a multiplicative term t′ for lt(v′) and
lt(u′) such that t lt(u1) = t′ lt(u′) and t lt(v1) = t′ lt(v′) and such that t′(u′, v′) is involutively
regular reducible by (u2, v2), too. t′ cannot be 1, as otherwise G would not be involutively regular
autoreduced.

Also, t′(u′, v′) is not involutively covered by G, because it has the same leading terms as
t(u1, v1). Therefore, we are in the upper case again and we can apply Proposition 3.16 and get
analogously t′(u′, v′) ∈ PP (G) = ∅, leading to yet another contradiction. �

Now, the actual involutive J-criterion becomes a corollary.

Theorem 3.19 (Involutive J-criterion (II)). Let P be the Pommaret division. Let G ⊆ M be finite
and involutively regular autoreduced. Moreover, assume that we have 〈Sig(G)〉P = Tmn and that
PP (G) = ∅. Then the following statements are equivalent:

a) G is a strong P -basis of M .
b) Every involutive J-pair of elements of G is eventually involutively super reducible by G.
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c) Every involutive J-pair of elements of G is involutively covered by G or involutively super
reducible by G.

Proof. According to Lemma 3.10 we only have to show “c)⇒ a)”. Remark 3.13 tells us that for this
purpose we only need to show a modified version of Lemma 3.11 c) and that Proposition 3.18 is that
modified version. �

3.3. Algorithm: Strong P -Basis
Finally, we are able to formulate an algorithm that is suitable for computing a strong P -basis.

For reasons of efficiency we choose the strategy of smallest signature since by this our set G
will not change already treated pairs due to involutively regular autoreductions. Indeed, it will turn
out that this strategy is crucial for our algorithm to be correct.

Let JP (G) be the set of all involutive J-pairs of a set G. We start with a set

G := {(ei, fi) | 1 ≤ i ≤ m}

satisfying the precondition 〈Sig(G)〉P = Tmn . Since elements in JP (G)∪PP (G) cannot be syzygies
we take the syzygies from G and store them in a set H . Next, we will deal with JP (G) and PP (G)
simultaneously always searching for the element p ∈ JP (G) ∪ PP (G) with smallest signature.
Our goal for p ∈ JP (G) is to add, if not already existing, a pair p1 to G ∪ H such that p is
involutively covered by p1 or involutively super reducible by it. For this, p1 is set to be an involutively
regular normal form of p. Then p is eventually involutively super reducible by p1 and by applying
lemma 3.10 we know, that we can discard p from JP (G).

For p ∈ PP (G) we always take an essential pair because of the strategy of the smallest
signature. And this is exactly what we need to do by our proof of Proposition 3.18. Then, we calculate
one of its involutively regular normal forms and add it toG∪H . Hence, p is now involutively covered
by G ∪H (see Lemma 3.6) and not contained in PP (G) anymore.

Adding an element to G may extend the set JP (G) ∪ PP (G) and thus we are interested in
finding criteria to discard as much pairs as possible from these sets. Indeed, we have the following
lemma.

Lemma 3.20. Let p ∈ JP (G) ∪ PP (G).
a) If p is involutively covered by JP (G) ∪ PP (G), or
b) if p ∈ JP (G) is involutively super reducible by (JP (G) ∪ PP (G)) \ {p}, or
c) if p ∈ PP (G) is involutively super reducible by PP (G) \ {p}, or
d) if p is pseudo reducible by p′ := (u′, v′) ∈ PP (G) \ {p},

then it can be discarded. In particular, for every G there is a unique essential pair not satisfying a)
to d).

Proof. Since all these relations are transitive by Lemma 3.7, we may assume that p is the only
element we have to consider.

ad a): Since we will add an element g toG∪H such that p is involutively covered or involutively
super reducible by g we know by Lemma 3.9 a) and b) that p will be involutively covered by the new
G ∪H .
ad b): Let p be involutively super reducible by p′. Then, we will provide a g for G ∪ H such that
p′ is involutively covered or – if p′ ∈ JP (G), involutively covered or involutively super reducible
– by the new G ∪H . Applying Lemma 3.9 b), we know that the same holds for p. Hence, it can be
discarded.

ad c) and d): We will provide a g for G ∪ H such that p′ is involutively covered by the new
G ∪H . Hence, by Lemma 3.9 we are done.

Now, we want to show, that for any signature occurring in PP (G) there will be only one
element left in PP (G) after eliminating elements that satisfy a condition from a)–d). To see this,
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assume that for a given signature, there are two elements (u1, v1) 6= (u2, v2) ∈ PP (G) with
lt(u1) = lt(u2). According to a), we must have lt(v1) = lt(v2) as otherwise one of the two would
be involutively covered by the other. Note, that since both elements are proxy pairs, the v-parts are
not zero. Now, due to d), we know that the first pair considered would have been discarded as it is
pseudo reducible by the other one. �

Remark 3.21. Because we now know, that the essential pair is unique when we use the criteria a)
to d), its notion may become more transparent. Also, if we look back to the proof of the involutive
J-criterion, we worked with the essential pair of G. Furthermore, when we look at proxy pairs in
general, it turns out that we need them to perform a forbidden reduction step. Every time a regular
normal form p has a v-part that is not an involutive normal form, we may insert an element into
PP (G) with the same leading term in the v-part as p, and with the property that it is now involutively
regular reducible. Hence, for an involutively irreducible element p ∈ Gwith reducible v-part we have
introduced a “proxy” to a pair with the same leading term in the v-part, allowing us to continue the
reduction with involutively regular reduction steps. Also note, the pair p is not important anymore
for our involutive bases in the sense that neither its v-part nor its u-part will appear in it. However,
its J-pairs might be necessary – and the same holds for the proxy pairs introduced with the help of p.

By the way, it is easy to see, that from Theorem 3.19, G ∪ H is a strong P -basis for M if
PP (G) = ∅ and every element in JP (G) is involutively covered or involutively super reducible by
G ∪H . However, since we are aiming to compute two Pommaret bases the proof of termination is
not trivial. Based on this issue, one may think of dropping the goal to compute a Pommaret basis for
Syz(F ). This approach, we will follow in Subsection 3.5 and represents the semi-involutive variant
of our algorithm. But for now, we first present an important proposition which is the involutive
version of Proposition 2.7.

Proposition 3.22. Let G = {(u1, v1), . . . , (uk, vk)} be a strong P -basis of M . Then

(i) G0 := {ui | vi = 0, 1 ≤ i ≤ k} is a weak Pommaret basis of Syz(F ).
(ii) G1 := {vi | vi 6= 0, 1 ≤ i ≤ k} is a weak Pommaret basis of I = 〈F 〉.

Now, we want to note here that this proposition would provide us with a Gröbner basis of
Syz(F ) if we were in the semi-involutive case. Indeed, it is enough to compute only a generating
system of Syz(F ) as we could iterate the algorithm to compute a Pommaret basis of Syz(F ) starting
with the obtained generating system from the first run. Moreover, if we use a semi-involutive variant
of our involutive J-criterion potentially more elements will be discarded. This is one of the reasons
why we will focus on this variant of the GVW algorithm.

But first, we put together the results from this section in an algorithm presented as a pseudo
code for the fully involutive case. Before we go into the details, we want to mention that we now
restrict to homogeneous ideals as termination is easier to prove. However, one may adopt this theory
to the affine case through homogenization and dehomogenization arguments.

Before we present the involutive algorithm, we want to point out one notion. If I is homoge-
neous, Syz(F ) is too in some sense:

All we have to do is to introduce another notion of degrees of a vector term. Consider a term
xµ ∈ Tn. We set degF (xµei) := deg(xµ) + deg(fi). In particular, this means for an (u, v) ∈ M
that degF (lt(u)) = deg(lt(v)) if v 6= 0. Thus, if the v-part is homogeneous, the u-part is too.

Also, we want to note an optimization presented in [6]: If (u1, v1) 6= (u2, v2) ∈ G are two dif-
ferent elements in G, then v2(u1, v1)−v1(u2, v2) is a so-called trivial syzygy that we can add to the
syzygies found so far. However, if we decided to only keep signatures rather than the whole u-part it
is important to note, that the signatures of the two pairs may cancel, and thus, we know nothing about
the u-part of the syzygy. In such a case, we therefore add nothing to H . Furthermore, when trivial
syzygies are used in the algorithm, involutively super autoreductions of H are reasonable. Without
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InvGVW(F,H0,≺1,≺2, P, q) (Pommaret Version)
Input: A set F = {f1, . . . , fm} ⊆ R of homogeneous polynomials, ≺1=≺degrevlex on R and a com-

patible term order ≺2 on Rm of type ω, P Pommaret division, a degree bound q for elements in
a Pommaret basis of I . An involutively fully reduced set H0 of syzygies of F , where H0 = ∅ is
possible.

Output: A weak Pommaret basis for I = 〈F 〉, that also contains a Pommaret basis as a subset; and a weak
Pommaret basis of Syz(F ) or an error message that I or Syz(F ) is not in quasi-stable position.

Variables: G is an ordered set of pairs (ui, vi) ∈M with vi 6= 0.
H is an ordered set of syzygies (u, 0) of F .
JP (G) is the set of involutive J-pairs of G.
PP (G) is the set of proxy pairs of G.

Step 1: G← {(ei, fi) | 1 ≤ i ≤ m}, H ← H0, PP (G)← ∅
Step 2: Perform an involutively regular autoreduction on G. Fill H with obtained syzygies, discard them

from G, and fill PP (G) with (new) proxy pairs. Calculate (new) trivial syzygies of G and add
them to H . Involutively autoreduce H . Fill JP (G) with (new) involutive J-pairs of G. Remove
all elements from JP (G)∪PP (G) =: Q for which the degree of the v-part is greater than q+2.

Step 3: while JP (G) ∪ PP (G) 6= ∅ do
Step 4: Take elements p := (u, v) ∈ JP (G) ∪ PP (G) =: Q with smallest signature and then with

smallest leading term in the v-part. Do the following step for all choices of p
Step 5: If

• p is involutively covered by G ∪H ∪Q =: S, or
• p is pseudo reducible by PP (G) \ {p}, or
• p ∈ PP (G) is involutively super reducible by PP (G) \ {p}, or
• p ∈ JP (G) is involutively super reducible by S \ {p},

then discard p and go back to step 3.
Step 6: If there is more than one choice for p left, and one of them is from PP (G), take it and discard

the rest. If all are in JP (G) perform an involutively regular reduction step from one of them by
another one, replace p by the result of the reduction step and discard all other choices of p.

Step 7: Calculate an involutively regular normal form (u′, v′) of p by G

Step 8: If v′ = 0 then

Step 9: If min

{
degF (lt(u′)), min

(u,v)∈Q
{degF (lt(u))}

}
> q + 1 then

Step 10: return “Syz(F ) is not in quasi-stable position”
Step 11: endif
Step 12: H ← H ∪ {(u′, 0)}
Step 13: else
Step 14: If lt(v′) is not involutively reducible by the v-part of G and

min

{
deg(lt(v′), min

(u,v)∈Q
{deg(lt(v))}

}
> q then

Step 15: return “I is not in quasi-stable position”
Step 16: endif
Step 17: G← G ∪ {(u′, v′)}. Go back to step 2.
Step 18: end if
Step 19: end while
Return: {vi | (ui, vi) ∈ G} and {u | (u, 0) ∈ H}

introducing trivial sygygies however, one can show that we can avoid involutive autoreductions as
long as we do not have to perform coordinate transformations.

3.4. Correctness of the involutive GVW algorithm
After presenting the main algorithm, we have to consider of course that we aim to calculate a Pom-
maret basis which does not exist in general. Hashemi et al. have shown in [10], however, that with the
help of coordinate transformations, the standard algorithm [18, Algo. 4.5] will terminate for com-
puting a Pommaret basis of an homogeneous ideal and for the degree reverse lexicographic order.
But there are many different ways how to decide if a coordinate transformation is needed and if so,
which would fit the best (see [18, Prop. 5.3.4],[10, Prop. 3.2]). We will tackle this question later. But
for now, we want to prove, that our core algorithm is correct, if it terminates. For the termination
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with Pommaret bases as the only possible output we will of course have to add some steps with
transformations.

Remark 3.23. We want to note one property of the involutive GVW algorithm, that follows from the
strategy of smallest signatures and the definition of involutive reduction on M : Let us have added
(u, v) to G ∪ H at some point in the algorithm. As involutive reduction steps are not allowed to
increase the signature, and as we build up our strong P -basis from smallest signatures, we know for
sure that the strong P -basis is finished up to elements with strictly smaller signature than lt(u)9.
Moreover, if we take a degree compatible term order for the u-part, we can conclude:

If deg(lt(u)) = k + 1 for some k ∈ N, we know that we have a strong P -basis up to degree
k, i.e. a set G ∪H such that every element in M with a signature of degree less than or equal to k
involutively reduces to (0, 0) by10 G ∪ H . But as every Pommaret basis of an homogeneous ideal
I has elements of degree at most11 q, and q + 1 for Syz(F ), respectively [18, Cor. 5.5.18], all we
need to do is to build a strong P -basis up to the degree q + 1. If I or Syz(F ) are not in quasi-stable
position, we then will find also elements of degree q + 2 that will increase the involutive span of I
or Syz(F ) [18, Prop. 5.3.7]. Thus, a first step towards the proof of correctness is to show that the
algorithm will produce elements of ascending signature.

Indeed, we will prove that after we have enlarged G by an element (u, v), all new elements
that are about to be added to JP (G)∪PP (G) have a signature greater than lt(u). Indeed, we could
show in the next lemma that there are no two elements in G ∪ H with the same signature, if we
follow the algorithm described so far. But since we must allow coordinate transformations this may
not be the case anymore after a transformation.

Lemma 3.24. Let p := (u, v) ∈ JP (G) ∪ PP (G). If we have inserted an involutively regular
normal form p′ := (u′, v′) of p into G ∪ H , then after a finite number of loop iterations, we will
consider a pair from JP (G) ∪ PP (G) with a signature that is strictly greater than lt(u′).

Proof. When we insert p′ intoG∪H , there are finitely many elements in JP (G)∪PP (G) left with
the same signature. Because of step 6, all those elements in JP (G) ∪ PP (G) are now involutively
covered by the involutively regular autoreduced G or H , and hence can be discarded. Thus, all
elements left in JP (G) ∪ PP (G) have a greater signature than p′. Therefore, we may assume that
the next element we consider has not entered JP (G) ∪ PP (G), yet.

Now, if p′ is a syzygy, we do not enlarge JP (G) ∪ PP (G). If p′ is not a syzygy, then we
perform an involutively regular autoreduction, only changing elements in G with signature greater
than or equal to the one of p′. Thus, all new J-pairs that are added to JP (G) have a signature greater
than the one of p′. Also, we claim that elements added to PP (G) have a strictly larger signature than
p′ has. To see this, we consider two cases.

Firstly, assume that v′ is not an involutive normal form, i.e. there exists (u1, v1) ∈ G such
that lt(v1) |P lt(v′) and lt(v′)

lt(v1)
lt(u1) � lt(u′) as otherwise G would not be involutively regular

autoreduced. Suppose, that lt(v′)
lt(v1)

lt(u1) = lt(u′). So, if we enter g := lt(v′)
lt(v1)

(u1, v1) to PP (G),

then g is involutively regular reducible by p′. Thus, we must have lc(v′)
lc(v1)

6= lc(u′)
lt(u1)

. However, then

we know that the reduction (u′, v′) − lm(v′)
lm(v1)

(u1, v1) is involutively regular, too, and thus, G not

involutively regular autoreduced. Hence, we have lt(v′)
lt(v1)

lt(u1) � lt(u′).
Secondly, assume that there is a pair (u2, v2) ∈ G such that lt(v′) |P lt(v2) applies and

lt(v2)
lt(v′) lt(u′) � lt(u2). Our candidate for PP (G) is h := lt(v2)

lt(v′) (u′, v′). So, what we have to show is
lt(v2) 6= lt(v′). For this, suppose it is not true, i.e. we have lt(v2) = lt(v′).

9Here, we do not want to discuss if it is even finished up to elements with signature lt(u).
10Remember that we are only interested in a strong P -basis for ≺1=≺degrevlex.
11Remember that q is an upper bound, or the Castelnuovo-Mumford regularity.
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Therefore, we have in total lt(v2) |P lt(v′), and from lt(v2)
lt(v′) lt(u′) � lt(u2) we obtain the

relation lt(u′) � lt(v′)
lt(v2)

lt(u2). Now, if especially lt(u′) � lt(v′)
lt(v2)

lt(u2) holds, then (u′, v′) is
involutively regular reducible by (u2, v2) leading to a contradiction. Therefore, we may assume
that lt(u′) = lt(v′)

lt(v2)
lt(u2) = lt(u2) holds . However, the reduction is still involutively regular, if

lc(v′)
lc(v2)

6= lc(u′)
lc(u2)

. So, the quotients must be equal, too. But then the reduction

lm(v2)

lm(v′)
(u′, v′)− lc(v′)

lc(v′)
(u2, v2)

cannot be involutively regular, which is a contradiction to the fact that h is indeed involutively regular
reducible by (u2, v2) (as we assumed h ∈ PP (G)).

Finally, these two cases let us conclude that since every other element in the involutively regular
autoreduced set G, who can lead to new elements in PP (G), have at least the same signature as p′,
every new element in PP (G) has a greater signature than the one of p′. �

Theorem 3.25. Let P be the Pommaret division, ≺1=≺degrevlex and ≺2 a compatible term order of
type ω. If the involutive GVW algorithm terminates, it is correct.

Proof. Step 1 guarantees 〈Sig(G ∪H)〉P = Tmn at the end as we are not removing any of the input
elements fromG∪H , and only are able to reduce them involutively regular. Since we are performing
an involutively regular autoreduction after every step we have added an element to G ∪ H (step 2,
step 17), our G ∪H is involutively regular autoreduced.

Now, if the algorithm terminates, we first dicuss the case that JP (G) = PP (G) = ∅ is true
without having removed elements (u, v) with degF (lt(u)) = deg(lt(v)) > q + 2. In the context
of the algorithm, this means, that every J-pair of an element in G has been studied in step 5 or 6.
Lemma 3.20 tells us, that every element in JP (G) removed in step 5 is now involutively covered
or involutively super reducible by G ∪ H . Also, the lemma says that every element removed from
PP (G) will be involutively covered by the new G ∪ H and hence not be a proxy pair anymore.
However, we have to argue about step 6 a bit. First, assume that one of the candidates is from
PP (G). Then, it will be involutively regular reducible byG and an involutively regular normal form
will be added to G ∪H . Hence, it will be involutively covered by it and so every other candidate.

Now, assume that all candidates are from JP (G). As they have passed step 5, every single
one of them must be involutively regular reducible by any other choice of p. We perform one of
the regular reductions. Now, as the obtained pair will be involutively covered or involutively super
reducible by the newG∪H , all the candidates for p will be – according to Lemma 3.6 – involutively
covered by the new G ∪H . Hence, we end up with a set G ∪H for which PP (G) = ∅ and every
element in JP (G) is involutively covered or involutively super reducible by G ∪ H . Applying the
involutive J-criterion (II), we are done with this part.

Next, we discuss if Q = ∅ is only the case because all elements that should be contained in
Q have a degree in the v-part that is greater than q + 2 and therefore have been removed by step 2.
Because we have come so far in the algorithm without getting an error message, every element
(u, v) with degF (lt(u)) = deg(lt(v)) ≤ q+1 has been considered. So, if no error message stopped
the algorithm (as it must be true for this case) I and Syz(F ) both are in quasi-stable position,
as the Pommaret bases do not contain elements with a greater degree than q + 1 by our thoughts
in Remark 3.23. Hence, the algorithm has provided us a strong P -basis up to degree q + 1. And
according to our observations in Remark 3.23 the output is correct.

If we get the error message that Syz(F ) is not in quasi-stable position this means that we have
added a syzygy (u′, 0) to H . In particular, the syzygy is not involutive reducible by H as otherwise
p would have been involutively covered by H in step 5. So, we have extended the involutive cone of
lt(H). But every Pommaret basis of Syz(F ) must consist of elements with degF (lt(u′)) ≤ q + 1
as we have seen above. Because of the strategy of smallest signature, lt(u′) will still be involutively
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irreduible by any H that we compute during the algorithm as lt(u′) ≺ lt(u) for all u ∈ H that were
added after u′. Because the signatures of considered pairs are ascending by Lemma 3.24 and there
are only finitely many missing for a strong P -basis up to the degree q + 1 (we have a term order of
type ω), Syz(F ) cannot be in quasi-stable position12 and the error message is legit.

For the last case, we assume that the algorithm finished with an error message for I . Here, we
have similar arguments as for Syz(F ). We must have added an element of degree greater than q in
the v-part which only can add elements to Q with at least degree q + 1 in the v-part. However, all
elements that are interesting for a Pommaret basis of I have degree less than q + 1 (and elements of
degree q + 1 must involutively reduce13 to zero by a Pommaret basis). However, as our algorithm
has computed a strong P -basis up to the degree of the current signature (i.e. the one corresponding
to v′), we have already a (weak) Pommaret basis of I computed as all other v-parts have degree q+1
or greater due to the last component of the if-statement in step 14. Still, we have added an element to
G with deg(lt(v′)) > q which is not involutively reducible by the v-parts of G. Hence, there cannot
exist a Pommaret basis of I and the corresponding error message is correct. �

Corollary 3.26. Let ≺1=≺degrevlex be a term order on R and ≺2 a compatible term order on Rm of
type ω. Then for every p ∈ G that has been considered already, the proxy pairs are considered after
finitely many steps, too.

Proof. As by Lemma 3.24, after a finite number of steps, we look at an element with strictly larger
signature, and as ≺2 is of type ω, a proxy of p is considered after a finite number of steps. �

Remark 3.27. We want to mention that from this corollary one cannot conclude immediately that we
are computing an involutive normal form of all considered v-parts. Because during the process of the
reduction steps it may be the case that a pair does not possess a proxy because tp2 /∈ PP (G). In such
a case, we would stop the reductions steps. Still, this would mean that the proxy would involutively
reduce to (0, 0) by the final G ∪H .

Now the next lemma14 is the most important one to prove the termination of the semi-involutive
case. Still, we will formulate the fully involutive variant. Indeed, everything we have discussed would
only differ in the division on the u-part. Moreover, if we substitute “|L,Bu

” by “|”, one can go through
all the proofs and verify that they will stay the same if not become shorter. In fact, some of the proofs
get easier as we do not need all of the arguments we needed for justifying why we can write “|L,Bu”.
Nevertheless, as we have introduced the notions for the fully involutive case, it is more convenient
to present the following lemma also with the same notions.

Lemma 3.28. Let pi := (ui, vi) be the i-th element that entered G ∪H in step 12 or 17. Then, we
have pi -P pj for i < j. If G is involutively regular autoreduced, then pi -P pj holds even if pi or pj
are regular normal forms of input elements (ek, fk).

Proof. First, we note that pi -P pj for all elements in the starting set

G0 := {(ek, fk) | k = 1, . . . ,m}

as ei -P ej for i < j. This remains true after performing involutively regular autoreductions. Thus,
for the rest of the proof, we can at least assume that pj is no regular normal form of an element in
G0. Therefore, pj has entered G ∪H in step 12 or 17. Now suppose for i < j we have pi |P pj , i.e.
lt(ui) |P lt(uj) and lt(vi) |P lt(vj). Therefore, there exist terms t1, t2 such that

lt(vj) = t1 lt(vi) and lt(uj) = t2 lt(ui).

12Otherwise the algorithm would have computed Syz(F ) and lt(u′) could not be involutively irreducible by Syz(F ).
13Here, we mean the common notion of involutive reducibility without any restrictions by a u-part.
14This lemma is an involutive variant of a claim embedded in Theorem 3.1 from [6].
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If t1 ≺ t2, then t1 lt(ui) ≺ t2 lt(ui) = lt(uj). Hence, pj is involutively regular reducible by
pi leading to a contradiction since pj is an involutively regular normal form. Thus, t2 � t1. This
implies t2 lt(vi) � t1 lt(vi) = lt(vj).

Now, suppose that pj is an involutively regular normal form of p := (u, v) ∈ JP (G)∪PP (G).
If p was at least once involutively regular reducible, then lt(vj) ≺ lt(v) and hence,

lt(ui) |P lt(uj) = lt(u) and
lt(u)

lt(ui)
lt(vi) = t2lt(vi) � lt(vj) ≺ lt(v).

But this means that p should have been discarded in step 5 as it is involutively covered by pi.
Thus, p is not involutively regular reducible, and in particular not an element of PP (G). Therefore,
p ∈ JP (G) cannot be involutively super reducible either, because otherwise it would have been
discarded and pj would not have been calculated. So, we know that p is involutively irreducible, and
hence, p = pj .

We are in the case t2 � t1. Suppose, we have t2 ≺ t1. Then, t2 lt(vi) ≺ lt(vj) = lt(v) and
t2 lt(ui) = lt(uj) = lt(u). This would mean that p would be involutively covered by pi ∈ G
and not be entering G in the first place. Accordingly, we have t2 = t1. But then, p is involutively
reducible by pi contradicting the observation that p is involutively irreducible by G. �

Lastly, we want to present a proof for the termination. For the fully involutive case, we can
easily argue as we will find out in the next proposition.

Proposition 3.29. Let P be the Pommaret division, ≺1=≺degrevlex and ≺2 a compatible term order
of type ω. Then the fully involutive GVW algorithm terminates.

Proof. As we can discard all elements of degree greater than q + 2, there are only finitely many
terms left to consider since T≤q+2 := {t ∈ Tn | deg(t) ≤ q + 2} is a finite dimensional subvector
space of R. As the signature is strictly increasing after finitely many pairs that we have to consider
(Lemma 3.24), we cannot look at the same pair infinitely many times. Thus, as we have term orders
of type ω, the algorithm will terminate. �

We want to note here that once again; this proof is only that short because we are in the
homogeneous case where have an a priori knowledge about the degree of an involutively regular
normal form. Moreover, as a last remark, we want to point out the following result.

Remark 3.30. Because the proxy pairs are considered after finitely many steps by Corollary 3.26,
we indeed compute all necessary involutive normal forms of v-parts: The proxy pairs are defined
in such a way that the reduction steps in the v-part can continue, but instead of reducing v1 by v2
(assuming that lt(v2) |P lt(v1)), we reduce tv2 by v1, where t = lt(v1)

lt(v2)
. Nevertheless, the result

of the reduction step is the same up to a constant factor. Thus, if a proxy survives in step 5 of the
algorithm, we go one step further towards an involutive normal form of v1. However, the algorithm
will keep (u1, v1) in G ∪H , although the v-part is involutively reducible, and hence, v1 will be not
part of a strong Pommaret basis of I . Still, after the algorithm has returned his output, such elements
are fairly easy to detect. We only have to check whether the v-part is involutively reducible. Then
we know, that its proxy (if it exists) will be considered. Thus, we can just discard v1 from the output
and we will even obtain a strong Pommaret basis of I .

3.5. Semi-involutive GVW algorithm
At this stage, we are able to prove the termination for the semi-involutive case. One can verify all
the results we have obtained so far also hold for the semi-involutive case. However, this might not
trivially be the case since we do not only have weaker statements but also weaker assumptions.
Still, all of the proofs can be just rewritten, only changing the involutive division in the u-part to the
common one. In some contexts, one can even leave out arguments that were only necessary for the
fully involutive case.
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Therefore, we must drop the lines 9–11 from the pseudo code because we will no longer have
a bound for elements in an involutive bases of Syz(F ). Thus, we cannot decide which elements
we can neglect from Q. Still, the proof of correctness therefore becomes shorter as we neither have
to discuss the case of an error message due to Syz(F ), nor the case that Q = ∅ because we have
removed elements from Q by step 2. But this also means that the proof for termination will be more
difficult because we cannot argue with finitely many elements that are left to be discussed. On the
other hand, we can take in now “Noetherian” arguments. For the corresponding algorithm (dropping
lines 9-11 and using the common division on the u-part), we are only able to proof termination for
ideals I that are in quasi-stable position. In this case, we can even choose to only keep the signatures
rather than the whole u-part as they are sufficient for applying the J-criterion.

In the other case (i.e. I is not in quasi-stable position), we instead will focus on computing
a Pommaret basis of I . Here we have to work with the whole u-part because we cannot gain any
information about the transformed syzygies when we only keep the signatures.

Now, as we have a degree bound for the v-parts, we can now neglect all elements in Q with
a degree greater than q + 1. Note, that this implies, that we may have not found all syzygies of the
Gröbner basis of Syz(F ), when we interrupt the algorithm at this degree bound. Nevertheless, this
is not a problem for our case where we start with the Janet version of the GVW algorithm15. This
algorithm will provide us a Gröbner basis of Syz(F ).

Now, our semi-involutive algorithm for the Pommaret division arises as follows from the fully
involutive version:

• Optional: Only keep signatures rather than the whole u-part, if I is in quasi-stable position.
• Use the common division for the u-parts.
• Drop lines 9–11.

a) If I is in quasi-stable position, we do not have to neglect any elements from Q.
b) If I is not in quasi-stable position, we neglect all elements from Q with degree greater than

q + 1 in the v-part.
c) If we cannot decide whether or not I is in quasi-stable position: If we are interested in a

Gröbner basis of Syz(F ), we follow a), otherwise we do what is stated in b). (We implemented
the idea in b).)
• Return a weak Pommaret basis of I , and a subset of a Gröbner basis of Syz(F ) or of Sig(G).

Theorem 3.31. Let P be the Pommaret division, ≺1=≺degrevlex and ≺2 a compatible term order of
type ω. Then the semi-involutive GVW algorithm terminates.

Proof. We prove that the algorithm terminates independently from our choice of using only signa-
tures or neglecting elements from Q. So, we assume for this proof that we keep the whole u-part.

Suppose that the algorithm does not terminate. Then we obtain in the notation of Lemma 3.28

〈u1〉 ⊆ 〈u1,u2〉 ⊆ . . .
〈v1〉P ⊆ 〈v1, v2〉P ⊆ . . . ,

where pi := (ui, vi) and at least one “⊆” at same height is a “(”. As the upper chain must become
stationary, the chain of the v-parts must be strictly ascending at some point.

Now assume, that a finite Pommaret basis exists. As the signatures are increasing by Lemma
3.24 and we have there a term order of type ω, too, we need only finitely many iterations to get
beyond the degree q in the v-part. Hence, the algorithm has computed a weak Pommaret basis ac-
cording to Remark 3.23. Thus, the lower chain cannot be strictly increasing, either.

On the other side, if I is not in quasi-stable position, by [18, Prop. 5.3.7] there must exist an
element which has a degree greater than q and yet increase the involutive cone of the current lt(G).

15We will introduce it in Section 4.
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This will still be the case after we have considered all elements in V with degree less than q + 1.
Thus, our algorithm will terminate with an error message that I is not in quasi-stable position. �

Before we discuss the case where we need coordinate transformations we want to give a last
remark.

Remark 3.32. All syzygies we find, will be encoded in some uj . But still, we would not be able to
argue for the fully involutive case that the upper chain must become stationary as not all ui refer to
a syzygy. In fact, we have no good argument for the termination of the fully involutive algorithm at
this point if we would not neglect all elements from Q with a degree greater than q + 2, because we
have no better argument, yet, that both chains must become stationary besides cutting them off at the
degree bound. Thus, this proof is only valid for the semi-involutive case.

3.6. Coordinate Transformations and Index of Safety
Now, we are ready to show a version of the involutive GVW algorithm with coordinate transforma-
tions. We will only discuss here the fully involutive algorithm, as it is more complex because we
have to put Syz(F ) in quasi-stable position, too.

By a private communication from Matthias Orth, it is known that we can transform I and
Syz(F ) step by step simultaneously into quasi-stable position. In general, we then have to restart
the algorithm after each step. However, as syzygies will transform into syzygies, we can use them for
our J-criteria. Hence, the strength of the involutive GVW algorithm now becomes clear. So, many
of the J-pairs might be involutively covered. Also, the set of proxy pairs might not be as big as it
would be without the syzygies that we obtained from the transformation of the old syzygies. Thus,
we should also work on the problem, where we need to start over after a transformation. In particular,
we will introduce an index of safety in this subsection.

Remark 3.33. Basically, we are using the involutive GVW algorithm trying to compute a Pommaret
basis of I and Syz(F ). For this, we first calculate a Janet basis of I , obtaining a degree bound q
for elements in a Pommaret basis of I (see [18, Cor. 5.5.18]). In fact, we can take the involutive
GVW algorithm for the Janet division which we will present in the next section. If the Janet basis is
also a Pommaret basis, we are done with I . So let’s assume, that it is not a Pommaret basis. Then,
because we only increase the leading term of the v-parts via JP (G), we check which involutive
J-pairs xkp ∈ JP (G) are not involutively reducible by G ∪ H and satisfy deg(lt(xkv)) > q or
degF (lt(xku)) > q + 1. If so, we need to perform a coordinate transformation on the u- or v-part.
Let us discuss here the v-part, the u-part works similar16. Let j = cls(lt(v)). Then we transform by
xj 7→ xj + xk. However, this forces us to start our calculations all over again. Also, we may ask
ourselves, if we need to perform the transformation directly after finding such an involutive J-pair,
or if we can push it back a little until we cannot do anything else but to transform the system. In fact,
our algorithm does exactly this: According to steps 9 and 14, we return an error message if and only
if I or Syz(F ) are not in quasi-stable position17. But in such a case, we perhaps can choose between
several coordinate transformations after analyzing Q. So, we have to face the question which of the
possible transformations is the best in the context of computational efficiency. Nevertheless, we have
to discuss what happens after the transformation. There, we just transform F and all syzygies with
a suitable coordinate transformation. Then we take it as an input for the Pommaret version of the
GVW algorithm. Here of course, one is not forced to take the fully involutive variant, however, we
will argue our strategy only for the fully involutive algorithms. The ideas can easily be adapted for
the semi-involutive algorithms. In particular, this means for the pseudo code the following:

16Also, we will discuss later in this remark how to deal with an error message for Syz(F ) coming from the Pommaret
version of the algorithm.
17For the argument corresponding to Syz(F ), one may look up the arguments in the proof of correctness of the (fully)
involutive GVW algorithm.
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Instead of returning an error message for I in step 15, we go through the elements in Q and
check if their v-part is divisible by the v-part of a p = (u, v) ∈ G, but involutively irreducible by G.
If this is the case, we choose p with maximal cls(lt(v)). Then every J-pair of p leads to a candidate
for a coordinate transformation as we have described above.

If, on the other hand, an error message for Syz(F ) has been returned in step 10, then we go
through the signatures of Q and check if they are divisible by some p′ = (u′, v′) ∈ G ∪H , but not
involutively reducible by the signatures of any element inG∪H . Then we take under all p′ satisfying
this condition the one with maximal j := cls(lt(u′)). For this signature, we have non-multiplicative
variables xk. Therefore, potential coordinate transformations are of the form xj 7→ xj + xk.

After gathering all possible coordinate transformations ψi, we do the following:
1. Transform G ∪H with ψi into G′ ∪H ′.
2. Perform an involutively regular autoreduction of G′ and insert obtained syzygies into H ′.
3. Compute Q′ := JP (G′)∪PP (G′) for the involutively regular autoreduced G′ and sort it first

by signature, then by the leading terms of the v-part.
4. Search the position s of the first element in the sorted Q′ that cannot be discarded due to our

criteria in step 5.
In 4., s is of course dependent of ψi, i.e. we better write s(ψi). The largest value of s(ψi) is called
index of safety. It is so to speak the latest possible starting point of the algorithm after a coordinate
transformation. After we have found the index of safety, we can continue the involutive GVW algo-
rithm at step 7, taking the element in Q′ at the position max

i
{s(ψi)} and neglect all elements from

Q′ with smaller signature.
Although this strategy is straight forward to see, it might not be the best if it comes to an

efficient implementation. For such one, a bigger analysis is needed. For instance, if only a few
elements would not be discarded after a coordinate transformation and by accident, there is one with
small signature (so the index of safety is small), one could try to analyze when the corresponding
transformation is still a better choice than the one related to the index of safety. However, this might
be a difficult question to answer.

Remark 3.34. It is easy to see that a POT-lift is not of type ω. However, as we have a degree bound
for Syz(F ) in the fully involutive variant as well, we also can use a POT-lift of a term order ≺1

of type ω with the following restriction: We just jump to ei+1 if the signature at position i exceeds
degree q+ 1. Then we know, that no element at position i is of interest for our Pommaret bases, and
thus can be pushed back for the moment. Thereby, we ensure that between two terms, there are only
finitely many other pairs that the algorithm will consider. Whenever we say, we choose a POT-lift
of pseudo type ω we mean to follow this strategy. It is worth mentioning that our algorithm follows
this strategy for a POT-lift input as all elements above the degree q + 2 are neglected and an error
message only occurs if there are no elements (u, v) left with degF (lt(u)) ≤ q + 1. Thus, with the
POT-lift, we would not go any further in position i than to the degree q+ 2. However, elements with
the degree q + 2 that lead to an error message should be pushed back first until there are no other
elements left with that degree. It is worth mentioning that this feature is not implemented in our
code, yet. Therefore, a POT-lift in our implementation might generate an error for ideals that are not
in quasi-stable position.

We first want to give an example that it is not guaranteed that a finite Pommaret basis of
Syz(F ) exists only because there is one for I .

Example. I := 〈x, y〉 E K[x, y], where we respect the ordering of x and y, which means that we
haveG := {(e1, x), (e2, y)}. With a POT-lift obeying e1 ≺POT e2, the syzygy module is generated
by xe2 − ye1 and thus, possesses no finite Pommaret basis.

Still, the semi-involutive algorithm here once again shows it benefits. We have to perform no
coordinate transformations on the u-part, which would be necessary in the fully involutive version.
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Also, the J-criteria will discard more potentially superfluous elements. But of course, we have also
pointed out the disadvantages of the semi-involutive algorithm, where we might not compute the
Gröbner basis of Syz(F ) completely before interrupting the algorithm.

4. Algorithm: Strong J-basis
The Janet division is not global and therefore we cannot be sure without further investigation that
an involutive J-pair will be covered by a final G just because it was covered by a subset of it. And
of course, we would build up G with the same strategy as in the Pommaret case, where we neglect
involutively covered J-pairs. Fair enough, a J-pair that is involutively covered by the computed in-
volutively regular normal form (which will be added to G) will always be involutively covered by it
regardless which other elements are added to G. However, this might not be true for syzygies. In the
semi-involutive variant, on the other hand, we have the ordinary division in the u-part which helps
us finding superfluous J-pairs. Therefore, it is more convenient to use the semi-involutive variant of
the GVW algorithm. Furthermore, we will be able to show that we do not need the concept of proxy
pairs. We could go straight forward to the main theorem of this section. But before we do, we prove
a lemma that points out the special relation between the Janet division and reduction steps on M .

Lemma 4.1. Let G ⊆M be finite. If G is involutively autoreduced w.r.t. the Janet division then the
v-parts of G are involutively head autoreduced.

Proof. We follow an indirect proof. Suppose, there are two pairs pi := (ui, vi) ∈ G for i = 1, 2 such
that lt(v1) |J,Bv lt(v2). Because pi ∈ G, we get lt(v1) = lt(v2)18. Now, if we have lt(u1) 6= lt(u2),
then p1 is involutively regular reducible by p2 or vice versa. But if the signatures are equal, then both
possible reduction steps are obviously involutive in the sense of Definition 3.1. �

As we are performing only involutively regular reductions G might not be involutively autore-
duced. But then we could conclude that the v-parts of G are involutively head autoreduced, which is
our assumption of the first involutive J-criterion. But still, we can achieve our goal by assuming that
G is involutively regular autoreduced – similar to the assumptions in the second J-criterion.

Like we did it in the previous section, we will present a proof for the fully involutive case,
however we will use arguments that remain valid for the semi-involutive case.

Like in the Pommaret case we first prove a rather technical lemma corresponding to Lemma 3.11.

Lemma 4.2. Let J be the Janet division. Let G ⊆ M be a finite set. Suppose that every J-pair in
G is involutively covered or involutively super reducible by G. Let (u, v) ∈ M be non-zero and
suppose there is a pair p1 := (u1, v1) ∈ G with v1 6= 0 such that

(i) lt(u1) |J,Bu
lt(u) and

(ii) t lt(v1) := lt(u)
lt(u1)

lt(v1) is minimal among all elements in G that satisfy condition (i).

If t contains a non-multiplicative variable for lt(v1) then there exists a pair p′′ := (u′′, v′′) ∈ G
such that v′′ 6= 0 and tp1 is involutively super reducible by p′′.

Proof. If t contains a non-multiplicative variable for lt(v1), this means that there is a xk ∈ supp(t),
such that xk(u1, v1) is an involutive J-pair. If this J-pair is involutively covered by G, by definition,
there is a (u2, v2) ∈ G such that

lt(u2) |J,Bu xk lt(u1) and
xk lt(u1)

lt(u2)
lt(v2) ≺ xk lt(v1). (4.1)

Because t is a multiplicative term for lt(u1), xk is multiplicative, too. Thus, lt(u1) |J,Bu
xk lt(u1).

But as we have le(u1), le(u2) ∈ Bu, lt(u1) = lt(u2) must hold. In particular this means that

18This is a property of the Janet division [18, p. 67].
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lt(u2) |J,Bu
t lt(u1) is true. We multiply both sides of the second relation in (4.1) with t

xk
which

leads to a contradiction of the choice of (u1, v1).
Thus, the J-pair is involutively super reducible. Then, there is a p3 := (u3, v3) ∈ G with v3 6= 0 (as
otherwise the involutive J-pair would be involutively covered by it), such that

lt(u3) |J,Bu xk lt(u1),

from which lt(u3) = lt(u1) |J,Bu
t lt(u1) follows. Also, we have

lt(v3) |J,Bv
xk lt(v1).

If lt(v3) -J,Bv t lt(v1), we can iterate these arguments, taking now a variable xh in supp( t
xk

) such
that xhp3 is an involutive J-pair of p3. Then there exists a pair p4 := (u4, v4) with v4 6= 0 such that
xhp3 is involutively super reducible by p4.

This again implies lt(u4) = lt(u3) = lt(u1) |J,Bu
t lt(u1) (as le(u4), le(u3) ∈ Bu). Further-

more, we have lt(v4) |J,Bv
xh lt(v3) |J,Bv

xhxk lt(v1). If even lt(v4) |J,Bv
t lt(v1) holds, we are

done because xhp3 and tp1 have the same leading coefficients. Eventually, we construct an element
(u′′, v′′) ∈ G after at most deg(t) steps such that v′ 6= 0 and t(u1, v1) is involutively super reducible
by (u′′, v′′). �

Theorem 4.3 (Involutive J-Criterion (III)). Let J denote the Janet division. Let G ⊆ M be finite
and involutively regular autoreduced. Moreover, assume that 〈Sig(G)〉J = Tmn . Then the following
statements are equivalent.

a) G is a strong J-basis of M .
b) Every involutive J-pair of elements of G is eventually involutively super reducible by G.
c) Every involutive J-pair of elements of G is involutively covered by G or involutively super

reducible by G.

Proof. Because of Lemma 3.10 we only have to show “c)⇒ a)”. Basically, we follow the proof for
the Pommaret case. However, this time, many things will be easier.

We give again a proof by contradiction. For this purpose, suppose that G is not a strong J-
basis of M and that c) holds. Then, by definition of a strong J-basis we know: There must exist a
pair (0, 0) 6= (u, v) ∈ M which is not involutively reducible by G. We take the one with smallest
signature. We set T := lt(u) and observe that T 6= 0 as otherwise v would be 0, too. Now, as
〈Sig(G)〉J = Tmn is true by our assumptions, we can choose a pair (u1, v1) ∈ G with the following
two properties:

(i) lt(u1) |J,Bu lt(u) and
(ii) t lt(v1) := lt(u)

lt(u1)
lt(v1) is minimal under all elements in G that satisfy condition (i).

Note, that v1 6= 0 as otherwise (u, v) would be involutively reducible by a syzygy (u1, 0) due to
condition (i).

We again claim that t(u1, v1) is not involutively regular reducible by G. Suppose that this is
not true. Then there is a p2 := (u2, v2) ∈ G such that t(u1, v1) is involutively regular reducible
by p2. t = 1 is impossible since G is involutively regular autoreduced. Also if t 6= 1 contains only
multiplicative variables for lt(v1), we obtain lt(v1) |J,Bv t lt(v1) and lt(v2) |J,Bv t lt(v1), and hence
lt(v2) |J,Bv

lt(v1) or lt(v1) |J,Bv
lt(v2). In either of these both cases we obtain lt(v1) = lt(v2).

Therefore, applying Lemma 3.15, we know that even p1 is involutively regular reducible by p2 which
is impossible. Then, t 6= 1 must contain a non-multiplicative variable. Lemma 4.2 tells us, that there
is a (u′′, v′′) ∈ G such that tp1 is involutively super reducible by it. Thus,

lt(u′′) |J,Bu
t lt(u1) and lt(v′′) |J,Bv

t lt(v1) and
t lt(u1)

lt(u′′)
=
t lt(v1)

lt(v′′)
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is true. As seen above, we can conclude lt(u′′) = lt(u1). But then we get from t lt(u1)
lt(u′′) = t lt(v1)

lt(v′′)

the equality lt(v′′) = lt(v1). Thus lt(v1) = lt(v′′) |J,Bv
t lt(v1). But then t must be a multiplicative

term for lt(v1) contradicting that we have assumed for this case that t contains a non-multiplicative
variable for lt(v1).

This is telling us that t(u1, v1) is not involutively regular reducible by G. Next, we follow the
strategy from the Pommaret case, setting c := lc(u)

lc(u1)
and

(u′, v′) := (u, v)− ct(u1, v1).

First, we observe that lt(u′) ≺ lt(u) = T . For the v-part, there are several cases to consider.
If lt(v) 6= t lt(v1), i.e. v′ 6= 0, then we argue as follows: Because (u′, v′) has a smaller

signature than (u, v) it must be involutively reducible by G. For the moment, we reduce by syzygies
if possible. Doing so, we only can reduce the signature, and hence, the remainder is still involutively
reducible by G. But now, it is involutively reducible by a pair (u3, v3) with v3 6= 0. Also note that v′

has not been changed during the reduction process so far. Since lt(v) 6= t lt(v1), there are two cases.

• If lt(v) ≺ t lt(v1) is true, then we have lt(v′) = t lt(v1). Hence, we get the relations

lt(v3) |J,Bv
lt(v′) = t lt(v1) and

t lt(v1)

lt(v3)
lt(u3) � lt(u′) ≺ T = t lt(u1),

which implies that t(u1, v1) is involutively regular reducible by G leading to a contradiction
to our result above.
• If, on the other hand, t lt(v1) ≺ lt(v) is true, then we get lt(v′) = lt(v). Therefore we obtain

lt(v3) |J,Bv lt(v′) = lt(v) and
lt(v)

lt(v3)
lt(u3) � lt(u′) ≺ T = lt(u),

which now implies that (u, v) is involutively regular reducible by G leading once again to a
contradiction since (u, v) is not involutively reducible by G due to our assumptions from the
beginning of this proof.

Accordingly, there is only one possibility left, i.e. we have lt(v) = t lt(v1). If t = 1 or if t 6= 1 is
a multiplicative term for lt(v1), then lt(v1) |J,Bv lt(v), lt(u1) |J,Bu lt(u) and lt(v)

lt(v1)
= lt(u)

lt(u1)
= t

and hence, (u, v) is involutively reducible by (u1, v1) ∈ G. But this is not possible as (u, v) is invo-
lutively irreducible by G. So t 6= 1 has at least one non-multiplicative variable for lt(v1). Applying
Lemma 4.2 we obtain a pair (u4, v4) ∈ G such that t(u1, v1) is involutively super reducible by
(u4, v4). But because of t lt(u1) = lt(u) and t lt(v1) = lt(v), this implies that (u, v) is involutive
reducible by (u4, v4), which is a contradiction to our choice of (u, v). �

Although we have proven the fully involutive version of this theorem, from now on we focus on
the semi-involutive variant. The proof can easily be adapted. It is also a strength of the Janet version
that we do not have to consider a set PP (G). As we have mentioned already in the introduction,
Binaei et al. have presented similar theorem in [1], that only differs in the second condition in the
statement c) for the Janet division. Although we have discussed that their theorem is not correct
(see last paragraph in Remark 3.13), the proof of termination remains valid for the Janet division.
Therefore, termination of the following algorithm follows from [1, Thm. 6].

Thus, we end up with the following pseudo code, where we mark notions that must be treated
differently in the semi-involutive case. For instance, “involutively∗ super reducible” only differs
from the notion we have introduced by the division in the u-part. In the semi-involutive case we of
course take the common division rather than the Janet division. The proof of correctness follows
immediately from the involutive J-criterion (III) (Theorem 4.3).
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SemiInvGVW(F,H0,≺1,≺2, J) (Janet Version)
Input: A set F = {f1, . . . , fm} ⊆ R of polynomials, ≺1 on R and a compatible

term order ≺2 on Rm, J Janet division, An involutively autoreduced set H0 of
syzygies of F , where H0 = ∅ is possible.

Output: A weak Janet basis for I = 〈F 〉 and a Gröbner basis of Syz(F ).
Variables: G is an ordered set of pairs (ui, vi) ∈M with vi 6= 0.

H is an ordered set of syzygies (u, 0) of F .
JP (G) is the set of involutive J-pairs of G.

Step 1: G← {(ei, fi) | 1 ≤ i ≤ m}, H ← H0

Step 2: Perform an involutively regular autoreduction onG. FillH with obtained syzy-
gies, discard them from G. Calculate (new) trivial syzygies of G and add them
to H . Autoreduce H .Fill JP (G) with (new) involutive J-pairs of G.

Step 3: while JP (G) 6= ∅ do
Step 4: Take an element p := (u, v) ∈ JP (G) with smallest signature and then

with smallest leading term in the v-part.
Step 5: If

• p is covered by G ∪H ∪ JP (G) =: S, or
• p is involutively∗ super reducible by S \ {p},
then discard p and go back to step 3.

Step 6: Calculate an involutively regular normal form (u′, v′) of p by G
Step 7: If v′ = 0 then
Step 8: H ← H ∪ {(u′, 0)}
Step 9: else
Step 10: G← G ∪ {(u′, v′)}. Go back to step 2.
Step 11: end if
Step 12: end while
Return: {vi | (ui, vi) ∈ G} and {u | (u, 0) ∈ H}

5. Remarks on Implementation
In this section, we discuss our proof of concept implementation19 in Maple 2019. For the implemen-
tation we use the package “Groebner” to have access to some optimized functions that test, for ex-
ample, which of two given terms is larger. First, we want to mention how an element (u, v) ∈ G∪H
is stored. Assume that lm(u) = ctei for some c ∈ K and t ∈ Tn. We store vectors in lists and (u, v)
is represented by

[[c, t, i,u], [lc(v), lt(v), v], X̄P (lt(v))]].

We have implemented a sort function FHelp that sorts elements in G by signature and then by the
leading term of the v-part. This helps us to reduce the computational time for involutively regu-
lar reduction steps. As regular reductions cannot increase the signature, we have implemented the
function FindIndex that finds the largest element (by signature) we have to consider for (involutive)
regular reductions.

We have then implemented the fully and semi-involutive GVW algorithm for the Pommaret
division according to our presented pseudo code with additional coordinate transformations as de-
scribed in Remark 3.33. Here we want to point out, that only a TOP-lift variant of the algorithm
should be used when coordinate transformations are needed, even though the POT-lift variant works

19This means that in its current form the implementation is not yet optimised and will have problems with larger exam-
ples. The Maple codes of our programs are available at http://www.mathematik.uni-kassel.de/˜izgin/
publications.php?lang=en.

http://www.mathematik.uni-kassel.de/~izgin/publications.php?lang=en
http://www.mathematik.uni-kassel.de/~izgin/publications.php?lang=en
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in some cases. But as described earlier it would take additional effort to implement an error free
version of it.

As we wanted to check computationally that no involutively super autoreductions are needed
forH , we decided not to insert trivial syzygies toH . Nevertheless, involutively super autoreductions
will be necessary when coordinate transformations are needed. And in such cases, these reduction
steps will be performed. We have decided to fill JP (G) with all possible J-pairs in order to compare
the TOP- and POT-lifts in our implementation. Nevertheless, other strategies can be implemented
fairly easy by just commenting (out) some lines in the code.

Still, this means that we have computed involutive J-pairs of an element in G that may get
involutively regular reduced before we have to consider its J-pairs. Thus, we would have spent time
in computing the involutive J-pair and finding out that it is involutively covered by the computed
involutively regular normal form.

We also have not implemented step 6 from the pseudo code as it is only a small optimization
which seems not to apply very often. However, the implementation of the corresponding function
requires for-loops that may take too much time, relatively speaking. The same seems to hold for
finding the index of safety (with our approach) but we decided to keep the function active in order
to see the additional computational effort.

Nevertheless, we have done some optimizations to our code by using the functions FindIndex
and FHelp. Also, it might be useful to only keep the signatures once we have exceeded the de-
gree limit q + 1 since all following elements are not of interest to us. This might save time for the
calculations in the degree q + 2.

The strength of the implementation is the following. One can choose between a TOP-lift (en-
coded in ord = 2) and a POT-lift (ord = 1), the full (Syzbool = true) and semi-involutive variant
(Syzbool = false) and between keeping the whole u-part (SigOnly = false) or only the signa-
tures (SigOnly = true).

Then, one can call the algorithm by the function StrPBas(F,H0, Syzbool, q, false), where
H0 is an (involutively) autoreduced set of syzygies and q a degree bound for elements in a Pommaret
basis of I . The last entry is set to be false initially. It will be set to be true after we have found out, that
a coordinate transformation is required. Then we call StrPBas recursively with the last parameter,
called RestartBool, being true.

After the algorithm has returned a result G and H it should be tested. If Syzbool = true
and SigOnly = false, i.e. we are in the fully involutive case where we keep the whole u-part,
the function TestBasis computes all non-multiplicative prolongations of any syzygy from H and
performs involutive reductions. If and only if all these reductions end with a zero vector the message
“True for syzygy module” is printed. This pays respect to the fact that the function does not test
whether we have found a generating system of Syz(F ). If this error message is not printed, H is
not a weak Pommaret basis of Syz(F ), and thus, this is what will be printed instead. Moreover,
TestBasis does the same check for G regardless of what choice of parameters we have set (this is
meaningful as we always aim to compute a Pommaret basis of I). Here, we print “Output contains
a Pommaret basis for the ideal”, if and only if all reduction steps return the remainder 0 which takes
two things into account: First, we know that we have a generating system as we have started with
(ei, fi), 1 ≤ i ≤ m. Secondly, it contains the result of Remark 3.30. Indeed, the detection of the
negligible elements mentioned in that remark is already implemented at the end of StrPBas. Hence,
the function returns a (strong) Pommaret basis of I . IfG is not a weak Pommaret basis, the algorithm
will detect it and print a corresponding message. It is worth mentioning that the non-involutive GVW
algorithm may not have a reduced Gröbner basis contained in its output as there is no set PP (G)
that ensures that proxy pairs will be reduced.
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6. Benchmarks
Although we have presented the proof of termination only for homogeneous inputs, we will present
benchmark calculations with affine inputs. Here, we are not comparing with algorithms that only aim
to compute a Pommaret basis or a Janet basis of I as our algorithm does more than this. Also, a com-
parison would be not fair since our implementation is far away from being completely optimized.
Instead, we make some statistics about the different variants that are provided by our implementa-
tion. Finally, we can compare it with the Janet version of the semi-involutive variant that has been
implemented by Binaei. As only signatures are saved in this implementation, we shall compare the
computational time with our algorithm where we choose SigOnly = true and Syzbool = false
(i.e. we store only signatures and use the semi-involutive variant of the algorithm). And because the
algorithm does only aim to compute a Janet basis of I , we only compare zero dimensional ideals,
which implies that no coordinate transformation will be required and both algorithms will compute
a Pommaret basis.

However, we surely want to investigate with at least a few examples of how our algorithm
works when a coordinate transformation is needed. We return the coordinate transformations (from
top to bottom), the maximal value for the index of safety20 (referred to as “max. i.o.s.”), the number
of syzygies, the number of elements in the Pommaret basis and the used value for q which encodes
the Castelnuovo-Mumford regularity Reg(I) in the related examples.

In order to underline the advantage of the algorithm when syzygies are known, we will also
restart the computations with H0 = H as input, where H is a generating system or signatures of the
generating system of Syz(F ). Thus, we have the following structure of cells:

runtime [s]: H0 = ∅ discarded elements regular normal forms |H|runtime [s]: H0 = H discarded elements regular normal forms
TABLE 1. Structure of cells for zero dimensional benchmark problems.

Therefore, we obtain the Tables 2 to 5 for zero dimensional benchmark problems.

POT-lift Katsura5 (q=6) Katsura6 (q=7) Katsura7 (q=8)
SigOnly=true
Syzbool=false

8.16 140 93 43 84.63 386 188 83 1241.4 1003 372 1563.53 175 50 36.53 450 105 434.6 1113 216
SigOnly=false
Syzbool=true

15.31 144 94 44 200.58 399 191 865.03 179 50 53.5 462 105
SigOnly=false
Syzbool=false

15.28 140 93 43 203.13 386 188 835.13 175 50 53.2 450 105
TABLE 2. Katsura benchmark runs for the POT-lift with structure as described in Table 1

One can observe that for the Chandra benchmark runs (Tables 4 and 5), the POT-lift variant is
slightly faster. However, for the Katsura runs (Tables 2 and 3) the opposite is true. For Katsura7 for
instance the difference is about 260s.

Also, we can say that the bigger the example is the bigger is the difference between discarded
elements and thus, the amount of saved regular normal form calculations. However, if we compare
the number of discarded elements from a POT-lift run with a TOP-lift run we can conclude that with
a POT-lift more elements will be discarded. But as the usage of the POT-lift led to a larger runtime,
it seems to be the case that too many negligible pairs were calculated. This might come from the
incremental character of the GVW algorithm when a POT-lift is used.

20Remember that we have an index of safety for every coordinate transformation that we perform.
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TOP-lift Katsura5 (q=6) Katsura6 (q=7) Katsura7 (q=8)
SigOnly=true
Syzbool=false

7.47 112 83 42 80.06 307 164 80 981.95 778 310 1433.64 153 41 33.97 384 84 370.75 918 167
SigOnly=false
Syzbool=true

23.03 111 84 43 364.48 304 167 835.66 153 41 55.06 384 84
SigOnly=false
Syzbool=false

22.34 112 83 42 338.84 307 164 805.47 153 41 53.17 384 84
TABLE 3. Katsura benchmark runs for the TOP-lift with structure as described in Table 1

POT-lift Chandra4 (q=4) Chandra5 (q=5) Chandra6 (q=6)
SigOnly=true
Syzbool=false

0.13 24 26 11 1.05 78 60 26 8.73 224 130 570.09 28 15 0.84 89 34 6.80 250 73
SigOnly=false
Syzbool=true

0.22 24 26 11 1.52 78 60 26 12.80 224 130 570.16 28 15 1.02 89 34 8.58 250 73
SigOnly=false
Syzbool=false

0.20 24 26 11 1.42 78 60 26 12.45 224 130 570.14 28 15 0.97 89 34 8.48 250 73
TABLE 4. Chandra benchmark runs for the POT-lift with structure as described in Table 1

TOP-lift Chandra4 (q=4) Chandra5 (q=5) Chandra6 (q=6)
SigOnly=true
Syzbool=false

0.14 24 26 11 1.31 78 60 26 11.23 224 130 570.14 28 15 1.23 89 34 9.31 250 73
SigOnly=false
Syzbool=true

0.25 24 26 11 2.02 78 60 26 19.52 224 130 570.16 28 15 1.41 89 34 11.98 250 73
SigOnly=false
Syzbool=false

0.23 24 26 11 2.16 78 60 26 18.50 224 130 570.19 28 15 1.30 89 34 12.16 250 73
TABLE 5. Chandra benchmark runs for the TOP-lift with structure as described in Table 1

It is also worth mentioning that the semi- and the fully involutive variants do not differ very
much according to their runtimes or number of discarded elements. However, only keeping the sig-
natures has a major impact on the runtime, at least when it comes to the Katsura benchmark runs.

Now let us compare the runtimes of our implementation with Binaei’s. Remember, that we
take the times from the first row as this row corresponds to the structure of Binaei’s implementation.

Also, keep in mind, that instead of a POT- or TOP-lift the author chose the Schreyer ordering.

Chandra4 Chandra5 Chandra6 Katsura5 Katsura6 Katsura7
Pommaret 0.13-0.14 1.05-1.31 8.73-11.23 7.47-8.16 80.06-84.63 981.95-1241.4

Janet 0.63 5.34 52.5 43.69 636.09 10155.31
TABLE 6. Runtime comparison for Chandra and Katsura benchmark runs with
the TOP- and POT-lift between our implementation of the Pommaret version of
the GVW algorithm and the Janet version with the Schreyer ordering presented in
[1]

For the examples in table 6, we can conclude that our implementation is about four to five
times as fast as the implementation of Binaei for the smaller examples and five to eight times as fast
if it comes to Katsura runs. This is surprising in the sense that for the Pommaret case we have to
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consider proxy pairs. Still, some of the proxy pairs potentially will be involutive J-pairs in the Janet
version of the algorithm.

Also, the answer may lie in the fact that our J-criterion potentially discards more elements than
the J-criterion presented in [1].

Now, one may also think that this comes from the fact that we did not take the degree of
the Janet basis as our value of q but instead searched heuristically for the Castelnuovo-Mumford
regularity (which was often smaller by 1 for these examples). However, this is not true. For instance,
the run for Katsura6 was repeated with q = 8 and finished after 91.25s with a TOP-lift. Furthermore,
our algorithm only discards elements of degree that is greater than q + 1 (in the v-part and the
semi-involutive variant). So, this cannot be the reason.

Maybe our implementation is that much faster because our term orders on Rm work better for
the GVW algorithm, or because we do not compute the whole Gröbner basis of Syz(F ) in general.
However, this is an open question at this point.

For investigating the performance of our implementation for inputs where coordinate transfor-
mations may be required, we look at the four examples in table 7. Here, we also choose Syzbool=true
and SigOnly=false so that transformations of Syz(F ) would be detected, too. This, we mark with a
“no” in the column “focus” as we do not focus on only computing a Pommaret basis of I with this
choice of parameters. When we write “yes” in that column, we always set Syzbool = false and,
if no transformations are required, SigOnly = true. Otherwise SigOnly = false must be chosen
because we need the whole syzygy to be transformed.

As we have a TOP- and a POT-lift, we perform the computations for both term orders. In the
first column we write for instance “Caprasse (T/P)” or “Caprasse (T/-)”. Here, (T/P) means, that we
first give the data for the TOP-lift, and separate it from the data for the POT-lift calculations by the
slash-symbol. With (T/-) we mean that the computation for the POT-lift was interrupted after four
hours, and that only a TOP-lift computation was possible in a reasonable amount of time with our
proof of concept implementation21. Analogously, we use (P/-) where “P” indicates the usage of the
POT-lift.

In the column “transformations” we indicate with “(I)” that the reason for the transformation
was the ideal. If the syzygy module was the reason we use “(S)”.

In table 7, one can see that the ideals and syzygy modules could be transformed into a quasi-
stable position. Also, the index of safety is always significantly bigger for the POT-lift. It might
be noteworthy that in some cases the transformations for the TOP- and POT-lift do not coincide.
Moreover, for Chemequs, there was no transformation required for a POT-lift, whereas the TOP-lift
run needed two. This is also reflected in the runtime, of course. In general, if we focus only on
finding a Pommaret basis of I , the runtime is smaller. If only the syzygy module is not in quasi-
stable position this effect becomes even more clear (see for instance at the data about Caprasse). For
the Noonburg-89 runs the focus on the ideal saved not only computation time but also a coordinate
transformation for the TOP-lift.

It is also worth mentioning that the example Cyclic 4 could be handled fairly easily with the
POT-lift whereas the TOP-lift was interrupted after four hours of calculations. There, the algorithm
stated several times that both, the ideal and the syzygy module are not in quasi-stable position.

7. Benefits and Issues of the Usage of POT- or TOP-lifts
We have focused especially on TOP- and POT-lifts. In this rather small section, we want to collect
properties of the POT- and TOP-lifts in the context of the (semi-)involutive GVW algorithm.

21The Maple code is available at http://www.mathematik.uni-kassel.de/˜izgin/publications.php?
lang=en.

http://www.mathematik.uni-kassel.de/~izgin/publications.php?lang=en
http://www.mathematik.uni-kassel.de/~izgin/publications.php?lang=en
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focus runtime |H| |G| Reg(I) transformations max. i.o.s.

Caprasse (T/-) no 3400 131 30 7
t 7→ t+ x
z 7→ z + y

(S) 45

Caprasse (T/P) yes 595/1418 22/21 38/38 7

Chemequs (T/P) no 1289/14 51/57 19/20 4
y4 7→ y4 + y3
y4 7→ y4 + y1

(S) / - 12 / -

Chemequs (T/P) yes 4/4 21/25 20/20 4

Noonburg-89 (T/P) no 10/28 14/26 15/16 6

c 7→ c+ z
c 7→ c+ y
z 7→ z + y
c 7→ c+ x

(I) /
c 7→ c+ z
c 7→ c+ y
c 7→ c+ x

(I) 32 / 113

Noonburg-89 (T/P) yes 6/24 4/4 15/16 6
c 7→ c+ z
c 7→ c+ y
c 7→ c+ x

(I) /
c 7→ c+ z
c 7→ c+ y
c 7→ c+ x

(I) 32 / 113

Cyclic 4 (P/-) no 0.39 8 8 6 z 7→ z + y (I) 2
TABLE 7. Benchmark runs for the TOP- and POT-lift and the Pommaret version
of the GVW algorithm.

Now, it is well known, that with a POT-lift, the algorithm becomes incremental [6]. Further-
more, as we are performing coordinate transformations on the u-part, too, we have to find the sig-
natures of the transformed pairs. For the u-part, this obviously is easier with a POT-lift than with a
TOP-lift as we have to search for the leading term only in one position of the vector in the u-part.
However, when using the POT-lift, we may be stuck easier at a signature belonging to a position i,
because the POT-lift is not of type ω. Hence, we may go to the degree q + 1 more often until we
jump to elements with a signature at position i + 1. This means, that we are calculating too many
unnecessary pairs, blowing up the set G and hence increasing the costs for any operation on G, es-
pecially the calculation of new elements for JP (G)∪PP (G) for the Pommaret case. A POT-lift, in
general, reacts sensitively to these signature-based algorithms as the order of the elements in F have
a major impact on the efficiency as we will recall in a moment.

Whereas a TOP-lift may be more convenient for calculations, it is rather expensive when we
have to perform a lot of coordinate transformations. However, it is an open question at this point
which of the two lifts performs better according to the index of safety. Lastly, we want to recall one
more thing:

It is not guaranteed that a Pommaret basis exists for Syz(F ) just because it exists for 〈F 〉
(e.g. for Caprasse in table 7 for the TOP-lift). For a POT-lift, a simple example was given in the
example after remark 3.34. In fact, we want to point out that in this example we already started with
a Pommaret basis of 〈F 〉, yet our algorithm would return an error message for Syz(F ) and the POT-
lift. However, one can see that everything would work perfectly fine if we took a POT-lift and just
changed the order of our elements in F , so that G = {(e1, y), (e2, x)} holds. Then e1 ≺POT e2,
however, now the leading term of the syzygy xe1 − ye2 is ye2. This, on the other hand, points out
how sensitive the involutive GVW algorithm reacts to the POT-lift.

8. Summary and Outlook
In this work, we have introduced the main ideas of the original GVW algorithm and then presented
a corresponding theory for involutive divisions where we discussed very detailed the algorithm for
the Pommaret division. We have developed the theory also presenting the process of finding compu-
tational achievable assumptions under which an involutive J-criterion holds. We also gave examples
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of why none of the new made assumptions can be dropped. Moreover, we gave a counterexample
for the involutive J-criterion from [1]. We presented for our version some criteria in order to make
an implementation more efficient and proved the termination of the fully and semi-involutive GVW
algorithm. We also pointed out the benefits of both variants and the issues that go along with them.
Then we have introduced coordinate transformations and the index of safety that arose naturally
from our strategy for the algorithm. After completing the discussion of the Pommaret case, we were
able to present a Janet version of the GVW algorithm. Indeed, we have found out that no proxy pairs
are required. But even though we have proven a fully involutive version, we argued that without
further investigations only a semi-involutive implementation of the algorithm is meaningful. In the
last section, we gave remarks on our implementation and presented some benchmark computations
along with some examples that tested the functionality of coordinate transformations.

With the versions of the involutive GVW algorithm for the Pommaret and Janet version, we
gave an algorithm to compute Pommaret bases for homogeneous ideals and the degree reverse lexi-
cographic order together with a compatible term order of type ω or a POT-lift of pseudo type ω. In the
last section we collected some properties of these term orders. However, we left out the discussion
of the Schreyer ordering which was used in [1] for the implementation.

Still, the given implementation is only a proof of concept and shall not be used for bigger
examples. For further investigation of this algorithm and its properties with a POT- or TOP-lift, one
may consider the following question: Does the POT-lift lead to a bigger maximal value of the index
of safety compared to the one obtained with a TOP-lift?

Lastly, it should be investigated in detail how the Pommaret variant can be adapted for affine
inputs. And it might be also interesting to discover why our implementation seems to be much faster
than the implementation for the Janet division.

Furthermore, it might be useful to add some of the ideas presented in the introduction to the
involutive GVW algorithm. In particular, one could aim to create a Hilbert-driven algorithm that uses
the substituting method from [15] and the concept of mutant pairs from [20].
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Symbolic and algebraic computation, EUROSAM ’79, int. Symp., Marseille 1979, Lect. Notes Comput.
Sci. 72, 3-21 (1979)., 1979.

[4] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero
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