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Abstract An introduction into the algebraic theory of several types of linear systems
is given. In particular, linear ordinary and partial differential and difference equa-
tions are covered. Special emphasis is given to the formulation of formally well-
posed initial value problem for treating solvability questions for general, i. e. also
under- and overdetermined, systems. A general framework for analysing abstract
linear systems with algebraic and homological methods is outlined. The presenta-
tion uses throughout Gröbner bases and thus immediately leads to algorithms.
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1 Introduction

We survey the algebraic theory of linear differential algebraic equations and their
discrete counterparts. Our focus is on the use of methods from symbolic computa-
tion (in particular, the theory of Gröbner bases is briefly reviewed in Section 7) for
studying structural properties of such systems, e. g., autonomy and controllability,
which are important concepts in systems and control theory. Moreover, the formu-
lation of a well-posed initial value problem is a fundamental issue with differential
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algebraic equations, as it leads to existence and uniqueness theorems, and Gröbner
bases provide a unified approach to tackle this question for both ordinary and partial
differential equations, and also for difference equations.

Here are the key ideas of the algebraic approach: Given a linear differential or
difference equation, we first identify a ring D of operators and a set F of func-
tions where the solutions are sought. For instance, the equation f̈ + f = 0 can be
modeled by setting D =R[∂ ] (the ring of polynomials in the indeterminate ∂ with
real coefficients) and F = C ∞(R,R). The operator d = ∂ 2 + 1 ∈ D acts on the
function f ∈F and the given equation takes the form d f = 0. Partial differential
equations with constant coefficients can be described by D =R[∂1, . . . ,∂r] and, say,
F = C ∞(Rr,R). Similarly, difference equations such as the Fibonacci equation
f (t+2)= f (t+1)+ f (t) can be put into this framework by setting D =R[σ ], where
σ denotes the shift operator defined by (σ f )(t)= f (t+1). Then d =σ2−σ−1∈D
acts on f ∈F =RN0 , which is the set of all functions from N0 to R. Again, this
can easily be extended to partial difference equations by admitting several shift op-
erators. The situation becomes more complicated when variable coefficients are in-
volved, because then the coefficients do not necessarily commute with the operators
∂i or σi, respectively. However, this setting can still be modeled by using appropri-
ate noncommutative operator rings D such as the Weyl algebra (the ring of linear
differential operators with polynomial coefficients). The function set F is supposed
to have the structure of a left D-module. This means that we may apply the op-
erators ∂i or σi arbitrarily often, and that for f ∈F , any d f belongs again to F ,
where d ∈ D . Thus, the set of smooth functions or the set of distributions are the
prototypes of such function sets in the continuous setting.

Having identified a suitable pair (D ,F ), one may just as well treat nonscalar
equations D f = 0 with a matrix D ∈ Dg×q and a vector f ∈ F q, where (D f )i =

∑
q
j=1 Di j f j as usual. The set S = { f ∈F q | D f = 0} is the solution set, in F q, of

the linear system of equations D f = 0. Associated with the system is the row module
N =D1×gD consisting of all D-linear combinations of the rows of the matrix D and
the system module M = D1×q/N, the corresponding factor module. Any f ∈ F q

gives rise to a D-linear map φ( f ) : D1×q → F which maps d ∈ D1×q to d f =

∑
q
j=1 d j f j ∈ F . Now if f ∈ S is an arbitrary solution, then any vector d ∈ N in

the row module belongs to the kernel of φ( f ). Thus φ( f ) induces a well-defined
D-linear map ψ( f ) : M → F on the system module. An important observation
by Malgrange [32] says that there is a bijection (actually even an isomorphism of
Abelian groups with respect to addition) between the solution set S and the set of all
D-linear maps from the system module M to F , that is,

S = { f ∈F q | D f = 0} ∼= HomD (M,F ), f 7→ ψ( f ).

One of the nice features of this correspondence is the fact that it separates the infor-
mation contained in the system S into a purely algebraic object (the system module
M, which depends only on the chosen operator ring and the matrix representing the
system) and an analytic object (the function set F ). Thus the study of the system
module is important for all possible choices of F . This makes it possible to consider
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S for successively larger function sets (smooth functions, distributions, hyperfunc-
tions etc.) as proposed by the “algebraic analysis” school of Sato, Kashiwara et al.
(see e. g. [21, 22, 34] and references therein).

This contribution is structured as follows. In the next three sections three particu-
larly important classes of linear systems are studied separately: ordinary differential
equations, difference equations and partial differential equations. The main empha-
sis here lies on an existence and uniqueness theory via the construction of formally
well-posed initial value problems. Section 5 shows how the concept of an index of
a differential algebraic equation can be recovered in the algebraic theory. Then Sec-
tion 6 provides a general algebraic framework for studying abstract linear systems
in a unified manner, using a common language for all the classes of linear systems
considered in this paper. Here the main emphasis lies on systems theoretic aspects
such as autonomy and controllability. The algebraic characterization of these prop-
erties is used throughout the paper, thus sparing the necessity of individual proofs
for each system class. Finally, an appendix briefly recapitulates Gröbner bases as
the main algorithmic tool for algebraic systems.

2 Linear Ordinary Differential Equations

Consider a linear ordinary differential equation

cn(t)
dn f
dtn (t)+ . . .+ c1(t)

d f
dt

(t)+ c0(t) f (t) = 0. (1)

The time-varying coefficients ci are supposed to be real-meromorphic functions.
Thus, the differential equation is defined on R \Ec, where Ec is a discrete set (the
collection of all poles of the functions ci), and it is reasonable to assume that any
solution f is smooth on the complement of some discrete set E f ⊂ R.

For the algebraic approach, it is essential to interpret the left hand side of (1)
as the result of applying a differential operator to f . For this, let k denote the field
of meromorphic functions over the reals. Let D denote the ring of linear ordinary
differential operators with coefficients in k, that is, D is a polynomial ring over k
in the formal indeterminate ∂ which represents the derivative operator, i.e., ∂ ∈ D
acts on f via ∂ f = d f

dt . Then (1) takes the form d f = 0, where

d = cn ?∂
n + . . .+ c1 ?∂ + c0 ∈D . (2)

Due to the Leibniz rule d
dt (c f ) = c d f

dt +
dc
dt f , the multiplication ? in D satisfies

∂ ? c = c?∂ +
dc
dt

for all c ∈ k.

For simplicity, we will write ∂c = c∂ + ċ below. Thus D is a noncommutative poly-
nomial ring in which the indeterminate ∂ commutes with a coefficient c according to
this rule. In the language of Ore algebras (see Section 7), we have D = k[∂ ; id, d

dt ].
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The algebraic properties of D can be summarized as follows: The ring D is a left
and right Euclidean domain, that is, the product of two nonzero elements is nonzero,
and we have a left and right division with remainder. The Euclidean function is given
by the degree which is defined as usual, that is, deg(d) = max{i | ci 6= 0} for d 6= 0
as in (2). Thus D is also a left and right principal ideal domain, and it possesses a
skew field K of fractions k = ed−1 with e,d ∈ D and d 6= 0. Therefore, the rank
of a matrix with entries in D can be defined as usual (i.e., as the dimension of its
row or column space over K [26]). Moreover, D is also a simple ring, that is, it has
only trivial two-sided ideals. These properties of D (see [7, 13]) imply that every
matrix E ∈Dg×q can be transformed into its Jacobson form [17] by elementary row
and column operations. Thus there exist invertible D-matrices U and V such that

UEV =

[
D 0
0 0

]
(3)

with D = diag(1, . . . ,1,d) ∈ D r×r for some 0 6= d ∈ D , where r is the rank of E
(over K ). The matrix on the right hand side of (3) is called the Jacobson normal
form of E. (For its computation, see e.g. [30].) The existence of this noncommutative
analogue of the Smith form makes the algebraic theory of linear ordinary differential
equations over k very similar to the constant coefficient case (for this, one mainly
uses the fact that D is a diagonal matrix and not its special form given above).
The main analytical difference is that over k, one has to work locally due to the
presence of singularities of the coefficients and solutions. Therefore, let F denote
the set of functions that are smooth up to a discrete set of exception points. Then F
is a left D-module. In [57], it was shown that F is even an injective cogenerator
(see Subsection 6.1 for the definition). Thus the algebraic framework outlined in
Section 6 can be applied to systems of linear ordinary differential equations which
take the form E f = 0, where E is a D-matrix and f is a column vector with entries
in F .

Let S = { f ∈F q | E f = 0} for some E ∈D p×q. Due to the Jacobson form, one
may assume without loss of generality that E has full row rank. Two representation
matrices Ei of S, both with full row rank, differ only by a unimodular left factor, that
is, E2 =UE1 for some invertible matrix U [57]. According to Theorem 6.1, the sys-
tem S is autonomous (i.e., it has no free variables) if and only if any representation
matrix E has full column rank. Combining this with the observation from above,
we obtain that an autonomous system always possesses a square representation ma-
trix with full rank. Given an arbitrary representation matrix E with full row rank,
we can select a square submatrix P of E of full rank. Up to a permutation of the
columns of E, we have E = [−Q,P]. Partitioning the system variables accordingly,
the system law E f = 0 reads Py = Qu, where u is a vector of free variables, that is,

∀u ∈F q−p∃y ∈F p : Py = Qu (4)

and it is maximal in the sense that Py = 0 defines an autonomous system. The num-
ber m := q− p, where p = rank(E), is sometimes called the input dimension of S.
With this terminology, a system is autonomous if and only if its input dimension
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is zero. To see that (4) holds, note that the homomorphism (of left D-modules)
D1×p → D1×p, x 7→ xP is injective, because P has full row rank. Since F is an
injective D-module, the induced homomorphism (of Abelian groups w.r.t. addition)
F p→F p, y 7→ Py is surjective. This implies (4).

Such a representation Py=Qu is called an input-output decomposition of S (with
input u and output y). Note that it is not unique since it depends on the choice of
the p linearly independent columns of E that form the matrix P. Once a specific
decomposition E = [−Q,P] is chosen, the input u is a free variable according to (4).
For a fixed input u, any two outputs y, ỹ belonging to u must satisfy P(y− ỹ) = 0.
Since Py= 0 is an autonomous system, none of the components of y is free, and each
component yi of y can be made unique by an appropriate choice of initial conditions.

Consider an autonomous system, that is, Py = 0, where P ∈D p×p has full rank.
Our goal is to formulate a well-posed initial value problem. For this, one computes
a minimal Gröbner basis of the row module of P with respect to an ascending POT
term order (see Example 7.2), for instance

∂
nei ≺POT ∂

me j ⇔ i < j or (i = j and n < m), (5)

where ei denotes the ith standard basis row. According to Definition 7.12, a Gröbner
basis G is called minimal if for all g 6= h ∈ G, lt(g) does not divide lt(h). This
means that none of the elements of a minimal Gröbner basis is superfluous, that
is, we have 〈lt(G \ {g})〉 ( 〈lt(G)〉 for all g ∈ G. In the next paragraph, we show
that – possibly after re-ordering the generators – the result of this Gröbner basis
computation is a lower triangular matrix P′ = UP with nonzero diagonal entries,
where U is invertible.

To see this, let G be a minimal Gröbner basis of the row module of P. The mini-
mality of G implies that there exist no g 6= h ∈G with lt(g) = ∂ nei and lt(h) = ∂ mei.
So for every 1 ≤ i ≤ p there is at most one gi ∈ G with lt(gi) = ∂ niei for some ni.
By the choice of the POT order (5), the last p− i components of gi must be zero.
On the other hand, since D1×p→ D1×p, x 7→ xP is injective, the row module of P
is isomorphic to the free D-module D1×p and hence, it cannot be generated by less
than p elements. Thus G = {g1, . . . ,gp} and the matrix P′ ∈D p×p that has gi as its
ith row is lower triangular with nonzero diagonal entries.

The fact that P and P′ have the same row module implies that P′ = UP with an
invertible matrix U . Clearly, Py = 0 holds if and only if P′y = 0. Let ρi := deg(P′ii)
for all 1≤ i≤ p. Then there exists an exception set E such that for all open intervals
I ⊂R\E and all t0 ∈ I, the differential equation Py = 0 together with the initial data
y( ji)

i (t0) for 1≤ i≤ p and 0≤ ji < ρi determines y|I uniquely. This also shows that
the set of solutions to Py = 0 on such an interval is a finite-dimensional real vector
space (of dimension ρ = ∑

p
i=1 ρi). The number ρ is also equal to the degree of the

polynomial d that appears in the Jacobson form D = diag(1, . . . ,1,d) of P.

Example 2.1. Consider [24, Ex. 3.1][
−t t2

−1 t

]
ḟ =

[
−1 0

0 −1

]
f .
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Writing the system in the form E f = 0, the operator matrix E acting on f = [ f1, f2]
T

is given by

E =

[
−t∂ +1 t2∂

−∂ t∂ +1

]
∈D2×2.

We compute a Gröbner basis of the row module of E with respect to the term order
in (5) and obtain E ′ = [1,−t]. Indeed, E and E ′ have the same row module, as

E ′ = [1,−t]E and E =

[
−t∂ +1
−∂

]
E ′.

The system S given by E f = 0 is not autonomous, since rank(E) = rank(E ′) = 1,
and thus, E does not have full column rank. In fact, the connection between the
matrices E and E ′ shows that

S = { f ∈F 2 | E f = 0}= {[t f2, f2]
T | f2 ∈F},

that is, S has an image representation and is therefore controllable. One may inter-
pret f2 as the system’s input and f1 as its output (or conversely). In this example, the
output is uniquely determined by the input. The Jacobson form of E is diag(1,0).

Example 2.2. Consider [24, Ex. 3.2][
0 0
1 −t

][
ḟ3
ḟ4

]
=

[
−1 t

0 0

][
f3
f4

]
+

[
f1
f2

]
.

Writing the system in the form E f = 0, where f = [ f1, . . . , f4]
T , one gets

E =

[
−1 0 1 −t

0 −1 ∂ −t∂

]
∈D2×4.

Proceeding as above, we obtain

U =

[
−t∂ +1 t
−∂ 1

]
and E ′ =UE =

[
t∂ −1 −t 1 0

∂ −1 0 1

]
.

We may choose f1 and f2 as inputs, and then the outputs

f3 =−t ḟ1 + f1 + t f2 and f4 =− ḟ1 + f2

are uniquely determined according to E ′ f = 0. Note that E = [−I,E1] with an in-
vertible matrix E1, where U = E−1

1 , and E ′ =UE = [−E−1
1 , I]. Thus

S = { f ∈F 4 | E f = 0}= {
[

E1
I

]
u | u ∈F 2}= {

[
I

E−1
1

]
v | v ∈F 2}.

Again, S has an image representation and is therefore controllable. The Jacobson
form of E is [I,0] ∈D2×4.
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Example 2.3. Consider the system

ḟ1 + t f2 = 0, ḟ2 + t f1 = 0.

Writing the system in the form E f = 0, the operator matrix E acting on f = [ f1, f2]
T

is given by

E =

[
∂ t
t ∂

]
∈D2×2.

Proceeding as above, we obtain

U =

[
∂ − 1

t −t
1
t 0

]
and E ′ =UE =

[
∂ 2− 1

t ∂ − t2 0
1
t ∂ 1

]
.

Clearly, the system S given by E f = 0 is autonomous and has vector space dimen-
sion 2. The Jacobson form of E is diag(1,∂ 2− 1

t ∂ − t2).

3 Linear Difference Equations

Consider a linear ordinary difference equation

cn f (t +n)+ . . .+ c1 f (t +1)+ c0 f (t) = 0 for all t ∈N0.

The coefficients ci are supposed to be elements of a commutative quasi-Frobenius
ring R (see e.g. [25]). This means that (i) R is Noetherian, and (ii) HomR(·,R) is an
exact functor. For instance, all fields are quasi-Frobenius rings, but also the residue
class ringsZ/kZ for an integer k≥ 2. The ring of operators is D =R[σ ], a univariate
polynomial ring with coefficients in R. The action of σ ∈D on a sequence f :N0→
R is given by the left shift (σ f )(t) = f (t +1). We set F = RN0 , which is the set of
all functions fromN0 to R. Then F is a left D-module and an injective cogenerator
[31, 36, 58].

Example 3.1. Consider the Fibonacci equation

f (t +2) = f (t +1)+ f (t)

over R, which can be written as d f = 0 with d = σ2−σ −1 ∈ R[σ ]. Over the real
numbers, one of its solutions is the famous Fibonacci sequence 0,1,1,2,3,5,8, . . .
Over a finite ring however, its solutions are periodic functions, because there exists
a positive integer p such that σ2−σ − 1 divides σ p− 1. (This is due to the fact
that the element σ̄ ∈ S := R[σ ]/〈σ2−σ − 1〉 belongs to the group of units of the
finite ring S and hence, it has finite order.) Thus any solution to d f = 0 must satisfy
(σ p−1) f = 0, that is, f (t + p) = f (t) for all t.
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The discrete setting can easily be generalized to the multivariate situation. A
linear partial difference equation takes the form

∑
ν∈Nr

0

cν f (t +ν) = 0 for all t ∈Nr
0,

where only finitely many of the coefficients cν ∈ R are nonzero. The relevant opera-
tor ring is D = R[σ1, . . . ,σr], where σi acts on f :Nr

0→ R via (σi f )(t) = f (t + ei).
We also use the multi-index notation (σν f )(t) = f (t +ν) for t,ν ∈Nr

0. Let F de-
note the set of all functions from Nr

0 to R. Then F is again a left D-module and
an injective cogenerator [31, 36, 58]. Finally, let E ∈ Dg×q be given and consider
S = { f ∈F q | E f = 0}. The system S is autonomous (i.e., it has no free variable)
if and only if there exists a D-matrix X such that XE = diag(d1, . . . ,dq) with 0 6=
di ∈D for all i. In general, the input number (or “input dimension”) of S is defined
as the maximal m for which there exists a permutation matrix Π such that S→F m,

f 7→ [Im,0]Π f is surjective. Partitioning Π f =:
[

u
y

]
accordingly, this means that

for all “inputs” u ∈F m, there exists an “output” y ∈F q−m such that f ∈ S. Via the
injective cogenerator property, the input number m is also the largest number such
that there exists a permutation matrix Π with D1×gEΠ ∩ (D1×m × {0}) = {0}.
For simplicity, suppose that the columns of E have already been permuted such that
D1×gE∩(D1×m×{0})= {0}, where m is the input number of S. Let E = [−Q,P] be
partitioned accordingly such that the system law reads Py=Qu with input u and out-
put y. Moreover, the system given by Py = 0 is autonomous (otherwise, we’d have a
contradiction to the maximality of m). By construction, we have ker(·P) ⊆ ker(·Q)
and this guarantees that PF q−m ⊇ QF m. If R is a domain, then D has a quotient
field K , and we may simply set m := q− rank(E) and choose P as a submatrix of
E whose columns are a basis of the column space EK q of E. Then Q = PH holds
for some K -matrix H, which clearly implies ker(·P)⊆ ker(·Q).

Example 3.2. Let R = Z/8Z and consider the system given by

4 f1(t) = 2 f2(t +1)

for all t ∈ N0. Then E = [−4,2σ ]. Since ker(·2σ) = im(·4) ⊆ ker(·4), we may
choose Q = 4 and P = 2σ , that is, we may interpret u := f1 as an input, and y := f2
as an output. For any choice of u, the left hand side of the system law is in {0,4},
and hence, the equation is always solvable for y(t + 1). The autonomous system
2y(t + 1) = 0 consists of all sequences with y(t) ∈ {0,4} for all t ≥ 1 (with y(0)
being arbitrary). Conversely, f2 is not a free variable, since the system law implies
(by multiplying both sides by 2) that 4 f2(t+1) = 0 for all t ∈N0, and hence f2(t)∈
{0,2,4,6} for all t ≥ 1.

For the rest of this section, let R = k be a field. Let Py = 0 define an autonomous
system, that is, let P have full column rank q. Then none of the components of y is
free, and it can be made unique by an appropriate choice of initial conditions. The
theory of Gröbner bases can be used to set up a well-posed initial value problem.
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For this, one computes a Gröbner basis G of the row module N = D1×gP of P. If
d ∈D1×q has leading term σ µ ei, then we write lead(d) = (µ, i) ∈Nr

0×{1, . . . ,q}.
For a set D ⊆ D1×q with D \ {0} 6= /0, we put lead(D) := {lead(d) | 0 6= d ∈ D}.
With this notation, the fact that G is a Gröbner basis of N reads

lead(N) = lead(G)+(Nr
0×{0}).

Define
Γ :=Nr

0×{1, . . . ,q}\ lead(N).

Then the initial value problem Py = 0, y|Γ = z (that is, yi(µ) = z(µ, i) for all (µ, i)
in Γ ) has a unique solution y ∈F q for every choice of the initial data z ∈ kΓ [36].
The solution y can be computed recursively, proceeding in the specific order on
Nr

0×{1, . . . ,q} that was used to compute the Gröbner basis. (Clearly, ordering this
set is equivalent to ordering {σ µ ei | µ ∈Nr

0,1≤ i≤ q}.) For (µ, i) ∈ lead(N), there
exists a g ∈ G such that (µ, i) = lead(g)+ (ν ,0) = lead(σν g), and thus, the value
yi(µ) can be computed from values y j(κ) with (κ, j) < (µ, i), that is, from values
that are already known. Uniqueness follows by induction, since at each (µ, i), we
may assume that all consequences d of the system law (that is, all equations dy = 0,
where d ∈N) with lead(d)< (µ, i) are satisfied by the values that are already known.
On the other hand, the values of y on Γ are unconstrained by the system law. More
formally, the unique solvability of the initial value problem can be shown as follows:
There is a k-vector space isomorphism between S and Homk(D1×q/N,k). Clearly,
a linear map on a vector space is uniquely determined by choosing the image of a
basis. However, the set {[σ µ ei] | (µ, i) ∈ Γ } is indeed a k-basis of D1×q/N. This
shows that each element of S is uniquely determined by fixing its values on Γ . Note
that the set Γ is infinite, in general. We remark that Γ is finite if and only if the
system module is finite-dimensional as a k-vector space [54].

Example 3.3. Let k=R and consider the autonomous system given by

y(t1 +2, t2)+ y(t1, t2 +2) = 0
y(t1 +3, t2)+ y(t1, t2 +3) = 0

for all t = (t1, t2) ∈ N2
0. A Gröbner basis of N = 〈σ2

1 +σ2
2 ,σ

3
1 +σ3

2 〉 with respect
to the lexicographic order with σ1 > σ2 is given by G = {σ2

1 +σ2
2 ,σ1σ2

2 −σ3
2 ,σ

4
2 }.

Therefore, each solution y : N2
0 → R is uniquely determined by its values on

the complement of lead(N) = {(2,0),(1,2),(0,4)}+N2
0, that is, on the set Γ =

{(0,0),(0,1),(0,2),(0,3),(1,0),(1,1)}. Thus, the solution set is a real vector space
of dimension |Γ |= 6.

4 Linear Partial Differential Equations

The theory of partial differential equations shows some notable differences com-
pared to ordinary differential equations. For general systems (i. e. including under-



10 Werner M. Seiler and Eva Zerz

or overdetermined ones), it is much harder to prove the existence of at least formal
solutions, as now integrability conditions may be of higher order than the origi-
nal system1. The reason is a simple observation. In systems of ordinary differential
equations, only one mechanism for the generation of integrability conditions exist:
(potentially after some algebraic manipulations) the system contains equations of
different order and differentiation of the lower-order ones may lead to new equa-
tions. In the case of partial differential equations, such differences in the order of
the individual equations are less common in practice. Here the dominant mechanism
for the generation of integrability conditions are (generalised) cross-derivatives and
these lead generally to equations of higher order. A comprehensive discussion of
general systems of partial differential equations and the central notions of involution
and formal integrability can be found in the monograph [52]. Within this article, we
will consider exclusively linear systems where again standard Gröbner basis tech-
niques can be applied. A somewhat more sophisticated approach using the formal
theory of differential equations and involutive bases is contained in [16]; it provides
intrinsic results independent of the used coordinates.

Example 4.1. We demonstrate the appearance of integrability conditions with a sys-
tem of two second-order equations for one unknown function u of three independent
variable (x,y,z) due to Janet [18, Ex. 47]:[

∂ 2
z + y∂ 2

x
∂ 2

y

]
f = 0 . (6)

It hides two integrability conditions of order 3 and 4, respectively, namely

∂
2
x ∂y f = 0 , ∂

4
x f = 0 . (7)

It is important to note that they do not represent additionally imposed equations but
that any solution of (6) will automatically satisfy (7).

A systematic derivation of these conditions is easily possible with Gröbner bases.
As we have only one unknown function in the system, the row module becomes here
the row ideal ICD =R(x,y,z)[∂x,∂y,∂z] in the ring of linear differential operators
with rational coefficients generated by the operators D1 = ∂ 2

z + y∂ 2
x and D2 = ∂ 2

y .
We use the reverse lexicographic order with ∂z � ∂y � ∂x and follow the Buchberger
Algorithm 6 for the construction of a Gröbner basis. The S-polynomial (see (24)) of
the two given operators is S(D1,D2) = ∂ 2

y ·D1− ∂ 2
z ·D2 = y∂ 2

x ∂ 2
y + 2∂ 2

x ∂y. Reduc-
tion modulo D2 eliminates the first term so that D3 = ∂ 2

x ∂y and we have found the
first integrability condition. The second one arises similarly from the S-polynomial
S(D1,D3) = ∂ 2

x ∂y ·D1 − ∂ 2
z ·D3 leading to the operator D4 = ∂ 4

x after reduction,
whereas the S-polynomial S(D2,D3) immediately reduces to zero. Since also all S-

1 For arbitrary systems, not even an a priori bound on the maximal order of an integrability con-
dition is known. In the case of linear equations, algebraic complexity theory provides a double
exponential bound which is, however, completely useless for computations, as for most systems
appearing in applications it grossly overestimates the actual order.
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polynomials S(Di,D4) reduce to zero, the set {D1,D2,D3,D4} represents a Gröbner
basis of the ideal I and there are no further hidden integrability conditions.

There are two reasons why one should make the integrability conditions (7) ex-
plicit. First of all, only after the construction of all hidden conditions, we can be sure
that the system (6) indeed possesses solutions; in general, a condition like 1 = 0 can
be hidden which shows that the system is inconsistent.2 Secondly, the knowledge
of these conditions often significantly simplifies the integration of the system and
provides information about the size of the solution space. As we will show later
in this section, in our specific example one can immediately recognise from the
combined system (6,7) that the solution space of our problem is finite-dimensional
(more precisely, 12-dimensional)—something rather unusual for partial differential
equations. In fact, once (7) is taken into account, one easily determines the general
solution of the system, a polynomial with 12 arbitrary parameters:

f (x,y,z) =−a1xyz3 +a1x3z−3a2xyz2− 1
3

a3yz3 +a2x3 +

a3x2z−a4yz2 +a5xyz+a4x2 +a6xy+a7yz+

a8xz+a9x+a10y+a11z+a12 .

(8)

An important notion for the formulation of existence and uniqueness results for
differential equations is well-posedness. According to an informal definition due to
Hadamard, an initial or boundary value problem is well-posed, if (i) a solution exists
for arbitrary initial or boundary data, (ii) this solution is unique and (iii) it depends
continuously on the data. For a mathematically rigorous definition, one would firstly
have to specify function spaces for the data and the solution and secondly define
topologies on these spaces in order to clarify what continuous dependency should
mean. In particular this second point is highly non-trivial and application dependent.
For this reason, we will use in this article a simplified version which completely
ignores (iii) and works with formal power series.

We will consider here exclusively initial value problems, however in a more gen-
eral sense as usual. For notational simplicity, we assume in the sequel that there is
only one unknown function f . Since we work with formal power series solutions,
we further assume that some expansion point x̂ = (x̂1, . . . , x̂n) has been chosen. For
any subset X ′ ⊆ X of variables, we introduce the (n−|X ′|)-dimensional coordinate
space HX ′ = {xi = x̂i | xi ∈ X ′} through x̂. An inital condition then prescribes some
derivative fµ = ∂ |µ| f/∂xµ for a multi index µ ∈Nn

0 of the unknown function f re-
stricted to such a coordinate space HX ′ . If several conditions of this kind are imposed
with coordinate spaces H1, H2, . . . , then one obtains an initial value problem in a
strict sense only, if (after a suitable renumbering) the coordinate spaces form a chain
H1 ⊆ H2 ⊆ ·· · . However, in general a formally well-posed initial value problem in
this strict sense will exist only after a linear change of coordinates. Therefore, we
will not require such a chain condition.

2 Here we are actually dealing with the special case of a homogeneous linear system where con-
sistency simply follows from the fact that u = 0 is a solution.
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Definition 4.2. An initial value problem for a differential equation is formally well-
posed, if it possesses a unique formal power series solution for arbitrary formal
power series as initial data.

In principle, we approach the algorithmic construction of formally well-posed
initial value problems for a given linear partial differential operator L in the same
manner as described in the last section for linear difference operators: we compute
a Gröbner basis of the row module N—which here is actually an ideal IED be-
cause of our assumption that there is only one unknown function—and then use the
complement of the leading module. However, in order to be able to translate this
complement into initial conditions, we need a complementary decomposition of it
(see Definition 7.10) which can be constructed with the help of Algorithm 5 in Sec-
tion 7. In fact, it was precisely this problem of constructing formally well-posed
problems which lead to the probably first appearance of such decompositions in the
works of Riquier [45] and Janet [18].

A leading “term” can now be identified with a derivative fµ . All derivatives in lt I
are traditionally called principal derivatives, all remaining ones parametric deriva-
tives. Assume that we want to compute a formel power series solution with expan-
sion point x̂. Making the usual ansatz

f (x) = ∑
µ∈Nn

0

aµ

µ!
(x− x̂)µ , (9)

we may identify by Taylor’s theorem the coefficient aµ with the value of the deriva-
tive fµ at x̂.

Let the leading term of the scalar equation D f = 0 be fµ . Because of the mono-
tonicity of term orders, the leading term of the differentiated equation ∂iD f = 0 is
fµ+1i = ∂i fµ . Hence by differentiating the equations in our system sufficiently of-
ten, we can generate for any principal derivative fµ a differential consequence of
our system with fµ as leading term. Prescribing initial data such that unique values
are provided for all parametric derivatives (and no values for any principal deriva-
tive), we obtain a formally well-posed initial value problem, as its unique power
series solution is obtained by determining each principal derivative via the equation
that has it as leading term. Such initial data can be systematically constructed via
complementary decompositions of the leading ideal.

A complementary decomposition of the monomial ideal lt I is defined by pairs
( fν ,Xν) where fν is a parametric derivative and Xν the associated set of multiplica-
tive variables. Differentiating fν arbitrarily often with respect to variables contained
in Xν , we always obtain again a parametric derivative. Denoting by Xν = X \Xν the
set of all non-multiplicative variables of fν , we associate with the pair ( fν ,Xν) the
initial condition that fν restricted to the coordinate space Hν = HXν

is some pre-
scribed function ρν(Xν). In this way, each complementary decomposition induces
an initial value problem.3

3 An initial value problem in the strict sense is obtained, if one starts with a complementary Rees
decomposition (see Definition 7.10).
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Theorem 4.3 ([52, Thm. 9.3.5]). For any complementary decomposition of lt I, the
above constructed initial value problem for the linear differential operator D is
formally well-posed.

If both the coefficients of D and the prescribed initial data ρν are analytic func-
tions and a degree compatible term order has been used, then Riquier’s Theorem
[37, 45] even guarantees the convergence of the unique formal power series so-
lution to the thus constructed initial value problem. Under these assumptions, we
therefore obtain an existence and uniqueness theorem in the analytic category.

Example 4.4. Let us begin with a scalar first-order equation like the simple advec-
tion equation (∂2− ∂1) f = 0. If we assume that for the chosen term order fx2 is
the leading derivative, then it is easy to see that a complementary decomposition is
defined by the single pair

(
f ,{x1}

)
, as the only parametric derivatives are f and all

its pure x1-derivatives. Hence choosing an expansion point (x̂1, x̂2), we recover the
familiar initial condition f (x1, x̂2) = ρ(x1) with an arbitrary function ρ .

Advancing to a second-order equation like the wave equation (∂ 2
2 − ∂ 2

1 ) f = 0
with leading derivative fx2x2 , we find that a simple complementary decomposition
is defined by the two pairs

(
f ,{x1}

)
and

(
fx2 ,{x1}

)
. Hence our construction yields

again the classical initial conditions f (x1, x̂2) = ρ(x1) and fx2(x1, x̂2) = σ(x1). This
decomposition is shown in Figure 1 on the left hand side. The small black dots depict
the terms ∂ µ of the underlying ring D or alternatively the derivatives fµ . All dots ly-
ing in the blue two-dimensional cone correspond to principal derivatives contained
in the ideal I and are multiples of the leading derivative fx2x2 shown as a large blue
dot. All parametric derivatives are contained in the two red one-dimensional cones
whose vertices are shown as large red dots. Obviously, the complementary decom-
position provides a disjoint partitioning of the complement of the “blue” ideal.

∂1

∂2

∂1

∂2

fx2x2

fx2

f
fx1x2

fx2

f

Fig. 1 Complementary decompositions for the wave equation

If we consider the wave equation in characteristic coordinates ∂1∂2 f = 0, then we
have two natural options for a complementary decomposition:

(
f ,{x1}

)
,
(

fx2 ,{x2}
)
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(shown in Figure 1 on the right hand side) or
(

f ,{x2}
)
,
(

fx1 ,{x1}
)
. Both cor-

respond to the classical characteristic initial value problem (which is not an ini-
tial value problem in the strict sense) in which usually both f (x̂1,x2) = ρ(x2) and
f (x1, x̂2) = σ(x1) are prescribed. However, this classical formulation is not formally
well-posed, as the initial data must satisfy the consistency condition ρ(0) = σ(0).
The formulations induced by the above complementary decompositions avoid such
a restriction by substituting in one of the initial conditions f by a first derivative. The
quite different character of the standard and the characteristic initial value problem
of the wave equation is here encoded in the fact that on the left hand side of Figure 1
the two red one-dimensional cones are pointing in the same direction, whereas on
the right hand side they have different directions.

The results become less obvious when we proceed to larger overdetermined sys-
tems. As a simple example, we take the “monomial” system with

I = 〈∂ 2
3 ,∂

2
2 ∂3,∂1∂2∂3〉 (10)

(any linear system with a Gröbner basis consisting of three operators with these gen-
erators as leading terms leads to the same initial conditions). Here a complementary
decomposition (shown in Figure 2 where again the blue colour marks the ideal I and
the red colour the different cones of the complementary decomposition) is given by
the three pairs

(
f ,{x1,x2}

)
,
(

fx3 ,{x1}
)

and ( fx2x3 , /0). Hence a formally well-posed
initial value problem is given by

f (x1,x2, x̂3) = ρ(x1,x2) , fx3(x1, x̂2, x̂3) = σ(x1) , fx2x3(x̂1, x̂2, x̂3) = τ (11)

where the initial data consist of two functions (of one and two arguments, resp.) and
one constant. Note that this time the red cones are of different dimensions which
is typical and unavoidable for overdetermined systems. We are dealing here with a
non-characteristic initial value problem, as the directions of the various cones form
a flag: all directions defining a lower-dimensional cone are also contained in any
higher-dimensional cone.

The considerations above also yield the simple Algorithm 1 for constructing any
Taylor coefficient aλ in the unique solution of the above constructed initial value
problem. It computes the normal form (cf. Definition 7.7) of ∂ λ with respect to
a Gröbner basis of I. If ∂ λ corresponds to a parametric derivative, it remains un-
changed and we obtain in Line /4/ directly the value of aλ from the appropriate
initial condition. Otherwise the normal form computation expresses the principal
derivative ∂ λ as a linear combination of parametric derivatives ∂ µ . We determine
for each appearing ∂ µ in which unique cone (∂ ν ,Xν) of the given complementary
decomposition it lies and then compute the required derivative of the corresponding
initial data ρν . Evaluating at the expansion point x̂, we obtain first the values of all
required parametric coefficients aµ and then compute the principal coefficient aλ

from these.

Remark 4.5. For notational simplicity, we restricted in the above discussion to the
ideal case. The extension to the module case is straightforward; a separate comple-
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∂2

∂1

∂3

f

fx3

fx2x3

fx2x2x3

fx3x3

fx1x2x3

Fig. 2 Complementary decomposition for the monomial system (10)

Algorithm 1 Taylor coefficient of formal solution
Input: Gröbner basis G of I for term order≺, complementary decomposition T with correspond-

ing initial data for each cone (∂ ν ,Xν ) ∈T , expansion point x̂, multi index λ ∈Nn
0

Output: Taylor coefficient aλ of unique formal power series solution of initial value problem
corresponding to given complementary decomposition

1: h← NormalForm≺(∂
λ ,G )

2: for all ∂ µ ∈ supph do
3: find unique (∂ ν ,Xν ) ∈T such that ∂ µ lies in the cone of ∂ ν

4: aµ ← ∂ µ−ν ρν (x̂)
5: end for
6: write h = ∑µ cµ (x)∂ µ

7: return ∑µ cµ (x̂)aµ

mentary decomposition is now needed for each vector component (corresponding to
one unknown function). Only in the application of Riquier’s Theorem a slight tech-
nical complication arises. One must assume that the used module term order is not
only degree compatible but also Riquier which means that if for one value of α the
inequality teα ≺ seα with terms s, t ∈T holds, then it holds for all values of α . This
property does not appear in the usual theory of Gröbner bases, as it is only relevant
in applications to differential equations. It has the following meaning. Using a clas-
sical trick due to Drach [10] (see [52] for an extensive discussion), any system of
differential equations with m unknown functions can be transformed via the intro-
duction of m additional independent variables into a system for only one unknown
function (at the expense of raising the order by one). Algebraically, this trick trans-
forms a submodule M ⊆Dm defined over a skew polynomial ring D in n variables
into an ideal IM living in a skew polynomial ring D ′ in n+m variables. Now the
chosen module term order on Dm induces an ordering on the terms in D ′ which is
guaranteed to be a term order only if the module term order is Riquier. Lemaire [28]
constructed a concrete counter example to Riquier’s Theorem where all of its as-
sumptions are satisfied except that the chosen module term order is not Riquier and
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showed that the unique formal solution of the corresponding initial value problem
diverges. Note that any TOP lift of a term order is automatically Riquier.

We have used above already several times the terms “under-” and “overdeter-
mined” systems without actually having defined these notions. Somewhat surpris-
ingly, it is not so easy to provide a rigorous definition for them (and this topic is
not much considered in the literature). The linear algebra inspired approach of com-
paring the number of unknown functions and of equations fails in some instances,
as we will show below with an explicit example. The main problem is that it is not
clear what should be taken as the “right” number of equations. In linear algebra,
one must count the number of linearly independent equations. In the case of linear
differential equations, we are working with modules and ideals where almost never
a linearly independent set of generators exists and where minimal generating sets
may possess different cardinalities.

Example 4.6. Consider the following linear system for two unknown functions u, v
of two independent variables x, t:[

∂ 2
t −∂x∂t

∂x∂t −∂ 2
x

][
f
g

]
= 0 . (12)

One may call it the two-dimensional U(1) Yang-Mills equations, as it represents a
gauge theoretic model of electromagnetism in one spatial and one temporal dimen-
sion. At first sight, one would call (12) a well-determined system, as it comprises
as many equations as unknown functions. However, let f = φ(x, t) and g = ψ(x, t)
be a solution of (12) and choose an arbitrary function Λ(x, t); then f = φ + ∂xΛ

and g = ψ + ∂tΛ is also a solution. Hence one of the unknown functions f , g may
be chosen arbitrarily—the typical behaviour of an underdetermined system! From a
physical point of view, this phenomenon is a consequence of the invariance of (12)
under gauge transformations of the form f → f +∂xΛ and g→ g+∂tΛ and lies at
the heart of modern theoretical physics.

Using our above considerations about the construction of formally well-posed
initial value problems for a linear partial differential operator D with row module N,
it is fairly straightforward to provide a rigorous definition of under- and overdetermi-
nacy. At first sight, it is not clear that the definition presented below is independent
of the chosen complementary decomposition. But this follows from the remarks af-
ter Definition 7.10, as it is only concerned with the cones of maximal dimension
and their dimension and number are the same for any decomposition (in the Cartan-
Kähler approach this maximal dimension is sometimes called the Cartan genus of
the operator and the number of such cones the degree of arbitrariness; see [48] or
[52, Chapt. 8] for a more detailed discussion of these notions).

Definition 4.7. Let D be a linear differential operator of order q in n independent
variables operating on m unknown functions and choose a complementary decom-
position of the associated monomial module ltN (for some term order ≺). The op-
erator D defines an underdetermined system, if the decomposition contains at least
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one cone of dimension n. It defines a welldetermined system, if a complementary de-
composition exists consisting of mq cones of dimension n−1 (and no other cones).
In any other case, the system is overdetermined.

The definition of underdeterminacy should be clear from the discussion above. If
k≥ 1 cones of dimension n appear in the complementary decomposition, then k≥ 1
unknown functions can be chosen completely arbitrarily and thus are not constrained
by the differential operator. This behaviour represents exactly what one intuitively
expects from an underdetermined system. Note that such cones will always appear,
if there are less equations than unknown functions, as in this case there exists at least
one unknown function to which no leading derivative belongs and for which thus all
derivatives are parametric.

Example 4.8. It is less obvious that there exist underdetermined systems comprising
as many (or even more) equations as unknowns. If we go back to Example 4.6 and
use the TOP extension of the reverse lexicographic order, then the two equations
in (12) induce already a Gröbner basis of N with leading terms ftt and fxt . Thus
there are no leading terms corresponding to derivatives of g and all g-derivatives
are parametric. Hence the complementary decomposition consists for g of just one
two-dimensional cone with vertex at g.

The well-determined case corresponds to what is called in the theory of partial
differential equations a system in Cauchy-Kovalevskaya form. Note that for being
in this form it is necessary but not sufficient that the system comprises as many
equations as unknown functions. In addition, a distinguished independent variable t
must exist such that each equation in the system can be solved for a pure t-derivative
of order q (possibly after a coordinate transformation4). We may assume that the αth
equation is solved for ∂ q fα/∂ tq and a formally well-posed initial value problem is
then given by prescribing ∂ k fα/∂ tk(t = t̂) for 0 ≤ k < q and hence the initial data
indeed consists of mq functions of n− 1 variables. The advection and the wave
equation in Example 4.4 are of this type with t = x2. If the wave equation is given in
characteristic coordinates, then one must first transform to non-characteristic ones
to find a suitable t.

Remark 4.9. There is a certain arbitrariness in Definition 4.7. We give precedence to
under- and welldeterminacy; overdetermined systems are the remaining ones. This
could have been done the other way round. Consider the system∂1 −∂2 0

0 0 ∂1
0 0 ∂2

 f
g
h

= 0 . (13)

Obviously, it decouples into one underdetermined equation for the two unknown
functions f , g and an overdetermined system for the unknown function h. Accord-
ing to our definition, the combined system is underdetermined, although one could

4 It is quite instructive to try to transform (12) into such a form: one will rapidly notice that this is
not possible!
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consider it equally well as an overdetermined one. One reason for our choice is sim-
ply that underdeterminacy is the more intuitive notion (some unknown functions are
unconstrained) compared to the rather technical concept of overdeterminacy.

Another reason lies in the system theoretic interpretation of our results. As we
will discuss in Section 6.3 in a more abstract setting, a system is autonomous, if
and only if it is not underdetermined. Those variables for which the complementary
decomposition contains n-dimensional cones are free and thus represent the inputs
of the system. Different complementary decompositions generally lead to different
possible choices of the inputs. But as already remarked above, all complementary
decompositions contain the same number of cones of dimension n; thus this number
represents the input dimension of the system.

5 The Index

Both in the theory and in the numerical analysis of differential algebraic equations,
the notion of an index plays an important role. One interpretation is that it provides
a measure for the difficulties to expect in a numerical integration, as higher-index
systems show a high sensitivity to perturbations (e. g. through numerical errors). It
also shows up in the development of an existence and uniqueness theory.

Over the years, many different index concepts have been introduced. One may
roughly distinguish two main types of indices. Differentiation indices basically
count how many times some equations in the system must be differentiated, until
a certain property of the system becomes apparent. E.g., “the” differentiation in-
dex tells us when we can decide that the system is not underdetermined (therefore
it is called determinacy index in [49]). By contrast, perturbation indices are based
on estimates for the difference of solutions of the given system and of a perturbed
form of it and count how many derivatives of the perturbations have to be taken into
account. Generally, differentiation indices are easier to compute, whereas the rele-
vance of perturbation indices—e. g. for a numerical computation—is more obvious.
In many cases, all the different approaches lead to the same index value. But it is
not difficult to produce examples where the differences can become arbitrarily large.
An overview of many index notions and their relationship is contained in [5]; some
general references for differential algebraic equations are [2, 24, 27, 44].

We will now use Gröbner bases to introduce some index notions for linear differ-
ential equations. While these are strictly speaking differentiation indices, the main
result about them is an estimate for a perturbation index. We will first consider the
case of ordinary differential equations. Here the theory of Gröbner bases becomes
of course rather trivial, as we are dealing with a univariate polynomial ring. After-
wards, we will discuss the extension to partial differential equations. From the point
of view of mere definitions, this extension is straightforward and provides—in con-
trast to most results in the literature—an approach to introduce indices directly for
partial differential equations without resorting to some sort of semi-discretisation
or other forms of reduction to the ordinary case. Using a more geometric approach
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to differential equations, one can also handle nonlinear equations in an analogous
manner. For details we refer to [15, 49]. One could say that the here presented ma-
terial represents a concrete algorithmic version of the ideas in [15, 49] specialised
to linear systems.

Let a homogeneous system D f = 0 be given where for the moment it does not
matter whether D is an ordinary or a partial differential operator. We introduce for
each equation in the system a new auxiliary unknown function δi and consider the
inhomogeneous system D f = δ . Depending on the context, there are different ways
to interpret the new unknowns δi. One may consider them as perturbations of the
original system or as residuals obtained by entering some approximate solution of
the original system. For us, they are mainly a convenient way to keep track of what
is happening during a Gröbner basis computation. Obviously, the following analysis
will lead to the same results for an inhomogeneous system D f = g, as the right hand
side g can be absorbed into the perturbation δ .

We compute a Gröbner basis of the row module of the operator D. The most
natural choice for the term order is the TOP lift of a degree compatible order. In
the case of ordinary differential equations, this choice uniquely determines the term
order. For partial differential equations, we will discuss further properties of the
underlying order below. The outcome of this computation can be decomposed into
two subsystems D̃ f = Fδ and 0 = Gδ . Here the rows of D̃ form the Gröbner basis
of the row module of D and we have the equality D̃ = FD. Thus F tells us how the
elements of the Gröbner basis have been constructed from the rows of D.

The rows of G form a generating set of the first syzygy module of D (see (25) for
an explanation of syzygies). Indeed, the equations in the subsystem 0 = Gδ arise
when some S-polynomial reduces to zero (that is the zero on the left hand side!)
and thus represent syzygies. The Schreyer Theorem 7.15 asserts that they actually
generate the whole syzygy module. This second subsystem represents a necessary
condition for the existence of solutions in the inhomogeneous case: only for right
hand sides δ satisfying it, the system can possess solutions. According to the fun-
damental principle discussed in the next section, it is also a sufficient condition (for
“good” function spaces). Alternatively, we may consider δ as the residuals which
arise when an approximate solution f̂ is entered into the original system. Now the
subsystem 0 = Gδ describes what is often called the drift which appears in the nu-
merical integration of overdetermined systems. In particular, a stability analysis of
the trivial solution δ = 0 provides valuable information about the behaviour of the
drift, i. e. whether it is automatically damped or whether it accelerates itself.

Definition 5.1. The first Gröbner index γ1 of D f = 0 is the order5 of the operator F ;
the second Gröbner index γ2 the order of G.

Example 5.2. For linear differential equations, most index concepts coincide (some-
times with a shift of 1). Hence it is not surprising that the first Gröbner index γ1
yields often the same value as other approaches. Many applications lead to systems
in Hessenberg form. In our operator notation a (perturbed) Hessenberg system of
index 3 has the form
5 We define the order of an operator matrix as the maximal order of an entry.
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−a21 ∂ −a22 0

0 −a32 0

 f1
f2
f3

=

δ1
δ2
δ3


where all coefficients ai j and the right hand sides δi are functions of the indepen-
dent variable t and where we assume that a13(t)a21(t)a32(t) 6= 0 at every point t
considered. According to [24, Thm. 4.23] such a system has strangeness index 2
and according to [2, Prop. 2.4.1] the classical differentiation index is 3.

Computing a Gröbner basis of the row module for the descending TOP lift corre-
sponds exactly to the classical steps for computing the differentiation index. In the
first two rows, the leading term is ∂e1 and ∂e2. In the last row we have only one
non-vanishing term −a32e2 so that it may be considered as an algebraic equation
determining f2 since our assumption implies that its coefficient a32 6= 0.

Since the second and the third row have their leading term in the same compo-
nent, we can compute an S-polynomial by adding ∂ times the third row to a32 times
the second row – in other words: we differentiate the last equation and then simplify
it with respect to the second one. This yields a new row

[
−a21a32 ȧ32−a22a32 0

]
with right hand side δ̇3+a32δ2 (note how it “records” the performed operation). We
could use the third equation for further simplifications (in fact, elimination of the
second component). For our purposes, it suffices to observe that the new row yields
an algebraic equation for f1, since again our assumption implies that its coefficient
a21a32 does not vanish.

As the leading term of the new row is −a21a32e1 for the descending TOP lift, we
must now form its S-polynomial with the first row: we add ∂ times the new row to
a21a32 times the first row. As the result still contains a term ∂e2, it must be reduced
with respect to the second equation. We omit the explicit form of the result (which
also should be simplified further with respect to the other algebraic equations) and
only observe that it represents an algebraic equation for f3 with nonvanishing coeffi-
cient a13a21a32. The right hand side of the new row is given by δ̈3 +a32δ̇2 +2ȧ32δ2.

Now we are done: a reduced Gröbner basis of the row module consists of the
simplified form of the three algebraic equations. Their precise form is not relevant
for us, but we see that we have γ1 = 2, as the right hand side for the last obtained
row contains the second derivative of δ3. Thus the first Gröbner index coincides here
with the strangeness index. The classical differentiation index is one higher because
for its determination one wants a differential equation for f3 and hence multiplies
the last row once more with ∂ .

Example 5.3. We go back to the partial differential system (6) of Janet. If we add
there a right hand side with entries δ1, δ2 and redo the calculations described above
in Example 4.1, then we obtain the following perturbed system:

∂ 2
z + y∂ 2

x

∂ 2
y

∂ 2
x ∂y

∂ 4
x

 f =


δ1

δ2
1
2 ∂ 2

y δ1−
(
y∂ 2

x +∂ 2
z
)
δ2( 1

2 y∂ 2
x ∂ 2

y − 1
2 ∂ 2

y ∂ 2
z +∂ 2

x ∂y
)
δ1 +

( 1
2 y2∂ 4

x + y∂ 2
x ∂ 2

y + 1
2 ∂ 4

z
)
δ2

 .
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Hence the first Gröbner index is γ1 = 4 for this example. In order to obtain also the
second Gröbner index, we must also record how the remaining four S-polynomials
(S(D2,D3), S(D1,D4), S(D2,D4), S(D3,D4)) reduce to zero. This leads to the fol-
lowing four equations:

0 =−1
2

∂
3
y δ1 +

(1
2

y∂
2
x ∂y +

1
2

∂y∂
2
z +

3
2

∂
2
x

)
δ2 ,

0 =
(1

2
y2

∂
4
x ∂

2
y + y∂

2
x ∂

2
y ∂

2
z +

1
2

∂
2
y ∂

4
z − y∂

4
x ∂y−∂

2
x ∂y∂

2
z +∂

4
x

)
δ1−(1

2
y3

∂
6
x +

3
2

y2
∂

4
x ∂

2
z +

3
2

y∂
2
x ∂

4
z +

1
2

∂
6
z

)
δ2 ,

0 =
(1

2
y∂

2
x ∂

4
y +

1
2

∂
4
y ∂

2
z

)
δ1−(1

2
y2

∂
4
x ∂

2
y + y∂

2
x ∂

2
y ∂

2
z +

1
2

∂
2
y ∂

4
z +2y∂

4
x +

3
2

∂
2
x ∂

2
z

)
δ2 ,

0 =
(1

2
y∂

2
x ∂

3
y +

1
2

∂
3
x ∂

2
z

)
δ1−(1

2
y2

∂
4
x ∂y + y∂

2
x ∂y∂

2
z +

1
2

∂y∂
4
z +

3
2

y∂
4
x +

3
2

∂
2
x ∂

2
z

)
δ2 .

Thus we conclude that the second Gröbner index is 6 here.

For the definition of the Gröbner indices, it does not matter whether we are deal-
ing with ordinary or partial differential equations. One should, however, note that
in the case of partial differential equations the values γ1 and γ2 will generally de-
pend on the used term order (in the above example the system was so simple and in
addition homogeneous so that most term orders yield the same results). The whole
interpretation of the indices is less obvious in this case and depends on certain prop-
erties of the considered system. For this reason, we discuss first the case of ordinary
differential equations.

Definition 5.4 ([14]). Let f (t) be a given solution of the linear system D f = 0 and
f̂ (t) an arbitrary solution of the perturbed system D f̂ = δ both defined on the in-
terval [0,T ]. The system D f = 0 has the perturbation index ν along the given solu-
tion f (t), if ν is the smallest integer such that the following estimate holds for all
t ∈ [0,T ] provided the right hand side is sufficiently small:

| f (t)− f̂ (t)| ≤C
(
| f (0)− f̂ (0)|+‖δ‖ν−1

)
. (14)

Here the constant C may only depend on the operator D and the length T of the
considered interval. | · | denotes some norm onRm and ‖δ‖k = ∑

k
i=0 ‖δ (i)‖ for some

norm ‖ · ‖ on C
(
[0,T ],R

)
(common choices are the L1 or the L∞ norm).

Note that the perturbation index is well-defined only for systems which are not
underdetermined, as an estimate of the form (14) can never hold, if there are free
variables present. And obviously it is hard to determine, as it is firstly defined with
respect to a specific solution and secondly, given an estimate of the form (14), it is
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very difficult to prove that no other estimate with a lower value of ν exists. On the
other hand, Definition 5.4 shows why a solution with a perturbation index greater
than one can be difficult to obtain with a standard numerical integration: it does not
suffice to control only the size of the residuals δ—as automatically done by any rea-
sonable numerical method—but one must also separately control the size of some
derivatives δ (i) (and thus for example ensure that the residuals do not oscillate with
small amplitude but high frequency). The following result asserts that the first Gröb-
ner index provides a uniform bound for the perturbation index along any solution of
the considered linear system.

Proposition 5.5. Let the linear system D f = 0 of ordinary differential equations be
not underdetermined. Along any solution f (t) of it, the perturbation index ν and the
first Gröbner index γ1 satisfy the inequality ν ≤ γ1 +1.

Proof. As discussed above, we compute for the perturbed system D f = δ a Gröbner
basis with respect to the TOP lift of the ordering by degree and consider the sub-
system D̃ f = Fδ . We may assume without loss of generality that the operator D̃ is
of first order, since a transformation to first order by introducing derivatives of f as
additional unknown functions does not affect the value of γ1 as the maximal order
on the right hand side. Because of the use of a TOP lift, the leading term tells us
whether or not an equation in the system D̃ f = Fδ is algebraic. The algebraic equa-
tions are differentiated once in order to produce an underlying differential equation
of the form ḟ = K f + F̃δ where K is of order zero and F̃ of order γ1 +1.

This underlying equation leads immediately to an estimate of the form

| f (t)− f̂ (t)| ≤ | f (0)− f̂ (0)|+
∣∣∫ t

0
K(τ)

(
f (τ)− f̂ (τ)

)
dτ
∣∣+ ∣∣∫ t

0
F̃δ (τ)dτ

∣∣ .
An application of the well-known Gronwall Lemma yields now the estimate

| f (t)− f̂ (t)| ≤C
(
| f (0)− f̂ (0)|+

∣∣∫ t

0
F̃δ (τ)dτ

∣∣) .
Since the integration kills one order of differentiation, our claim follows. ut

Example 5.6. Continuing Example 5.2, we see why one speaks of Hessenberg sys-
tems of index 3. The perturbation index of such a system is indeed 3, as we obtained
above an algebraic equation for every component fi and the one for f3 contains a
second derivative of δ3. This observation leads immediately to an estimate of the
form (14) with ν = 3.

A similar result can be obtained in some cases of partial differential equations.
We do not give a rigorous theorem, but merely describe a situation where the above
approach works with only minor modifications. The main assumption is that the
system is of an evolutionary character (so that it makes sense to consider an initial
value problem), as eventually we want to consider our partial differential equation
as an abstract ordinary differential equation. Thus we assume that the independent
variable xn plays the role of time xn = t and choose on our ring D = k[∂1, . . . ,∂n]
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of linear differential operators the TOP lift of a term order which gives precedence
to terms containing the derivative ∂n = ∂t . Furthermore, we will always assume that
the hyperplane t = 0 is not characteristic.

As a first step, we must generalise Definition 14 to partial differential equations.
In principle, this is straighforward; however, one has a vast choice of possible func-
tion spaces and norms. We will restrict ourselves for simplicity to smooth functions;
other choices should not lead to fundamentally different results. Let C∞(Ω ,Rm) de-
note the space of smooth Rm-valued functions defined on some domain Ω ⊆ Rn.
As in the ordinary case above, we introduce for functions f ∈C∞(Ω ,Rm) and for
any integer ` ∈N the Sobolev type norms

‖ f‖` = ∑
0≤|µ|≤`

∥∥∂ |µ| f
∂xµ

∥∥ (15)

where ‖ · ‖ denotes some norm on C∞(Ω ,Rm).
Partial differential equations are usually accompanied by initial or boundary con-

ditions which we accommodate by the following simple approach. Let Ω ′ ⊂ Ω be
a subdomain (typically of lower dimension) and introduce on C∞(Ω ′,Rm) similar
norms denoted by ‖ ·‖′` etc. The conditions are then written in the form (K f )|Ω ′ = 0
for some linear differential operator K of order k. This setting comprises most kinds
of initial or boundary conditions typically found in applications.

Definition 5.7. Let D f = 0 be a linear system of partial differential equations and
let f (x) be a smooth solution of it defined on the domain Ω ⊆ Rm and satisfying
some initial/boundary conditions K f = 0 of order k on a subdomain Ω ′ ⊂ Ω . The
system has the perturbation index ν along this solution, if ν is the smallest integer
such that for any smooth solution f̂ (x) of the perturbed system D f̂ = δ defined on
Ω there exists an estimate∥∥ f̂ (x)− f (x)

∥∥≤C
(
‖ f̂ − f‖′k +‖δ‖ν−1

)
, (16)

whenever the right hand side is sufficiently small. The constant C may depend only
on the domains Ω ,Ω ′ and on the operator D.

Given the assumed evolutionary character of our linear system, we consider for
simplicity a pure initial value problem with initial conditions prescribed on the hy-
perplane t = 0. As in the proof above, we first compute a Gröbner basis for the per-
turbed system D f̂ = δ and assume without loss of generality that it is of first order.
If the system is not underdetermined, then our choice of the term order entails that
(after differentiating potentially present algebraic equations) we find a subsystem of
the form

∂ f̂
∂ t

= A f̂ +Fδ

where the linear differential operator A comprises only derivatives with respect to
the remaining “spatial” variables x1, . . . ,xn−1. Our final assumption is that this op-
erator A generates a strongly continuous semigroup S(t) acting on an appropriately
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chosen Banach space of functions of x1, . . . ,xn−1 and we consider f̂ and δ as func-
tions of t alone taking values in this Banach space. Essentially, we have thus trans-
formed our partial differential equation into an abstract ordinary one.

By an elementary result in the theory of semigroups (see e. g. [39]), every solu-
tion of this subsystem can be written in the form

f̂ (t) = S(t) f̂ (0)+
∫ t

0
S(t− τ)Fδ (τ)dτ

for an arbitrary element f̂ (0) of the domain of A. Now a straightforward comparison
with a solution f (t) of the unperturbed system yields an estimate

‖ f (t)− f̂ (t)‖ ≤C
(
‖ f (0)− f̂ (0)‖+

∫ t

0
‖Fδ (τ)‖dτ

)
with a constant C, as the norms of elements S(t) of a strongly continuous semigroup
are bounded on any finite interval. Since the operator F is of order γ1 + 1 with γ1
the first Gröbner index, we finally obtain as bound for the perturbation index ν ≤
γ1 +2. We obtain a slightly worse result than in the case of an ordinary differential
equation, as here we cannot necessarily argue that the integration kills one order of
differentiation.6

Note that in both cases our basic strategy is the same: we derive a subsystem
which can be taken as underlying equation, i. e. as a differential equation in Cauchy-
Kovalevskaya form (in the ordinary case this simply corresponds to an explicit equa-
tion f ′ = A f +g) such that every solution of our system is also a solution of it. For
such equations many results and estimates are known; above we used the Gronwall
lemma and the theory of semigroups, respectively. The crucial assumption for ob-
taining the above estimates on the perturbation index is that we may consider all
other equations merely as constraints on the permitted initial data. In the ordinary
case, this is a triviality. For overdetermined systems of partial differential equations,
one must be more careful. Under certain non-degenericity assumption on the used
coordinates, one can show that this is indeed always the case (strictly speaking, we
must assume that our Gröbner basis is in fact even a Pommaret basis). A detailed
discussion of this point can be found in [52, Sect. 9.4].

6 Abstract Linear Systems

In his pioneering work, Kalman [19] developed an algebraic approach to control sys-
tems given by linear ordinary differential equations, using module theory and con-
structive methods. Independently, the school of Sato, Kashiwara et al. [21, 22, 34]
was putting forward their algebraic analysis approach to linear systems of partial dif-

6 In applications, it is actually quite rare that systems of partial differential equations contain alge-
braic equations. In this case, no differentiations are required and F is of order γ1 so that we obtain
the same estimate ν ≤ γ1 +1 as in the case of ordinary differential equations.
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ferential equations, using homological algebra and sheaf theory. This work highly
inspired Malgrange [32], Oberst [36], and Pommaret [41, 42, 43], when they were
developing their seminal contributions to linear partial differential and difference
systems with constant or variable coefficients. One of the successes of the resulting
new line of research in mathematical systems theory was to realize that the be-
havioral approach to dynamical systems developed by the school of Willems [53]
provided just the right language to tackle also control theoretic questions within this
framework. For a recent survey on these topics, see [46]. In this section, we present
a unified algebraic approach to the classes of linear systems discussed so far, based
on ideas and results from the papers mentioned above and others. Our aim is to
extract the common features of these system classes on a general and abstract level.

6.1 Some homological algebra

Let D be a ring (with 1) and let M,N,P be left D-modules. Let f : M → N and
g : N→ P be D-linear maps. The sequence

M
f→ N

g→ P

is called exact if im( f ) = ker(g). Let F be a left D-module. The contravariant
functor HomD (·,F ) assigns to each left D-module M the Abelian group (w.r.t.
addition of functions) HomD (M,F ) consisting of all D-linear maps from M to F .
Moreover, any D-linear map f : M→ N induces a group homomorphism

f ′ : HomD (N,F )→ HomD (M,F ), ϕ 7→ ϕ ◦ f . (17)

The left D-module F is said to be a cogenerator if the functor HomD (·,F ) is
faithful, that is, if f 6= 0 implies f ′ 6= 0, where f ′ is as in (17). In other words, for
any f 6= 0 there exists ϕ such that ϕ ◦ f 6= 0.

The functor HomD (·,F ) is left exact, that is, if

M
f→ N

g→ P→ 0

is exact (i.e., both M→N→P and N→P→ 0 are exact), then the induced sequence

HomD (M,F )
f ′← HomD (N,F )

g′← HomD (P,F )← 0

is again exact.
The left D-module F is said to be injective if the functor HomD (·,F ) is exact,

that is, if exactness of
M

f→ N
g→ P

implies exactness of
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HomD (M,F )
f ′← HomD (N,F )

g′← HomD (P,F ).

6.2 Application to systems theory

Let D be a ring (with 1) and let F be a left D-module. One may think of F as a set
of functions, and of D as a set of operators acting on them. Any operator d ∈D can
be applied to any function f ∈F to yield another function d f ∈F . Given a positive
integer q, this action naturally extends to d ∈D1×q and f ∈F q via d f = ∑

q
i=1 di fi.

To any subset D⊆D1×q, one may associate

D⊥ := { f ∈F q | ∀d ∈ D : d f = 0}.

This is the solution set, in F q, of the homogeneous linear system of equations given
in terms of the coefficient rows d ∈ D. Note that D⊥ = 〈D〉⊥, where 〈D〉 denotes
the submodule of D1×q generated by the set D. In general, the set D⊥ ⊆F q has
no particular algebraic structure besides being an Abelian group with respect to
addition. Conversely, given a set F ⊆F q, one considers

⊥F := {d ∈D1×q | ∀ f ∈ F : d f = 0}

which formalizes the set of all equations (given by their coefficient rows) satisfied
by the given solutions f ∈ F . It is easy to check that ⊥F is a left submodule of D1×q.
Thus we have a Galois correspondence between the left submodules of D1×q on the
one hand, and the Abelian subgroups of F q on the other. This means that (·)⊥ and
⊥(·) are both inclusion-reversing, and that

D⊆ ⊥(D⊥) and F ⊆ (⊥F)⊥

hold for all D and F as above. This implies that

(⊥(D⊥))⊥ = D⊥ and ⊥((⊥F)⊥) = ⊥F.

A linear system S ⊆F q takes the form S := E⊥ for some finite subset E ⊆ D1×q.
We may identify E with a matrix in Dg×q and write S = { f ∈F q | E f = 0}. One
calls E a (kernel) representation matrix of S. Consider the exact sequence

D1×g ·E→D1×q→M := D1×q/D1×gE→ 0.

Applying the contravariant functor HomD (·,F ), and using the standard isomor-
phism HomD (D1×k,F )∼= F k which relates a linear map defined on the free mod-
ule D1×k to the image of the standard basis, one obtains an exact sequence

F g E←F q← HomD (M,F )← 0.
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This proves the Malgrange isomorphism [32]

S∼= HomD (M,F ),

which is an isomorphism of Abelian groups. One calls M the system module of S.
From now on, we shall assume that D is a left Noetherian ring. Then every sub-

module of D1×q is finitely generated, and thus, D⊥ is a linear system for every
subset D⊆D1×q, because D⊥ = 〈D〉⊥ = E⊥ for some finite set E.

For any linear system S, we have (⊥S)⊥ = S. If the left D-module F is a co-
generator, then we also have ⊥(D⊥) = D for every submodule D ⊆ D1×q. To see
this, we show that d /∈D implies d /∈ ⊥(D⊥). If d /∈D, then 0 6= [d] ∈M = D1×q/D
and thus the D-linear map g : D → M with g(1) = [d] is nonzero. By the cogen-
erator property, there exists ϕ ∈ HomD (M,F ) such that ϕ ◦ g is nonzero, that is,
ϕ([d]) 6= 0. Using the Malgrange isomorphism, this ϕ corresponds to f ∈ S := D⊥

with d f 6= 0. Thus d /∈ ⊥S = ⊥(D⊥).
Summing up: If D is left Noetherian and F a cogenerator, we have a duality

between linear systems in F q and submodules of D1×q, that is, (·)⊥ and ⊥(·) are
bijections and inverse to each other. More concretely, since D is left Noetherian,
any submodule of D1×q can be written in the form D = D1×gE for some matrix
E ∈Dg×q. Then its associated system is S = { f ∈F q | E f = 0}, and we have both
S = D⊥ and D = ⊥S. For instance, let Ei ∈Dgi×q be representation matrices of two
systems Si ⊆F q. Then we have S1 ⊆ S2 if and only if D1×g1E1 ⊇D1×g2E2, that is,
if E2 = XE1 holds for some X ∈Dg2×g1 . In particular, S1 = {0} holds if and only if
E1 is left invertible.

If F is injective, then the exactness of

D1×m ·E→D1×n ·G→D1×p (18)

implies the exactness of
F m E←F n G←F p. (19)

Thus the inhomogeneous system of equations Gg= f (where G∈Dn×p and f ∈F n

are given) has a solution g ∈F p if and only if f ∈ im(G) = ker(E), that is, if and
only if E f = 0. Since EG= 0 by construction, it is clear that Gg= f implies E f = 0.
The crucial aspect of injectivity is that E f = 0 is also sufficient for the existence
of g. The resulting solvability condition for Gg = f is often called the “fundamental
principle”: One computes a matrix E whose rows generate the left kernel ker(·G)⊆
D1×n of G. In other words, one computes the “syzygies” of the rows of G as in
Equation (25). Then the inhomogeneous system Gg = f has a solution g if and only
if the right hand side f satisfies the “compatibility condition” E f = 0. If F is an
injective cogenerator, then the exactness of (18) is in fact equivalent to the exactness
of (19).
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6.3 Autonomy

Let D be left Noetherian and let F be an injective cogenerator. Let q be a positive
integer and let S⊆F q be a linear system. The system S is said to be autonomous if
it has no free variables, that is, if none of the projection maps

πi : S→F , f 7→ fi

is surjective for 1 ≤ i ≤ q. Let E be a representation matrix of S and let M =
D1×q/D1×gE be the system module of S.

Theorem 6.1. The following are equivalent:

1. S is autonomous.
2. For 1≤ i≤ q, there exist 0 6= di ∈D and X ∈Dq×g such that diag(d1, . . . ,dq) =

XE.

If D is a domain, then these conditions are also equivalent to:

3. M is a torsion module, that is, for all m ∈ M there exists 0 6= d ∈ D such that
dm = 0.

4. E has full column rank.

Note that the rank of E is well-defined, since a left Noetherian domain D possesses
a quotient (skew) field K = {d−1n | d,n ∈D ,d 6= 0}. Recall that the number m :=
q−rank(E) is known as the input dimension of S. Thus, the theorem above describes
the situation where m = 0. In other words, S is not underdetermined.

Proof. Via the injective cogenerator property, a surjection πi : S→F exists if and
only if there is an injection ji : D →M with ji(1) = [ei], where ei ∈ D1×q denotes
the ith standard basis row. Hence autonomy is equivalent to ji being noninjective
for all 1 ≤ i ≤ q, that is, ji(di) = [diei] = 0 ∈ M for some 0 6= di ∈ D , and then
diei ∈D1×gE.

Now let D be a domain. The following implications are straightforward: “3⇒ 2
⇒ 4”. We show “4⇒ 2”. Assume that rank(E) = q ≤ g. Let E1 denote the matrix
E after deleting the first column. Then rank(E1) = q− 1 < g and thus there exists
0 6= x ∈K 1×g with xE1 = 0. This x can be chosen such that xE = [k,0, . . . ,0] for
some 0 6= k∈K . Writing x= d−1n1 for some n1 ∈D1×g, we get n1E = [d1,0, . . . ,0]
with 0 6= d1 ∈ D . Proceeding like this with the remaining columns, we get XE =
diag(d1, . . . ,dq) as desired. Finally, “2 ⇒ 3” follows from the fact that in a left
Noetherian domain, any two nonzero elements have a nonzero common left multi-
ple, see [13, Ex. 4N] or [25, Cor. 10.23]. �

To test whether condition 2 is satisfied, define the augmented matrix

E ′i :=
[

ei
E

]
∈D (1+g)×q.

Consider the left D-module ker(·E ′i ) := {x ∈D1×(1+g) | xE ′i = 0}. Let
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π : D1×(1+g)→D , x 7→ x1

denote the projection on the first component. Then S is autonomous if and only if
π(ker(·E ′i )) 6= 0 holds for all 1≤ i≤ q. Thus autonomy can be tested constructively
if D admits the computation of generating sets of kernels of matrices (or, in other
words, “syzygies” as described in Equation (25)).

Algorithm 2 Test for autonomy of system S
Input: kernel representation matrix E of S
Output: message "autonomous" or "not autonomous"
1: q← number of columns of E
2: for all 1≤ i≤ q do

3: E ′i ←
[

ei
E

]
4: F ← matrix whose rows generate ker(·E ′i )
5: F1 ← set of first column entries of F
6: if F1 = {0} then
7: return "not autonomous" and stop
8: end if
9: end for

10: return "autonomous"

For D = k[s1, . . . ,sr], that is, for partial differential or difference equations with
constant coefficients, the notion of autonomy can be refined as follows. The auton-
omy degree of S [54] is defined to be r−d, where d denotes the maximal dimension
of a cone in the complementary decomposition of the row module of E (note that
the number d coincides with the Krull dimension of the system module M). Thus,
nonautonomous systems have autonomy degree zero, and nonzero autonomous sys-
tems have autonomy degrees between 1 and r. The value r corresponds to systems
which are finite-dimensional as k-vector spaces, which is the strongest autonomy
notion. Systems whose autonomy degree is at least 2 are always overdetermined.
Analytic characterizations of this property in terms of the system trajectories are
given in [47, 59].

6.4 Controllability

Let D be left and right Noetherian and let F be an injective cogenerator. Let q
be a positive integer and let S ⊆ F q be a linear system. The system S is said to
be controllable if it has an image representation, that is, if there exists a matrix
L ∈Dq×l such that

S = {Lv | v ∈F l}.

The motivation for this definition comes from behavioral systems theory. There,
controllability corresponds to concatenability of trajectories. Roughly speaking, this
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amounts to being able to join any given “past” trajectory with any desired “future”
trajectory by a connecting trajectory. For many relevant system classes, a properly
defined version of this concatenability property has been shown to be equivalent to
the existence of an image representation [40, 47, 53, 57].

Theorem 6.2. Let E be a kernel representation matrix of S and let M be the system
module of S. The following are equivalent:

1. S has an image representation.
2. E is a left syzygy matrix, that is, for some matrix L ∈Dq×l , we have

im(·E) = {xE | x ∈D1×g}= ker(·L) := {y ∈D1×q | yL = 0}.

3. M is torsionless, that is, for every 0 6= m ∈M there exists ϕ ∈HomD (M,D) with
ϕ(m) 6= 0.

If D is a domain, then these conditions are also equivalent to:

4. M is torsionfree, that is, dm = 0 with d ∈ D and m ∈ M implies that d = 0 or
m = 0.

Proof. The sequence D1×g ·E→D1×q ·L→D1×l is exact if and only if F g E←F q L←F l

is exact. This proves “1 ⇔ 2”. For “2 ⇒ 3”, we use that M = D1×q/im(·E) =
D1×q/ker(·L) ∼= im(·L) ⊆ D1×l by the homomorphism theorem, and submodules
of free modules are torsionless. For “3⇒ 2”, let K be a D-matrix such that

ker(E) = {x ∈Dq | Ex = 0}= im(K) = {Ky | y ∈Dk}

and let Ē be a D-matrix such that

ker(·K) = {y ∈D1×q | yK = 0}= im(·Ē) = {zĒ | z ∈D1×ḡ}.

Since EK = 0, we have im(·E)⊆ im(·Ē). The proof is finished if we can show that
this inclusion is in fact an equality, because then im(·E) = im(·Ē) = ker(·K) and we
may take L = K in condition 2. Assume conversely that d ∈ im(·Ē)\ im(·E). Then
0 6= [d] ∈M. Any homomorphism φ : M→D takes the form φ([d]) = dx for some
x ∈ Dq which must satisfy Ex = 0 for well-definedness, and this implies x = Ky.
Since d = zĒ, we have φ([d]) = dx = zĒKy = 0. This contradicts the assumption
of torsionlessness. Now let D be a domain. For “3⇒ 4”, suppose that dm = 0 and
0 6= d. Then any ϕ ∈ HomD (M,D) satisfies dϕ(m) = 0 and thus ϕ(m) = 0. By
condition 3, this implies that m = 0. The converse implication holds as well, since
M is finitely generated [13, Prop. 7.19]. �

To test whether condition 2 is satisfied, one proceeds as in the proof. One com-
putes the D-matrices K and Ē as described above. This requires that generating sets
of kernels of matrices (that is, “syzygies” as in Equation (25)) can be computed over
D . The assumption that D is left and right Noetherian guarantees that left and right
kernels are finitely generated. Then E is a left syzygy matrix if and only if
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im(·E) = im(·Ē).

This can be shown similarly as in the proof. The condition can be tested if D allows
to decide module membership: It holds if and only if each row of Ē is contained
in the row module of E. If D admits a Gröbner basis theory, then a row d ∈ D1×q

belongs to a submodule D ⊆ D1×q if and only if its normal form with respect to a
Gröbner basis of D is zero.

Algorithm 3 Test for controllability of system S
Input: kernel representation matrix E of S
Output: message "controllable" or "not controllable"
1: G ← Gröbner basis of row module of E
2: K ← matrix whose columns generate ker(E)
3: Ē ← matrix whose rows generate ker(·K)
4: for all rows d of Ē do
5: if NormalForm(d,G ) 6= 0 then
6: return "not controllable" and stop
7: end if
8: end for
9: return "controllable"

The data K and Ē computed by this algorithm are useful on their own: Due to
im(·Ē) = ker(·K), we have

Sc := { f ∈F q | Ē f = 0}= {Kv | v ∈F k}

because of the injectivity of F . It turns out that Sc is the largest controllable sub-
system of S, and that S = Sc holds if and only if S is controllable. Thus, the factor
group S/Sc (sometimes called the obstruction to controllability [56]) measures how
far S is from being controllable.

The controllability test described above has been developed, for certain operator
domains D , in a series of papers [41, 42, 43] by J.F. Pommaret and A. Quadrat, see
also [6]. These authors also introduced a concept of controllability degrees, similar
to the autonomy degrees. However, the definition of the controllability degrees is
more involved and uses extension functors (for an introduction in the systems the-
oretic setting, see e.g. [55]). The controllability test has been generalized to a large
class of noncommutative rings with zero-divisors in [60].

7 Appendix: Gröbner Bases

Gröbner bases are a fundamental tool in constructive algebra, as they permit to per-
form many basic algebraic constructions algorithmically. They were formally intro-
duced for ideals in a polynomial ring in the Ph.D. thesis of Buchberger [4] (written
under the supervision of Gröbner); modern textbook presentations can be found e. g.
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in [1, 8]. Most general purpose computer algebra systems like Maple or Mathemat-
ica provide an implementation. However, the computation of a Gröbner basis can
be quite demanding (with respect to both time and space) and for larger examples
the use of specialised systems like CoCoA,7 Macaulay 28, Magma9 or Singular10 is
recommended.

Gröbner bases were originally introduced for ideals in the standard commutative
polynomial ring P = k[x1, . . . ,xn] where k is any field (e. g. k = R or k = C).
Since then, several generalisations to non-commutative rings have been studied. We
will present here one such extension covering all rings appearing in this survey:
polynomial rings of solvable type. This class of algebras was first introduced in [20];
further studies can be found in [23, 29, 50, 52]. Furthermore, we will also discuss
besides ideals the case of submodules of a free module Pm. A general introduction
to modules over certain non-commutative rings covering also algorithmic aspects
and Gröbner bases was recently given by Gómez-Torrecillas [12].

Gröbner bases are always defined with respect to a term order. In the polynomial
ring P there does not exist a natural ordering on the set T of all terms xµ with an
exponent vector µ ∈ Nn

0 (only in the univariate case the degree provides a canon-
ical ordering). However, the use of such an ordering is crucial for many purposes
like extending the familiar polynomial division to the multivariate case. Elements
of the free module Pm can be represented as m-dimensional column (or row) vec-
tors where each component is a polynomial. Here a “term” t is a vector where all
components except one vanish and the non-zero component consists of a term t ∈T
in the usual sense and thus can be written as t = tei where ei denotes the ith vector
in the standard basis of Pm. We denote the set of all such vector terms by Tm. We
say that t divides another term s = se j, written t | s, if i = j and t | s, i. e. only terms
living in the same component can divide each other.

Definition 7.1. A total order ≺ on T is a term order, if it satisfies: (i) given three
terms r,s, t ∈ T such that s ≺ t, we also have rs ≺ rt (monotonicity), and (ii) any
term t ∈ T different from 1 is greater than 1. A term order for which additionally
terms of higher degree are automatically greater than terms of lower degree is called
degree compatible.

A total order ≺ on Tm is a module term order, if it satisfies: (i) for two vector
terms s, t ∈Tm with s≺ t and an ordinary term r ∈T, we also have rs≺ rt and (ii)
for any t ∈Tm and s ∈T, we have t≺ st.

Given a (non-zero) polynomial f ∈P and a term order≺, we can sort the finitely
many terms actually appearing in f according to ≺. We call the largest one the
leading term lt f of f and its coefficient is the leading coefficient lc f ; finally, the

7 http://cocoa.dima.unige.it
8 http://www.math.uiuc.edu/Macaulay2
9 http://magma.usyd.edu.au
10 http://www.singular.uni-kl.de

http://cocoa.dima.unige.it
http://www.math.uiuc.edu/Macaulay2
http://magma.usyd.edu.au
http://www.singular.uni-kl.de
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leading monomial 11 of f is then the product lm f = lc( f ) lt( f ). The same notations
are also used for polynomial vectors f ∈Pm.

Example 7.2. Usually, term orders are introduced via the exponent vectors. The lex-
icographic order is defined as follows: xµ ≺lex xν , if the first non-vanishing entry of
µ−ν is negative. Thus it implements the ordering used for words in a dictionary: if
we take x1 = a, x2 = b etc, then ab2 ≺lex a2 and a2 is ordered before ab2, although
it is of lower degree. The lexicographic order is very useful in elimination problems
and for solving polynomial equations. Unfortunately, it tends to be rather inefficient
in Gröbner bases computations.

An example of a degree compatible order is the reverse lexicographic order:
xµ ≺revlex xν , if degxµ < degxν or degxµ = degxν and the last non-vanishing entry
of µ−ν is positive. Now we find a2 ≺revlex ab2 because of the different degrees and
a3 ≺revlex ab2 because only the latter term contains b. Usually, the reverse lexico-
graphic order is the most efficient order for Gröbner bases computations.

Given a term order ≺ on T, there exist two natural ways to lift it to a module
term order onTm. In the (ascending) TOP lift, we put term over position and define
sei ≺TOP te j, if s≺ t or s = t and i < j (in the descending TOP lift one uses i > j).
The (ascending) POT lift works the other way round: sei ≺POT te j, if i < j or i = j
and s ≺ t (again we use i > j for the descending version). Such lifts are the most
commonly used module term orders.

Finally, assume that F = {f1, . . . , fr} ⊂Pm is a finite set of r (non-zero) vectors
and ≺ a module term order onTm. Then the set F induces a module term order ≺F
on Tr ⊂Pr as follows: sei ≺F te j, if lt(sfi) ≺ lt(tf j) or lt(sfi) = lt(tf j) and i > j
(no, the direction of this relation is not a typo!). As we will see later, this induced
order is very important for computing the syzygies of the set F .

Let ? be a non-commutative multiplication on P . We allow both that our vari-
ables xi do no longer commute, i. e. xi ? x j 6= x j ? xi, and that the variables act on the
coefficients c ∈ k, i. e. xi ?c 6= c?xi. However, we do not permit that the coefficients
act on the variables, i. e. c?xi = cxi where on the right hand side the usual product is
used. A prototypical example are linear differential operators where we may choose
k = R(t1, . . . , tn), the fields of real rational functions in some unknowns t1, . . . , tn,
and take as “variables” for the polynomials the partial derivatives with respect to
these unknowns, xi = ∂/∂ ti. Here we still find xi ? x j = x j ? xi, as for smooth func-
tions partial derivatives commute, but xi ? c = cxi +∂c/∂ ti for any rational function
c ∈ k. Non-commutative variables occur e. g. in the Weyl algebra or in “quantised
algebras” like q-difference operators.

For the definition of Gröbner bases in such non-commutative polynomial rings,
it is important that the product does not interfere with the chosen term order. This
motivates the following definition of a special class of polynomial rings.

11 For us a term is a pure power product xµ whereas a monomial is of the form cxµ with a coefficient
c ∈ k; beware that some text books on Gröbner bases use the words term and monomial with
exactly the opposite meaning.
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Definition 7.3. Let≺ be a term order and ? a non-commutative product on the poly-
nomial ring P = k[x1, . . . ,xn]. The triple (P,?,≺) defines a solvable polynomial
ring, if the following three conditions are satisfied:

(i) (P,?) is a ring;
(ii) c? f = c f for all coefficients c ∈ k and polynomials f ∈P;
(iii) lt( f ?g) = lt( f ) · lt(g) for all polynomials f ,g∈P \{0} (note the use of the

ordinary commutative product on the right hand side!).

The first condition ensures that the arithmetics in P satisfies all the usual rules
like associativity or distributivity. The second condition implies that P is still a
k-linear space (as long as we multiply with field elements only from the left). The
third condition enforces the compatibility of the new product ? with the chosen term
order: the non-commutativity does not affect the leading terms. If such a compati-
bility holds, then the usual commutative Gröbner bases theory remains valid in our
more general setting without any changes.

Example 7.4. All non-commutative rings appearing in this article belong to a sub-
class of the solvable polynomial rings, namely the Ore algebras which may be con-
sidered as generalisations of the ring of linear differential operators. This class was
first considered by Noether und Schmeidler [35] and then more extensively by Ore
[38]; our presentation follows [3].

Let σ : k→ k be an automorphism of the field k. A pseudo-derivation with
respect to σ is a map δ : k→ k such that δ (c+ d) = δ (c) + δ (d) and δ (cd) =
σ(c)δ (d)+δ (c)d for all c,d ∈ k. If σ = id, the identity map, the second condition
is the standard Leibniz rule for derivations. σ(c) is called the conjugate and δ (c)
the derivative of c ∈ k.

Given the maps σ and δ , the ring k[∂ ;σ ,δ ] of univariate Ore polynomials
consists of all polynomials ∑

d
i=0 ci∂

i in ∂ with coefficients ci ∈ k. The addition
is defined as usual. The “variable” ∂ operates on an element c ∈ k according to
∂ ? c = σ(c)∂ + δ (c). Note that we may interpret this equation as a rewrite rule
which tells us how to bring a ∂ from the left to the right of a coefficient. This rewrit-
ing can be used to define the multiplication ? on the whole ring k[∂ ;σ ,δ ]: given
two elements θ1,θ2 ∈ k[∂ ;σ ,δ ], we can transform the product θ1 ?θ2 to the normal
form of a polynomial (coefficients to the left of the variable) by repeatedly applying
our rewrite rule. The product of two linear polynomials evaluates then to

( f1 + f2∂ )? (g1 +g2∂ ) = f1g1 + f2δ (g1)+[
f1g2 + f2σ(g1)+ f2δ (g2)

]
∂ + f2σ(g2)∂

2 .
(20)

The fact that σ is an automorphism ensures that deg(θ1 ?θ2) = degθ1 +degθ2. We
call k[∂ ;σ ,δ ] the Ore algebra generated by σ and δ .

A simple familiar example is given by k=Q(x), δ = d
dx and σ = id yielding lin-

ear ordinary differential operators with rational functions as coefficients. Similarly,
we can obtain recurrence and difference operators. We set k = C(n), the field of
sequences (sn)n∈Z with complex elements sn ∈C, and take for σ the shift operator,
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i. e. the automorphism mapping sn to sn+1. Then ∆ = σ − id is a pseudo-derivation.
k[E;σ ,0] consists of linear ordinary recurrence operators, k[E;σ ,∆ ] of linear ordi-
nary difference operators.

For multivariate Ore polynomials, we take a set Σ = {σ1, . . . ,σn} of automor-
phisms and a set ∆ = {δ1, . . . ,δn} where each δi is a pseudo-derivation with respect
to σi. For each pair (σi,δi) we introduce a “variable” ∂i satisfying a commutation
rule as in the univariate case. If we require that all the maps σi,δ j commute with
each other, one easily checks that ∂i ? ∂ j = ∂ j ? ∂i, i. e. the “variables” ∂i also com-
mute. Setting D = {∂1, . . . ,∂n}, we denote by k[D;Σ ,∆ ] the ring of multivariate
Ore polynomials. Because of the commutativity of the variables ∂i, we may write
the terms as ∂ µ with multi indices µ ∈Nn

0, so that it indeed makes sense to speak
of a polynomial ring. The proof that

(
k[D;Σ ,∆ ],?,≺

)
is a solvable polynomial ring

for any term order ≺ is trivial.

From now on, we always assume that we have chosen a fixed solvable polynomial
algebra (P,?,≺). All references to a leading term etc. are then meant with respect
to the term order ≺ contained in this choice. In a non-commutative ring we must
distinguish between left, right and two-sided ideals. In this appendix, we exclusively
deal with left ideals: if F = { f1, . . . , fr} ⊂P is some finite set of polynomials, then
the left ideal generated by the basis F is the set

〈F〉=
{ r

∑
α=1

gα ? fα | gα ∈P
}

(21)

of all left linear combinations of the elements of F and it satisfies g? f ∈ 〈F〉 for any
f ∈ 〈F〉 and any g ∈P . Right ideals are defined correspondingly12 and a two-sided
ideal is simultaneously a left and a right ideal.

A for computational purposes highly relevant property of the commutative poly-
nomial ring is that it is Noetherian, i. e. any ideal in it possesses a finite basis
(Hilbert’s Basis Theorem). For solvable polynomial rings, the situation is more com-
plicated. [52, Sect. 3.3] collects a number of possible approaches to prove for large
classes of such rings that they are Noetherian, too. In particular, this is the case for
all Ore algebras. In [52, Prop. 3.2.10], it is also shown that all solvable algebras
(over a coefficient field) satisfy the left Ore condition so that one can define a left
quotient skew field [25].

Remark 7.5. A complication in the treatment of non-commutative polynomial rings
is given by the fact that in general the product of two terms is no longer a term.
Hence the notion of a monomial ideal makes no longer sense. In the sequel, we will
use the convention that when we speak about the divisibility of terms s, t ∈T, this
is always to be understood within the commutative polynomial ring, i. e. s | t, if and
only if a further term r∈T exists such that r ·s= s ·r = t. In other words, we consider
(T, ·) as an Abelian monoid. Given a left ideal ICP in a solvable polynomial ring,
we then introduce within this monoid the leading ideal lt I = 〈lt f | f ∈ I\{0}〉. Thus

12 Beware that the left and the right ideal generated by a set F are generally different.
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lt I is always to be understood as a monomial ideal in the commutative polynomial
ring, even if the considered polynomial ring P has a non-commutative product ?.

Definition 7.6. Let I CP be a left ideal in the polynomial ring P . A finite set
G⊂ I is a Gröbner basis of I, if for every non-zero polynomial f ∈ I in the ideal a
generator g ∈ G exists such that ltg | lt f and thus lt I = 〈ltG〉.

Above definition is rather technical and it is neither evident that Gröbner bases
exist nor that they are useful for anything. We will now show that they allow us to
solve effectively the ideal membership problem: given an ideal I = 〈F〉CP and
a polynomial f ∈P , decide whether or not f ∈ I. A solution of this problem is
for example mandatory for an effective arithmetics in the factor ring P/I. As a
by-product, we will see that a Gröbner basis is indeed a basis, i. e. I = 〈G〉.

Definition 7.7. Let G = {g1, . . . ,gr} ⊂P \ {0} be a finite set of non-zero polyno-
mials. A further polynomial f ∈P \{0} is called reducible with respect to G, if f
contains a term t ∈T for which a polynomial gi ∈ G exists such that ltgi | t. If this
is the case, then a term s ∈ T exists such that lt(s?gi) = t and we can perform a
reduction step: f →gi f̃ = f −(c/ lc(s?gi))s?gi where c∈k denotes the coefficient
of t in f .13 A polynomial h ∈P is a normal form of f modulo the set G, if we can
find a sequence of reduction steps

f →gi1
h1→gi2

h2→gi3
· · · →gis

hs = h (22)

and h is not reducible with respect to G. In this case, we also write shortly f →+
G h

for (22) or h = NF( f ,G).

It should be noted that the notation h = NF( f ,G) is somewhat misleading. A
polynomial f may have many different normal forms with respect to some set G, as
generally different sequences of reduction steps lead to different results. If h is some
normal form of the polynomial f , then (non-unique) quotients q1, . . . ,qr ∈P exist
such that f = ∑

r
i=1 qi ? gi + h. Thus h = 0 immediately implies f ∈ 〈G〉; however,

the converse is not necessarily true: even if f ∈ 〈G〉, it may possess non-vanishing
normal forms. In the univariate case (and for r = 1), we recover here the familar
polynomial division from high school where both the normal form (or remainder) h
and the quotient q are unique. A concrete multivariate division algorithm for com-
puting a normal form together with some quotients is shown in Algorithm 4.

In this article, we are always assuming that our polynomials are defined over a
field k. This assumption entails that the divisibility of two monomials cxµ and dxν

is decided exclusively by the contained terms xµ and xν . Over a coefficient ring R,
this is no longer the case: note that in Line /5/ of Algorithm 4 we must perform
the division lc f/ lc(s?gi) which may not be possible in a coefficient ring. Under

13 The term “reduction” refers to the fact that the monomial ct in f is replaced by a linear combi-
nation of terms which are all smaller than t with respect to the used term order. It does not imply
that f̃ is simpler in the sense that it has less terms than f . In fact, quite often the opposite is the
case!
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Algorithm 4 Multivariate polynomial division
Input: finite set G = {g1, . . . ,gr} ⊂P \{0}, polynomial f ∈P
Output: a normal form h = NF( f ,G), quotients q1, . . . ,qr
1: h← 0; q1← 0; . . . qr ← 0
2: while f 6= 0 do
3: if ∃ i : ltgi | lt f then
4: choose smallest index i with this property and s ∈T such that lt(s?gi) = t
5: m← lc f

lc(s?gi)
s; f ← f −m?gi; qi← qi +m

6: else
7: h← h+ lm f ; f ← f − lm f
8: end if
9: end while

10: return h,q1, . . . ,qr

certain technical assumptions on the ring R, it is still possible to set up a theory
of Gröbner bases which, however, becomes more complicated. For details on this
extension, we refer to the literature, see e. g. [1].

The following fundamental characterisation theorem collects a number of equiv-
alent definitions for Gröbner bases. It explains their distinguished position among
all possible bases of a given ideal. In particular, (ii) already solves the ideal mem-
bership problem. Furthermore, (iii) implies that for a Gröbner basis G the notation
NF( f ,G) is well-defined, as in this case any sequence of reduction steps leads to
same final result.

Theorem 7.8. Let 0 6= ICP be an ideal and G⊂ I a finite subset. Then the follow-
ing statements are equivalent.

(i) G is a Gröbner basis of I.
(ii) Given a polynomial f ∈P , ideal membership f ∈ I is equivalent to f →+

G 0.
(iii) I = 〈G〉 and every f ∈P has a unique normal form with respect to G.
(iv) A polynomial f ∈P is contained in the ideal I, if and only if it possesses a

standard representation with respect to G, i. e. there are coefficients hg ∈P such
that f = ∑g∈G hg ?g and lt(hg ?g)� lt f whenever hg 6= 0.

Obviously, we may also consider the ring P , any ideal ICP and the corre-
sponding factor space P/I as k-linear spaces. The following observation shows
why it is of interest to know the leading ideal lt I.

Theorem 7.9 (Macaulay). Let ICP be an ideal and ≺ an arbitrary term order.
Then P/I and P/ lt I are isomorphic as k-linear spaces.

Proof (Sketch). Denote by B =T\ lt I the set of all terms not contained in the lead-
ing ideal. One now shows that the respective equivalence classes of the elements of
B define a k-linear basis of P/I and P/ lt I, respectively. The linear independence
is fairly obvious and B induces generating sets, as the normal form of any polyno-
mial f ∈P with respect to a Gröbner basis is a k-linear combination of elements
of B.
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The use of the term “basis” in commutative algebra is a bit misleading, as one
does not require linear independence. Opposed to the situation in linear algebra,
elements of an ideal generally do not possess a unique representation as linear com-
bination of the basis. For homogeneous ideals, which may also be considered as
graded vector spaces, the following concept of a combinatorial composition leads
again to unique representations.

Definition 7.10. Let ICP be a homogeneous ideal. A Stanley decomposition of I
is an isomorphism as graded vector spaces

I ∼=
⊕
t∈T

k[Xt ] · t (23)

with a finite set T ⊂ T of terms and subsets Xt ⊆ {x1, . . . ,xn}. The elements
of Xt are called the multiplicative variables of the generator t. One speaks of a
Rees decomposition, if all sets of multiplicative variables are of the form Xt =
{x1,x2, . . . ,xkt} where 0≤ kt ≤ n is called the class of t. A complementary (Stanley)
decomposition is an analogous isomorphism for the factor space P/I.

Vector spaces of the form k[Xt ] · t are called cones and the number of multiplica-
tive variables is the dimension of such a cone. While Stanley decompositions are
anything but unique and different decompositions may consist of differently many
cones, one can show that the highest appearing dimension of a cone is always the
same (the dimension of the ideal I) and also the number of cones with this particular
dimension (algebraically it is given by the multiplicity or degree of the ideal) is an
invariant. This observation is a simple consequence of the connection between com-
plementary decompositions and Hilbert polynomials (or functions) which, however,
cannot be discussed here (see e. g. [52] and references given there). Complementary
decomposition got their name from the simple observation that in the monomial case
they are equivalent to expressing the complement P \ I as a direct sum of cones.
Concrete examples are shown in Figures 1 and 2 on pages 13 and 15.

Because of Macaulay’s Theorem 7.9, it indeed suffices for complementary de-
compositions to consider P/ lt I and thus monomial ideals. This observation re-
duces the task of their construction to a purely combinatorial problem. A simple so-
lution is provided by the recursive Algorithm 5. It takes as input the minimal basis
of I and returns a set of pairs (t,Xt) consisting of a generator t and its multiplicative
variables. The recursion is on the number n of variables in the polynomial ring P .
If ν = (ν1, . . . ,νn) ∈Nn

0 is an exponent vector, we denote by ν ′ = [ν1, . . . ,νn−1] its
truncation to the first n− 1 entries and write ν = [ν ′,νn]. We remark that a special
type of Gröbner bases, the involutive bases (first introduced by Gerdt and Blinkov
[11]), is particularly adapted to this problem [52, Sect. 5.1]. We refer to [50, 51] and
[52, Chapt. 3] for an extensive treatment of these bases and further references.

Despite its great theoretical importance, Theorem 7.8 still does not settle the
question of the existence of Gröbner bases, as none of the given characterisations
is effective. For a constructive approach, we need syzygies. The fundamental tool
is the S-polynomial of two polynomials f ,g ∈P . Let xµ = lt f , xν = ltg be the
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Algorithm 5 Complementary decomposition of monomial ideal
Input: minimal basis B of monomial ideal I ⊂P
Output: finite complementary decomposition T of I
1: if n=1 then {in this case B = {xν} with ν ∈N}
2: q0← ν ; T ←

{(
[x0], /0

)
, . . . ,

(
[xq0−1], /0

)}
3: else
4: q0←max{νn | xν ∈B}; T ← /0
5: for q from 0 to q0 do
6: B′q←{xν ′ ∈Nn−1

0 | xν ∈B, νn ≤ q}
7: T ′

q ← ComplementaryDecomposition(B′q)
8: if q < q0 then
9: T ←T ∪

{(
x[ν
′,q],Xν ′

)
| (xν ′ ,Xν ′ ) ∈T ′

q
}

10: else
11: T ←T ∪

{(
x[ν
′,q],Xν ′ ∪{n}

)
| (xν ′ ,Xν ′ ) ∈T ′

q
}

12: end if
13: end for
14: end if
15: return T

corresponding leading terms and xρ = lcm(xµ ,xν) their least common multiple. If
xρ = xµ̄ xµ = xν̄ xν (in the commutative sense, cf. Remark 7.5), then the S-polynomial
of f and g is defined as the difference

S( f ,g) =
xµ̄ ? f

lc(xµ̄ ? f )
− xν̄ ?g

lc(xν̄ ?g)
. (24)

Note that the coefficients are chosen in such a way that the leading monomials cancel
in the subtraction. With the help of this construction, one can provide an effective
criterion for a set to be a Gröbner basis of an ideal.

Theorem 7.11 (Buchberger). A finite set G⊂P of polynomials is a Gröbner basis
of the left ideal I = 〈G〉 generated by it, if and only if for every pair f ,g ∈ G the
S-polynomial S( f ,g) reduces to zero with respect to G.

This theorem translates immediately into a simple algorithm for the effective
construction of Gröbner bases, the Buchberger Algorithm 6, and also ensures its
correctness. The termination is guaranteed, if the solvable polynomial ring P is
Noetherian (which is the case for all rings appearing in this article). It should be
noted that the basic form of the Buchberger algorithm shown here can handle only
very small examples. A version able to handle substantial problems requires many
optimisations and the development and improvement of efficient implementations
is still an active field of research.

Gröbner bases are anything but unique: if G is a Gröbner basis of the ideal I for
some term order ≺, then we may extend G by arbitrary elements of I and still have
a Gröbner basis. For obtaining uniqueness, one must impose further conditions on
the basis. It is easy to show that a monomial ideal I (in the commutative polynomial
ring) always possesses a unique minimial basis B consisting entirely of monomials.
Minimial means here that no element of B divides another element.
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Algorithm 6 Gröbner basis (Buchberger)
Input: finite set F ⊂P , term order ≺
Output: Gröbner basis G of the ideal 〈F〉
1: G← F
2: S ←

{
{g1,g2} | g1,g2 ∈ G,g1 6= g2

}
3: while S 6= /0 do
4: choose {g1,g2} ∈S
5: S ←S \

{
{g1,g2}

}
; ḡ← NF

(
S(g1,g2),G

)
6: if ḡ 6= 0 then
7: S ←S ∪

{
{ḡ,g} | g ∈ G

}
; G← G∪{ḡ}

8: end if
9: end while

10: return G

Definition 7.12. A Gröbner basis G of an ideal ICP is called minimal, if the set
ltG is the minimal basis of the monomial ideal lt I. We call G a reduced Gröbner
basis, if every generator g ∈ G is in normal form with respect to G\{g} and every
leading coefficient lcg equals 1.

It is not difficult to show that augmenting Algorithm 6 by autoreductions of the
set G (i. e. every element of G is reduced with respect to all other elements) leads
to an algorithm that always returns a reduced Gröbner basis. With a little bit more
effort, one obtains in addition the following uniqueness result which allows for ef-
fectively deciding whether two ideals are equal.

Proposition 7.13 ([1, Thm. 1.8.7]). Every ideal ICP possesses for any term order
≺ a unique reduced Gröbner basis.

Although there exist infinitely many different term orders, one can show that
any given ideal I has only finitely many different reduced Gröbner bases [33,
Lemma 2.6].

All the presented material on Gröbner bases is readily translated to left submod-
ules M ⊆Pm of a free polynomial module using the module term orders intro-
duced in Definition 7.1 and all results remain true in this more general situation.
The only slight difference concerns the definition of the S-polynomial. In the case
of two elements f,g ∈Pm, their S-“polynomial” (which now is of course also a
vector in Pm) is set to zero, if lt f and ltg live in different components, as then our
construction of the S-“polynomial” (24) makes no sense (recall that in a free module
terms are only divisible, if they are in the same component, and thus we can speak
of a least common multiple only in this case).

Remark 7.14. The Buchberger algorithm may be considered as a simultaneous gen-
eralisation of the Gauß algorithm for linear systems of equations and of the Eu-
clidean algorithm for determining the greatest common divisor of two univariate
polynomials. One can easily verify that the S-polynomial of two polynomials with
relatively prime leading terms always reduces to zero. Hence, in the case of lin-
ear polynomials it suffices to consider pairs of polynomials with the same leading
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term (variable) for which the construction of the S-polynomial amounts to a simple
Gaußian elimination step.

In the case of two univariate polynomials, the construction of their S-polynomial
and its subsequent reduction with respect to the two polynomials is equivalent to
the familiar polynomial division. Hence computing the Gröbner basis of a set F
amounts simply to determine the greatest common divisor of the elements of F and
any reduced Gröbner basis consists of a single polynomial (this observation may
be considered as an alternative proof that univariate polynomials define a principal
ideal domain). By the same reasoning, we conclude that a reduced Gröbner basis of
a submodule of a free module Pm over a univariate polynomial ring P may have
at most m elements, the leading terms of which are all in different components.

The terminology “S-polynomial” is actually an abbreviation of “syzygy polyno-
mial.” Recall that a syzygy of a finite set F = {f1, . . . , fr} ⊂Pm is a vector S ∈Pr

with components Si ∈P such that

S1 ? f1 + · · ·+Sr ? fr = 0 . (25)

All syzygies of F together form again a left submodule Syz(F) ⊆Pr. Note that
this submodule may be understood as the solution set of a linear system of equa-
tions over the ring P or—in a more abstract terminology—as the kernel of a linear
map. Thus the effective determination of syzygy modules represents a natural and
important problem, if one wants to do linear algebra over a ring.

The Schreyer Theorem shows that, by retaining information that is automatically
computed during the determination of a Gröbner basis G with the Buchberger Al-
gorithm 6, one obtains for free a Gröbner basis of the syzygy module Syz(G). More
precisely, assume that G= {g1, . . . ,gr}⊂Pm is a Gröbner basis and let gi,g j ∈G be
two generators with leading terms in the same component. According to (24), their
S-”polynomial” can be written in the form S(gi,g j) = mi ? gi−m j ? g j for suitable
monomials mi, m j, and Theorem 7.8 implies the existence of coefficients hi jk ∈P
such that ∑

r
k=1 hi jk ? gk is a standard representation of S(gi,g j). Combining these

two representations, we obtain a syzygy

Si j = miei−m je j−
r

∑
k=1

hi jkek (26)

where ek denote the vectors of the standard basis of Pr. Recalling the module term
order introduced at the end of Example 7.2, we obtain now the following fundamen-
tal result on the syzygy module of a Gröbner basis.

Theorem 7.15 (Schreyer [9, Thm. 3.3]). Let G ⊂Pm be a Gröbner basis for the
term order ≺ of the submodule generated by it. Then the set of all the syzygies Si j
defined by (26) is a Gröbner basis of Syz(G)⊆Pr for the induced term order ≺G.

For a general finite set F ⊂Pm, one can determine Syz(F) by first computing a
Gröbner basis G of 〈F〉, then using Theorem 7.15 to obtain a generating set S of



42 Werner M. Seiler and Eva Zerz

Syz(G) and finally transforming S into a generating set of Syz(F) essentially by
linear algebra. Details can be found e. g. in [1].

By iterating Schreyer’s Theorem 7.15, one obtains a free resolution of the sub-
module 〈G〉 ⊆Pm (although this is not necessarily the most efficient way to do
this), i. e. an exact sequence

0−→Prn −→ ·· · −→Pr1 −→Pr0 −→ 〈G〉 −→ 0 (27)

(Hilbert’s Syzygy Theorem guarantees that the length of the resolution is at most the
number n of variables in the polynomial ring P). The minimal free resolution which
can be constructed from any free resolution via some linear algebra gives access to
many important invariants of the submodule 〈G〉 like Betti numbers. However, it is
beyond the scope of this article to discuss this application of Gröbner bases.
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functor, 25
exact, 25
faithful, 25
left exact, 25

fundamental principle, 27

Galois correspondence, 26
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second, 19

Gronwall lemma, 22

Hessenberg form, 19
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initial value problem, 11
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dimension, 4, 8, 18, 28
input-output decomposition, 5, 8
integrability condition, 10
involutive basis, 38

Jacobson form, 4

kernel representation, 26
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leading

coefficient, 32
ideal, 35
monomial, 32
term, 32

lexicographic order, 33

Malgrange isomorphism, 2, 27
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injective, 25
term order, 32
torsion, 28
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torsionless, 30

Noetherian, 35
normal form, 36, 37

ordinary differential equation, 3–7, 22
Ore

algebra, 34
condition, 35

overdetermined, 17, 29

parametric derivative, 12
partial differential equation, 9–18, 23
perturbation index, 18, 21–24
Pommaret basis, 24
POT term order, 5, 33
principal derivative, 12

Quasi-Frobenius ring, 7

reducible, 36
Rees decomposition, 12, 38
reverse lexicographic order, 33
Riquier

order, 15

theorem, 13, 15

Schreyer theorem, 19, 41
semigroup, 23
solvable polynomial ring, 34
S-polynomial, 39
standard representation, 37
Stanley decomposition, 38
strangeness index, 20
syzygy, 19, 27, 29, 30, 41

matrix, 30
module, 19, 41

term order, 32
TOP term order, 16, 19, 23, 33

underdetermined, 16, 17, 28
underlying equation, 24

wave equation, 13, 17
well-posed, see formally well-posed
welldetermined, 17

Yang-Mills equations, 16
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