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Abstract. Let k be a field of arbitrary characteristic, A a Noetherian k-algebra and consider
the polynomial ring A[x] = A[x0, . . . , xn]. We consider homogeneous submodules of A[x]m hav-
ing a special set of generators, a marked basis over a quasi-stable module. Such a marked basis
shares many interesting properties with a Groebner basis, including the existence of a Noether-
ian reduction relation. The set of submodules of A[x]m having a marked basis over a given
quasi-stable module possesses an affine scheme structure which we will exhibit. Furthermore,
the syzygies of a module with such a marked basis are generated by a marked basis, too (over a

suitable quasi-stable module in ⊕m
′

i=1A[x](−di)). We apply marked bases and related properties
to the investigation of Quot functors (and schemes). More precisely, for a given Hilbert poly-
nomial, we explicitely construct (up to the action of a general linear group) an open cover of
the corresponding Quot functor, made up of open functors represented by affine schemes. This
provides a new proof that the Quot functor is the functor of points of a scheme. We also exhibit
a procedure to obtain the equations defining a given Quot scheme as a subscheme of a suitable
Grassmannian. Thanks to the good behaviour of marked bases with respect to Castelnuovo-
Mumford regularity, we can adapt our methods in order to study the locus of the Quot scheme
given by an upper bound on the regularity of its points.

Introduction

Marked bases may be considered as a form of Gröbner bases which do not depend on a term
order. Instead one chooses for each generator some term as head term such that the head
terms generate a prescribed monomial ideal. For a long time, it was believed that it was not
possible to use a marked basis which is not a Gröbner basis with respect to some term order
while preserving the good features of Gröbner bases such as the termination of the standard
normal form algorithm. Indeed, it was shown in [25] that the standard normal form algorithm
always terminates, if and only if the head terms are chosen via a term order. However, [25]
contains no results about other normal form algorithms and it was proven in [4, 10] that the
involutive normal form algorithm for the Pommaret division will terminate whenever the head
terms generate a strongly stable ideal over a coefficient field of characteristic zero.

The present paper is concerned with generalising and deepening the results of [1, 4, 10, 22] for
the investigation of Quot schemes. The Quot functor was introduced by Grothendieck in [16],
where he also proved that it is the functor of points of a projective scheme. A Hilbert scheme
is a special case of a Quot scheme. In the present paper, we consider the Quot functor that
associates to a k-scheme Z the set of quotients of OmPnZ with a given Hilbert polynomial and flat

over Z (see Section 7). We will not use the fact that the Quot functor is the functor of points
of a scheme, but actually we will give an independent proof of the existence of the Quot scheme
(Corollary 10.2) only assuming that the Quot functor is a Zariski sheaf [24, Section 5.1.3].

After setting some notations and recalling some useful notions and results (Sections 1, 2), the
first part of the paper is devoted to the investigation of the properties of marked sets, bases
and schemes over a quasi-stable module (Sections 3 and 4) and of the syzygies of a marked
basis (Section 5). Let k be a field of arbitrary characteristic and A a Noetherian k-algebra. For
variables x := {x0, . . . , xn} and a weight vector d = (d1, . . . , dm) ∈ Zm, we consider homogeneous
submodules of the graded A[x]-module A[x]md := ⊕mi=1A[x](−di). We will define marked bases
over a quasi-stable monomial module U , i. e. over a monomial module possessing a Pommaret
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basis, for free submodules of A[x]md and investigate to what extent the algebraic properties
of Pommaret bases shown in [28] carry over to marked bases. It will turn out that marked
bases provide us with simple upper bounds for some homological invariants of the module they
generate, such as Betti numbers, (Castelnuovo-Mumford) regularity and projective dimension
(Corollary 5.8). Furthermore, we prove that the set of modules generated by a marked basis
over a given quasi-stable module has an affine scheme structure and we show an algorithmic
procedure to compute explicit equations defining this scheme (Theorem 4.1).

In the second part of the paper, we use marked bases in the context of a very specific applica-
tion, namely for the derivation and the study of equations for Quot schemes and of special loci
on them similarly to what is shown in [1, 7, 5] for Hilbert schemes in the characteristic zero case.
In Section 6, we consider the usual action of g ∈ pgl(n + 1) over a finite subset F of A[x]m.
We show that for every finite F ⊂ A[x]m we can algorithmically construct a transformation
g ∈ pgl(n+ 1) such that the transformed set g̃ � F is marked over a quasi-stable module.

In Section 7, we recall the definition of the Quot functor and its embedding in a suitable
Grassmannian functor. We first prove that, up to the action of pgl, a Grassmann functor has
a cover made up of open subsets depending on quasi-stable modules (Section 8). In Section 9,
we intersect this open cover with a Quot scheme and prove that, for a given Quot scheme, we
have an open cover (up to the action of PGL(n + 1)) whose open subsets are suitable marked
schemes over quasi-stable modules belonging to the Quot scheme (Theorem 9.5). The same holds
if, instead of considering the whole marked scheme, we are interested in the points respecting
an upper bound on the regularity: in this case, the open subsets are marked schemes over
quasi-stable modules that respect the bound on the regularity, too.

Starting from this open cover, we obtain in Section 10 global equations defining a Quot scheme
(resp. its locus defined by an upper bound on the regularity) as a closed (resp. locally closed)
subscheme of a suitable projective space (Theorem 10.3). We end the paper with an explicit
example (Section 11).

1. Notations and Generalities

For every n > 0, we consider the variables x0, . . . , xn, ordered as x0 < · · · < xn−1 < xn (see
[27, 28]). This is a non-standard way to sort the variables, but it is suitable for our purposes. In
some of the papers we refer to, variables are ordered in the opposite way, hence the interested
reader should pay attention to this when browsing a reference. A term is a power product
xα = xα0

0 · · ·xαnn . We denote by T the set of all terms in the variables x0, . . . , xn. We denote
by max(xα) the largest variable that appears with non-zero exponent in xα and, analogously,
min(xα) is the smallest variable that appears with non-zero exponent in xα. The degree of a
term is deg(xα) =

∑n
i=0 αi = |α|.

Let k be a field and A be a Noetherian k-algebra. Consider the polynomial ring A[x] :=
A[x0, . . . , xn] with the standard grading: for every a ∈ A we set deg(a) = 0. We write A[x]t
for the set of homogeneous polynomials of degree t in A[x]. Since A[x] = ⊕i>0A[x]i, we define
A[x]>t := ⊕i>tA[x]i. The ideals we consider in A[x] are always homogeneous. If I ⊂ A[x] is a
homogeneous ideal, we write It for I∩A[x]t and I>t for I∩A[x]>t. The ideal I>t is the truncation
of I in degree t. If F ⊂ A[x] is a set of polynomials, we denote by (F ) the ideal generated by F .

An ideal J ⊆ A[x] is monomial if it is generated by a set of terms. A monomial ideal J
has a unique minimal set of generators made of terms and we call it the monomial basis of J ,
denoted by BJ . We define N (J) ⊆ T as the set of terms in T not belonging to J . For every
polynomial f ∈ A[x], Supp(f) is the set of terms appearing in f with a non-zero coefficient:
f =

∑
xα∈Supp(f) cαx

α where cα ∈ A is non-zero.

Hereafter, we will simply write module (resp. submodule) for an A[x]-module (resp. submodule
of an A[x]-module). For modules and submodules over other rings, we will explicitly state the
ring. A module M is graded, if it has a decomposition

M = ⊕j∈NMj such that A[x]iMj ⊆Mi+j .

If M is a graded module, the module M>t := ⊕i>tMi is the truncation of M in degree t. As
usual, if M is a graded module, the module M(d) is the graded module (isomorphic to M as
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a module) such that M(d)e = Md+e. We fix an integer m > 1 and d = (d1, . . . , dm) ∈ Zm.
We consider the free graded A[x]-module A[x]md := ⊕mi=1A[x](−di)ei, where e1, . . . , em are the
standard free generators. Every submodule of A[x]md is finitely generated and from now on we
will only consider graded submodules of A[x]md .

If F is a set of homogeneous elements of A[x]md , we write 〈F 〉 for the graded A[x]-module

generated by F in A[x]md . If F = Fs for some positive integer s, we denote by 〈F 〉A the A-
module generated by F in (A[x]md )s. In particular, if M is a graded submodule, every graded
component Mj has the structure of A-submodule in A[x]mj . Following [12, Chapter 15], a term

of A[x]md is an element of the form t = xαei for i ∈ {1, . . . ,m} and xα ∈ T. Furthermore, we

denote by Tm the set of terms in A[x]md . Observe that Tm = ∪mi=1Tei. For xαei, x
βej in Tm we

say that xαei divides xβej if i = j and xα divides xβ. A submodule U of A[x]md is monomial, if
it is generated by elements in Tm. Any monomial submodule U of A[x]m can be written as

U = ⊕mk=1J
(k)ek ⊂ ⊕A[x](−dk)ek = A[x]md , (1.1)

where each J (k) is the monomial ideal generated by the terms xα such that xαek ∈ U . We define
N (U) := ∪mk=1N (J (k))ek, where N (J (k)) ⊆ T.

If M ⊂ A[x]md is a submodule such that for every degree s, the homogeneous component
Ms is a free A-module, we define the Hilbert function of M as hM (s) = rk(Ms), which is the
number of generators contained in an A-basis of Ms. In this case, we will also say that M
admits a Hilbert function. In this setting, this definition corresponds to the classical one (e.g.
[12, Chapter 12]), considering the localisation of A in any of its maximal ideals. If we consider
a monomial module U , for every s, Us is always a free A-module and hU (s) =

∑m
k=1 hJ(k)(s),

with J (k) as in (1.1). If M admits a Hilbert function, then for s� 0, hM (s) = p(s), where p(z)
is a numerical polynomial (see also [7, Section 1]).

If A = k, then Hilbert’s Syzygy Theorem guarantees that every module M ⊆ A[x]md has a
graded free resolution of length at most n. If A is an arbitrary k-algebra, there exist generally
modules in A[x]md whose minimal free resolution has an infinite length (see [12, Chapter 6,
Section 1, Exercise 11]). Assume that the module M ⊆ A[x]md has the following graded minimal
free resolution

0→ E` → · · · → E1 → E0 →M → 0, (1.2)

where Ei = ⊕jA[x](−j)bi,j . The Betti numbers of the module M are the set of positive integers
{bi,j}06i6p,j∈Z. The module M is t-regular if t > j − i for every i, j such that bi,j 6= 0. The
(Castelnuovo-Mumford) regularity of M , denoted by reg(M), is the smallest t for which M
is t-regular (see for instance [13]). If M ⊂ A[x]md admits a Hilbert function, we recall that
hA[x]m/M (s) = p(s) for all degrees s > reg(M). The projective dimension of M , denoted by
pdim(M), is defined as the length of the graded minimal free resolution (1.2), i. e. pdim(M) = `.

From [21, Definition 3.5.7], consider the ideal m := (x0, . . . , xn) ⊂ A[x]. The saturation of M ,
submodule of A[x]m, is

M sat := M : m∞ =
⋃
i∈N

M : mi = {f ∈ A[x]m | mif ⊂M for some i ∈ N}

2. Pommaret basis, Quasi-Stability and Stability

We now recall the definition and some properties of the Pommaret basis of a monomial module.
Several of the following definitions and properties hold in a more general setting, namely for
arbitrary involutive divisions. For a deeper insight into this topic, we refer to [27, 28] and the
references therein. For an arbitrary term xα ∈ T, we define the following sets:

• the multiplicative variables of xα: XP(xα) := {xi | xi 6 min(xα)},
• the non-multiplicative variables of xα: XP(xα) := {x0, . . . , xn} \ XP(xα).

Definition 2.1. Let T ⊂ Tm be a finite set of monomial generators for U . For every τ = xαek
in T , we define the Pommaret cone in A[x]md of τ as

CmP (τ) := {xδxαek | δi = 0 forallxi ∈ XP(xα)} ⊂ Tek.



4 M. ALBERT, C. BERTONE, M. ROGGERO, AND W. M. SEILER

Let U be a monomial submodule of A[x]md . We say that T ⊂ Tm is a Pommaret basis of U if

U ∩ Tm =
⊔
τ∈T
CmP (τ).

If U is a monomial module, we denote its Pommaret basis (if it exists) by P(U). The existence
of the Pommaret basis of a monomial module in A[x] is equivalent to the concept of quasi-
stability. In the literature, one can find a number of alternative names for quasi-stability (e.g.
[8, 2, 18]). We recall here the definition of quasi-stable and stable monomial modules. Both
properties do not depend on the characteristic of the underlying field. A thorough reference on
this subject is again [28].

Definition 2.2. [9, Definition 4.4] Let U ⊂ A[x]m be a monomial module.

(i) U is quasi-stable, if for every term xαek ∈ U ∩Tm and for every non-multiplicative variable
xj ∈ XP(xα), there is an exponent s > 0 such that xsjx

α/min(xα)ek ∈ U .

(ii) U is stable, if for every term xαek ∈ U ∩ Tm and for every non-multiplicative variable
xj ∈ XP(xα) we have xjx

α/min(xα)ek ∈ U .

Theorem 2.3. [28, Proposition 4.4, Proposition 4.6][23, Remark 2.10] Let U ⊂ A[x]m be a
monomial ideal. U is quasi-stable if and only if it has a (finite) Pommaret basis, denoted by
P(U). Furthermore, U is stable if and only if P(U) is its minimal monomial generating set. If
U ⊂ A[x] is quasi-stable, then U>s is quasi-stable for every s > 0.

Recalling that any monomial module U can be written as U = ⊕mk=1J
(k)ek with J (k) suitable

monomial ideals in A[x] (see (1.1)), it is immediate that U is quasi-stable (resp. stable) if and only

if J (k) is a quasi stable (resp. stable) ideal for every k ∈ {1, . . . ,m}. If U ⊂ A[x]m is a monomial
module, then a term xµek is an obstruction to quasi-stability for U if there is xj > xc = min(xµ),
such that for every s > 0, (xsjx

µ)/xµcc ek /∈ U . If the term xµek is an obstruction to quasi-stability

for U , observe that in particular xµcj
xµ

xµcc
ek does not belong to U .

The following lemma collects some properties of a Pommaret basis and of the quasi-stable
module it generates. In particular, certain invariants of the quasi-stable module can be directly
read off from a Pommaret basis.

Lemma 2.4. Let U be a quasi-stable module in A[x]m.

(i) U sat = U : (x0)
∞;

(ii) The satiety of U is the maximal degree of a term in P(U) which is divisible by the smallest
variable in the polynomial ring. If U is saturated, then the smallest variable of the ring
does not divide any term in P(U).

(iii) The regularity of U is the maximal degree of a term in P(U).
(iv) The projective dimension of U is n−D where D is the index of the variable min{min(xα) | xα ∈

P(J)}.
(v) If xηek /∈ U and xix

ηek ∈ U , then either xix
ηek ∈ P(U) or xi ∈ XP(xη).

(vi) If xηek /∈ U and
(
xη · xδ

)
ek =

(
xδ
′
xα
)
ek ∈ U with xαek ∈ P(U) and xδ

′ ∈ A[XP(xα)],

then xδ
′
<lex x

δ.

Proof. For m = 1, items (ii), (iii) and (iv) are proven in [28, Lemma 4.11, Theorems 9.2 and
8.11], item (v) is shown in [3, Lemma 3], item (vi) is a consequence of (v). We obtain the

statement for U applying the results for ideals to J (k), k ∈ {1, . . . ,m} of (1.1). �

Proposition 2.5.

(i) Let U ⊂ A[x]m be a quasi-stable module generated in degrees less than or equal to s. The
module U is s-regular if and only if U>s is stable.

(ii) Let U be a quasi-stable module in A[x]m and consider a degree s > reg(U). Then U>s is
stable and the set of terms Us ∩ Tm is its Pommaret basis.

Proof. For the ideal case m = 1, we refer to [28, Lemma 2.2, Lemma 2.3, Theorem 9.2, Propo-
sition 9.6]. For the module case, we repeat the argument of Lemma 2.5. �
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3. Marked Modules

We extend the notions of marked polynomial, marked basis and marked family, investigated
in [4, 9, 10, 22] for ideals, to finitely generated modules in A[x]md . Let U ⊂ A[x]md be a monomial

module so that U = ⊕mk=1J
(k)ek with J (k) monomial ideals in A[x]. If U is a quasi-stable module,

we denote by P(U) the Pommaret basis of U .

Definition 3.1. [25] A marked polynomial is a polynomial f ∈ A[x] together with a fixed term
xα ∈ Supp(f) whose coefficient is equal to 1A. This term is called head term of f and denoted
by Ht(f). With a marked polynomial f , we associate the following sets:

• the multiplicative variables of f : XP(f) := XP(Ht(f));
• the non-multiplicative variables of f : XP(f) := XP(Ht(f)).

Definition 3.2. A marked homogeneous module element is a homogeneous module element in
A[x]md with a fixed term in its support whose coefficient is 1A and which is called head term.
More precisely, a marked homogeneous module element is of the form

fkα = fαek −
∑
l 6=k

glel ∈ A[x]md

where fα is a marked polynomial with Ht(fα) = xα, and Ht(fkα) = Ht(fα)ek = xαek.

The following definition is fundamental for this work. It is modelled on a well-known charac-
teristic property of Gröbner bases.

Definition 3.3. Let T ⊂ Tm be a finite set and U the module generated by it in A[x]md .

A T -marked set is a finite set G ⊂ A[x]md of marked homogeneous module elements fkα with

Ht(fkα) = xαek ∈ T and Supp(fkα − xαek) ⊂ 〈N (U)〉 (obviously, |G| = |T |). A T -marked set G
is a T -marked basis of the module 〈G〉, if N (U)s is a basis of (A[x]md )s /〈G〉s as an A-module,

i. e. if (A[x]md )s = 〈G〉s ⊕ 〈N (U)s〉A for all s.

Lemma 3.4. Let T ⊂ Tm be a finite set and U the module generated by it in A[x]md . Let M ⊆
A[x]md be a module such that for every s the set N (U)s generates the A-module (A[x]md )s/Ms.
Then for every degree s there exists an Us ∩ Tm-marked set F = Fs contained in Ms such that

(A[x]md )s = 〈F 〉A ⊕ 〈N (U)s〉A.

Proof. Let π be the usual projection morphism of A[x]md onto the quotient A[x]md /M . For every

xαek ∈ Us∩Tm, we consider π(xαek) and choose a representation π(xαek) =
∑

xηel∈N (U)s
cαkηl x

ηel,

cαkηl ∈ A, which exists as N (U)s generates (A[x]md )s/Ms as an A-module. We consider the set of

marked module elements F = {fkα}xαek∈Us , where fkα := xαek − π(xαek) and Ht(fkα) = xαek.
We now prove that A[x]ms = 〈F 〉A⊕〈N (U)s〉A. We first prove that every term in Tms belongs

to 〈F 〉A + 〈N (U)s〉A. If xβel ∈ N (U)s, there is nothing to prove. If xβel ∈ Us, then there is
f lβ ∈ F such that Ht(f lβ) = xβel, hence we can write xβel = f lβ + (xβel − f lβ) = f lβ + π(xβel).

We conclude by proving that 〈F 〉A ∩ 〈N (U)s〉A = {0mA }. Let g ∈ A[x]md be an element

belonging to 〈F 〉A ∩ 〈N (U)s〉A: g =
∑

fkα∈F λαkf
k
α ∈ 〈N (U)s〉. Since the head terms of fkα

cannot cancel each other, λαk = 0 for every α and k and hence g = 0. �

We specialize now to the case that U is a quasi-stable module and T = P(U) its Pommaret
basis. We study a reduction relation naturally induced by any basis marked over such a set T .
In particular, we show that it is confluent and Noetherian just as the familiar reduction relation
induced by a Gröbner basis.

Definition 3.5. Let U ⊆ A[x]md be a quasi-stable module and G be a P(U)-marked set in
A[x]md . We introduce the following sets:

• G(s) :=
{
xδfkα

∣∣ fkα ∈ G, xδ ∈ A[XP(fkα)],deg xδfkα = s
}

;

• Ĝ(s) :=
{
xδfkα

∣∣ fkα ∈ G, xδ /∈ A[XP(fkα)], deg xδfkα = s
}

=
{
xδfkα

∣∣ fkα ∈ G} \G(s);
• N (U, 〈G〉) := 〈G〉 ∩ 〈N (U)〉.
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Lemma 3.6. Let U ⊆ A[x]md be a quasi-stable module and G a P(U)-marked set. For each

product xδfkα with fkα ∈ G, each term in Supp(xδxαek − xδfkα) either belongs to N (U) or is of
the form xηxνel ∈ CmP (xνel) with xνel ∈ P(U) and xη <lex x

δ.

Proof. It is sufficient to consider xδxβel ∈ Supp(xδxαek − xδfkα)∩U . Then xδxβ ∈ J (l) for some

quasi-stable ideal J (l) ⊂ A[x] appearing in (1.1). Therefore there exists xγ ∈ P(J (l)) such that
xδxβ ∈ CP(xγ). More precisely, if xη := xδxβ/xγ , then xη <lex x

δ by Lemma 2.4 (vi). �

Note in the next definition the use of the set G(s), which means that we use here a genera-
lisation of the involutive reduction relation associated with the Pommaret division and not of
the standard reduction relation in the theory of Gröbner bases. This modification is the key
for circumventing the restrictions imposed by the results of [25]. It also entails that if a term is
reducible, then there is only one element in the marked basis which can be used for its reduction.

Definition 3.7. Let U ⊆ A[x]md be a quasi-stable module and G a P(U)-marked set. We denote

by
G(s)

−−→ the transitive closure of the relation h
G(s)

−−→ h − λxηfkα where xηxαek is a term which
appears in h with a non-zero coefficient λ ∈ A and which satisfies both deg(xηxαek) = s and

xηfkα ∈ G(s). We will write h
G(s)

−−→∗ g, if h
G(s)

−−→ g and g ∈ 〈N (U)〉. Observe that if h ∈ (A[x]md )s,

then h
G(s)

−−→ g ∈ (A[x]md )s.

Proposition 3.8. Let U ⊆ A[x]md be a quasi-stable module and G a P(U)-marked set. Then

the reduction relation
G(s)

−−→ is Noetherian.

Proof. It suffices to prove that for every term xγek in U , there exists g ∈ 〈N (U)〉A such that

xγek
G(s)

−−→∗ g. Since xγek ∈ U , there exists a unique xδfkα ∈ G(s) such that xδHt(fkα) = xγek.

Hence, xγek
G(s)

−−→ xγek − xδfkα. If we could proceed in the reduction without ever obtaining an
element in 〈N (U)〉, we would obtain by Lemma 3.6 an infinite lex-descending chain of terms in

T which is impossible since lex is a well-ordering. Hence
G(s)

−−→ is Noetherian. �

Corollary 3.9. Let U ⊆ A[x]m be a quasi-stable module and G be a P(U)-marked set. Every
term xβek ∈ Tms of degree s can be expressed in the form

xβel =
∑

λxδfkα + g, (3.1)

where λ ∈ A \ {0A}, xδfkα ∈ G(s), g ∈ 〈N (U)〉A and the terms xδ form a sequence which is
strictly descending with respect to lex.

Proof. For terms in N (U), there is nothing to prove. For xβel ∈ U , it suffices to consider

g ∈ 〈N (U)〉A such that xβel
G(s)

−−→∗ g. The appearing polynomials xδfkα ∈ G(s) are exactly those

used during the reduction
G(s)

−−→. They fulfill the statement on the terms xδ by Lemma 3.6. �

We now define an ordering for the polynomials xδfkα ∈ G(s) assuming that the polynomials

in G are ordered (in some way): xδfkα ≺ xδ
′
fk
′

α′ , if fα is smaller than fα′ or if fkα = fk
′

α′ and

xδ <lex x
δ′ . When we say in the sequel that a polynomial in a subset of G(s) is maximal, we

refer to this order.

Lemma 3.10. Let U ⊆ A[x]md be a quasi-stable module and G be a P(U)-marked set. Consider

a homogeneous element g ∈ A[x]md such that h =
∑
λxδfkα, with λ ∈ A \ {0} and xδfkα ∈ G(s)

with s = deg(h) and xδfkα pairwise different. Then h 6= 0mA and h /∈ 〈N (U)〉A.

Proof. Let xδfkα be the maximal polynomial of G(s) appearing in the summation
∑
λxδfkα = 0

with λ 6= 0. Then, by Lemma 3.6, the term xδxαek does not appear in the support of any other

polynomial xδfkα involved in the summation. Hence, h 6= 0mA . Furthermore, since xδxαek ∈ U
belongs to the support of h, h does not belong to 〈N (U)〉. �
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Proposition 3.11. Let U ⊆ A[x]md be a quasi-stable module and G a P(U)-marked set. The

reduction relation
G(s)

−−→ is confluent.

Proof. Let h be a polynomial in A[x]m. We reduce it twice with
G(s)

−−→ following different paths

along the reduction: h
G(s)

−−→∗ g1 ∈ 〈N (U)〉 and h
G(s)

−−→∗ g2 ∈ 〈N (U)〉. By Corollary 3.9 applied
to the terms in the support of h,

h =
∑

λxδfkα + g1 =
∑

µxδfkα + g2. (3.2)

Then g1 − g2 =
∑

(λ − µ)xδfkα. If there is a coefficient λ − µ ∈ A \ {0}, then by Lemma 3.10,

g1 − g2 /∈ 〈N (U)〉 contradicting the hypothesis. Thus λ = µ for every xδfkα ∈ G(s) in (3.2) and
g1 = g2. �

Corollary 3.12. Let U ⊆ A[x]m be a quasi-stable module and G be a P(U)-marked set. Every
term xβek ∈ Tms of degree s has a unique representation of the form (3.1).

The following Theorem and Corollaries collect some basic properties of sets marked over
a Pommaret basis. They generalise analogous statements in [22, Theorems 1.7, 1.10] which
considered only ideals and marked bases where the head terms generate a strongly stable ideal.

Theorem 3.13. Let U ⊂ A[x]md be a quasi-stable module with q(s) := rk(Us) and G a P(U)-
marked set. Then, we have for every degree s the following decompositions of A-modules:

(i) 〈G〉s = 〈G(s)〉A + 〈Ĝ(s)〉A;

(ii) (A[x]md )s = 〈G(s)〉A ⊕ 〈N (U)s〉A;

(iii) the A-module
〈
G(s)

〉A
is free of rank equal to |G(s)| = rk(Us) and it is generated (as an

A-module) by a unique Us ∩ Tm-marked set G̃(s);

(iv) 〈G〉s =
〈
G(s)

〉A ⊕N (U, 〈G〉)s.
Moreover, the following conditions are equivalent:

(v) G is a P(U)-marked basis;

(vi) 〈G〉s =
〈
G(s)

〉A
for all degrees s;

(vii) N (U, 〈G〉) = {0mA };
(viii)

∧q(s)+1〈G〉s = 0A for all s.

Proof. Item (i) is obvious.
Item (ii) is a consequence of Corollary 3.12.
For Item (iii) we use the arguments of [22, Theorem 1.7] for the ideal case: by (ii) we have

the short exact sequence

0 −→ 〈G(s)〉 ↪→ (A[x]md )s
π−→ 〈N (U)s〉 −→ 0 .

For each xαek in Us we compute the image π(xαek) =
∑

xβel∈N (U)s
aαβklx

βel and consider the

set G̃(s) := {f̃kα := xα −
∑

xβel∈N (U)s
aαβklx

βel | xαek ∈ Us} ⊆ kerπ = 〈G(s)〉. Let U ′ := 〈Us〉.
By construction, G̃(s) is a U ′-marked set with Ht(f̃kα) = xαek. Applying (ii) to this U ′-marked

set, we have 〈G̃(s)〉+ 〈N (U ′)s〉 = (A[x]md )s.

Finally, since the A-module generated by G̃(s) is contained in 〈G(s)〉 and N (U)s = N (U ′)s, the

modules 〈G̃(s)〉 and 〈G(s)〉 coincide. Note that the set G̃(s) is marked on the monomial module
U ′ which is generated by Us, but it is not necessarily a U>s-marked set, since U>s may have
minimal generators of degree greater than s.

For Item (iv), we first note that, by (i) and (iii), we have 〈G〉s = 〈G̃(s)〉A + 〈Ĝ(s)〉A. Recalling

that 〈G̃(s)〉A ∩ 〈N (U)s〉A = {0mA } by Lemma 3.4, it suffices to show that every g ∈ 〈Ĝ(s)〉A can

be written as g = f + h with f ∈ 〈G̃(s)〉A and h ∈ 〈N (U)s〉A. We express every term xβel ∈ Us
appearing in g with non-zero coefficient in the form xβel = f̃ lβ + (xβel − f̃ lβ) where f̃ lβ is the

unique polynomial in G̃(s) with Ht(f̃ lβ) = xβel. By construction, h ∈ N (U, 〈G〉)s. By (ii), we
obtain the assertion.
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Items (v), (vi), (vii) are equivalent by the previous items. In fact, these properties are a
rephrasing of the definition of P(U)-marked basis.

With respect to [22], the only new item is (viii), which is obviously equivalent to (vi) and

(vii). In fact, by (iii) and (iv), we find that 〈G〉s =
〈
G(s)

〉A ⊕ N (U, 〈G〉)s and rk
〈
G(s)

〉A
=

rk(Us) = q(s). �

Remark 3.14. If G ⊂ A[x]m is a P(U)-marked basis, then, by Theorem 3.13 (ii), (iii) and (vi),
the A[x]-module 〈G〉 admits a Hilbert function, which is the same as the Hilbert function of the
monomial module U .

Corollary 3.15. Let U ⊂ A[x]md be a quasi-stable module and G be a P(U)-marked set. The
following conditions are equivalent:

(i) G is a P(U)-marked basis;

(ii) 〈G〉s =
〈
G(s)

〉A
for every s 6 reg(U) + 1;

(iii) N (U, 〈G〉)s = {0mA } for every s 6 reg(U) + 1;

(iv)
∧q(s)+1〈G〉s = 0A for every s 6 reg(U) + 1 .

Proof. By the second part of Theorem 3.13, (i) implies (ii) and (ii), (iii) and (iv) are equivalent.
For the proof that (ii) implies (i), we follow the arguments used in [22, Theorem 1.10] and

adapt them to the module case. We have to prove that (A[x]md )s = 〈G〉s ⊕ 〈N (U)s〉 for every s.
This is true for s 6 m+ 1 by hypothesis. By Theorem 3.13 (ii), (iii), we know that (A[x]md )s =

〈G(s)〉⊕〈N (U)s〉 and 〈G(s)〉 ⊆ 〈G〉s, so that we have to prove 〈G〉s ⊆ 〈G(s)〉. Let us assume that

this is not true and let t be the minimal degree for which 〈G〉t 6⊆ 〈G(t)〉. Note that t > m+2 > m

and 〈G〉t = x0〈G〉t−1 + · · · + xn〈G〉t−1. Since 〈G〉t−1 = 〈G(t−1)〉, there must exist a variable xi
such that xi〈G〉t−1 6⊆ 〈G(t)〉 or equivalently xi〈G(t−1)〉 6⊆ 〈G(t)〉. Assume that the index i is

minimal with this property and take a polynomial xδfkα ∈ G(t−1) with xαek = Ht(fkα) ∈ P(U)

such that xix
δfkα /∈ 〈G(t)〉. The variable xi has to be greater than min(xα), since otherwise

xix
δfkα ∈ G(t). Morevover |δ| > 0 since t − 1 > m. Let xj = max(xδ) 6 min(xα) < xi and

xδ
′

= xδ

xi
. The polynomial is contained in 〈G〉t−1 while xj(xix

δ′fkα) = xix
δfkα is not contained in

〈G(t−1)〉, contradicting the minimality of i. �

Corollary 3.16. Let U ⊂ A[x]md be a quasi-stable modul such that U = ⊕J (k)ek with J (k)

a saturated ideal for every k and G a P(U)-marked set. Then the following conditions are
equivalent:

(i) G is a P(U)-marked basis;

(ii) 〈G〉reg(U)+1 =
〈
G(reg(U)+1)

〉A
;

(iii) N (U, 〈G〉)reg(U)+1 = {0mA };
(iv)

∧Q+1〈G〉reg(U)+1 = 0A, where Q := rk(Ureg(U)+1).

Proof. The equivalence of (ii), (iii) and (iv) is immediate by Theorem 3.13. We thus only prove
that (i) and (iii) are equivalent. If G is a P(U)-marked basis, then, by Theorem 3.13, we have
N (U, 〈G〉)reg(U)+1 = {0mA }. We now assume that N (U, 〈G〉)reg(U)+1 = {0mA } and prove that
N (U, 〈G〉) = {0mA } . By Corollary 3.15, it suffices to prove that N (U, 〈G〉)s = {0mA } for every

s 6 reg(U). If f ∈ N (U, 〈G〉)s with s 6 reg(J), then x
reg(U)+1−s
0 f ∈ N (U, 〈G〉)reg(U)+1 by

Lemma 2.4 (ii) and (v) applied to U . Hence f = 0mA . �

Corollary 3.17. Let U ⊂ A[x]md be a quasi-stable module and W ⊂ A[x]md be a finitely generated

graded submodule such that (A[x]md )s = Ws ⊕ 〈N (U)s〉A for every s. Then W is generated by a
P(U)-marked basis.

Proof. The statement is an easy consequence of Theorem 3.13 as soon as we have defined a
P(U)-marked set generating W . By the hypotheses, for every degree s and every monomial
xαek ∈ P(U), there exists a unique element hkα ∈ 〈N (U)s〉A such that xαek − hkα ∈ Ws. The
collection G of the elements xαek − hkα is obviously a P(U)-marked set and generates a graded

submodule of W . Moreover, (A[x]md )s = Ws ⊕ 〈N (U)s〉A = 〈G(s)〉A ⊕ 〈N (U)s〉A. Therefore,

Ws = 〈G(s)〉A ⊆ Gs ⊆Ws so that G generates W as a graded A[x]-module. �
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Finally, we provide an algorithmic method to check whether or not a marked set is even a
marked basis using the reduction process introduced in Definition 3.7.

Theorem 3.18. Let U ⊂ A[x]md be a quasi-stable module and G a P(U)-marked set. The set G
is a P(U)-marked basis, if and only if

∀fkα ∈ G, ∀xi ∈ XP(fkα) : xif
k
α

G(s)

−−−→ 0mA .

Proof. We adapt the arguments used in [9, Theorem 5.13] for the ideal case. Since “⇒” is a

consequence of Theorem 3.13, we only prove “⇐”. More precisely, we prove that 〈G〉s = 〈G(s)〉
showing that if fkα ∈ G and deg(xα+δ) = s, then xδfkα is either an element of G(s) itself or a

linear combination of polynomials in G(s).
If this were not true, we could choose an element xδfkα ∈ 〈G(s)〉 with xδ minimal with respect

to <lex. As xδfkα /∈ G(s), at least one variable xi appearing in xδ with a non-zero exponent is

non-multiplicative for xα. Let xδ = xix
δ′ . By hypothesis, xif

k
α

G(s)

−−→∗ 0, so that xif
k
α is a linear

combination
∑
cix

ηifkiβi of polynomials in G(|α|+1). By Lemma 3.6, we have xηi <lex xi. Now

xδfkα = xδ
′
(xif

k
α) = xδ

′
(
∑
cix

ηifkiβi ) =
∑
cix

ηi+δ
′
fkiβi , where xηiδ

′
<lex xix

δ′ = xδ. This yields a

contradiction, since xηi+δfkiβi ∈ 〈G
(s)〉 by the minimality of xδ. �

4. The marked family associated with a quasi-stable module

Given a quasi-stable module U with Pommaret basis P(U), we may consider the set of all
modules in A[x]md which can be generated by a P(U)-marked basis. We call this set the marked
family associated to U . Our goal in this section consists of exhibiting a natural scheme structure

of this set. More precisely, we will first define a functor Mf n,m,dP(U) mapping the Noetherian k-

algebra A to this set and then show that it is representable by an affine scheme.
If σ : A → B is a morphism of k-algebras, we will also denote by σ its natural extension to

a morphism A[x] → B[x]. We now consider the functor of the P(U)-marked bases from the
category of Noetherian k-algebras to the category of sets

Mf n,m,dP(U) : Noeth k-Alg −→ Sets

that associates to any Noetherian k-algebra A the set

Mf n,m,dP(U) (A) := {G ⊂ A[x]md | G is a P(U)-marked basis} ,

or, equivalently by Corollary 3.17,

Mf n,m,dP(U) (A) := {W ⊂ A[x]md |W is generated by a P(U)-marked basis}

and to any morphism σ : A→ B the map

Mf n,m,dP(U) (σ) : Mf n,m,dP(U) (A) −→ Mf n,m,dP(U) (B)

G 7−→ σ(G) .

Note that the image σ(G) is indeed again a P(U)-marked basis, as any head term in the P(U)-
marked basis G has the coefficient 1A which is mapped by σ into 1B and we are effectively
applying the functor − ⊗A B to the decomposition (A[x]md )s = 〈G(s)〉A ⊕ 〈N (U)s〉A at every
degree s.

The above introduced functor turns out to be representable by an affine scheme that can
be explicitly constructed by the following procedure. We consider the k-algebra k[C] where C
denotes the finite set of variables

{
Cαηkl | xαek ∈ P(U), xηel ∈ N (U),deg(xηel) = deg(xαek)

}
and construct the P(U)-marked set G ⊂ k[C][x]md consisting of all elements

F kα =

(
xα −

∑
xη∈N (J(k))|α|

Cαηkkx
η

)
ek −

∑
l 6=k,xηel∈N (J(l))el
deg(xηel)=deg(xαek)

Cαηklx
ηel (4.1)
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with xαek ∈ P(U). Then, we compute all the complete reductions xiF
k
α
G(s)−−→∗ Lkiα for every term

xαek ∈ P(U) and every non-multiplicative variable xi ∈ XP(F kα) and collect the coefficients of
the monomials xηej ∈ N (U) of all the reduced elements Lkiα in a set R ⊂ k[C].

Theorem 4.1. The functor Mf n,m,dP(U) is represented by the affine scheme Spec(k[C]/(R)) that

we denote by Mf n,m,dP(U) .

Proof. We observe that each element fkα of a P(U)-marked set G in A[x]md can be written in the
following form:

fkα =

xα − ∑
xη∈N (J(k))|α|

cαηkkx
η

 ek −
∑

l 6=k,xηel∈N (J(l))el
deg(xηel)=deg(xαek)

cαηklx
ηel, cαηkl ∈ A.

Therefore, G can be obtained by specialising in G the variables Cαηkl to the constants cαηkl ∈ A.

Moreover, G is a P(U)-marked basis if and only xif
k
α

G(s)

−−→∗ 0 for every xαek ∈ P(U) and
xi ∈ XP(fkα). Equivalently, G is a P(U)-marked basis if and only if the evaluation morphism
ϕ : k[C] → A, ϕ(Cαηkl) = cαηkl factors through k[C]/(R), namely, if and only if the following
diagram commutes

k[C]
ϕ //

��

A

k[C]/(R)

;; .

�

Remark 4.2. The arguments presented in the proof of Theorem 4.1 generalise those presented
in [9, 22] for ideals to our more general framework of modules. As a consequence of this result,
we know that the scheme defined as Spec(k[C]/(R)) only depends on the submodule U and
not on the possibly different procedures for constructing it: any other procedure that gives a
set of “minimal” conditions on the coefficients C that are necessary and sufficient to guarantee
that a P(U)-marked set G is a P(U)-marked basis generates an ideal R′ such that k[C]/(R) =
k[C]/(R′).

5. P(U)-marked Bases and Syzygies

We now study syzygies of a P(U)-marked basis and we formulate a P(U)-marked version of
the involutive Schreyer theorem [28, Theorem 5.10]. For notational simplicity, this section is
formulated for m = 1, that is for ideals in A[x], but it is straightforward to extend everything
to submodules A[x]md generated by a marked basis over a quasi-stable module.

Let J be a quasi-stable monomial ideal in A[x] and I an ideal in A[x] generated by a P(J)-

marked basis G. Let m be the cardinality of P(J). We denote the terms in P(J) by xα(k) and
the polynomials in G by fα(k), with k ∈ {1, . . . ,m}.

Lemma 5.1. Every polynomial f ∈ I can be uniquely written in the form f =
∑m

l=1 Plfα(l) with
fα(l) ∈ G and Pl ∈ A[XP(fα(l))].

Proof. This is a consequence of Corollary 3.9 and Theorem 3.13 (vi). �

Take an arbitrary element fα(k) ∈ G and choose an arbitrary non-multiplicative variable

xi ∈ XP(fα(k)) of it. We can determine, via the reduction process
G(s)

−−→, for each fα(l) ∈ G

a unique polynomial P k;il ∈ A[XP(fα(l))] such that xifα(k) =
∑m

l=1 P
k;i
l fα(l). This relation

corresponds to the fundamental syzygy

Sk;i = xiek −
m∑
l=1

P k;il el .



COMPUTING QUOT SCHEMES VIA MARKED BASES OVER QUASI-STABLE MODULES 11

We denote the set of all fundamental syzygies by

GSyz = {Sk;i | k ∈ {1, . . . ,m}, xi ∈ XP(fα(k))} .

We consider the syzygies in GSyz as elements of A[x]md with d = (deg(xα(1)), . . . ,deg(xα(m))).

Lemma 5.2. Let S =
∑m

l=1 Slel be an arbitrary syzygy of the P(J)-marked basis G with coeffi-
cients Sl ∈ A[x]. Then Sl ∈ A[XP(fα(l))] for all 1 6 l 6 m if and only if S = 0mA .

Proof. If S ∈ Syz(G), then
∑m

l=1 Slfα(l) = 0. According to Lemma 5.1, each f ∈ I can be

uniquely written in the form f =
∑m

l=1 Plfα(l) with fα(l) ∈ G and Pl ∈ A[XP(fα(l))]. In
particular, this holds for 0A ∈ I. Thus 0A = Sl ∈ A[XP(fα(l))] for all l and hence S = 0mA . �

Lemma 5.3. Let U be the monomial module U = ⊕ml=1(XP(xα(l)))el where (XP(xα(l))) is the

ideal generated by XP(xα(l)) in A[x]. Then U is a quasi-stable module with Pommaret basis
P(U) = {xiel | 1 6 l 6 m,xi ∈ XP(fα(l))} and GSyz is a P(U)-marked set in A[x]md .

Proof. By [28, Lemma 5.9], we can immediately conclude that U is a quasi-stable module and
that the set {xiel | 1 6 l 6 m,xi ∈ XP(fα(l))} is the Pommaret basis of U . We define
Ht(Si;l) = xiel and easily see that GSyz is a P(U)-marked-set: by definition of U , every term
xµek in Supp(Sl;i − xiel) belongs to N (U), because xµ ∈ XP(fα(k)). �

Observe that for every fundamental syzygy Sk;i ∈ GSyz, XP(Sk;i) = {x0, . . . , xi}. As in
Section 3, we define for every degree s the following set of polynomials in 〈GSyz〉:

G
(s)
Syz = {xδSk;i | Sk;i ∈ GSyz, x

δ ∈ XP(Sk;i), deg(xδSk;i) = s}.

Lemma 5.4. The set G
(s)
Syz generates the A-module Syz(G)s for every s.

Proof. Let S =
∑m

l=1 Slel be an arbitrary non-vanishing syzygy in Syz(G)s. By Lemma 5.2,
there is at least one index k such that the coefficient Sk contains a term xµ depending on a
non- multiplicative variable xi ∈ XP(fα(k)). Among all such values of k and µ, we choose the
term xµek which is lexicographically maximal. Then, xµek belongs to the quasi-stable module

U , hence there is xδSk;j ∈ G
(s)
Syz such that xδxj = xµ. We define S′ = S−λxδSk;j , where λ 6= 0A

is the coefficient of xµek in S.
Now we have to show that every xν contained in a module term λxνel ∈ Supp(S′)∩U is lexico-

graphically smaller than xµ. The terms of Supp(S)∩U contained in Supp(S′) are by assumption

lexicographically smaller than xµek. Every other term arises from xδ
∑m

l=1 P
(k;j)
l el. We know

that xjfα(k) =
∑m

l=1 P
(k;j)
l fα(l). In particular, a term xν

′
in P

(k;j)
l is lexicographically smaller

than xj , by Corollary 3.9. Therefore every term in xδ
∑m

l=1 P
(k;j)
l eβ is lexicographically smaller

than xδxj = xµ. If S′ 6= 0, again by Lemma 5.2, we iterate the procedure on a lexicographical
maximal term of S′ containing a non-multiplicative variable. Since all new non-multiplicative
terms introduced are lexicographically smaller, the reduction process must stop after a finite

number of steps. As a result we get a representation S′ =
∑l

l=1 S
′
lel such that S′l ∈ A[XP(fα(l))]

for all 1 6 l 6 m. But Lemma 5.2 says that this sum must be zero. �

Theorem 5.5 (P(U)-marked Schreyer Theorem). Let G = {fα(1), . . . fα(m)} be a P(J)-marked
basis. Then GSyz is a P(U)-marked basis of Syz(G) with U as in Lemma 5.3.

Proof. By Lemma 5.3, we know that GSyz is a P(U)-marked set. By Lemma 5.4, we know that

〈G(s)
Syz〉A = 〈Syz(G)s〉A and we conclude by Theorem 3.13 (vi). �

Iterating this result, we arrive at a (generally non-minimal) free resolution. In contrast to
the classical Schreyer Theorem for Gröbner bases, we are able to determine the ranks of all
appearing free modules without any further computations.

Theorem 5.6. Let G = {fα(1), . . . , fα(m)}, deg(fα(i)) = di, be a P(J)-marked basis and I the

ideal generated by G in A[x]. We denote by β
(k)
0,j the number of terms xα ∈ P(J) such that
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deg(xα) = j and min(xα) = xk and set D = minxα∈P(J){i | xi = min(xα)}. Then I possesses a
finite free resolution

0 −→
⊕

A[x](−j)rn−D,j −→ · · · −→
⊕

A[x](−j)r1,j −→
⊕

A[x](−j)r0,j −→ I −→ 0 (5.1)

of length n−D where the ranks of the free modules are given by

ri,j =

n−i∑
k=1

(
n− k
i

)
β
(k)
0,j−i.

Proof. According to Theorem 5.5, GSyz is a P(U)-marked basis for the module Syz1(I) with U
as in Lemma 5.3. Applying the theorem again, we can construct a marked basis of the second
syzygy module Syz2(I) and so on. Recall that for every index 1 6 l 6 m and for every non-
multiplicative variable xk ∈ XP(fα(l)) we have min(Ht(Sl;k)) = k > min(Ht(fα(l))). If D is the
index of the minimal variable appearing in a head term in G, then the index of the minimal
variable appearing in a head term in GSyz is D + 1. This observation yields immediately the
length of the resolution (5.1). Furthermore deg(Sk;i) = deg(fα(i)) + 1, i. e. from the i-th to the
(i+ 1)-th module the degree of the basis element to the corresponding syzygy grows by one.

The ranks of the modules follow from a rather straightforward combinatorial calculation. Let

β
(k)
i,j denote the number of generators of degree j of the i-th syzygy module Syzi(G) with minimal

variable in the head term xk. By definition of the generators Sl;k, we find

β
(k)
i,j =

k−1∑
t=1

β
(n−t)
i−1,j−1

as each generator with minimal variable smaller than k and degree j − 1 in the marked basis
of Syzi(G) contributes one generator of minimal variable k and degree j to the marked basis of

Syzi(G). A simple but lengthy induction allows us to express β
(k)
i,j in terms of β

(k)
0,j :

β
(k)
i,j =

k−i∑
t=1

(
k − l − 1

i− 1

)
β
(t)
0,j−i

Now we are able to compute the ranks of the free modules via

ri,j =
n∑
k=1

β
(k)
i,j =

n∑
k=1

k−i∑
t=1

(
k − t− 1

i− 1

)
β
(t)
0,j−i =

n−i∑
k=1

(
n− k
i

)
β
(k)
0,j−i.

The last equality follows from a classical identity for binomial coefficients. �

Remark 5.7. Observe that the direct summands in the resolution (5.1) depend only on the
Pommaret basis P(J) and not on the ideal I, while the maps in (5.1) depend on I.

Corollary 5.8. Let G be a P(J)-marked basis and I the ideal generated by G in A[x]. Define
ri,j as in Theorem 5.6 and let bi,j be, as usual, the Betti numbers of I. Then

• bi,j 6 ri,j for all i, j;
• reg(I) 6 reg(J);
• pdim(I) 6 pdim(J).

Proof. The three inequalities follow from the free resolution (5.1) of I, recalling that reg(J) :=
maxxα∈P(J){deg(xα)} and pdim(J) = n−minxα∈P(J){i | xi = min(xα)}. �

If G is even a Pommaret basis for the reverse lexicographic term order, i. e. if J is the leading
ideal of I for this order, then we obtain the stronger results reg(I) = reg(J) and pdim(I) =
pdim(J) (for other term orders we also get only estimates) [28, Corollaries 8.13, 9.5].

Example 5.9. Let A[x] = k[x0, x1, x2], J the monomial ideal with Pommaret basis P(J) =
{x32, x22x1, x2x1, x1x0, x21} and I the polynomial ideal generated by G = {g1, g2, g3, g4, g5} with

g1 = x32 , g2 = x22x1 ,
g3 = x2x1 , g4 = x1x0 + x22 ,
g5 = x21 .
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One easily checks that G is a P(J)-marked basis.
We explicitly compute the multiplicative representations of x2 ·g2, x2 ·g3, x1 ·g4, x2 ·g4, x2 ·g5

which yield the set of fundamental syzygies GSyz = {S2;2, S3;2, S4;1, S4;2, S5;2} ⊂ A[x]5:

x2 · g2 = x1 · g1 , S2;2 = x2 · e2 − x1 · e1 ,
x2 · g3 = g2 , S3;2 = x2 · e3 − e2 ,
x1 · g4 = x0 · g5 + g2 , S4;1 = x1 · e4 − x0 · e5 − e2 ,
x2 · g4 = x0 · g3 + g1 , S4;2 = x2 · e4 − x0 · e3 − e1 ,
x2 · g5 = x1 · g3 , S5;2 = x2 · e5 − x1 · e3 .

The only non-multiplicative variable for GSyz is XP(S4;1) = {x2}. Therefore we have to
compute the reduction of x2S4;1 which is x2S4;1 = x1S4;2−S2;2−x0S5;2 and hence we get the set
of fundamental syzygies of the first syzygy module GSyz2 = {x2e3 − x1e4 − e1 − x0e5} ⊂ A[x]5.

This leads to the following free resolution of I of length two:

0 −→ A[x](−4)
δ2−−−−−→ A[x](−4)⊕A[x](−3)4

δ1−−−−−→
δ1−−−−−→ A[x](−3)2 ⊕A[x](−2)3

δ0−−−−−→ I −→ 0,

where
δ0 =

(
x32 x22x1 x2x1 x1x0 + x22 x21

)
,

δ1 =


−x1 0 0 −1 0
x2 −1 −1 0 0
0 x2 0 −x0 −x1
0 0 x1 x2 0
0 0 −x0 0 x2

 , δ2 =


1
0
x2
−x1
x0

 .

This free resolution is not minimal, as these matrices contain non-vanishing constant entries.
Minimising the resolution leads to the minimal free resolution of I of length one:

0 −→ A[x](−3)2
δ′1−−−−−→ A[x](−2)3

δ′0−−−−−→ I −→ 0.

Hence in the present example, we have 1 = pdim(I) < pdim(J) = 2 and 2 = reg(I) < reg(J) = 3.

Example 5.10. Let A[x] = k[x0, x1, x2], J the monomial ideal with Pommaret basis P(J) =
{x2x1, x22x1, x32, x31, x22x0, x21x0} and I be the ideal generated by the P(J)-marked basis G =
{g1, g2, g3, g4, g5, g6} with

g1 = x2x1 − x22 − x21 , g2 = x22x1 ,
g3 = x32 , g4 = x31 ,
g5 = x22x0 , g6 = x21x0 ,

where Ht(g1) = x2x1. Observe that G is not a Gröbner basis, for any term order, due to the
terms in x2x1 − g1.

By Theorem 5.6, we construct the following free resolution of I:

0 −→ A[x](−5)2
δ2−−−−−→ A[x](−3)⊕A[x](−4)6

δ1−−−−−→
δ1−−−−−→ A[x](−2)⊕A[x](−3)5

δ0−−−−−→ I −→ 0. (5.2)

It is not minimal, as the minimal free resolution of I is

0 −→ A[x](−5)2
δ′2−−−−−→ A[x](−4)6

δ′1−−−−−→ A[x](−2)⊕A[x](−3)4
δ′0−−−−−→ I −→ 0.

In this case, although the resolution (5.2) is not minimal, the bounds on projective dimension
and regularity given in Corollary 5.8 are sharp.

In the sequel, we will apply the theory of marked bases and schemes to the study of Quot
schemes. Theorem 5.6 and Corollary 5.8 seem to suggest that marked bases are particularly suit-
able to study loci of a Quot scheme given by bounds on the invariants of a module coming from
the minimal free resolution: regularity, projective dimension, extremal Betti numbers. However,
this is only partly true, due to the fact that in order to study special loci of marked schemes we
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need to prove inequailities like those in Corollary 5.8 on saturated ideals. Nevertheless, we will
be able to study the locus of a Quot scheme given by an upper bound for the regularity, thanks
to the following theorem (and corollary). The proofs are given for ideals, but they also hold for
modules in A[x]m generated by a marked basis over a quasi-stable module.

Theorem 5.11. Let J ⊆ A[x] be a stable ideal, generated in a single degree s, and I the ideal
generated by a P(J)-marked basis G. Then J and I have the same Betti numbers.

Proof. Since J is stable, P(J) is the minimal monomial generating set of J . Then we can follow
the lines of the proof of [1, Theorem 4.4], thanks to Theorem 3.13, items (v), (vi). �

Corollary 5.12. Let J ⊆ A[x] be a stable ideal, generated in a single degree s, and I be the
ideal generated by a P(J)-marked basis G. Then reg(J sat) > reg(Isat).

6. Deterministic computations for stable positions

So far, from Definition 3.3 on, we considered arbitrary marked sets over a quasi-stable mono-
mial module. We now focus on marked sets whose polynomials are generated in a single degree,
which is the case of interest for our applications. We are interested in investigating how to
modify a finite set of polynomials so that they become a marked set over a quasi-stable module.

Remark 6.1. Consider an arbitrary monomial module U ⊂ A[x]md generated by the terms

T = {xµ(1)ek1 , . . . , xµ
(q)
ekq}. Let s be the maximal degree of a term in T and assume that U

is not quasi-stable, i. e. there exists a term xµek ∈ T and an index j > c := min(xµ) such that

xsj
xµ

xµcc
ek /∈ U . This implies that the term xµcj

xµ

xµcc
ek does not belong to U . If we now consider

the module Û generated by T̂ = {xµcj
xµ

xµcc
ek, x

µ(1)ek1 , . . . , x
µ(q)ekq}, then it is clear that Û is

somehow nearer to quasi-stability than U . This observation is studied in much more detail for
the case of ideals in [17] and [26].

With the knowledge of the remark above, we define an elementary move ml,t,a as a linear
change of variables of the form xi 7→ xi if i 6= l and xl 7→ xl + a · xt for suitable indices l < t and
a parameter a ∈ k×. If we apply ml,t,a to a term xµ we obtain a polynomial

ml,t,a(x
µ) =

µl∑
i=0

(
µl
i

)
aixµ

xit
xil

The polynomial ml,t,a(x
µ) always contains at least two terms: xµ with coefficient 1 and

xµx
µl
t

x
µl
l

with coefficient aµl . In the case of a coefficient field of prime characteristic, any other coefficient
may vanish for some values of µl and j. We extend the linear transformation ml,t,a to polynomials
and sets of polynomials in the obvious way.

It is clear that any monomial module is marked on itself. If we apply a linear change of
variables to a monomial module, then the transformed module is generally no longer monomial,
but will have a non-monomial minimal generating set. The next proposition shows that we can
construct again a marked set out of the new module.

Proposition 6.2. For a given degree s > 0, let T = {xµ(1)ek1 , . . . , xµ(q)ekq} be a set of terms in
Tms and let K be a field extension of k such that |K| > sq. Furthermore, let F = {f1, . . . , fq} ⊂
K[x]ms be a T -marked set. Assume that xµek := xµ(1)ek1 is an obstruction to quasi-stability

for 〈T 〉 and set F̂ = mc,j,a(F ) for an arbitrary a ∈ K× and some j > c = min(xµ). Setting

xµ̂ek := xµcj
xµ

xµcc
ek /∈ 〈T 〉, we denote by T̂ the set of terms {xµ̂ek, xµ(2)ek2 , . . . , xµ(q)ekq} obtained

from T by replacing the first generator by xµ̂ek. Then there exists a set F ′ ⊆ 〈F̂ 〉s which is

marked over T̂ and which can be constructed from F̂ via linear combinations.
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Proof. We consider the elementary move mc,j,a for a yet undetermined parameter a ∈ K×. The
considered term xµek transforms as follows:

mc,j,a(x
µ)ek =

µc∑
i=0

(
µc
i

)
aixµ

xij
xic
ek . (6.1)

By our choice of the index pair (c, j), the term xµ̂ek appears on the right hand side with a
non-zero coefficient for the index value i = µc.

Applying the elementary move mc,j,a to all polynomials fi ∈ F yields new generators f̂i and

each f̂i still contains the term xµ(i)eki with a coefficient which is a polynomial in a with constant

term 1. It may happen that the term xµ(i)eki now also appears in other generators f̂l, but then

its coefficient there is always a polynomial in a without a constant term. Furthermore, in f̂1
the term xµ̂ek now appears. Its coefficient contains in particular the term aµc coming from the

above transformation of xµ. If xµ̂ek also lies in the support of some other generator f̂l, then its
coefficient cannot contain the term aµc , as xµek appeared only in f1, as the set F was assumed
to be marked over T .

These observations imply that, after taking suitable linear combinations of the polynomials

f̂i, we can arrive at a set of polynomials F ′ := {ĥ1, . . . , ĥq} such that for i ∈ {1, . . . , q} the only

term of T̂ appearing in ĥi is: xµ̂ek for i = 1, and xµ(i)eki for the other values of i.
It cannot happen that for some i = 2, . . . , q the term xµ(i)eki vanishes when we perform

the linear combinations on ĥ1, . . . , ĥq, because there is exactly one term xµ(i)eki which has as
coefficient a polynomial in a with constant term 1. By the same argument, it is clear that

the term xµ̂ek does not vanish by performing linear combinations as its coefficient aµc in ĥ1 is
unique. But this implies that the set F ′ obtained from F by the elementary move and suitable

linear combinations is marked over T̂ . Furthermore, in each polynomial ĥi the coefficient of the
head module term is a polynomial in a of degree at most s. Since we have q such coefficients,
the assumption |K| > sq guarantees that there exists a choice for a ∈ K× such that none of
these polynomials vanishes. �

Remark 6.3. For this proposition, it is crucial that we always consider marked sets and bases
over quasi-stable modules. If we used any stronger notion of stability like stable or even strongly
stable modules, then the proposition would remain true only in characteristic zero. Only in the
quasi-stable case the key term xµ̂ek appears in (6.1) with coefficient 1. Obstructions to (strong)
stability may appear somewhere “in the middle” of (6.1) and then it is in positive characteristic p
no longer possible to guarantee that the needed term can be produced with an elementary move.
One may introduce adapted “p-versions” of (strong) stability, but the corresponding monomial
ideals do not necessarily exhibit all the relevant algebraic properties.

From now on, we will assume for simplicity that the field k is infinite, hence we will use
coordinate transformations in pgl := pglk(n + 1). For any element g ∈ pgl, we denote by g̃
the automorphism induced by g on A[x]m and by g̃� the corresponding action on an element. If
F is a subset of A[x]m, g̃ � F is the set obtained by applying g̃ to every element of F . We can
now rephrase Proposition 6.2 in the following way, keeping in mind that, under the hypothesis
that k is infinite, k is also Zariski dense in any field extension K.

Corollary 6.4. Let F ⊂ A[x]ms be a finite set of polynomials. Then there exists a transformation
g ∈ pgl such that g̃ � F is a marked set over a quasi-stable module.

Lemma 6.5. Consider ` > 0. Let F be a saturated module in K[x]m for a field extension K of
k with Hilbert polynomial p(z) and reg(F ) 6 `. Then there exists a transformation g ∈ pgl and
a stable module U = 〈U`〉 ⊂ K[x]m having Hilbert polynomial p(z) and reg(U sat) 6 ` such that

g̃ � 〈F`〉 belongs to Mf n,m,dP(U) (K).
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Proof. By [28, Thm. 2.16] (or [17, Thm. 6.11, Rem. 6.13]),1 there exists a transformation g ∈ pgl
such that g̃ � 〈F`〉 has a Pommaret basis for the degree reverse lexicographic term order. This
means that the initial module U of g̃ � 〈F`〉 is quasi-stable and has the same Hilbert polynomial
as F . Since reg(U) = reg(F`) = `, we have that U = 〈U`〉 and U is even stable. Now it suffices
to observe that reg(U sat) 6 reg(U) = `. �

7. Definition of Quot functor and Quot scheme with bounded regularity

Let p(z) ∈ Q[z] be the Hilbert polynomial of k[x]m/M for some homogeneous module M ⊆
k[x]m. We denote by Nm(z) the polynomial m

(
n+z
z

)
and by q(z) the polynomial Nm(z)− p(z).

By [11, Proposition 3.1], there exists a unique Gotzmann representation of p(z):

p(z) =

(
z + a1
a1

)
+

(
z + a2 − 1

a2

)
+ · · ·+

(
z + ar − (r − 1)

ar

)
where a1 > a2 > · · · ar > 0. We call r the Gotzmann number of p(z). We recall that, by [11,

Proposition 4.1], r is an upper bound for the regularity of the associated sheaf M̃ .
We now define the Hilbert function and the Hilbert polynomial in a more general case, fol-

lowing the lines of [24]. Let X be a finite type scheme over a field k together with a line bundle
L. Recall that, if F is a coherent sheaf on X whose support is proper over k, then the Hilbert
polynomial Φ ∈ Q[z] of F is defined as

Φ(z) = χ(F (z)) =

n∑
i=0

(−1)i dimkH
i(X,F ⊗ L⊗z)

where the dimensions of the cohomologies are finite because of the coherence and properness
conditions. The fact that χ(F (z)) is indeed a polynomial in z under the above assumption is a
special case of what is known as Snapper’s Lemma (see [20, Theorem B.7] for a proof).

Let X −→ S be a finite type morphism of noetherian schemes and let L be a line bundle
on X. Let F be any coherent sheaf on X whose schematic support is proper over S. Then for
each s ∈ S we get a polynomial Φs ∈ Q[z] which is the Hilbert polynomial of the restriction
Fs = F |Xs of F to the fiber Xs over s calculated with respect to the line bundle Ls = L|Xs . If
F is flat over S, then the function s 7→ Φs from the set of points of S to the polynomial ring
Q[z] is known to be locally constant on S.

We will denote by Pn the n-dimensional projective space over k. If Z is a k-scheme, we define
PnZ := Pn ×k Z and if A is a finitely generated k-algebra, then PnA is defined as PnSpec(A). We are

interested in the case where X = PnZ , L = OPnZ (1) and F is a quotient of OmPnZ . If F is flat over

Z, then the Hilbert polynomial of the fibres is locally constant. If it is constant, we call it the
Hilbert polynomial of F .

In the sequel, Quotn,mp(z) will denote the Quot functor Sch/k◦ → Sets that associates to any

object Z of the category of schemes over k the set

Quotn,mp(z)(Z) = {Q quotients of OmPnZ flat over Z with Hilbert polynomial p(z)}.

and to any morphism of schemes ϕ : Z → Z ′ the map

Quotn,mp(z)(ϕ) : Quotn,mp(z)(Z
′)→ Quotn,mp(z)(Z)

Q′ 7→ ϕ∗Q′ .

The Hilbert polynomial of Q is here defined via the Hilbert polynomial of each fibre of Z.
The Quot functor was introduced by Grothendieck in [16] where he also proved that this

functor is the functor of points of a projective scheme. We will not use this fact, but will give
instead an independent proof of the existence of the Quot scheme. Here, we only assume that

1These references consider only the case of ideals. However, the extension to modules along the lines of Prop. 6.2
is straightforward.
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the Quot functor is a Zariski sheaf [24, Section 5.1.3]. Hence, we may consider it as a covariant
functor from the category of noetherian k-algebras [29, Lemma E.11]

Quotn,mp(z) : k-Alg→ Sets

such that for every finitely generated k-algebra A

Quotn,mp(z)(A) =
{

quotients Q of OmPnA flat over SpecA with Hilbert polynomial p(z)
}
.

and for any k-algebra morphism f : A→ B

Quotn,mp(z)(f) : Quotn,mp(z)(A) → Quotn,mp(z)(B)

Q̃ 7→ Q̃⊗A B

where Q = H0
∗Q for Q ∈ Quotn,mp(z)(A). This is equivalent to consider the functor k-Alg → Sets

that associates to every k-algebra A the set

Quotn,mp(z)(A) = {saturated submodules M of A[x]m s.t.

A[x]m/M flat with Hilbert polynomial p(z)}.

and to every k-algebras homomorphism f : A→ B the function

Quotn,mp(z)(f) : Quotn,mp(z)(A) → Quotn,mp(z)(B)

M 7→ M ⊗A B

Inspired by the results in Section 5 and in [1] for Hilbert schemes, we intend to study a special
subfunctor of the Quot functor defined by giving an upper bound on the Castelnuovo-Mumford
regularity of the elements in Quotn,mp(z)(A) for any k-algebra A. Several proofs use the same

arguments of corresponding results in [1]. If A is a local ring, we define the Castelnuovo-Mumford
regularity reg(M) of a saturated module M ∈ Quotn,mp(z)(A) in the obvious way. Otherwise, we

say that the Castelnuovo-Mumford regularity of M is min{reg(M ⊗A Ap) | p prime ideal in A}.

Definition 7.1. Let ` be an integer. The Quot functor with bounded regularity, denoted by

Quot
n,m,[`]
p(z) , is the subfunctor of Quotn,mp(z) that associates to every Noetherian k-algebra A the

set Quot
n,m,[`]
p(z) (A) = {M ∈ Quotn,mp(z) | reg(M) 6 `}.

It is immediate that if `′ 6 `, then Quot
n,m,[`′]
p(z) (A) is a subset of Quot

n,m,[`]
p(z) (A) for every

k-algebra A. Furthermore, if r is the Gotzmann number of p(z), then Quot
n,m,[r]
p(z) is exactly

Quotn,mp(z). From now on, we fix two positive integers, ` and s > `. For every k-algebra A

and for every M ∈ Quot
n,m,[`]
p(z) (A), there is a unique graded A[x]-module generated in degree s

whose saturation is M , namely 〈Ms〉. Hence, the Quot Functor with bounded regularity can be
considered by [11, Lemma 5.2, Theorem 5.1] as a subfunctor of the following Grassmann functor:

Gr
Nm(s)
p(s) : k-Alg → Sets with Nm(s) = m

(
n+s
s

)
A 7→ Gr

Nm(s)
p(s) (A)

where

Gr
Nm(s)
p(s) (A) = {A-submodule F ⊆ A[x]ms such that A[x]ms /F is locally free of rank p(s)}.

Therefore, the Quot Functor with bounded regularity can be seen as a subfunctor of the Grass-

mann functor Gr
Nm(s)
p(s) in the following way:

Quot
n,m,[`]
p(z) (A) = {F ∈ Gr

Nm(s)
p(s) (A) with A[x]m/〈F 〉 flat

with Hilbert polynomial p(z) and reg(F sat) 6 `}.
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and for every k-algebra homomorphism f : A→ B

Quot
n,m,[`]
p(z) (f) : Quot

n,m,[`]
p(z) (A) → Quot

n,m,[`]
p(z) (B)

F 7→ F ⊗A B .

Furthermore, we define the natural transformation of functors

H[s] : Quot
n,m,[`]
p(z) → Gr

Nm(s)
p(s) .

We denote by πM the canonical projection A[x]ms → A[x]ms /Ms. The functor Gr
Nm(s)
p(s) is rep-

resentable and the representing scheme Gr
Nm(s)
p(s) is called the Grassmannian. By the Plücker

embedding, it can be seen as a closed subscheme of P(Nm(s)
p(s) )−1.

We will now introduce some useful subfunctors of Gr
Nm(s)
p(s) and Quot

n,m,[`]
p(z) . We set a basis

{b1, . . . , bp(s)} for Ap(s). Consider the complete list Tms = {τ`}`=1,...,Nm(s) of terms τ = xαei,
|α| = s, of k[x]ms . Tms is the basis we consider for the A-module A[x]ms . For every element
g ∈ pgl := pglQ(n+1), we denote by g̃ also the automorphism induced by g on the Grassmann
and Quot functors and g� denotes the corresponding action on an element.

Consider for I = {a1, . . . , ap(s)} ⊂ {1, . . . , Nm(s)} with |I| = p(s) the injective morphism

ΓI : Ap(s) → A[x]ms , bi 7→ τai and for g ∈ pgl the subfunctor G[s]I,g that associates to every
noetherian k-algebra A the set

G[s]I,g(A) = {F ∈ Gr
Nm(s)
p(s) (A) | πF ◦ g̃ ◦ ΓI is surjective} .

The open subfunctors G[s]I,Id provide an open cover of Gr
Nm(s)
p(s) when I varies among the subsets

of {1, . . . Nm(s)} containing p(s) elements [15, Lemma 8.13]. We refer to these open subfunctors

as standard open cover of Gr
Nm(s)
p(s) . Finally, for every I ⊂ {1, . . . , Nm(s)} with |I| = p(s) and

for every g ∈ pgl, we define the following open subfunctors of Quot
n,m,[`]
p(z) :

Q[`,s]
I,g (A) :=

(
H[s]

)−1 (
G[s]I,g(A)

)
∩Quot

n,m,[`]
p(z) . (7.1)

Obviously, for g = Id and I varying, the subfunctors in (7.1) cover Quot
n,m,[`]
p(z) .

8. Quasi-stable open cover of the Grassmannian

We associate to any set I ⊂ {1, . . . , Nm(s)} the set of monomials UI := {τi}i∈I ⊂ Tms and its
complement UcI in Tms . If |I| = p(s), then |UcI | = Nm(s) − p(s). Later, we will prefer to work
with a different open cover of the Quot scheme defined by considering only some special sets UI .

Lemma 8.1. Consider I = {a1, . . . , ap(s)} ⊂ {1, . . . , Nm(s)}, and assume that the monomial
module U := 〈UcI〉 ⊂ A[x]m is quasi-stable.

What is F here?

(i) F ∈ G[s]I,Id(A) if and only if it is generated as an A-module by a UcI-marked set.

(ii) If F belongs to G[s]I,Id(A), then for every s′ > s the A-module 〈F 〉s′ contains a free submodule

of rank > q(s′) generated by a 〈UcI〉 ∩ Tms′ -marked set.

Proof.

(i) If F belongs to G[s]I,Id(A), then UI is a generating set for the module A[x]ms /F , since πF ◦
Id ◦ ΓI is surjective. For every τ ∈ UcI , we consider the polynomial fτ = τ − πF (ΓI(τ)).
The module element fτ is a homogeneous marked element of A[x]m with Ht(fτ ) = τ and
τ − fτ ∈ 〈UI〉A = 〈N (U)s〉A. Hence {fτ}τ∈UcI is a UcI-marked set contained in F . Observe

that 〈fτ 〉A ⊂ F and rk(Fs) = rk〈fτ 〉, hence F = 〈fτ 〉F .
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Vice versa, let G = {fτ}τ∈UcI be the UcI-marked set generating F . Then, by Corollary 3.9,

for every τ ∈ A[x]m, there is g ∈ F|τ | such that τ−f =
∑

τ ′∈N (U)|τ |
a′τ ′ with a′ ∈ A. Hence

the A-module F generated by {fτ}τ∈Uc belongs to G[s]I,Id(A).

(ii) We denote by G(s′) the set {xδfτ fτ ∈ G, deg(xδfτ ) = s′,min(τ) > max(xδ)}. Due to the

fact that 〈G(s′)〉A ⊂ 〈F 〉s′ , the statement follows from Theorem 3.13 (iii). �

The following example shows that A[x]m/〈UcI〉 and A[x]m/〈F 〉, with F ∈ G[s]I,Id(A), in general

do not have the same Hilbert polynomial or function.

Example 8.2. In A[x] = k[x2, x1, x0], we consider UcI = {x1x2, x20} and U := 〈UcI〉 ⊂ A[x]. Let
M be the submodule of A[x] generated by f1 = x1x2 + x0x1, f2 = x20 + x0x2, which form a
UcI-marked set. The Hilbert polynomial of A[x]/U is constant, while the Hilbert polynomial of
A[x]/〈f1, f2〉 has degree 1. Hence they also do not have the same Hilbert function.

Lemma 8.3. Let (A,m,K) be a local ring and F ∈ Gr
Nm(s)
p(s) (A). Then F ∈ G[s]I,Id(A), if and only

if F ⊗A K ∈ G[s]I,Id(K).

Proof. By extension of the scalars, it is clear that F ⊗AK ∈ G[s]I,Id(K), if F ∈ G[s]I,Id(A). Therefore

we only prove the other direction.

Assume that F ⊗A K ∈ G[s]I,Id(K) and let {f τ}τ∈UcI be the UcI-marked set generating F ⊗A K.

Consider a set of polynomials {fτ}τ∈UcI ⊂ F such that the image of each fτ in K[x]ms is f τ .

We construct for F a q(s) × Nm(s) matrix MF . We order (in any way) the terms of Tms :
xα1ek1 , . . . , x

αNm(s)ekNm(s)
and the elements fτ . The j-th column of M corresponds to the term

xαjekj . The i-th row of MF corresponds to the coefficients in the i-th element in {fτ}τ∈UcI .
Considering the images of the entries in K, we obtain the analogous matrix M ′ for {f τ}τ∈UcI .

By hypothesis, the minor corresponding to Uc of this last matrix is invertible. Then the cor-
responding minor in M is also invertible, because A is local. In general, {fτ}τ∈Uc is not a
UcI-marked set. But we can obtain a UcI-marked set by performing a row reduction of M such
that the minor from above gets the identity matrix. �

Definition 8.4. For any admissible Hilbert polynomial p(z) in A[x]m, given an integer `, we
consider the integers s > `, p(s), Nm(s). We define the following sets:

• QS is the set of those quasi-stable modules in k[x]m whose minimal monomial set of
generators consists of Nm(s)− p(s) terms of degree s.
• QSp(z) is the subset of QS containing monomial modules having Hilbert polynomial p(z).

• QS`p(z) is the subset of QSp(z) containing submodules U with reg(U sat) 6 `.

• L[`,s]
p(z) is the closed subset of Gr

Nm(s)
p(s) defined by the ideal(

g �∆I | ∀ g ∈ pgl(n+ 1), ∀ 〈UcI〉 ∈ QS`p(z)
)
.

Proposition 8.5. The collection of subfunctors{
G[s]I,g | g ∈ pgl, I ⊂ {1, . . . , Nm(s)} s.t 〈UcI〉 ∈ QS

}
covers the Grassmann functor Gr

Nm(s)
p(s) .

Proof. We have to prove that, for every k-Algebra A and every F ∈ Gr
Nm(s)
p(s) (A), there exist

I ⊂ {1, . . . , Nm(s)} with 〈UcI〉 ∈ QS and g ∈ pgl such that F ∈ G[s]I,g(A) or equivalently such

that g−1 � F ∈ G[s]I,Id(A). As the question is local, it suffices to consider the case that the ring A

is local. By Lemma 8.3, we may assume that A is in fact a field.

Let F ∈ Gr
Nm(s)
p(s) (A) for a field A. Let J be the set of subsets of Tms of cardinality Nm(s)−p(s).

As in the proof of Lemma 8.3, we associate the q(s)×Nm(s) matrix MF to F , considering a set of
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generators for the module F . For every V ∈ J , let ∆V(MF ) be the minor of MF corresponding
to V ∈ J . It is obvious that there is V ∈ J such that ∆V(MF ) 6= 0.

If 〈V〉 ∈ QS, we are already done: if I ⊂ {1, . . . , Nm(s)} is such that UcI = V, then F belongs

to G[s]I,Id(A). Assume that this is not the case. Then there exists an obtruction to quasi-stability:

xµek ∈ V and j > c := min(xµ), such that xj
xµ

xc
ek /∈ 〈V〉. We denote by V̂ ∈ J the set obtained

by replacing in V the obstruction to quasi-stability xµek with xµ̂ek := xj
xµ

xc
ek.

Up to an autoreduction of F , we can assume without loss of generality, that F is generated
by a V-marked set due to the fact that ∆V(MF ) is non-zero. Proposition 6.2 guarantees that
there is a linear coordinate transformation g ∈ pgl with respect to the elementary move mc,j,a

for an a ∈ A such that F̂ = g−1 � F and F̂ is generated by a V̂-marked set. This implies that

∆V̂(M
F̂

) 6= 0. If 〈V̂〉 ∈ QS, we are done: if I ⊂ {1, . . . , Nm(s)} is such that UcI = V̂, then g−1 �F

belongs to G[s]I,Id(A). If 〈V̂〉 /∈ QS, we can repeat this construction starting from an obstruction

to stability for the module 〈V̂〉.
The claim of the proposition follows from a simple termination argument, which shows that

we finally get a V̂ ∈ J and g ∈ pgl such that there is I ⊂ {1, . . . , Nm(s)} such that UcI = V̂,

〈V̂〉 ∈ QS and g−1 � F belongs to G[s]I,Id(A). We introduce an ordering on J . Given two sets

V1,V2 ∈ J , we first sort them according to ≺TOPdegrevlex
(greatest term first) and then compare

the two sets entry by entry again with respect to ≺TOPdegrevlex
. Then V1 < V2, if there is i such

that for every j < i, the j-th entry of V1 is the same as the j-th entry of V2, while the i-th entry
of V1 is smaller than (or equal to) the i-th entry of V2 with respect to ≺TOPdegrevlex

.

Our construction gives at each recursion a set V̂ such that V̂ > V with respect to the ordering
we defined. In this way, we construct a strictly ascending chain of sets in J . Since J is a
finite set, the chain must be finite, too. Hence, our construction only stops when there are no

obstructions to quasi-stability, that is when it reaches a set V̂ such that 〈V̂〉 ∈ QS. �

Definition 8.6. A quasi-stable subfunctor of Gr
Nm(s)
p(s) is any element of the collection of sub-

functors of Proposition 8.5.

Remark 8.7. The same statement as Proposition 8.5 is proved in [1, Proposition 5.4], concerning
the Grassmannian of linear spaces of A[x]s. We emphasise that here we consider the action of pgl
on A[x]m, hence [1, Proposition 5.4] does not apply. Furthermore, the proof of Proposition 8.5

gives an algorithmic strategy to explicitly construct a g such that g−1 � F belongs to G[s]I,Id(A)

with 〈UcI〉 ∈ QS.

Corollary 8.8. For every g ∈ pgl and for every I ⊂ {1, . . . , Nm(s)} such that 〈UcI〉 ∈ QS, the

functor G[s]I,g is the functor of points of an affine scheme which we denote by G
[s]
I,g and which is

naturally isomorphic to A(Nm(s)−p(s))·p(s)
k .

Proof. This is analogous to [1, Proposition 5.4]. �

Proposition 8.9. The collection of open subschemes

{G[s]I,g | g ∈ pgl, I ⊂ {1, . . . , Nm(s)} s.t 〈UcI〉 ∈ QS`p(z)}

covers Gr
Nm(s)
p(s) \ L`,sp(z).

Proof. It suffices to recall the definitions of QS`p(z) and L
[`,s]
p(z) given in Definition 8.4. �

9. Stable cover and representability of Quot functors

We will now prove that for covering the Quot Functor with bounded regularity Quot
n,m,[`]
p(z) , it

suffices to consider those sets I for which the module 〈UcI〉 is stable, possesses the same Hilbert
polynomial p(z) and has a saturation where the regularity is bounded by `. We will divide the

proof in two steps. In Proposition 9.1, we will show that in order to cover Quot
n,m,[`]
p(z) it suffices



COMPUTING QUOT SCHEMES VIA MARKED BASES OVER QUASI-STABLE MODULES 21

to consider those I for which 〈UcI〉 is in QSp(z). In Theorem 9.5, we will prove that only those

I with reg(〈UcI〉sat) 6 ` are necessary and that such a cover actually does not depend on the
chosen degree s > ` for the embedding in the Grassmannian.

Proposition 9.1. Consider s > `. The collection of subfunctors

{Q[`,s]
I,g | g ∈ pgl, I ⊂ {1, . . . , Nm(s)} s.t 〈UcI〉 ∈ QSp(z)}

covers the Quot functor Quot
n,m,[`]
p(z) .

Proof. We consider Quot
n,m,[`]
p(z) embedded by H[s] in Gr

Nm(s)
p(s) . By Proposition 8.5, we can imme-

diately deduce that the Quot functor is covered by{
Q[`,s]
I,g | g ∈ pgl, I ⊂ {1, . . . , Nm(s)} s.t 〈UcI〉 ∈ QS

}
.

We obtain the statement by proving that Q[`,s]
I,Id(A) 6= ∅ for any I ⊂ {1, . . . , N(s)} such that

〈UcI〉 ∈ QS, if and only if actually 〈UcI〉 ∈ QSp(z). In fact, this implies that for every g ∈ pgl we

have Q[`,s]
I,g (A) 6= ∅, if and only if 〈UcI〉 ∈ QSp(z). As this is a local and set-theoretical fact, we

may assume that A is a field.

Consider now a module F ∈ Q[`,s]
I,Id(A), for I ⊂ {1, . . . , Nm(s)} such that 〈UcI〉 ∈ QS. Due to

Lemma 8.1, we know that 〈F 〉s is generated by a UcI-marked set. By Theorem 3.13, we know
that 〈F 〉s′ contains an A-vector space of the same dimension as 〈UcI〉s′ for every s′ > s. This
implies, by Theorem 3.13, that Nm(s′) − p(s′) = dim(〈F 〉s′) > dim(〈UcI〉s′). But the growth
theorem of Macaulay [19, Lem. 23] implies that dim(〈UcI〉s′) > Nm(s′) − p(s′), hence we have
equality and the Hilbert polynomial of 〈UcI〉 must be p(z). �

In order to obtain an open cover for Quot
n,m,[l]
p(z) made up of less open subsets than the one

given in Proposition 9.1, we need some preliminary results.

Proposition 9.2. Consider I ⊂ {1, . . . , Nm(s)} such that 〈UcI〉 ∈ QSp(z) and reg(〈UcI〉sat) 6 s.

Let F be an element of G[s]I,Id(A). Then F ∈ Q[r,s]
I,Id(A), if and only if for any s′ > s the A-module

〈F 〉s′ is free of rank q(s′) and generated by a 〈UcI〉 ∩ Tms′ -marked basis.

Proof. Observe that under the made hypotheses, 〈UcI〉 is stable. As the question is again local,
we may again assume that A is a local ring. We first consider the special case that A is even a
field. Let G = {fτ}τ∈UcI be the UcI-marked set generating F . For any s′ > s, we denote by G(s′)

the set {xδfτ | fτ ∈ G, deg(xδfτ ) = s′,min(τ) > max(xδ)}. It is immediate that 〈G(s)〉 ⊆ Fs.
Using the same argument as in the proof of Proposition 9.1, the dimension of both vector spaces
is q(s′). Hence they must be equal for every degree s′ and this implies via Theorem 3.13 that G
is a UcI-marked basis of F .

We generalize this result to the case that (A,m,k) is a local ring by the Nakayama lemma,

since for any s′ > s the A-module Fs′ contains the free submodule 〈G(s′)〉 of rank Nm(s′)− p(s′)
(by Theorem 3.13) and the two A/m-vector spaces Fs′ ⊗A A/m and 〈G(s′)〉 ⊗A A/m coincide, as
they have the same dimensions. �

We now easily see that the functor Q[`,`]
I,Id with 〈UcI〉 ∈ QS`p(z) is isomorphic to MfmUcI

.

Proposition 9.3. Let I ⊂ {1, . . . , Nm(`)} be such that 〈UcI〉 ∈ QS`p(z).

(i) The subfunctor Q[`,`]
I,Id is isomorphic to the marked functor MfmUcI

(ii) The subfunctor Q[`,`]
I,Id is the functor of points of an affine subscheme of the affine space

Ap(`)·q(`).

Proof. 〈UcI〉 is stable under the made hypotheses by Proposition 2.5. Item (i) is a straightforward
consequence of Proposition 9.2. Item (ii) follows from (i) and Theorem 4.1. �
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Proposition 9.4. Let U be a saturated quasi-stable module with Hilbert polynomial p(z) and

reg(U) 6 `. We denote by I [s] the set of indices defining the module U ∩ Tms . Let F = F sat be

a module in Quot
n,m,[`]
p(z) . For any s, s′ > `, the truncation 〈Fs〉 belongs to Q[`,s]

I[s],Id, if and only if

the truncation 〈Fs′〉 belongs to Q[`,s′]

I[s′],Id.

Proof. By Proposition 9.3 (i), our claim is equivalent to MfmUc
I[s]
' MfmUc

I[s′]
. For this isomor-

phism, we can repeat the arguments given in the proof of [22, Theorem 3.4 (i)]: indeed, all the
arguments given in [22] apply also in the stable case and both U ∩ Tms and U ∩ Tms′ are stable
by Lemma 2.4 (iii). �

We now prove that the modules in QS`p(z) are sufficient to cover Quot
n,m,[`]
p(z) refining the result

given in Proposition 9.1.

Theorem 9.5. Consider ` 6 s.

(i) Let U = 〈Us〉 be a quasi-stable module in QS`p(z) and let I [s] be as in Proposition 9.4. Then

Q[`,s]

I[s],g = Q[`,r]

I[r],g = Q[r,r]

I[r],g as subfunctors of Quot
n,m,[`]
p(z) .

(ii) The collection of subfunctors{
Q[`,s]
I,g | g ∈ pgl, I ⊂ {1, . . . , Nm(s)} s.t 〈UcI〉 ∈ QS`p(z)

}
(9.1)

covers the Quot functor with bounded regularity.

Proof. (i) The equality between Q[`,r]

I[r],g and Q[r,r]

I[r],g follows from Corollary 5.12. We obtain the

other equality by Proposition 9.4.
(ii) By item (i), we can take s = `. As the question is local, it suffices to consider the case that

the ring A is a field. Then Lemma 6.5 applies.
�

Corollary 9.6. The Quot functor with bounded regularity Quot
n,m,[`]
p(z) is an open subfunctor of

Quotn,mp(z).

Definition 9.7. The quasi-stable cover of Quot
n,m,[`]
p(z) is the collection of the open subfunctors

(9.1) of Theorem 9.5.

Remark 9.8. We constructed a cover of Quot
n,m,[`]
p(z) by using the quasi-stable modules in QS`p(z)

and suitable deterministic changes of coordinates. There also exists a change of coordinates
to reach a Borel-fixed position depending on p = char(k) (for short, p-Borel fixed position).
Therefore, we could repeat the statements and proofs of the present section in order to prove
(constructively) the existence of a p-Borel cover of the Quot functor, which is in general more
sparse than the quasi-stable cover of Definition 9.7. However, we prefer to consider the quasi-
stable cover because this cover is independent of the characteristic and the algorithm to reach
the stable position is cheaper.

Furthermore, in the next section we will show that it is possible to compute equations for the
open subscheme of the Quot scheme corresponding to each quasi-stable open subfunctor. The
computational cost to get such equations for open neighbourhoods of a given point of the Quot
scheme can be significantly different depending on the neighbourhood we choose. Hence it is an
advantage to have a relatively dense cover in order to choose the more convenient neighbourhood.

10. Representability of Quot functors and equations

From now on, we will only consider open subfunctors Q[`,s]
I,Id with I ⊂ {1, . . . , Nm(s)} such

that 〈UcI〉 ∈ QS`p(z). It was proved by Grothendieck that the Grassmann and Quot functors are

representable. We will now prove that the Quot functor with bounded regularity is represented
by a locally closed subscheme of the Grassmann scheme using the quasi-stable open cover and
the fact that the Quot functor is a Zariski sheaf.
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Theorem 10.1. The Quot functor with bounded regularity is the functor of points of a closed

subscheme Quot
m,[`]
p(z) of Gr

Nm(s)
p(s) \ L[`,s]

p(z) with L
[`,s]
p(z) given by Definition 8.4.

Proof. By the semicontinuity theorem for regularity, Quot
n,m,[`′]
p(z) can be considered as an open

subfunctor Quot
n,m,[`]
p(z) for any `′ < `. Furthermore, Quotn,mp(z) is a Zariski sheaf [24, Section 5.1.3].

Hence, Quot
n,m,[`]
p(z) is a Zariski sheaf, too.

By [14, Theorem VI-14], it suffices to check the representability on an open cover ofQuot
n,m,[`]
p(z) :

we choose the one given in (9.1). By Theorem 9.5 (i) and by Proposition 9.3 (ii), we immediately
conclude that the Quot functor with bounded regularity is the functor of points of a scheme. By
Proposition 8.9 and by Theorem 3.13 (viii), we obtain that the scheme representing the Quot

functor with bounded regularity is a closed subscheme of Gr
Nm(s)
p(s) \ L[`,s]

p(z). �

Corollary 10.2. The Quot functor Quotn,mp(z) is the functor of points of a scheme and it is also

a closed subscheme of Gr
Nm(s)
p(s) .

Proof. It suffices to observe that Quotn,mp(z) = Quot
n,m,[r]
p(z) and to use Theorem 10.1 noting that

L
[r,s]
p(z) = ∅ where r is the Gotzmann number of p(z). �

We will now give a constructive procedure to define an ideal H ⊂ k[∆] such that Proj(k[∆]/H) =

Quotn,mp(z) where k[∆] is the ring of Plücker coordinates for Gr
Nm(r)
p(r) . The construction of H starts

from the ideals defining the affine schemes representing the open subsets Q[r,r]
I,Id of (9.1). Since

Quotn,mp(z) = Quot
n,m,[r]
p(z) , the cover of Definition 9.7 is in this case indexed by QSp(z) = QSrp(z).

Furthermore, if U ∈ QSp(z), then Us is stable, since s > r.
For every I ⊂ {1, . . . , Nm(s)} such that 〈UcI〉 ∈ QSp(z), we denote by k[CI ]/(RI) the quotient

ring that defines the affine scheme representing Q[r,r]
I,Id (see Theorem 4.1 and Proposition 9.3).

As shown in Theorem 4.1 and Proposition 9.3, Spec(k[CI ]/(RI)) is the open subset of Quotn,mp(z)
corresponding to the locus where ∆I can be inverted. Hence, the ideal (RI) is the dehomogeni-

sation of the ideal in k[∆] that defines Q[r,r]
I,Id as a closed subscheme of Gr

Nm(r)
p(r) \ {∆I 6= 0}.

We construct an ideal hI ⊂ k[∆] starting from RI : Let GI ⊆ k[CI ][x] be the UcI-marked
set as defined in (4.1). We consider the p(r)×Nm(r)-matrix M, with columns indexed by the
terms in Tmr and rows indexed by the set UI . The columns of M contain the coefficients of

the polynomials hij such that xαiej
G

(r)
I−−→∗ hij , for every xαiej ∈ Tmr . Consider now the set of

equations

{∆J −MJ | J ⊂ {1, . . . , Nm(r)}, |J | = p(r)} (10.1)

where MJ is the minor corresponding to the columns with indices j ∈ J . Consider the set
RI ⊂ k[CI ] and compute the complete Gröbner reduction of the set RI with respect to the set
of polynomials in (10.1) using an elimination term order for the variables CI . We obtain a set
of non-homogeneous polynomials in k[∆]. We homogenise each polynomial in this set with ∆I
and take these homogeneous polynomials as generators for an ideal in k[∆] that we denote by
hI .

We define h :=
⋃
I|UcI∈QSp(z) hI . Moreover, we consider for every g ∈ pgl the set of equations

hg obtained by the action of g on the elements of h. Finally, we define the ideal

H := P ∪

( ⋃
g∈pgl

hg

)
,

where P is the ideal k[∆] containing the Plücker relations, that is Proj(k[∆]/P) = Gr
Nm(r)
p(r) .
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Theorem 10.3. Let p(z) be an admissible Hilbert polynomial for submodules of A[x]m. The

homogeneous ideal H in the ring of Plücker coordinates k[∆] of the Plücker embedding Gr
Nm(r)
p(r) ↪→

P(Nm(r)
p(r) ) defines Quotn,mp(z) as a closed subscheme of Gr

Nm(r)
p(r) .

Proof. We follow the lines of the proof of [7, Theorem 6.5] on the Hilbert scheme. For conve-

nience, we denote by Z the subscheme of Gr
Nm(r)
p(r) defined by H and by D the saturated ideal in

k[∆] that defines Quotn,mp(z). We will show that Z = Quotn,mp(z), although in general H 6= D.

As equality of subschemes is a local property, we can check the equality locally. The proof is
divided in two steps.

Step 1: For every I ⊂ {1, . . . , Nm(r)} such that 〈UcI〉 ∈ QSp(z), the ideal generated by hI

defines the affine scheme representing Q[r,r]
I,Id as closed subscheme of the scheme G

[r]
I,Id of

Corollary 8.8, representing G[r]I,Id.

Step 2: For every (closed) point F of Gr
Nm(r)
p(r) , Z and Quotn,mp(z) coincide on a neighbourhood

of 〈F 〉.
Proof of Step 1. We have to prove that for every I ⊂ {1, . . . , Nm(r)} such that 〈UcI〉 ∈ QSp(z)

and for every k-algebra A and F belonging to Gr
Nm(r)
p(r) (A), 〈F 〉 ⊂ A[x]m belongs to Q[r,r]

I,Id, if and

only if the polynomials in H vanish when evaluated at 〈F 〉. Referring to Proposition 9.2, Theorem
4.1 and Proposition 9.3, it suffices to observe that the vanishing at 〈F 〉 of the polynomials in H
is equivalent to the vanishing at 〈F 〉 of the polynomials in (RI).

Proof of Step 2. Both ideals H and D are invariant under the action of pgl: H by con-
struction and D because Quotn,mp(z) is. Since k[∆] is a Noetherian ring, we can choose generators

h1, . . . , hd of the ideal H. More precisely, we denote by gi the element in pgl such that hi ∈ hgi .
Hence, hg1 ∪ · · ·∪hgd = H. Since H is nvariant under the action of pgl, we get for every g ∈ pgl

hgg1 ∪ · · · ∪ hggd = (hg1 ∪ · · · ∪ hgd)g = Hg = H.

Using the invariance of D under the action of pgl and by Step 1, we see that if we restrict to

the open subset G
[r]
I,gg1 ∩ · · · ∩G

[r]
I,gg1 , then the ideals H and D define the same scheme, hence

Quotn,mp(z) ∩
(

G
[r]
I,gg1 ∩ · · · ∩G

[r]
I,gg1

)
= Z ∩

(
G

[r]
I,gg1 ∩ · · · ∩G

[r]
I,gg1

)
.

It only remains to prove that for every F ∈ Gr
Nm(r)
p(r) , there is I ⊂ {1, . . . , Nm(r)} such that

〈UcI〉 ∈ QS and there is g ∈ pgl such that 〈F 〉 ∈ G
[r]
I,gg1 ∩ · · · ∩G

[r]
I,gg1 .

By Proposition 8.5, there is I ⊂ {1, . . . , Nm(r)} such that 〈UcI〉 ∈ QS and there is g ∈ pgl

such that 〈F 〉 ∈ G
[r]

I,g. Since G
[r]

I,g is an open subset of Gr
Nm(r)
p(r) , an open subset of the orbit of

〈F 〉 under the action of pgl is contained in G
[r]

I,g: there is an open subset G of pgl such that

for every g′ ∈ G, g′−1 � F ∈ G
[r]

I,g, in other words F ∈ G
[r]

I,g′g. Hence, for a general g ∈ pgl,

gg1g, . . . , ggdg ∈ G and F ∈ G
[r]
I,gg1 ∩ · · · ∩G

[r]
I,gg1 as desired. �

Remark 10.4. We can rephrase the construction of the ideal H and the statement of Theorem

10.3 in order to obtain the ideal defining the scheme representing the functor Quot
n,m,[`]
p(z) as a

closed subscheme of Gr
Nm(s)
p(s) \L[`,s]

p(z): it suffices to use in the construction the set of quasi-stable

modules in QS`p(z).

11. An example: Computations on Quot22 on P1

We consider p(z) = 2, n = 1 and m = 2. This is the very first example one can think about
in order to consider a non-trivial Quot scheme which is not a Hilbert scheme. Nevertheless,
even if this is the simplest case on which we can test our methods, to our knowledge nothing is
known about this Quot scheme. In this section, we describe the construction of the ideals RI
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defining the open cover of of Definition 9.7 and the global equations defining Quot22. A detailed
description on the geometry of Quot22 can be found in [6].

We consider the scheme Quot22 parameterising the saturated submodules of A[x0, x1]
2 with

constant Hilbert polynomial 2. The Gotzmann number is r = 2, hence we will study this Quot

scheme under the embedding in Gr62. We will also study Quot
2,[1]
2 , which is the subscheme of

Gr62 \ L
1,2
2 whose functor of points is Quot

2,[1]
2 . Consider

U1 = (x21)e1 ⊕ (1)e2, U2 = (x1)e1 ⊕ (x1)e2, U3 = (1)e1 ⊕ (x21)e2.

We have QS2 = {U1, U2, U3} and QS12 = {U2}.

11.1. Global equations for Quot22 in P14. We keep the notation Ui for the embedding of the
quasi-stable module Ui in Gr62 for i = 1, 2, 3. By the procedure of Section 4, and in particular
by Theorem 4.1, we explicitely construct the affine scheme representing MfP(Ui), i ∈ {1, 2, 3}.

We construct the marked scheme on P(U1) starting from the following marked set:

f1 = (x2 − C1,1xy − C1,2y
2)e1, f2 = −(C2,1xy + C2,2y

2)e1 + x2e2,

f3 = −(C3,1xy + C3,2y
2)e1 + xye2, f4 = (−C4,1xy − C4,2y

2)e1 + y2e2.

We compute the ideal R1 obtaining

R1 = (−C1,2C3,1 + C2,2, C1,1C4,1 − C3,1 + C4,2,−C1,1C3,1 − C1,2C4,1 + C2,1,−C1,2C4,1 + C3,2)

In the same way, we can construct the ideals R2 and R3 which define the schemes representing
MfP(U2) and MfP(U3). Each of these three ideals has four generators and each of them allows
the elimination of a variable (in the sense of Gröbner theory). Hence for every i ∈ {1, 2, 3},
MfP(Ui) ' A4.

Following the construction outlined in Section 10, we can compute the ideal h in the polynomial
ring k[∆] where ∆ is the set of Plücker coordinates of Gr62, |∆| = 15. We then repeatedly apply
some random elements gi ∈ pgl on the ideal h until for some t

hg1 ∪ · · · ∪ hgt ∪ hgt+1 = hg1 ∪ · · · ∪ hgt .

By noetherianity, such a t exists and for this specific example t = 4.
Adding the Plücker relations, we obtain the ideal defining Quot22 as a closed subscheme of

P14. We can exhibit a set of generators consisting of 61 polynomials of degree 2, 3 and 4. This
Quot scheme has the Hilbert polynomial

11

12
z4 +

11

3
z3 +

67

12
z2 +

23

6
z + 1. (11.1)

Hence it is a fourfold in P14 of degree 22.

11.2. Global equations for Quot
2,[1]
2 in P14. By Theorem 9.5 (i), Quot

2,[1]
2 embeds in Gr42,

which embeds in P5. In this case, Quot
2,[1]
2 is simply the open subset A4 ' Gr42 \ L

1,1
2 . Indeed,

in this case L1,1
2 is defined by the ideal (∆3,4).

We can also compute the equations defining Quot
2,[1]
2 as an open subscheme of Gr62 \ L

1,2
2 . It

is sufficient to consider only one marked scheme, the one defined by the ideal R2 and use the
procedure described in Section 10. After homogenising the generators of R2 in k[∆], we obtain
the ideal h′. We apply four times random elements gi ∈ pgl on h′ obtaining the ideal H′ defining

Quot
2,[1]
2 as a subscheme of Gr62 \ L

1,2
2 in P14.

In this case, L1,2
2 = (∆3,6,∆1,4) and the closed scheme defined by H′, which contains the

scheme Quot
2,[1]
2 , has the Hilbert polynomial

11

12
z4 + 5z3 +

67

12
z2 +

7

2
z + 1. (11.2)

The construction of H′ is faster than that of H due to the fact that we have only one open

subset in the open cover of Quot
2,[1]
2 up to the action of pgl. Nevertheless, the ideal H′ is, by

construction, contained in the ideal H that defines Quot22 and the Hilbert polynomial (11.2) of
Proj(k[∆]/H′) is smaller than the one computed for Quot22 in (11.1). Hence Proj(k[∆]/H′) ⊃
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Quot22. Indeed, the ideal H′ defines a closed scheme that strictly contains Quot
2,[1]
2 . We have

that Proj(k[∆]/H′) \Quot
2,[1]
2 ⊂ L1,2

2 .

I would say that (11.2) is larger than (11.1)?

12. Conclusions

In this paper, we defined and investigated properties of marked bases over a quasi-stable
monomial module U ⊆ A[x]md . The family of all modules generated by a marked basis over P(U)
possesses a natural structure as an affine scheme (Theorem 4.1). In particular, we proved that
the quasi-stable module U provides upper bounds on some homological invariants of any module
generated by a P(U)-marked basis such as Betti numbers, regularity or projective dimension
(Corollary 5.8).

We exploited these properties and constructions to obtain local and global equations of Quot
schemes and of special loci of them, namely those given by an upper bound on the Castelnuovo-
Mumford regularity of a module. Indeed, we proved that we have an open cover of a Quot
scheme (resp. of its locus defined by an upper bound on the regularity) whose open subsets are
suitable marked schemes over a quasi-stable module (Theorem 9.5). Starting from this open
cover, we obtained global equations defining a Quot scheme (resp. its locus defined by an upper
bound on the regularity) as a closed (resp. locally closed) subscheme of a suitable projective
space (Theorem 10.3).

In the future, inspired by Corollary 5.8, we intend to investigate other loci of a Quot scheme,
given by bounds on other numerical invariants of a module, such as projective dimension or
extremal Betti numbers. In order to obtain similar results to those for the locus with bounded
regularity, we will need also other tools, since a preliminary study showed, for instance, that
the locus given by a bound on projective dimension is in general not an open subset of a Quot
scheme.

We will also investigate some explicit examples of Quot schemes, as we are doing in [6], in
order to have a better comprehension of the geometry of a Quot scheme using explicit equations
defining it, locally or globally.
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[15] Ulrich Görtz and Torsten Wedhorn. Algebraic Geometry I. Advanced Lectures in Mathematics. Vieweg +
Teubner, Wiesbaden, 2010.

[16] Alexander Grothendieck. Techniques de construction et théorèmes d’existence en géométrie algébrique. IV.
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