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Abstract. We show that the concept of strong Noether position for a poly-

nomial ideal I CP is equivalent to δ-regularity and thus related to Pommaret

bases. In particular, we provide explicit Pommaret bases for two of the ideal se-
quences used in Hashemi’s definition of strong Noether position and alternative

proofs for a number of his statements. Finally, we show that one consequence

of δ-regularity is that any Pommaret basis contains a system of parameters and
we present an algorithm for checking whether the factor ring P/I is Gorenstein

via a socle computation.

1. Introduction

Bermejo and Gimenez [2] introduced the concept of a strong Noether normal-
isation in their work on the Castelnuovo-Mumford regularity and related it to a
particular class of monomial ideals which they termed ideals of nested type. This
concept may be considered as an effective notion of genericity, as almost any linear
change of variables puts an ideal into strong Noether position and Bermejo and
Gimenez presented algorithmically verifiable criteria for a monomial ideal to be of
nested type. Recently, Hashemi [11] introduced an alternative approach to strong
Noether position for arbitrary polynomial ideals based on certain ideal sequences
which is closely related to the results of Bermejo and Gimenez when restricted to
monomial ideals.

In the theory of Pommaret bases [22], a special class of Gröbner bases with
additional combinatorial properties, another effective notion of genericity appears,
δ-regularity, and one introduces the class of quasi-stable monomial ideals related
to it. It was shown in [22] that every quasi-stable ideal is of nested type and vice
versa.1 Thus, in principle, it is already clear that strong Noether position and
δ-regularity are equivalent notions. The main purpose of this article is to make
this connection more explicit by showing how many results of Hashemi [11] (and
of Bayer and Stillman [1] on whom Hashemi’s work founds) follow naturally and
effectively from the theory of Pommaret bases.

In addition, we present two new applications of δ-regular variables. We first
show that each homogeneous Pommaret basis contains a maximal homogeneous
system of parameters. This result is a simple consequence of the fact that any
Pommaret basis induces a Noether normalisation. Then we consider the question
whether the factor ring is Gorenstein. It was already demonstrated in [22] that
one can immediately decide with a Pommaret basis whether it is Cohen-Macaulay.

2000 Mathematics Subject Classification. Primary 13P10 Secondary 13F20, 14Q20, 68W30.
1In the literature, further names for the same class of monomial ideals appear like ideals of

Borel type [14] or weakly stable ideals [3].
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Now we show that if this is the case one can also easily determine the dimension of
the socle and thus the type of a Cohen-Macaulay ring.

Throughout this article, P = k[X] denotes a polynomial ring in the variables
X = {x1, . . . , xn} over an infinite field k of arbitrary characteristic and 0 6= I C P
a proper homogeneous ideal. When considering bases of I, we will always assume
that these are homogeneous, too. We will denote by A the factor ring P/I and, if
some term order has been chosen, by A′ the monomial factor ring P/ lt I.

In order to be consistent with our previous works [21, 22] on Pommaret bases,
we will use a non-standard convention for the degree reverse lexicographic order:
given two arbitrary terms xµ, xν of the same degree, we define xµ ≺degrevlex x

ν if the
first non-vanishing entry of µ− ν is positive. Compared with the usual convention,
this corresponds to a reverting of the numbering of the variables in X. Thus for a
comparison of our definitions and results with the ones appearing in the literature,
one must at many places perform such a reversion.

In the next section we briefly recall the basic properties of Pommaret bases
and the definition of δ-regularity. Section 3 provides the relationship to Hashemi’s
concept of strong Noether position, whereas Section 4 is concerned with various
notions of (stabilised) regularity and their interconnection. The following section
discusses maximal systems of parameters and an algorithmic test whether the factor
ring A is Gorenstein. Finally, some conclusions are given.

2. Pommaret Bases and δ-Regularity

Pommaret bases form a special class of Gröbner bases with additional combina-
torial properties making them particularly useful for applications in commutative
algebra and algebraic geometry. They represent a special case of the involutive
bases introduced by Gerdt and collaborators [8, 9] (see [21] for a general survey on
involutive bases and their computation). The algebraic theory of Pommaret bases
was developed in [22] (see also [23, Chpts. 3-5]).

Given an exponent vector µ = [µ1, . . . , µn] 6= 0 (or the term xµ or a polynomial
f ∈ P with lt f = xµ for some fixed term order), we call min {i | µi 6= 0} the class
of µ (or xµ or f), denoted by clsµ (or clsxµ or cls f). Then the multiplicative
variables of xµ or f are XP (xµ) = XP (f) = {x1, . . . , xclsµ}. We say that xµ is an
involutive divisor of another term xν , if xµ | xν and xν−µ ∈ k[x1, . . . , xclsµ].

Consider now a polynomial ideal I C P generated by some finite set H ⊂ P.
The fundamental idea underlying Pommaret bases is the following “constrained
generation property”: if H is a Pommaret basis of I, then one can obtain any
element of I by considering only those linear combinations where each generator
h ∈ H is multiplied by a polynomial in the subring k[XP (h)].

Definition 2.1. Assume first that the set H consists only of terms so that I is a
monomial ideal. We call H a weak Pommaret basis of I, if

(2.1) 〈H〉P =
∑
h∈H

k[XP (h)] · h = I .

It is a (strong) Pommaret basis of I, if in addition the sum in (2.1) is direct (in
this case each term xν ∈ I has a unique involutive divisor xµ ∈ H). A polynomial
set H is a weak Pommaret basis of the polynomial ideal I for the term order ≺, if
the leading terms ltH form a weak Pommaret basis of the leading ideal lt I. It is
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a (strong) Pommaret basis, if all elements of H possess distinct leading terms and
ltH is a strong Pommaret basis of lt I.

Remark 2.2. Note that our definition of multiplicative variables implies a special re-
lationship between the degree reverse lexicographic order ≺degrevlex and Pommaret
bases. Given an arbitrary finite set F ⊂ P of homogeneous polynomials, we always
obtain the largest number of multiplicative variables, if we use the degree reverse
lexicographic order. The reason lies in the well-known characterisation of this order
(see e. g. [23, Lemma A.1.8] for an explicit proof) as the only degree compatible
order such that for any homogeneous polynomial f and any index 1 ≤ k ≤ n we
have the equivalence

(2.2) f ∈ 〈x1, . . . , xk〉 ⇐⇒ lt f ∈ 〈x1, . . . , xk〉 .

The use of the degree reverse lexicographic order and this characterisation of it is
crucial for several of our results.

Pommaret bases are non-trivial already in the monomial case. Obviously, even
a weak Pommaret basis is automatically a Gröbner basis for the given term order.
One can show that any weak Pommaret basis can be transformed into a strong one
by a simple elimination process. A key property of (strong) Pommaret bases is the
characterisation via involutive standard representations; note that in contrast to
ordinary Gröbner bases we obtain here unique representations.

Proposition 2.3 ([21, Thm. 5.4]). The finite set H ⊂ I is a strong Pommaret basis
of the ideal I C P for the term order ≺, if and only if every polynomial 0 6= f ∈ I
possesses a unique involutive standard representation f =

∑
h∈H Phh where each

coefficient Ph ∈ k[XP (h)] satisfies lt (Phh) � lt (f) if it does not vanish.

The following result is an analogue to Buchberger’s criterion for Gröbner bases.
It provides us with a simple test whether a given set is a Pommaret basis and also
builds the foundation of an algorithm for the construction of Pommaret bases.

Proposition 2.4 ([21, Cor. 7.3]). Let H be a finite set of polynomials and ≺ a
term order such that no leading term in ltH is an involutive divisor of another
one. The set H is a Pommaret basis of the ideal 〈H〉 with respect to ≺, if and only
if for every h ∈ H and every non-multiplicative index clsh < j ≤ n the product xjh
possesses an involutive standard representation with respect to H.

Not every ideal I C P possesses a finite Pommaret basis. A simple counter
example is the monomial ideal I = 〈x1x2〉Ck[x, y]: all terms contained in I are of
class 1 and hence only the infinite set {x1x

k
2 | k ≥ 1} involutively generates I. One

can show [22, Sect. 2] that this is solely a problem of the used variables X; after a
suitable linear change of variables X̃ = AX with a non-singular matrix A ∈ kn×n
the transformed ideal ĨC P̃ = k[X̃] has a finite Pommaret basis (for the same term
order). One speaks of the problem of δ-regularity of the used variables.2

Definition 2.5. The variables X are δ-regular for the ideal I C P and the term
order ≺, if I possesses a finite Pommaret basis for ≺.

2This is the only point where we need the assumption that k is an infinite field. In the case of
a small finite field, the construction of δ-regular variables might require a field extension.



4 WERNER M. SEILER

In [22] a method (originating in [7, 13]) is presented to detect effectively whether
given variables are δ-singular and, if this is the case, to produce deterministically
δ-regular variables. Furthermore, it is proven there that generic variables are δ-
regular so that one can also employ probabilistic approaches although these are
usually computationally disadvantageous.

It seems to be rather unknown that Serre implicitly presented already in 1964
a version of δ-regularity. In a letter appended to [10], he introduced the notion
of a quasi-regular sequence and related it to Koszul homology.3 Let V be a finite-
dimensional vector space and M a finitely generated graded SV-module. A vector
v ∈ V is called quasi-regular at degree q for M, if vm = 0 for an m ∈ M implies
m ∈ M<q. A sequence (v1, . . . , vk) of vectors vi ∈ V is quasi-regular at degree q
for M, if each vi is quasi-regular at degree q for M/〈v1, . . . , vi−1〉M.

Given a basis X of V, we can identify SV with the polynomial ring P = k[X].
Then it is shown in [12, Thm. 5.4] (see also [20, Thm. 5.2], [23, Thm. 6.3.2]) that
the variables X are δ-regular for a homogeneous ideal ICP and the degree reverse
lexicographic order, if and only if they form a quasi-regular sequence for the factor
ring A at degree reg I (and not at any lower degree).

For monomial ideals it is in general useless to transform to δ-regular variables,
as the transformed ideal is no longer monomial. Hence it is a special property of
a monomial ideal to possess a finite Pommaret basis: such an ideal is called quasi-
stable. The following theorem provides several purely algebraic characterisations of
quasi-stability independent of Pommaret bases. It combines ideas and results from
[1, Def. 1.5], [2, Prop. 3.2/3.6], [14, Prop. 2.2] and [22, Prop. 4.4].

Theorem 2.6. Let ICP be a monomial ideal and D = dimA. Then the following
statements are equivalent.

(i) I is quasi-stable.
(ii) The variable x1 is not a zero divisor for P/Isat and for all 1 ≤ k < D the

variable xk+1 is not a zero divisor for P/〈I, x1, . . . , xk〉sat.
(iii) We have I : x∞1 ⊆ I : x∞2 ⊆ · · · ⊆ I : x∞D and for all D < k ≤ n an

exponent ek ≥ 1 exists such that xek

k ∈ I.
(iv) For all 1 ≤ k ≤ n the equality I : x∞k = I : 〈xk, . . . , xn〉∞ holds.
(v) For every associated prime ideal p ∈ Ass(A) an integer 1 ≤ j ≤ n exists

such that p = 〈xj , . . . , xn〉.
(vi) If xµ ∈ I and µi > 0 for some 1 ≤ i < n, then for each 0 < r ≤ µi and

i < j ≤ n an integer s ≥ 0 exists such that xsjx
µ/xri ∈ I.

(vii) I and all its primary components are in Noether position.

It should be noted that the properties (iii) and (iv) can be effectively verified
in a straightforward manner, so that simple algorithmic tests for quasi-stability
exist. Property (vi) explains the terminology “quasi-stable”, as it represents a
generalisation of the classical notion of a stable ideal (a monomial ideal is stable,
if and only if already its minimal basis is a Pommaret basis [15, Lemma 2.13]).
δ-Regularity of the used variables implies for arbitrary polynomial ideals I C P

properties which typically hold only generically. In particular, if the variables are
δ-regular, then the ideal is in Noether position. Note furthermore that the following

3Later, quasi-regularity was rediscovered by Schenzel et al. [17] under the name filter-regularity.

It is amusing to note that in the same letter Serre already described the Eisenbud-Goto criterion
for q-regularity (found in 1984 [5]) as a “curiosité”.



EFFECTIVE GENERICITY, δ-REGULARITY AND STRONG NOETHER POSITION 5

results entail that in δ-regular variables A is Cohen-Macaulay, if and only if A′ is
Cohen-Macaulay, too.

Theorem 2.7 ([22, Cor. 3.18, Prop. 3.19, Prop. 4.1]). Let the variables X be δ-
regular for the ideal I CP and the term order ≺. Let H be a Pommaret basis of I
for this order.

(i) If D = dimA, then {x1, . . . , xD} is the unique maximal strongly indepen-
dent set modulo I.

(ii) The restriction of the canonical map P → A to the subring k[x1, . . . , xD]
defines a Noether normalisation.

(iii) If d = minh∈H clsh and ≺ is the degree reverse lexicographic order, then
x1, . . . , xd−1 is a maximal A-regular sequence and thus depthA = d− 1.

We denote by hilb I the Hilbert regularity of I, i. e. the smallest degree from
which on the Hilbert function and the Hilbert polynomial of I coincide, and by
reg I the Castelnuovo-Mumford regularity of I. As usually, the saturation of I is
the ideal Isat = I : m∞ with m = 〈x1, . . . , xn〉 and the satiety sat I is the lowest
degree from which on the ideals I and Isat coincide. Note that all these quantities
are invariant under linear transformations and hence in the sequel we may assume
without loss of generality that we are in δ-regular variables for the chosen term
order. Then most of them can be easily read off from a Pommaret basis (for any
finite set F ⊂ P, we denote by degF the maximal degree of an element of the set).

Theorem 2.8 ([22, Thm. 9.2, Prop. 10.1, Cor. 10.2]). Let the variables X be δ-
regular for the ideal ICP and ≺degrevlex and let H be the corresponding Pommaret
basis. We denote by H1 = {h ∈ H | clsh = 1} the subset of generators of class 1.

(i) reg I = reg lt I = degH.
(ii) Let H̃1 = {h/xdegx1

lth

1 | h ∈ H1}. Then the set H̄ = (H \ H1) ∪ H̃1 is
a weak Pommaret basis of Isat. Thus Isat = I : x∞1 and the ideal I is
saturated, if and only if H1 = ∅.

(iii) sat I = degH1.

The first equality in Part (i) and the last sentence in Part (ii) are statements
which were already independently proven by Bayer and Stillman [1, Thm. 2.4(b)]
and Bermejo and Gimenez [2, Cor. 2.4], respectively. We obtain them here as simple
by-products of the properties of a Pommaret basis for ≺degrevlex.

3. Strong Noether Position

Following Hashemi [11], we introduce three sequences of ideals associated with
a given polynomial ideal ICP. We first set I(0) = Ī(0) = Î(0) = I and then define
for k = 1, . . . , n the ideals

I(k) = I + 〈x1, . . . , xk〉E P ,(3.1a)

Ī(k) = I|x1=···=xk=0 ∩ Pk E Pk ,(3.1b)

Î(k) =
(
Î(k−1) : x∞k

)
xk=0

∩ Pk E Pk ,(3.1c)

where Pk = k[xk+1, . . . , xn].

Lemma 3.1. Let the variables X be δ-regular for the ideal ICP and ≺degrevlex and
let H be the corresponding Pommaret basis of I. Then the variables {xk+1, . . . , xn}
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are δ-regular for the ideals Ī(k), Î(k)EPk and ≺degrevlex. A strong Pommaret basis
of Ī(k) is given by the set

(3.2) H̄ =
{
h|x1=···=xk=0 | h ∈ H ∧ clsh > k

}
and a weak Pommaret basis of Î(k) ⊆ Pk by the set

(3.3)
Ĥ =

{
h|x1=···=xk=0 | h ∈ H ∧ clsh > k + 1

}
∪
{

(h/x
degxk

lth

k )|x1=···=xk=0 | h ∈ H ∧ clsh = k
}
.

Proof. For the ideals Ī(k), the assertions follow immediately from the leading terms
of the generators in H and the fact that involutive standard representations remain
valid after setting some variables to zero so that Proposition 2.4 can still be applied.
For the ideals Î(k), the assertions are a consequence of Theorem 2.8. �

In general, the ideals I(k) for k > 0 do not possess finite Pommaret bases, as
the addition of a generator of class 1 to an ideal with a depth greater than 2 makes
automatically the variables δ-singular for the augmented ideal. An exception are
zero-dimensional ideals I for which any set of variables is δ-regular. This fact also
implies together with Theorem 2.7 that for k ≥ dimA a finite Pommaret basis
exists (namely x1, . . . , xk together with all generators of a class greater than k).

Bermejo and Gimenez [2, Prop. 3.6] introduced for monomial ideals the notion of
a strong Noether normalisation as a simultaneous normalisation of the ideal itself
and all its primary components and showed that it is equivalent to quasi-stability
(cf. Part (vii) of Theorem 2.6). Hashemi [11, Def. 2.4-6, Thm. 2.19] proposed a
seemingly very different definition applicable to arbitrary ideals.

Definition 3.2. The ideal ICP is in strong Noether position, if one of the following
three equivalent conditions is satisfied:

(i) (I(k))sat = I(k) : x∞k+1 for 0 ≤ k < dimA;
(ii) (Ī(k))sat = Ī(k) : x∞k+1 for 0 ≤ k < dimA;

(iii) (Î(k))sat = Î(k) : x∞k+1 for 0 ≤ k < dimA.

Hashemi [11, Prop. 2.11] proved that an ideal I is in strong Noether position,
if and only if its leading ideal lt I with respect to the degree reverse lexicographic
order is in strong Noether position. As the definition of a Pommaret basis is also
based on the leading ideal, it suffices for the proof of the following result to consider
only monomial ideals.

Proposition 3.3. The ideal I CP is in strong Noether position, if and only if the
used variables are δ-regular for it and the degree reverse lexicographic term order.

Proof. As explained above, it suffices to consider the monomial case. Assume first
that the variables are δ-regular for I. Lemma 3.1 provides us with Pommaret bases
for all ideals Ī(k) and Î(k). It follows immediately from Part (ii) of Theorem 2.8
that the Conditions (ii) and (iii) of Definition 3.2 are satisfied.

For the converse, let I satisfies Condition (i) of Definition 3.2. Obviously, it
implies that x1 is not a zero divisor for P/Isat and that for all 1 ≤ k < dimA the
variable xk+1 is not a zero divisor for P/〈I, x1, . . . , xk〉sat. According to Part (ii) of
Theorem 2.6, this property is equivalent to the variables being δ-regular for I. �



EFFECTIVE GENERICITY, δ-REGULARITY AND STRONG NOETHER POSITION 7

Thus for monomial ideals being in strong Noether position is equivalent to being
quasi-stable. Hashemi [11] proposed to exploit Condition (iv) of Theorem 2.6 for
an effective test of quasi-stability; Bermejo and Gimenez [2] recommended in their
work on the Castelnuovo-Mumford regularity Condition (iii). Indeed, as already
mentioned above, both conditions are straightforward to verify and the required
computations are not overly expensive. More precisely, Hashemi [11, Algo. 1] gives
an efficiency improved test requiring even less computations. Adapting it to our
conventions (and correcting some typos in [11]), we obtain Algorithm 1.

Algorithm 1 Test for quasi-stability of monomial ideal I
Input: minimal basis B of I
Output: dimension d of A if I quasi-stable; −∞ otherwise

1: q ← degB
2: d← min {` | ∀` ≤ j ≤ n : xqj ∈ I} − 1
3: for all xµ ∈ B such that k = clsµ ≤ d do
4: for j = k + 1 to d do
5: if xqj · xµ/x

µk

k /∈ I then
6: return −∞
7: end if
8: end for
9: end for

10: return d

The main point in Algorithm 1 is that for analysing I : x∞k we do not consider
all generators contained in B but only those of class k which, of course, consider-
ably reduces the costs. However, Hashemi [11] does not provide any proof for the
correctness of this improvement. The next result closes this gap and implies that
Algorithm 1 is indeed correct.

Lemma 3.4. Let I be a monomial ideal, B its minimal basis and q = degB. The
ideal I is quasi-stable, if and only if for each term xµ ∈ B and for each variable xj
with j > ` = clsµ the term xqj · xµ/x

µ`

k lies in the ideal I.

Proof. One direction is of course trivial: if the given ideal I is quasi-stable, then
by Part (iii) of Theorem 2.6 I : x∞k = I : 〈xk, . . . , xn〉∞ implying our claim, as
obviously ∞ can here be replaced by q.

For the other direction we must show the following: let xµ ∈ B be a minimal
generator of class `; then for any j > k > ` the term t = xqj ·xµ/x

µk

k lies in I under
the made assumptions. Indeed, then I : x∞k ⊆ I : 〈xk, . . . , xn〉∞. By assumption,
we know that xqj · xµ/x

µ`

` ∈ I. Hence, B contains a term xν with cls ν = ˜̀ > `

such that νi ≤ µi for all i 6= j. If νj = 0, then xν | t and hence t ∈ I as required.
Otherwise, our assumption implies the existence of a generator xλ ∈ B dividing
xqj · xν/x

ν˜̀

˜̀ and satisfying clsλ > ˜̀ and λi ≤ νi for all i 6= j. Again we are done if
λj = 0 and otherwise we iterate. As we consider each time a generator of higher
class, we must find after a finite number of steps a divisor. �

[22, Sect. 2] presents another approach to the question of δ-regularity based on a
comparison of the multiplicative variables obtained with the above mentioned rule
used for Pommaret bases and an other rule used for Janet bases (see [21, Sect. 2]
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for the definition of the Janet division): it signals problems with the δ-regularity, if
there are more Janet than Pommaret multiplicative variables. This approach is not
only very cheap, its main advantage lies in the fact that it provides us with concrete
information how the variables should be transformed, if they are not δ-regular.

The following result relates indirectly the different approaches. [22, Prop. 4.8]
contains a proof using Condition (iii) of Theorem 2.6 and thus providing a link to
the work by Bermejo and Gimenez [2]. Here we present an alternative proof based
on Condition (ii) and thus make explicit the relationship to Hashemi’s results.

Proposition 3.5. Let ICP be a monomial ideal and B a finite monomial basis of
it where no generator is an involutive divisor of another one. If the ideal I is not
quasi-stable, then for at least one generator in the basis B a variable exists which
is Janet but not Pommaret multiplicative.

Proof. If I is not quasi-stable, then by Lemma 3.4 the basis B contains terms xν

with the property: if k = cls ν, then xν/xνk

k ∈ (I : x∞k ) \ (I : 〈xk, . . . , xn〉∞). Let
xµ ∈ B be among these a generator of minimal class k. If some j > k is Janet
multiplicative for xµ, then we are done.

Otherwise, there must exist for every j > k a generator xν
(j) ∈ B with ν(j)

` = µ`

for all ` > j and ν
(j)
j > µj in order to render xj not Janet multiplicative for xµ.

If several generators with this property appear in B, then we choose one with the
maximal value of ν(j)

j . Because of this choice, the variable xj is Janet multiplicative

for xν
(j)

and if cls ν(j) < j, then we are done, as now the generator xν
(j)

has the
required properties. If cls ν(j) = j, then we reach a contradiction, as in this case
xν

(j)
divides the term xµ/xµk

k entailing that it even lies in I. �

4. Regularities

We already mentioned above three different notions of regularity for a homoge-
neous ideal ICP: the Hilbert regularity hilb I, the Castelnuovo-Mumford regularity
reg I and the satiety sat I. In this section we study some relations between these
notions. The first result is well-known. We provide here a novel proof of it using
Pommaret bases.4

Proposition 4.1. Any ideal I C P satisfies reg I = max {sat I, reg Isat}.

Proof. Without loss of generality, we may assume that we are using δ-regular vari-
ables for ≺degrevlex and thus the existence of a Pommaret basis H for this order.
Theorem 2.8 then immediately implies (with the there introduced notations) the
inequalities

sat I = degH1 ≤ degH = reg I ,(4.1)

reg Isat ≤ deg H̄ ≤ degH = reg I .(4.2)

This proves reg I ≥ max {sat I, reg Isat}.
For the converse inequality, we first note that in δ-regular variables all involved

quantities are already determined by the leading ideal and thus we may restrict
to a monomial ideal I. If sat I = reg I, then we are done. Therefore assume

4In [22] it was falsely claimed that the equality follows immediately from Theorem 2.8. How-

ever, as one can see in our proof, this argument yields only an inequality. Now we close this gap
by also proving the converse inequality.
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that sat I < reg I: we will show that it is not possible that reg Isat < reg I.
Consider an element hmax ∈ H with deg hmax = degH; by assumption, we must
have clshmax > 1. The inequality reg Isat < reg I may only hold, if H1 contains an
element h1 = x`1h̄1 with h̄1 an involutive divisor of hmax: otherwise hmax was still a
member of the Pommaret basis of Isat (by Theorem 2.8) and thus reg Isat = reg I.

It follows from our assumptions that h̄1 is a proper divisor of hmax. Thus we can
find a variable xj with j > 1 which divides hmax/h̄1. Since xj is non-multiplicative
for h1, the Pommaret basis H must contain an involutive divisor h2 of xjh1. If
clsh2 = 1, then either deg h2 > deg h1 (if h2 = xjh1) or degx1

h2 < degx1
h1. In

both cases we may replace h1 by h2 and start again; after a finite number of such
restarts we will have clsh2 > 1 by degree reasons. But if clsh2 > 1, then h2 | x`1hmax

implies h2 | hmax and thus the iteration yields an involutive divisor h2 ∈ H of hmax

in contradiction to the definition of a strong involutive basis. Therefore we must
have reg Isat = reg I. �

For zero-dimensional ideals one obtains a stronger statement which was already
given by Bayer and Stillman [1, Lemma 1.7] with a proof using local cohomology.

Proposition 4.2. Let I C P be a zero-dimensional ideal. Then for any q ∈ N

(4.3) sat I ≤ q ⇐⇒ reg I ≤ q ⇐⇒ Iq = Pq .

Consequently, we find the equalities

(4.4) reg I = reg lt I = sat I = sat lt I .

Proof. For a zero-dimensional ideal I any variables are δ-regular. Theorem 2.8
implies that the equalities reg I = reg lt I and sat I = sat lt I hold for any ideal in
δ-regular variables. Again by Theorem 2.8 (and with the notations used there), all
other assertions boil down to the simple statement degH = degH1.

The assumption that I is zero-dimensional implies that H1 6= ∅ and that ltH1

contains a term xq11 . Let xµ ∈ ltH be a term of maximal degree and assume that
k = clsµ > 1. As the term xµ̄ = xq11 · xµ/xk obviously lies in lt I, it must have
an involutive divisor xν ∈ H. If cls ν > 1, then xν is also an involutive divisor of
xµ which contradicts the assumption that H is a strong Pommaret basis. Hence
cls ν = 1 (and thus xν ∈ ltH1) implying that xν = x`1 · xµ/xk for some ` ≥ 1. But
this form immediately entails that degH1 ≥ deg xν ≥ deg xµ = degH ≥ degH1

and therefore the claimed equality. �

Bayer and Stillman [1, Def. 1.5] call a linear form y ∈ P1 generic, if it is not a
zero divisor on P/Isat. Comparing with Theorem 2.6(ii), we see that this property
is equivalent to the fact that y may be used as x1 in a δ-regular set of variables.
They further proved via local cohomology the following statement [1, Lemma 1.8]
(according to Bayer and Stillman, it is already implicitly contained in [5]).

Proposition 4.3. Let y ∈ P1 be generic for the ideal I C P. Then for any q ∈ N

(4.5) reg I ≤ q ⇐⇒ sat I ≤ q ∧ reg 〈I, y〉 ≤ q .

Proof. We choose variables with x1 = y and which are δ-regular for ≺degrevlex. Let
H be the corresponding Pommaret basis of I. Then it follows from Theorem 2.8
that reg I = degH and sat I = degH1 (resp. sat I = 0 if H1 = ∅). We claim that
reg 〈I, y〉 = deg (H \H1) which implies our assertion.
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If H1 6= ∅, then the set (H \ H1) ∪ {x1} is the Pommaret basis of 〈I, y〉 and
Theorem 2.8 entails our claim. Note that in this case we may have reg 〈I, y〉 < reg I,
if all elements of maximal degree in H are of class 1.

If H1 = ∅, then it follows immediately from Buchberger’s first criterion that
H|x1=0 ∪{x1} is a Gröbner basis of 〈I, y〉. We write H|x1=0 = {h1, . . . , hr} and set
h0 = x1. Denote by e0, . . . , er the standard basis of Pr+1. We obtain by Schreyer’s
theorem [18] a Gröbner basis of the first syzygy module Syz (h0, . . . , hr) consisting
of the syzygies Sij induced by the S-polynomials S(hi, hj). The syzygies stemming
from h0 are all of the form S0i = x1ei−hie0 and these are the only ones containing
a term in position e0. According to the induced term order used in the Schreyer
theorem, we find lt S0i = lt (hi)e0 and hence these syzygies do not affect the further
construction of a free resolution of 〈I, y〉. Hence, beyond the first syzygy module, I
and 〈I, y〉 have isomorphic resolutions, as setting x1 = 0 does not affect any leading
terms in the resolution. But this implies in our case that reg I = reg 〈I, y〉. �

The following results are also well-known; compared with [11, Lemma 5.5/6], we
provide simpler proofs. The first one asserts that the Hilbert regularity shows the
same behaviour with respect to saturation as the Castelnuovo-Mumford regularity.

Proposition 4.4. Any ideal I C P satisfies hilb I = max {sat I,hilb Isat}.

Proof. We have Iq = Isat
q for any degree q ≥ sat I and a strict inclusion for any

lower degree. If hilb I ≤ sat I, then trivially hilb Isat = sat I, and if hilb I ≥ sat I,
then obviously hilb Isat = hilb I. �

Proposition 4.5. Any ideal I C P satisfies hilb I ≤ reg I.

Proof. The claim follows trivially from the fact that the Hilbert function of the
truncated ideal I≥reg I is polynomial5 which in turn is a simple consequence of the
fact that I≥reg I possesses a linear resolution [5] (see [22, Thm. 9.10] for a proof
based on Pommaret bases). �

Hashemi [11, Def. 4.5] introduced stabilised regularities as the maximal regular-
ities of the ideals I(k). As all the considered regularities actually depend on the
factor ring P/I(k) ∼= Pk/Ī(k), we can equivalently define them via the ideals Ī(k).
This approach has the advantage that for the latter ideals, Pommaret bases are
given by Lemma 3.1 and we can thus directly apply the results of [22]. It will turn
out that Hashemi’s main result arises now as a simple corollary.

Definition 4.6. The stabilised Hilbert regularity, stabilised Castelnuovo-Mumford
regularity and the stabilised satiety, respectively, of the homogeneous ideal I C P
of dimension D are given by

hilb I = max {hilb Ī(k) | 0 ≤ k ≤ D}(4.6a)

reg I = max {reg Ī(k) | 0 ≤ k ≤ D}(4.6b)

sat I = max {sat Ī(k) | 0 ≤ k ≤ D}(4.6c)

The following result is to a large extent just [11, Thm. 4.17]. However, we do
not only provide a much shorter proof, but based on the results in [22] we can also
replace the one inequality left by Hashemi by an equality.

5In the context of differential equations an explicit expression is e. g. given in [19].
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Theorem 4.7. Let the variables X be δ-regular for the ideal I C P and ≺degrevlex

and let H be the corresponding Pommaret basis. Then

(4.7) degH = reg lt I = reg I = reg I = sat I = hilb I .

Proof. The first two equalities are just Theorem 2.8(i). From the Pommaret bases
given in Lemma 3.1 and again from Theorem 2.8, it follows that

(4.8)
reg Ī(k) = max {deg h | h ∈ H ∧ clsh ≥ k + 1} ,

sat Ī(k) = max {deg h | h ∈ H ∧ clsh = k + 1} ,

which implies all equalities except the last one. However, Propositions 4.4 and 4.5
entail for any ideal J the inequalities satJ ≤ hilbJ ≤ regJ . Since we know
already sat I = reg I, also hilb I must have the same value. �

5. Systems of Parameters

Recall that if D is the dimension of ICP, then a maximal system of parameters
consists of c = n−D elements f1, . . . , fc ∈ I such that the ideal Ĩ = 〈f1, . . . , fc〉 has
the same dimension. Obviously, this condition is equivalent to f1, . . . , fc forming
a P-regular sequence in I and Ĩ is then a complete intersection. Such systems
of parameters are important for a number of computational tasks in commutative
algebra like the determination of a primary decomposition of I (see e. g. [4]). The
usual approach to their construction consists of taking generic linear combinations
of ideal generators and thus faces similar problems as the determination of δ-regular
variables via random transformations. The following result shows that a Pommaret
basis always contains a system of parameters.

Proposition 5.1. Let I C P be an ideal of codimension c. Assume that the used
variables X are δ-regular for I and some term order6 ≺ and let H be the corre-
sponding Pommaret basis. Then H contains elements hi for i = 1, . . . , c such that
lthi = xei

n−i+1 for some integers ei ≥ 1 and these elements define a maximal system
of parameters for I.

Proof. The first assertion follows immediately from Theorem 2.6(iii), since, by def-
inition of a Pommaret basis for the ideal I, the leading ideal lt I is a quasi-stable
ideal with Pommaret basis ltH.

For the second assertion, we note that obviously the leading terms of h1, . . . , hc
are pairwise relatively prime. Hence, by Buchberger’s first criterion, these poly-
nomials form a Gröbner basis of the ideal J ⊆ I they generate. Furthermore, by
Schreyer’s theorem, the syzygy module Syz (h1, . . . , hc) is generated by the trivial
syzygies Sij = hjei − hiej .

Assume now that for some index 1 ≤ k ≤ c a polynomial 0 6= f ∈ P exists such
that fhk ∈ 〈h1, . . . , hk−1〉. This relation induces a syzygy S ∈ Syz (h1, . . . , hk) ⊆
Syz (h1, . . . , hc) with a component fek. By the observation above, Syz (h1, . . . , hk)
is generated by the syzygies Sij with 1 ≤ i < j ≤ k implying that f ∈ 〈h1, . . . , hk−1〉.
But this fact entails that hk is not a zero divisor on P/〈h1, . . . , hk−1〉 and the se-
quence h1, . . . , hc is P-regular. �

6We exploit here that in the homogeneous case I and lt I always have the same dimension. The
proposition remains true for non-homogeneous ideals, if we restrict to degree compatible orders.
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Remark 5.2. One should note that even if I itself is already a complete intersection,
the ideal J = 〈h1, . . . , hc〉 is in general still a proper subset of I. As a simple
example consider the ideal I = 〈x2

2−x2
1, x1x2〉. It is a complete intersection and we

obtain a Pommaret basis for it by adding the generator x3
1. Hence the construction

above yields J = 〈x2
2 − x2

1, x
3
1〉 ( I.

Remark 5.3. Proposition 5.1 may be considered as a variation of a result by Eisen-
bud and Sturmfels [6, Thm. 1.3]. It is much simpler because of the use of δ-regular
variables. In the notations of [6], we partition the Pommaret basis H = F into the
disjoint sets Fk = {h ∈ H | clsh = k}. Then all terms contained in ltFk have the
variable xk in common. For the construction of the maximal system of parameters,
if suffices to consider the sets Fk with k ≥ D = dimA. However, in contrast to
[6, Thm. 1.3], there is no need to take linear combinations within the sets Fk; we
simply choose the above described polynomial hk ∈ Fk.

Eisenbud and Sturmfels were concerned with obtaining a system of parameters
as sparse as possible. They showed that the construction of an optimal solution is
in general NP-hard and thus not feasible in practice. In our approach, we have no
direct influence on the sparsity of the obtained system of parameters, as it depends
on the sparsity of the transformation to δ-regular variables. In a comparison one
should keep in mind that δ-regularity implies much more than just a simple system
of parameters and hence one has less freedom in the search for an optimal solution.

In principle, one could try to turn the argument around and to use their results
for improvements in the construction of δ-regular variables. However, in the few
examples we tried, we did not really obtain an improvement. As a concrete example
consider the monomial ideal I = 〈x1x2, x1x3, x2x3, x

2
4〉Ck[x1, x2, x3, x4] [6, Ex. 1.1].

The used variables are not δ-regular for I. An analysis of the Janet multiplicative
variables suggests to transform the variable x1 into x1+x2+x3. This transformation
yields directly δ-regular variables and we obtain the new transformed ideal Ĩ =
〈x2x3, x1x2 + x2

2, x1x3 + x2
3, x

2
4〉 where the last three generators define a system of

parameters. In the original variables, this system of parameters is given by the
three polynomial x1x2 − x2x3, x1x2 − x1x3 and x2

4.
Eisenbud and Sturmfels proposed the partition {x1x2}, {x2x3, x1x3} and {x2

4}
and thus as system of parameters x1x2, λx2x3 + µx1x3 and x2

4 for a generic choice
of λ, µ. Compared with our system of parameters it contains one term less. As
a first step towards δ-regular variables one should look for a transformation such
that the first set contains a polynomial with leading term x2

2 and the second set
one with leading term x2

3. Obviously, the simplest way to achieve this goal consists
of transforming x1 into x1 + x2 + x3 which is exactly the same transformation as
suggested by our method.

In general, an analysis of the partition obtained with the methods of Eisen-
bud and Sturmfels does not suffice for the construction of δ-regular variables. A
closer inspection of the proof of Proposition 5.1 shows that it does not really re-
quire a Pommaret basis. For the purposes of the proof, it suffices, if the basis
induces a quasi-Rees decomposition of the factor ring A, as then one can invoke
[22, Lemma 3.16] (which is a variant of [16, Lemma 14]) for proving the first asser-
tion. The point is that the existence of such a decomposition implies that the ideal
is in Noether position [22, Prop. 4.1].

According to Part (ii) of Theorem 2.7, the variables x1, . . . , xD induce a Noether
normalisation in the δ-regular case. Eisenbud and Sturmfels [6, Sect. 2] also treat
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the question of constructing a sparse Noether normalisation considered as comput-
ing a maximal system of parameters modulo an ideal. Here it again seems that
our approach via the Janet multiplicative variables is at least comparable in effi-
ciency. In fact, for their concrete example we even obtain a higher sparsity than
their greedy algorithm. They consider the ideal
(5.1)
I = 〈x1x2, x1x3, x2x3, x2x4, x2x5, x3x4, x3x5, x4x5, x4x6, x5x6〉C k[x1, . . . , x6]

which from the point of view of δ-regularity is very “bad”, as no pure powers
are present in the given basis. An analysis of the Janet multiplicative variables
suggests a number of transformations. Two of them, x1 7→ x1 + x2 + x3 and
x4 7→ x4 + x5 + x6, together with a subsequent swap x2 ↔ x4 lead directly to
δ-regular variables. Since the ideal I is two-dimensional, we obtain with Pommaret
bases as Noether normalisation in the original variables:

(5.2) y1 = x1 + x2 + x3 , y2 = x4 + x5 + x6 .

By contrast, the algorithm of Eisenbud and Sturmfels yields

(5.3) y1 = x1 − x6 , y2 = x2 + x3 + x4 + x5 + x6

and thus one term more.

Consider now the factor ring A and assume that the elements a1, . . . , aD ∈ A
define a system of parameters in the sense that dim

(
A/〈a1, . . . , aD〉

)
= 0. Recall

that the socle of a P-moduleM is defined as SocM = 0 : m = {m ∈M | m·m = 0}.
If A is Cohen-Macaulay (which can be easily checked using Theorem 2.7), then the
type of A is defined as t = dimk Soc

(
A/〈a1, . . . , aD〉

)
(one can show that t is

independent of the chosen system of parameters) and A is Gorenstein, if t = 1.

Theorem 5.4. Let the chosen variables X be δ-regular for the ideal I C P and
the degree reverse lexicographic order ≺degrevlex and let H be the corresponding
Pommaret basis. Then [x1], . . . , [xD] form a system of parameters for A. If we
denote by Hd = {h ∈ H | clsh = d} where d = min {clsh | h ∈ H} all elements
of minimal class and collect in the subset H̃d all those elements h ∈ Hd such
that for no k > d the involutive standard representation of xkh contains a non-
vanishing constant coefficient, then the set

{
[h/xd] | h ∈ H̃d

}
is a basis of the socle

Soc
(
A/〈[x1], . . . , [xD]〉

)
.

Before we present the proof of this assertion, we should briefly discuss the mean-
ing of the expression [h/xd]. Although the leading term of h is by construction
of class d and thus divisible by xd, this is not necessarily true for the remain-
ing terms: we only know that their classes are at most d because of the use of
the degree reverse lexicographic order (cf. Remark 2.2). Hence the quotient h/xd
makes generally no sense in the polynomial ring P. However, since A is by as-
sumption Cohen-Macaulay, we have D = d − 1 and thus for defining the residue
class [h] ∈ A/〈[x1], . . . , [xD]〉 we may ignore all terms in h of class less than d. All
remaining terms are divisible by xd and we may speak of the residue class [h/xd].

Proof. According to Part (ii) of Theorem 2.7, the variables x1, . . . , xD induce a
Noether normalisation of A and thus a system of parameters. Without loss of
generality, we may assume that already D = 0 and thus that d = 1. Then our
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claim is true, if we can prove the following equality:

(5.4) I : m = I +
〈 h
x1
| h ∈ H̃1

〉
.

If f ∈ I : m, then in particular x1f ∈ I and hence there exists an involutive
standard representation x1f =

∑
h∈H Phh. A constant term can only appear in

one of the coefficients Ph where h ∈ H1, as otherwise we had on the right hand side
a summand not divisible by x1 whereas on the left hand side everything is divisible
by x1 (since we are using the degree reverse lexicographic term order). Thus for
clsh > 1 we can write Ph = x1P̃h and for clsh = 1 we find Ph = ch + x1P̃h ∈ k[x1]
with ch ∈ k. Consider now the polynomial f̃ = f −

∑
h∈H P̃hh; obviously, f̃ differs

from f only by an element of the ideal I and it is a k-linear combination of the
polynomials h/x1 with h ∈ H1.

Conversely take a generator ĥ ∈ H1. For any 1 < k ≤ n we have an involutive
standard representation xkĥ =

∑
h∈HQhh. Again a constant term can only appear

in one of the coefficients Qh where h ∈ H1. But if this happens then xkĥ/x1 cannot
be contained in I and hence ĥ/x1 /∈ I : m. Thus only the elements of H̃1 induce
socle generators. �

Example 5.5. Consider the monomial ideal I = 〈x2, xy2, y3〉Ck[x, y]. Its minimal
Pommaret basis is H = {x2, x2y, xy2, y3}. For the three generators of class 1 we
find y · x2 = x2y, y · x2y = x · xy2 and y · xy2 = x · y3. Hence a basis of SocA is
induced by the two monomials xy, y2 and A is not Gorenstein.

As a second example we consider the ideal I = 〈z2−xy, yz, y2, xz, x2〉Ck[x, y, z]
for which we obtain a Pommaret basis by adding the monomial x2y. Again we find
three generators of class 1 in H. However, z ·xz = x·(z2−xy)+x2y and y ·x2 = x2y.
Hence the socle of A is generated by the single monomial [xy] and A is Gorenstein.
One easily checks that here the socle of the monomial factor ring A′ is generated
by the two monomials [xy], [z] and thus A′ is not Gorenstein. This observation
is in marked contrast to the fact that in many other respects the algebras A and
A′ have identical properties, if δ-regular variables are used (see the discussion in
the Conclusions of [22]). In particular, we mentioned already above that in the
δ-regular case A is Cohen-Macaulay, if and only if A′ is Cohen-Macaulay.

6. Conclusions

We showed that Hashemi’s approach to strong Noether position provides yet
another algebraic characterisation of the concept of δ-regularity arising in the theory
of Pommaret bases. This observation allows to put it into a larger context and to
relate it with many other results. In particular, it becomes much more constructive,
as deterministic methods are known for achieving δ-regularity.

Our proofs in Section 4 show that the results of Hashemi on the stabilised reg-
ularities become trivial from the point of view of Pommaret bases. For sat I and
reg I they are simple consequences of Theorem 2.8 relating satiety and Castelnuovo-
Mumford regularity to the degrees in the Pommaret basis. The situation is slightly
different for hilb I: while Pommaret bases allow us to determine straightforwardly
the Hilbert regularity of any concrete ideal via the Hilbert series, hilb I is not nat-
urally related to some invariant of the basis. However, here we can resort to the
simple inequality sat I ≤ hilb I ≤ reg I.
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Compared with other methods to check whether a given factor ring A is Cohen-
Macaulay or Gorenstein, the approach via Pommaret bases (for ≺degrevlex) is much
more efficient, as it requires hardly any computations. Dimension and depth can
be directly read off the basis and our construction of a socle basis requires only
a few involutive standard representations (which are anyway computed during the
construction of the Pommaret basis). By contrast, standard methods determine
either (large parts of) a minimal resolution or a number of Ext-groups, both re-
quiring several Gröbner bases computations. Again this result depends crucially
on the fact that δ-regular variables induce a Noether normalisation.

Of course, all these applications of Pommaret bases require the construction
of δ-regular variables. As mentioned above, deterministic algorithms for this task
exist and in many cases succeed in finding fairly sparse transformations. As a
Pommaret basis (for ≺degrevlex) contains so much information about the ideal it
generates, we believe that it is worth while spending this extra bit of computation
time. If one is only interested in certain invariants, then one may also resort to the
approach of Bermejo and Gimenez [2] where the leading ideal in δ-regular variables
is considered separately from the ideal itself (which is not transformed). However,
other applications like the here presented socle construction require that the full
basis is known in δ-regular variables.
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