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Abstract

In this paper, we introduce a new involutive division, called D-Nœther division, and the corre-
sponding notion of a Nœther basis. It is shown that that an ideal is in Nœther position, if and only if
it possesses a finite Nœther basis. We present a deterministic algorithm which, given a homogeneous
ideal, finds a linear change of variables so that the ideal after performing this change possesses a
finite Nœther basis (and equivalently is in Nœther

position). Furthermore, we define the new concept of an ideal of Nœther type and study its
connections with Rees decompositions. We have implemented all the algorithms described in this
paper in Maple and assess their performance on a number of benchmark examples.

1 Introduction

Assume that R is the polynomial ring K[x1, . . . , xn] where K is an arbitrary infinite field. Let I be
a homogeneous ideal of R with the Krull dimension D. Then, we say that I is in Nœther position,
if K[xn−D+1, . . . , xn] →֒ R/I is an integral ring extension, i.e. the image in R/I of xi for any i =
1, . . . , n − D is a root of a polynomial of the form Xs + g1X

s−1 + · · · + gs = 0 where s is an integer
and g1, . . . , gs ∈ K[xn−D+1, . . . , xn], see e.g. [6] for more details. This notion may be considered as an
effective notion of genericity which has many applications in various domains of algebraic geometry such
as affine ring theory, dimension theory, ring normalization and primary decomposition, we refer to [11,
Chp. 3] for further information. In this direction, Giusti et al. [10] applied this notion to compute the
dimension of a variety. Also, it was used by Krick and Logar [17] to compute the radical of an ideal and
by Lecerf [18] to solve a system of polynomial equations and inequations. By introducing the new notion
of an ideal in simultaneous Nœther position, Bardet et al. [1] analyzed the complexity of Gröbner bases
computation by Faugère’s F5 algorithm.

It is worth noting that I being in Nœther position is equivalent to R/I being a finitely generated
K[xn−D+1, . . . , xn]-module. In this case, K[xn−D+1, . . . , xn] is called a Nœther normalization of R/I.
The Nœther normalization lemma states that after a generic linear change of variables, we may assume
that K[xn−D+1, . . . , xn] is a Nœther normalization of R/I and in consequence I is in Nœther position,
see [11]. In this context two main questions may arise: How to check whether a given homogeneous
ideal is in Nœther position? And in the case of a negative answer, how to find efficiently a linear change
of variables Φ so that Φ(I) is in Nœther position? Logar [19] proposed the use of Gröbner bases with
respect to the lexicographical monomial ordering (which is very expensive to compute) for a Nœther
position test and if the ideal is not in such a position, he presented a random (and relatively sparse)
linear change of variables to transform the ideal into Nœther position. Similarly, Greuel and Pfister [11]
described an algorithm by applying random triangular linear changes of variables and again by computing
lexicographic Gröbner basis. However, Bermejo and Gimenez [2, 3] presented an algorithm by using a
random triangular linear changes of variables (depending on the dimension of the ideal) and by making
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use of Gröbner basis computations with respect to the degree reverse lexicographical monomial ordering.
Finally, the first author in [12] gave a simple and efficient algorithm for Nœther position test without
computing the dimension of the input (monomial) ideal.

In this paper, we are interested in exploring a deterministic and efficient algorithm to achieve a
sparse linear change of variables transforming a given homogeneous ideal into Nœther position. In this
direction, Robertz [22] described a (probabilistic) algorithm by applying involutive bases and Stanley
decompositions to detect sparse linear transformations. Involutive bases are a particular kind of Gröbner
bases with additional combinatorial properties. The origin of these bases lies with methods developed
by Riquier [21] and Janet [16] for the analysis of partial differential equations. Zharkov and Blinkov
[29] introduced the notion of involutive polynomial bases. Later on, Gerdt and Blinkov [9] introduced
a more general concept of involutive division and involutive bases for polynomial ideals which may be
considered as an effective alternative approach to the theory of Gröbner bases. Pommaret bases are a
particular form of involutive bases introduced by Zharkov and Blinkov [29]. In general, a given ideal may
not possess a finite Pommaret basis, however, if the ideal is in quasi-stable position (see Section 2 for the
definition), then the ideal has a finite Pommaret basis. In particular, the third author [25] developed a
deterministic approach (by performing repeatedly elementary linear changes and in each step computing
the Janet basis of the ideal) to transform an ideal into quasi-stable position (see also [26]). It should
be pointed out that Hashemi et al. [14] defined the notion of weakly D-quasi-stable position and showed
that it is equivalent to Nœther position. In addition, they proposed a general framework to transform
deterministically an ideal into a large number of combinatorially defined generic positions (including
weakly D-quasi-stable position).

In this work, we first introduce a new involutive basis, called Nœther basis, and show that any
homogeneous ideal in Nœther position has a finite Nœther basis and vice versa. Then, using this
property and applying the approach presented in [25], we describe a deterministic algorithm to find a
linear change of variables for a given homogeneous ideal so that the transformed ideal has a finite Nœther
basis and equivalently is in Nœther position. In addition, we define the new concept of an ideal of Nœther
type and study some of its properties in the context of this paper. All the algorithms described in this
paper have been implemented in Maple and their performance is measured through several benchmark
examples.

The article is organized as follows. In the next section, we review the basic definitions and notations
which will be used throughout this paper. In Section 3, we define the D-Nœther division and discuss
some of its basic properties. Section 4 is devoted to introducing the concept of Nœther bases and to
showing that an ideal is in Nœther position, if and only if it possesses a finite Nœther basis. In Section 5,
based on the results of the preceding sections, we describe a deterministic algorithm to transform a given
homogeneous ideal into Nœther position and to compute the Nœther basis of the transformed ideal.
Finally, we define the notion of an ideal of Nœther type and study some of its properties.

2 Preliminaries

In this section, we will fix the basic notations and recall some preliminaries needed in the subsequent
sections. Throughout this paper, we let R = K[x1, . . . , xn] be the polynomial ring over an infinite field
K. We consider always homogeneous polynomials f1, . . . , fk ∈ R and the ideal I = 〈f1, . . . , fk〉 generated
by them. Furthermore, the dimension of I is the Krull dimension of the factor ring R/I and is denoted
by D = dim(I). We shall note that the Krull dimension corresponds to the dimension as affine and
not as projective variety. We denote the degree with respect to a variable xi of a polynomial f ∈ R by
degi(f).

We will work mainly with the degree reverse lexicographical monomial ordering with xn ≺drl · · · ≺drl

x1. More precisely, for two monomials xα and xβ we write xα ≺drl xβ if either deg(xα) < deg(xβ)
or deg(xα) = deg(xβ) and the right-most non-zero entry of β − α is negative. The leading monomial
of a polynomial 0 6= f ∈ R, denoted by LM(f), is the greatest monomial appearing in f and its
coefficient is called the leading coefficient of f , denoted by LC(f). The leading term of f is the product
LT(f) = LC(f)LM(f). If F ⊂ R is a set of polynomials, LM(F ) stands for the set {LM(f) | f ∈ F}.
The leading ideal of I is the monomial ideal LM(I) = 〈LM(f) | 0 6= f ∈ I〉. A finite set G ⊂ I is
called a Gröbner basis of I with respect to ≺, if LM(I) = 〈LM(G)〉. We refer to [5] for more details on
the theory of Gröbner bases. We continue by recalling some definitions and results from the theory of
involutive bases, see [8, 26] for more information. Let M be the set of all monomials in R.
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Definition 2.1. An involutive division L is defined on M, if, for any nonempty finite set U ⊂ M and
for any monomial u ∈ U , we can partition the set of variables {x1, . . . , xn} into two disjoint subsets
ML(u, U) of multiplicative variables and NML(u, U) of non-multiplicative variables such that for any
u, v ∈ U the following conditions hold:

1. If uL(u, U) ∩ vL(v, U) 6= ∅ then either u ∈ vL(v, U) or v ∈ uL(u, U),

2. If v ∈ U and v ∈ uL(u, U) then L(v, U) ⊆ L(u, U),

3. If u ∈ V and V ⊆ U then L(u, U) ⊆ L(u, V ),

where L(u, U) denotes the subset of M consisting of all monomials in the variables ML(u, U). For u ∈ U ,
if w ∈ uL(u, U), then we write w = u × t for t ∈ L(u, U) (or equivalently this property is denoted by
u |L w) and in this case we say that u is an involutive divisor of w. If w = ut with t /∈ L(u, U), then we
write w = u · t.

Given an involutive division L and a monomial ordering ≺, we are able to describe an L-division
algorithm (similar to the well-known division algorithm for polynomials) to L-divide a given polynomial
by a set of polynomials. In the literature, many different examples of involutive divisions can be found,
however, in this paper we are only concerned with the Janet and the Pommaret division which are
recalled below.

Definition 2.2. For a finite set U ⊂ M of monomials, a sequence of non-negative integers d1, . . . , dn
and an index 0 ≤ i ≤ n define

[d1, . . . , di] = {u ∈ U | dj = degj(u), 1 ≤ j ≤ i}.

x1 is Janet multiplicative (or shortly J -multiplicative) for u ∈ U , if deg1(u) = max{deg1(v) | v ∈ U}.
For i > 1, xi is J -multiplicative for u ∈ U , if degi(u) = max{degi(v) | v ∈ [deg1(u), . . . , degi−1(u)]}.

Definition 2.3. For u = xd1

1 · · ·xdk

k with dk > 0, the integer k is called the class of u and is denoted by
cls(u). The variables xcls(u), . . . , xn are Pommaret multiplicative (or shortly P-multiplicative) for u. For
u = 1, all variables are Pommaret multiplicative.

Example 2.4. For U = {x2
1, x1x2x3} ⊂ K[x1, x2, x3], we have

Monomial MJ NMJ MP NMP

x2
1 x1, x2, x3 x1, x2, x3

x1x2x3 x2, x3 x1 x3 x1, x2

Definition 2.5. For a finite set U ⊂ M of monomials, the sets C(U) =
⋃

u∈U uM and CL(U) =⋃
u∈U uL(u, U) are called the cone and the L-involutive cone, respectively, generated by U .

Definition 2.6. For a finite set U ⊂ M of monomials, a superset U ⊆ Ũ ⊆ M is called an L-
completion, if C(U) = CL(Ũ). Furthermore, U is L-complete or L-involutive, if we have CL(U) = C(U).
An involutive division L is said to be Nœtherian, if every finite set U possesses a finite L-completion.

We are now ready to introduce the concept of an involutive basis. A finite set F ⊂ R is L-autoreduced,
if for any f ∈ F no monomial occurring in f is L-divisible by an element in LM(F ) \ {LM(f)}.

Definition 2.7. Let I ⊂ R be an ideal, L an involutive division and ≺ a monomial ordering. Then a
finite L-autoreduced subset G ⊂ I is called L-involutive basis (or shortly involutive basis) for I, if for
each f ∈ I there exists g ∈ G so that LM(g)|LLM(f).

It follows immediately from this definition that every involutive basis forms a Gröbner basis for the
ideal it generates. In addition to Nœtherianity, an algorithmically suitable involutive division must be
continuous and constructive.

Definition 2.8. An involutive division L is continuous, if for any finite set U ⊂ M and for any finite
sequence {ui}1≤i≤k of elements in U with

(∀i < k) (∃xj ∈ NML(ui, U)) [ui+1 |L ui.xj ] (1)

the inequality ui 6= uj for i 6= j holds.
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Definition 2.9. A continuous involutive division L is constructive, if for any U ⊂ M, u ∈ U, xi ∈
NML(u, U) with u.xi /∈ CL(U) and

(∀v ∈ U)(∀xj ∈ NML(v, U)) (v · xj | u · xi, v · xj 6= u · xi) [v · xj ∈ CL(U)] (2)

the following condition holds:

(∀w ∈ CL(U)) [u · xi /∈ wL(w,U ∪ {w})]. (3)

It is worth noting that, if an involutive division L is continuous, then for constructing an involutive
basis, one may consider an involutive variant of Buchberger’s criterion by constructing non-multiplicative
prolongations (instead of S-polynomials) and performing L-division. In consequence, Def. 2.7 becomes
then equivalent to the statement that for each f ∈ G and each xi ∈ NML(LM(f),LM(G)), the remainder
of the L-division of xif by G is zero. Moreover, if L is constructive, then in the course of involutive basis
computations one does not need to enlarge the intermediate basis by adding multiplicative prolongations.

Gerdt and Blinkov [9, Prop. 3.6, Cor. 4.11, Prop. 4.13] proved that both the Janet and the Pommaret
division are involutive, continuous and constructive. Furthermore, in loc. cit. Prop. 4.5, they showed
that the Janet division is Nœtherian, however the following simple example illustrates that Pommaret
division is not Nœtherian.

Example 2.10. Let I = 〈x1x2〉 ⊂ K[x1, x2]. Its Pommaret basis is the infinite set {xi
1x2 | i ≥ 1}.

It should be pointed out that if a given ideal is in quasi-stable position (see below for definition),
then it has a finite Pommaret basis. In addition, if K is infinite, then, any ideal can be put by a generic
linear change of variables into quasi-stable position and possesses then a finite Pommaret basis, see [25]
for more details.

Definition 2.11. A monomial ideal I ⊂ R is quasi-stable, if for any monomial m ∈ I and all positive
integers i, j, s with 1 ≤ j < i ≤ n, if xs

i | m, there exists an integer t ≥ 0 such that xt
j(m/xs

i ) ∈ I. An
ideal I ⊂ R is in quasi-stable position, if LM(I) is quasi stable.

Proposition 2.12 ([25, Prop. 4.4]). A homogeneous ideal I has a finite Pommaret basis, if and only if
it is in quasi stable position.

The third author [25] developed a deterministic approach which, given a homogeneous ideal, con-
structs by performing repeatedly an elementary linear change of variables and performing a test on the
Janet basis of the transformed ideal a new coordinate system such that the final transformed ideal is in
quasi-stable position.

We conclude this section by recalling the notion of an ideal in Nœther position. We say that a
homogeneous ideal I with dim(I) = D is in Nœther position, if K[xn−D+1, . . . , xn] →֒ R/I is an integral
ring extension, i.e. the image in R/I of xi for any i = 1, . . . , n−D is a root of a polynomial of the form
Xs + g1X

s−1 + · · · + gs = 0 where s is an integer and g1, . . . , gs ∈ K[xn−D+1, . . . , xn]. Geometrically,
the Nœther position guarantees that, for any values of xn−D+1, . . . , xn in an algebraic closure of K,
the system obtaining by replacing these values in the fi’s has exactly the same number of solutions
(counting with multiplicity). Bermejo and Gimenez [2, Lem. 4.1] provided the following effective test
(using Gröbner bases) for being in Nœther position.

Lemma 2.13. For any ideal I ⊂ R, the following conditions are equivalent:

1. I is in Nœther position,

2. For any i = 1, . . . , n−D, there exists ri ∈ N such that xri
i ∈ LM(I),

3. dim(I + 〈xn−D+1, . . . , xn〉) = 0.

Using this lemma, one can easily check that an ideal in quasi-stable position is also in Nœther position
(note that the converse is not always true). Based on this simple observation and the definition of quasi
stable ideals, Hashemi et al. [14] introduced the notion of weakly D-quasi-stable ideals and showed that
it is equivalent to Nœther position.

Definition 2.14. A monomial ideal I of dimension D is called weakly D-quasi-stable, if for any mono-
mial m ∈ I, any j = n−D + 1, . . . , n and any integer s with xs

j | m, there exists an integer t such that
xt
i(m/xs

j) ∈ I for i = 1, . . . , n−D. An ideal I is in weakly D-quasi-stable position, if LM(I) is weakly
D-quasi-stable.

Theorem 2.15 ([14, Thm. 4.4]). A homogeneous ideal is in weakly D-quasi-stable position, if and only
if it is in Nœther position.
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3 Nœther bases

In this section, we first introduce the new D-Nœther division and then discuss some of its properties
which are useful in the context of involutive bases theory. Based on this division, we will also define
the concept of Nœther bases. Furthermore, we provide equivalent conditions for the existence of a finite
Nœther basis for a given ideal. In particular, we show that for any ideal having a finite Nœther basis is
equivalent to being in Nœther position.

Definition 3.1. For any finite set U ⊂ M, any integer 0 ≤ D ≤ n and any u ∈ U , the variable xi

is called D-Nœther multiplicative (denoted by N -multiplicative) for u, if one of the following conditions
hold:

1. cls(u) ≤ n−D and xi is Janet multiplicative for u ∈ U ,

2. cls(u) > n−D and i > n−D and xi is Janet multiplicative for u ∈ U .

To show that this division is an involutive division, we shall need the following lemma which may
be considered as a rephrasing of the well-known fact that for the Janet division any monomial set is
J -autoreduced.

Lemma 3.2. Let U ⊂ M be a finite set and u, v ∈ U . If there is w ∈ M such that u |J w and v |J w
then u = v.

Proof. Assume to the contrary that u 6= v. Therefore, without loss of generality, we may assume that
there exists an index j such that for 1 ≤ i < j we have degi(u) = degi(v) and degj(u) > degj(v).
According to the definition of the Janet division, xj thus cannot be J -multiplicative for v. Since u |J w
and v |J w, we must have u×u1 = v× v1 = w which entails that xj must be a J -multiplicative variable
for v which leads to a contradiction.

Proposition 3.3. The D-Nœther division is an involutive division.

Proof. Let U ⊂ M be a finite set and D an integer. We must prove that the conditions stated in Def. 2.1
hold. Let u, v ∈ U be two D-Nœther divisors of w ∈ M. According to Def. 3.1, u, v ∈ U are Janet
divisors of w and by Lem. 3.2 we have u = v, implying the first condition in Def. 2.1. To prove the second
condition, let u, v ∈ U , v ∈ uN (u, U) and xi be a D-Nœther multiplicative variable for v. Three cases
must be distinguished. If either cls(u) ≤ n −D or i > n −D, then, by definition and the properties of
the Janet division, xi is J -multiplicative for v and thus also N -multiplicative for u. It is impossible that
cls(u) > n−D, i ≤ n−D and cls(v) ≤ n−D, because v ∈ uN (u, U) by assumption. It is also impossible
that cls(u) > n−D, i ≤ n−D and cls(v) > n−D due to the assumption that xi is an N -multiplicative
variable for v. Finally, to check the last condition in Def. 2.1, let u ∈ V with V ⊆ U . By the properties
of the Janet division, we have J (u, U) ⊆ J (u, V ) which implies that N (u, U) ⊆ N (u, V ), proving the
claim.

Corollary 3.4. For any finite set U ⊂ M, any integer 0 ≤ D ≤ n and any u ∈ U the following
inclusions hold:

MN (u, U) ⊆ MJ (u, U), NMJ (u, U) ⊆ NMN (u, U) .

Proof. The assertion follows immediately from the definition of the D-Nœther division.

Example 3.5. For U = {x1x2, x2x3, x3x4} ⊂ K[x1, x2, x3, x4] and D = dim(〈U〉) = 2, we have:

Monomial MN NMN MJ NMJ MP NMP

x1x2 x1, x2, x3, x4 x1, x2, x3, x4 x2, x3, x4 x1

x2x3 x3, x4 x1, x2 x2, x3, x4 x1 x3, x4 x1, x2

x3x4 x3, x4 x1, x2 x3, x4 x1, x2 x4 x1, x2, x3

Next, we show that the D-Nœther division is continuous, but not constructive. Given its close
connection to the Janet division, it is not surprising that the following proof is very similar to the proof
of the continuity of the Janet division.

Proposition 3.6. The D-Nœther division is continuous.
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Proof. Let U be a finite set, 0 ≤ D ≤ n and {ui}1≤i≤k a finite sequence of elements in U satisfying (1).
We shall show that there are no coinciding elements in this sequence. Assume that ui+1 |N ui · xi1 . We
claim that then ui ≺lex ui+1 where ≺lex is the lexicographical monomial ordering with xn ≺ · · · ≺ x1.
To prove this claim, we first note that ui+1 6= ui, otherwise if ui = ui+1 then xi1 ∈ MN (ui, U) which
contradicts our assumptions. It follows that there is an index t such that degl(ui) = degl(ui+1) for each
l < t and degt(ui) 6= degt(ui+1). If degt(ui) > degt(ui+1), then the assumption ui+1 |N (ui · xi1) entails
xt ∈ MN (ui+1, U) which leads to a contradiction (note that ui, ui+1 ∈ [d1, . . . , dt−1]). This proves the
claim and consequently ui 6= uj for i 6= j.

Example 3.7. Let U = {x1x2, x1x2x3, x3x4} ⊂ K[x1, x2, x3, x4]. For the choice D = dim(〈U〉) = 2,
we find MN (x1x2) = {x1, x2, x4}, MN (x1x2x3) = {x3, x4} and MN (x3x4) = {x3, x4}. In particular, we
have (x1x2x3) · x1 /∈ CN (U) and (x1x2x3) · x1 satisfies condition (2) in the definition of constructivity,
but (x1x2x3) · x1 ∈ CN (U ∪ {w = x1x2 × x1}) since (x1x2x3) · x1 = w × x3 and x3 ∈ MN (w,U ∪ {w}).

Definition 3.8. Let I ⊂ R be a homogeneous ideal and ≺ a monomial ordering. Then a finite N -
autoreduced subset G ⊂ I for the choice D = dim(I) is called a D-Nœther basis for I, if for each f ∈ I
there exists g ∈ G so that LM(g) |N LM(f).

Example 3.9. The D-Nœther division is not Nœtherian, as one can see with the help of the same ideal
already used in Example 2.10. Consider again I = 〈x1x2〉 ⊂ K[x1, x2]. Obviously, D = dim(I) = 1 and
the Nœther basis of I is the infinite set {xi

1x2 | i ≥ 1}. It is easy to see that Nœtherianity of D-Nœther
division holds for the special cases D = 0, n.

We shall now investigate when a finite Nœther basis exists using the following lemma.

Lemma 3.10. Let U ⊂ M be the minimal Janet basis of 〈U〉. Then, there do not exist monomials
u1, u2 ∈ U such that u1 6= u2 and degi(u1) = degi(u2) for each 1 ≤ i ≤ cls(u1).

Proof. Assume in the contrary that there are monomials u1, u2 satisfying the mentioned conditions. We
claim that then there exists a proper subset U ′  U forming a Janet basis for 〈U〉. Let U ′ = U \A where

A = {u ∈ U | degi(u1) = degi(u), 1 ≤ i ≤ cls(u1), u 6= u1} .

Then A is not empty, as u2 ∈ A. It is easy to see that for all t > cls(u1), xt is Janet multiplicative for
u1 ∈ U ′ which entails that the elements of A belong to the J -cone of U ′. This completes the proof of
the claim which contradicts the minimality of U .

In analogy to the situation for Pommaret bases (see in particular Prop. 2.12), we now show that a
finite Nœther basis exists in generic position and that it then coincides with the Janet basis.

Theorem 3.11. Let I ⊂ R be a monomial ideal with D = dim(I). The following conditions are
equivalent:

1. I is weakly D-quasi-stable.

2. If U is the minimal Janet basis for I, then MJ (u, U) = MN (u, U) for all u ∈ U ,

3. There exists a finite Janet basis U for I with MJ (u, U) = MN (u, U) for all u ∈ U ,

4. I possesses a finite Nœther basis.

Proof. (1 ⇒ 2). Suppose that I is weakly D-quasi-stable and U is the minimal Janet basis for I. We
show that for all u ∈ U , MJ (u, U) = MN (u, U). We know that MN (u, U) ⊆ MJ (u, U). Now assume
in the contrary that there exists u ∈ U such that MN (u, U)  MJ (u, U). According to Def. 3.1, we
have cls(u) > n−D and there exists i ≤ n−D such that xi is Janet multiplicative for u. Suppose that

u = xd1

1 · · ·xdi

i · · ·x
dj

j where j = cls(u). Since I is weakly D-quasi-stable, there exists an integer t such

that u1 = xt
i(u/x

dj

j ) ∈ I. On the other hand, U is a Janet basis for I and thus there exists m ∈ U such
that m = xα1

1 · · ·xαn
n |J u1. By the definition of Janet division, it follows from m,u ∈ U that we have

αℓ = dℓ for each ℓ < i. In addition, since xi is Janet multiplicative for u and t ≥ 0, we find αi = di. By
similar arguments, we obtain degℓ(u) = degℓ(m) for 1 ≤ ℓ ≤ j−1, Thus u and m belong to [d1, . . . , dj−1]
and cls(m) = j − 1, which leads to a contradiction by applying Lem. 3.10.

(2 ⇒ 3). This implication is obvious.
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(3 ⇒ 1). Suppose that U is a finite Janet basis for I and MJ (u, U) = MN (u, U) for all u ∈ U . We
show that I is weakly D-quasi-stable. Let m = xα1

1 · · ·x
αj

j · · ·xαn
n ∈ U , 0 6= j > n −D, 1 ≤ i ≤ n −D.

We shall prove that xt
i(m/x

αj

j ) for some t belongs to I. Let ℓ = max{degi(u) | u ∈ U}. We consider

h = xℓ−αi+1
i m ∈ I. Since U is a Janet basis for I, there exists u1 = xβ1

1 · · ·xβn
n ∈ U such that

u1 |J h. Note that ℓ is of maximal degree in xi in U which implies that xi is Janet multiplicative for
u1. It then follows that degt(u1) = degt(m) for each 1 ≤ t ≤ i − 1 and degt(u1) ≤ degt(m) for each
i ≤ t ≤ n − D. On the other hand, due to the definition of h, xi must be Janet multiplicative for u1

and from xi ∈ MJ (u1, U) = MN (u1, U) we conclude that cls(u1) ≤ n − D and degt(u1) = 0 for each
t > n − D (see Def. 3.1). Thus, there exists an integer t so that u1 | xt

i(m/x
αj

j ) proving the desired
result.

(3 ⇒ 4). The proof is obvious.
(4 ⇒ 3). Suppose that U is a finite Nœther basis for I. It is enough to show MJ (u, U) = MN (u, U)

for each u ∈ U . Now suppose that there exists u ∈ U such that MN (u, U)  MJ (u, U). According to
Def. 3.1, cls(u) > n −D and for some i ≤ n −D, xi is Janet multiplicative for u. Since U is a Nœther
basis for I, there exists u1 6= u such that u1 ∈ U, u1 |N u · xi. This implies that u1 |J u · xi which entails
u = u1 (using the fact that xi is Janet multiplicative for u) and this gives rise to a contradiction.

This theorem together with Thm. 2.15 has the following obvious consequence.

Corollary 3.12. A homogeneous ideal I ⊂ R is in Nœther position, if and only if it possesses a finite
Nœther basis.

Remark 3.13. It should be noted that the condition of minimality in the second part of Thm. 3.11 is
essential. To see this, let I = 〈x1, x1x2〉 ⊂ K[x1, x2]. Then, D = dim(I) = 1 and I is in Nœther position
and U = {x1, x1x2} is a Janet basis for I that is not minimal. Also, we have MN (x1x2, U) = {x2} 6=
MJ (x1x2, U) = {x1, x2}.

Proposition 3.14. Every homogeneous ideal I ⊂ R having a finite Pommaret basis possesses a finite
Nœther basis, too.

Proof. By Prop. 2.12, the existence of a finite Pommaret basis for I is equivalent to I being in quasi-
stable position. Comparing Defs. 2.11 and 2.14, this implies that I is in weakly D-quasi-stable position
and hence has a finite Nœther basis by Thm. 3.11.

Since in general weak D-quasi-stability is strictly weaker than quasi-stability, the converse of Prop. 3.14
is of course not true.

Example 3.15. Let I = 〈x2
1, x1x2x3〉 ⊂ K[x1, x2, x3]. The minimal Janet basis of I is {x2

1, x1x2x3}
and simultaneously a Nœther basis of I. However, the minimal Pommaret basis of I is the infinite set
{x1x

i
2x3, x

2
1 | i ≥ 1}.

According to [25, Thm. 2.16], quasi-stability is a generic condition. Hence, obviously the same is true
for weak D-quasi-stability which proves the following result.

Corollary 3.16. Every homogeneous ideal I ⊂ R has a finite Nœther basis in generic position.

4 Computation of Nœther bases

In this section, we describe an algorithm, which, given a homogeneous ideal, finds an explicit linear
change of variables such that the transformed ideal possesses a finite Nœther basis. Since the D-Nœther
division is not constructive, [9, Thm. 4.14] cannot be directly applied to construct a Nœther basis for
an ideal (even if the ideal is in Nœther position). Below, we show how we can adapt a construction
described by the third author in [25].

Our next goal is to describe a deterministic algorithm for the construction of a sparse linear change
of variables to transform the input ideal into Nœther position. For this purpose, we apply the iterative
method presented in [25] using at each step an elementary linear change of variables, computing the
minimal Janet basis of the transformed ideal and performing a test to check whether or not the desired
position has been achieved. The following subalgorithm determines whether or not a given monomial
Janet basis is a Nœther basis. If A is an ordered set, then A[i] stands for the i-th element of A.
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Algorithm 1 Test

1: Input: A finite set U ⊂ R of monomials
2: Output: True if any element of U has the same number of D-Nœther and Janet multiplicative

variables, and otherwise a triple (false, xi, xj) with xi, xj two variables
3: if ∃u ∈ U s.t. MN (u, U) 6= MJ (u, U) then
4: V := MJ (u, U) \MN (u, U)
5: return(false, V [1], xcls(u))
6: end if

7: return (true)

In the following algorithm for the construction of a Nœther basis, the call JanetBasis calculates the
minimal Janet basis for a given ideal.

Algorithm 2 NoetherBasis

1: Input: A finite set F ⊂ R of homogeneous polynomials
2: Output: A linear change Φ so that 〈Φ(F )〉 has a finite Nœther basis
3: Φ :=the identity linear change
4: J :=JanetBasis(F,≺)
5: A :=Test(LM(J))
6: while A 6= true do

7: φ := A[3] 7→ A[3] + cA[2] where c ∈ K is a random number
8: Temp :=JanetBasis(Φ ◦ φ(J),≺)
9: B :=Test(LM(Temp))

10: if B 6= A then

11: Φ := Φ ◦ φ
12: A := B
13: end if

14: end while

15: return (Φ)

To prove the termination and correctness of this algorithm, we shall need the following lemma.

Lemma 4.1. If U is a minimal monomial Janet basis and D = dim(〈U〉), then for all u ∈ U we have

MJ (u, U)\MN (u, U) ⊆ MJ (u, U)\MP(u)

Proof. To prove the desired inclusion we must show that MP(u) ⊆ MN (u, U) for all u ∈ U . For each
u ∈ U , two cases must be distinguished. If cls(u) ≤ n −D, then MN (u, U) = MJ (u, U) and therefore
MP(u) ⊆ MN (u, U). By Prop. 13 and Cor. 15 in [7], we conclude that MP(u) ⊆ MJ (u, U) for all u ∈ U
and this proves the assertion in the first case. Otherwise, if cls(u) > n − D, then, from the inclusion
MP(u) ⊆ MJ (u, U) and the definition of the D-Nœther division, we obtain MP(u) ⊆ MN (u, U) which
completes the proof.

Theorem 4.2. For a given homogeneous ideal I ⊂ R, the algorithm NoetherBasis terminates in
finitely many steps and returns a linear change of variables Φ such that the transformed Φ(I) possesses
a finite Nœther basis.

Proof. Note that if we replace in the algorithm Test the line 4 by “V := MJ (u, U) \MP(u, U)”, then
we obtain the algorithm described in [25, Rem. 2.18] to find a linear change of variables such that
the transformed ideal has a finite Pommaret basis. This, together with Lem. 4.1, implies the finite
termination and correctness of the algorithm NoetherBasis.

Remark 4.3. Strictly speaking, the above algorithm NoetherBasis is not deterministic, as in line 7 a
random number c is chosen. If we always take c = 1 and remove the lines 10−13 in NoetherBasis, then
one obtains a completely deterministic algorithm. It follows by the same arguments as in [25, Rem. 9.11]
that over an infinite field K this modified algorithm still terminates after finitely many steps.

We illustrate the steps of the algorithm NoetherBasis through a simple example.
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Example 4.4. Let I1 = 〈x2
1x2, x1x2x3〉 ⊂ K[x1, x2, x3] and x3 ≺drl x2 ≺drl x1. Then, one sees read-

ily that G1 = {x2
1x2, x1x2x3} is the minimal Janet basis for I1. Note that D = dim(I) = 2 and

thus MJ (x2
1x2, J1) = {x1, x2, x3}, MN (x2

1x2, J1) = {x2, x3} and, MP(x
2
1x2) = {x2, x3}. Thus, I1 is

not in Nœther position by Thm. 3.11 and, invoking the algorithm Test, we perform the linear change
[x2 = x2+x1]. Applying this change on I1, we get the ideal I2 = 〈x2

1(x2+x1), x1(x2+x1)x3〉. Computing
the minimal Janet basis G2 = {x2

1(x2+x1), x1(x2+x1)x3} for I2, we can see that LM(G2) = {x3
1, x

2
1x3}.

Since MJ (x3
1,LM(G2)) = MN (x3

1,LM(G2)), MJ (x2
1x3,LM(G2)) = MN (x2

1x3,LM(G2)), G2 is a fi-
nite Nœther basis for I2. It is worth noting that it follows from MJ (x2

1x3,LM(G2)) = {x2, x3} and
MP(x

2
1x3,LM(G2)) = {x3} that G2 is not a finite Pommaret basis for I2. Applying the algorithm de-

scribed in [25] to compute finite Pommaret bases, we shall continue by performing the additional linear
change [x3 = x3 + x2]. We get in turn the ideal I3 = 〈x2

1(x2 + x1), x1(x2 + x1)(x3 + x2)〉. Com-
puting the minimal Janet basis G3 = {x1(x2 + x1)(x3 + x2), x

3
1 − x2

1x3 − x1x
2
2 − x1x2x3} for I3, we

can observe that LM(G3) = {x2
1x2, x

3
1}. If we turn our attention to this set, then one can see that

MJ (x3
1,LM(G3)) = MP(x

3
1,LM(G3)), MJ (x2

1x2,LM(G3)) = MP(x
2
1x2,LM(G3)), and thus that G3 is a

finite Pommaret basis for I3.

We end this section by comparing the performance of our proposed algorithm to transform a given
ideal into Nœther position with other existing algorithms. For this purpose, we chose two known al-
gorithms, namely NoetherNormalization due to Robertz [22] 1 and WDQSPosition proposed by
the first author in [13] based on the notion of weakly D-quasi-stable position. We have implemented
NoetherBasis and WDQSPosition in Maple 182. In the following tables, we compare only the
number of performed elementary linear changes (to transform the input ideal into Nœther position) for
some well-known examples3 from computer algebra literature. In the paper at hand, we only want to
compare the structure and the behavior of the algorithms and not the running times of their implemen-
tations which are also influenced by many other factors. All computations were done over the field of
the rational number using the degree reverse lexicographical ordering.

Weispfenning94 changes

NoetherBasis 1

WDQSPosition 1

NoetherNormalization 1

Sturmfels and Eisenbud changes

NoetherBasis 11

WDQSPosition 17

NoetherNormalization 11

Liu changes

NoetherBasis 4

WDQSPosition 4

NoetherNormalization 4

Eco7 changes

NoetherBasis 2

WDQSPosition 2

NoetherNormalization 2

Vermeer changes

NoetherBasis 1

WDQSPosition 2

NoetherNormalization 1

Gerdt2 changes

NoetherBasis 1

WDQSPosition 1

NoetherNormalization 1

Remark 4.5. One can see that the sparsity of the linear changes constructed by our algorithm is the
same as for Robertz’ algorithm. It should be mentioned that NoetherBasis is a deterministic algorithm,
while the one by Robertz is probabilistic. The latter algorithm proceeds as follows. It computes a Janet
basis G for its input ideal I and then uses it to compute a monomial cone decomposition ⊕s

i=1K[Xi].mi

with Xi ⊂ {x1, . . . , xn} for R/I. If there exists a polynomial g ∈ G such that LM(g) is in terms of
X = ∪s

i=1Xi, then the algorithm applies the linear change xi = xi +αiz for each i where αi is a random
number, z the greatest variable in X and xi 6= z a variable appearing in LM(g). Robertz proved that if
|X| = dim(I) then the algorithm terminates. Note that in each iteration of Robertz’ algorithm, several
elementary linear changes may be applied, however, in our approach only one elementary linear change is
performed. In certain situation, Robertz’ algorithm also permutes some variables. Finally, the advantage
of our algorithm is that (in contrast to Robertz’ algorithm) we do not need to compute a monomial cone
decomposition for R/I.

Remark 4.6. Let us briefly explain how the algorithm WDQSPosition works. Given a homogeneous
ideal I, if the algorithms finds a monomial m ∈ LM(I), integers i = 1, . . . , n−D, j = n−D + 1, . . . , n
and s such that xs

j | m and for any integer t we have xt
i(m/xs

j) ∈ LM(I), then it makes the elementary
linear change xj = xj + xi and it repeats this process until no obstructions remain. As one can see, the
way of finding linear changes in this algorithm is quite different from the one presented in the algorithm

1We refer to http://math.rwth-aachen.de/Janet/involutive for the Maple implementation of this algorithm.
2The Maple code of our implementations and examples are available at http://amirhashemi.iut.ac.ir/softwares
3For further details see the SymbolicData Project (http://www.SymbolicData.org)
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NoetherBasis and for this reason we find for some examples a different number of changes of variables.
One can think of many natural strategies to choose the next elementary linear change, but as examples
in [24] show no strategy is always the best. It remains an interesting open question for further research
to compare experimentally the average performance of different strategies. As our results here indicate,
the differences can be significant.

5 Ideals of Nœther type

In this section, we present some properties of the D-Nœther division related to syzygy modules. For this
purpose, we recall first some related concepts and facts from [25]. It is well-known by Schreyer’s theorem
[23] that, keeping track of Gröbner basis computations, we are able to compute a Gröbner basis for the
syzygy module of the computed Gröbner basis, see also [4]. An involutive version of this theorem was
stated in [25] by replacing S-polynomials by non-multiplicative prolongations and keeping the trace of
performed involutive divisions. Now, let us first briefly explain the main strategy used in [25] to compute
involutive bases for submodules. For this, one needs the concept of Schreyer’s module ordering which is
a module monomial ordering on a free module. Given a finite set {g1, . . . , gt} and free module Rt, let
{e1, . . . , et} be the standard basis of Rt. Furthermore, let ≺ be a monomial ordering on R. A module
monomial in Rt is an element of the form xαei for some i, where xα is a monomial in R. Schreyer’s
module ordering is defined as follows: xβej ≺s x

αei if LM(xβgj) ≺ LM(xαgi) and breaks ties by i < j.
Let G ⊂ Rt be a finite set and L an involutive division. We divide G into t disjoint subsets Gi =

{g ∈ G | LM(g) = xαei, x
α ∈ M} where {e1, . . . , et} is the standard basis of Rt. In addition, for

each i, let Bi = {xα ∈ M | xαei ∈ LM(Gi)}. We assign to each g ∈ Gi the multiplicative variables
ML(g, G) = {xi | xi ∈ ML(x

α, Bi) with LM(g) = xαei}. Then, the definition of involutive bases for
submodules proceeds in the same way as for the ideals. Now, to recall the involutive version of Schreyer’s
theorem, let G = {g1, . . . , gt} ⊂ R be an involutive basis. Suppose that gi ∈ G is an arbitrary element
and xk is a non-multiplicative variable for gi. By the definition of involutive bases, there exists j so that
LM(gj)|LxkLM(gi). In the definition of Schreyer’s ordering, we shall order the elements of G in such a

way that i < j. Therefore, we can write xkgi =
∑t

j=1 p
(i,k)
j gj where p

(i,k)
j ∈ K[ML(gj , G)]. This equation

corresponds to the syzygy Si,k = xkei −
∑t

j=1 p
(i,k)
j ej ∈ Rt. We denote the set of all thus constructed

syzygies by GSyz = {Si,k | 1 ≤ i ≤ t;xk ∈ NML(gi, G)}. By Schreyer’s theorem, one expects that GSyz

forms an involutive basis for Syz(G). However, the involutive version of Schreyer’s theorem does not
hold for all involutive divisions. An involutive division L is said to be of Schreyer type, if NML(g,G)
for each g ∈ G remains an involutive basis. Both the Janet and the Pommaret divisions are of Schreyer
type, see [25] for more information. Now, by an example, we show that D-Nœther division is not of
Schreyer type.

Example 5.1. Let I = 〈x2
1, x1x2x3x

2
4, x1x2x

2
3x4〉 ⊂ K[x1, x2, x3, x4] and D = dim(I) = 3. Then, I

is in Nœther position and the Nœther basis of I is G = {x2
1, x1x2x3x

2
4, x1x2x

2
3x4}. However, the set

NMN (x1x2x3x
2
4, G) = {x1, x3} is not a Nœther basis, because it is not in Nœther position.

The following simple lemma provides a necessary and sufficient condition for a set of variables to
form a Nœther basis.

Lemma 5.2. U ⊂ {x1, . . . , xn} is a Nœther basis for the ideal it generates, if and only if there exists
1 ≤ t ≤ n such that U = {x1, . . . , xt}.

Motivated by this observation, we introduce a new class of monomial ideals restricted to which the
D-Nœther division is of Schreyer type.

Definition 5.3. A monomial ideal I ⊂ R is called of Nœther type, if it has a finite Nœther basis U and
if for every u ∈ U the set NMN (u, U) is a Nœther basis. An ideal I ⊂ R is of Nœther type, if LM(I)
is of Nœther type.

According to [25, Thm. 5.10], GSyz forms for any continuous division of Schreyer type an involutive
basis for Syz(G). Now, we can state a similar result for D-Nœther division. The proof is exactly the
same as the one of [25, Thm. 5.10].

Theorem 5.4. Let I = 〈G〉 be an ideal of Nœther type and G a finite Nœther basis for I. Then the set
GSyz is a Nœther basis for the syzygy module Syz(G) with respect to the Schreyer ordering ≺s.
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Unfortunately, we have not been able to provide an algebraic characterization of ideals of Nœther
type and leave this question as an open problem for future research. In the sequel, we study the
connection between the notions of genericity defined in this paper and the concepts of Stanley and Rees
decomposition. For this purpose, we first recall these concepts from [25]. When we speak of a basis of a
monomial ideal I, we always assume that it is monomial, too.

Definition 5.5. Let I ⊂ R be a homogeneous ideal. A Stanley decomposition of the graded K-algebra
A = R/I is an isomorphism of graded K-linear spaces of the form A ∼=

⊕
t∈T K[Xt] · t where T ⊂ M is

a finite set and Xt ⊆ {x1, . . . , xn}.

In an algebraic context, such combinatorial decompositions were introduced by Stanley [27] for com-
puting Hilbert functions. However, they appeared already much earlier in the works of Riquier [21] and
Janet [16] as central tools of their approach to the integrability of general systems of partial differen-
tial equations. Even within algebra, a special class of Stanley decompositions was studied considerably
earlier by Rees [20].

Definition 5.6. With the same notations as above, the Stanley decomposition A ∼=
⊕

t∈T K[Xt] · t is
called Rees decomposition, if for each generator t ∈ T there exists an index i, called the level of t, such
that Xt = {xi, . . . , xn}.

We should mention that if a homogeneous ideal I ⊂ R is of Nœther type, then its Nœther basis
immediately induces a Stanley decomposition for the ideal itself as a gradedK-algebra with the set T given
by the basis and each set Xt consisting of the multiplicative variables of t (any involutive basis does this).
Less trivial is determining a complementary Stanley decomposition, i. e. one of the factor ring A = R/I.
For Janet bases, already Janet [16] provided the algorithm ComplementaryDecomposition recalled
below (see also [26, Alg. 5.2]). Another possibility is the recursive algorithm DecomposeComplement

given in [22]. If I is in quasi-stable position, then its Pommaret basis induces a Rees decomposition of
I. Furthermore, also its factor ring A possesses a Rees decomposition (below we shall show that the
converse is true, too). A usually rather redundant one can be easily obtained using the Pommaret basis
of I, see [25, Cor. 3.8]. A less redundant one can be computed with an algorithm given by Hironaka [15]
which actually boils down to applying ComplementaryDecomposition to the Pommaret basis of I.

Theorem 5.7. For any homogeneous ideal I ⊂ R, the factor ring A = R/I possesses a Rees decompo-
sition, if and only if I is in quasi-stable position.

Proof. By Macaulay’s theorem (see e. g. [5, Prop. 4, page 250]), R/I and R/LM(I) are isomorphic as
K-vector spaces. Without loss of generality, we may thus assume that I is a monomial ideal. Assume
that A has a Rees decomposition, but that I were not quasi-stable. This implies the existence of a
monomial m = xα1

1 · · ·xαk

k ∈ I and an index j < k such that mℓ = xα1

1 · · ·x
αk−1

k−1 xℓ
j /∈ I for any ℓ > 0.

The Rees decomposition yields for each ℓ a unique generator tℓ ∈ T such that mℓ ∈ K[Xtℓ ] · tℓ. Since T
is a finite set, there exists a t ∈ T and a bound ℓ0 > 0 such that tℓ = t for all ℓ ≥ ℓ0. But this is only
possible, if xj ∈ Xt and hence if Xt = {xc, . . . , xn} for some c ≤ j. As j < k, we also have xk ∈ Xt. By
construction, we find thus mℓx

αk

k = mxℓ
j ∈ K[Xt] · t for any ℓ ≥ ℓ0. But now we have the contradiction

mxℓ
j ∈ I and I ∩ K[Xt] · t = ∅. The converse holds by [25, Cor. 3.8].

In the appendix of [25], an algorithm for the construction of Rees decompositions due to Sturmfels
and White [28] is compared with the theory of Pommaret bases. In particular, it was shown in [25,
Prop. A.3] that the level of each generator of a Rees decomposition constructed with this algorithm is
bounded by the class of the generator. Thm. 5.7 implies now that actually much stronger statements are
true: the algorithm of Sturmfels and White always constructs a transformation to quasi-stable position
and in any Rees decomposition the level of each generator is exactly its class. We conclude the paper by
recalling the algorithm ComplementaryDecomposition in the form given in [26, Alg. 5.2] and use it
to state a result related to Thm. 5.7.
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Algorithm 3 ComplementaryDecomposition

1: Input: A minimal (monomial) Janet basis U for monomial ideal I
2: Output: A finite complementary decomposition for R/I
3: Ū := ∅
4: for k from 1 to n do

5: for all ∅ 6= [d1, . . . , dk−1] ⊆ U do

6: choose arbitrary u ∈ [d1, . . . , dk−1]
7: N := {xk+1, . . . , xn} ∪ {xi ∈ MJ (u, U) | i < k}
8: for i from 0 to max{degk(m) | m ∈ [d1, . . . , dk−1]} do

9: if ∄m ∈ [d1, . . . , dk−1] such that degk(m) = i then

10: Ū := Ū ∪ {(xd1

1 · · ·x
dk−1

k−1 xi
k, N)}

11: end if

12: end for

13: end for

14: end for

15: return(Ū)

Theorem 5.8. Let U ⊂ M be the minimal Janet basis for I = 〈U〉. Then U is also a Pommaret basis,
if and only if the above algorithm yields a Rees decomposition for R/I.

Proof. Assume that U is simultaneously a finite Pommaret and Janet basis. By [26, Prop. 5.1.4], the
output of the above algorithm, say A ∼=

⊕
(t,Nt)∈Ū K[Nt] · t where Ū is a finite set and Nt ⊆ {x1, . . . , xn},

is a Stanley decomposition of R/I. We claim that it is even a Rees decomposition. By the structure of
the algorithm, we set in each step N = {xk+1, . . . , xn} ∪ {xi ∈ MJ (u, U) | i < k}. Now, two cases may
arise. If k ≤ cls(u), then {xi ∈ MJ (u, U) | i < k} is the empty set and in turn N = {xk+1, . . . , xn}
which proves our claim in this case.

Otherwise, we have k > cls(u). Since U is a Pommaret basis, MJ (u, U) = MP(u) and thus N =
{xk+1, . . . , xn} ∪ {xcls(u), . . . , xk−1}. We show that in this case the conditions in the if-loop in the
line 9 are not satisfied and hence we do not add any element to Ū . By Lem. 3.10, there does not
exist a monomial m ∈ U with u 6= m and degi(u) = degi(m) for all 1 ≤ i ≤ cls(u). It follows that
max{degk(m) | m ∈ [d1, . . . , dk−1]} = 0. Since, for i = 0, we have u ∈ [d1, . . . , dk−1], the conditions in
the if-loop are not satisfied and we are done.

Conversely, according to Thm. 5.7, 〈U〉 is quasi-stable and thus has a finite Pommaret basis (see
Prop. 2.12). On the other hand, U is the minimal Janet basis for 〈U〉 which is a finite Pommaret basis
by [7, Thm. 17], and this ends the proof.
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