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Abstract. Free resolutions are an important tool in algebraic geometry for the structural analysis
of modules over polynomial rings and their quotient rings. Minimal free resolutions are unique
up to isomorphism and induce homological invariants in the form of Betti numbers. It is known
that Pommaret bases of ideals in the polynomial ring induce finite free resolutions and that the
Castelnuovo-Mumford regularity and projective dimension can be read off already from the Pom-
maret basis. In this article, we generalize this construction to Pommaret-like bases, which are gen-
erally smaller. We apply Pommaret-like bases also to infinite resolutions over quotient rings. Over
Clements–Lindström rings, we derive bases for the free modules in the resolution using only the
Pommaret-like basis. Finally, restricting to monomial ideals over the polynomial ring, we derive
an explicit formula for the differential of the induced resolution.
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1. Introduction
Involutive Bases have their origin in the works by Janet on the analysis of systems of (linear) partial
differential equations [14, 15]. As in Gröbner basis theory, Janet used monomial, and thus combi-
natorial, structures as a tool by the means of which more complex (differential) algebraic structures
can be analysed. Inspired by Janet’s—and also Pommaret’s [17]—works, Zharkov and Blinkov de-
veloped involutive bases for polynomial ideals [23]. Gerdt and Blinkov studied different types of
involutive bases, introducing the framework of involutive divisions in the process [5]. The most well-
known involutive divisions—the Janet and Pommaret divisions—go back to Janet’s works. Further
involutive divisions have been studied; see, e.g., [22, 10]. As Gröbner bases, involutive bases in-
duce free resolutions of the ideals they generate. For some types of involutive divisions, the syzygy
modules in this resolution are generated by involutive bases of the same type [20]. In the case of
the Pommaret division, homological invariants like projective dimension and Castelnuovo-Mumford
regularity can be read off directly from the original Pommaret basis. Not every monomial ideal pos-
sesses a finite Pommaret basis; those that do are termed quasi-stable. For the resolution induced by
the Pommaret basis of a quasi-stable monomial ideal, an explicit formula is known [20]; however,
this resolution is not necessarily minimal. This formula generalizes the well-known resolution for-
mula found by Eliahou and Kervaire [3], which only applies when the Pommaret basis coincides
with the minimal generating set of the ideal. A polynomial ideal is said to be in quasi-stable posi-
tion when it possesses a finite Pommaret basis for the given coordinates; moreover, this position is
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a generic one [19]. For a comprehensive study and applications of the theory of involutive bases to
commutative algebra and the geometric theory of partial differential equations, we refer to [21].

Our contributions concern the use of relative involutive-like bases for the computation and
analysis of free resolutions. For this, we focus on (relative) Pommaret and Pommaret-like bases.
While Pommaret bases capture many homological properties of ideals in quasi-stable position [21],
the resolutions induced by them need not be minimal, because already the basis of the ideal is not
a minimal generating system. We show that Pommaret-like bases represent a significant improve-
ment in this respect. Another aspect we investigate is the application to monomial ideals. For these,
we are able to identify different classes of (relatively) quasi-stable ideals for which Pommaret-like
bases induce the minimal free resolution. Even for other cases, the induced resolution has useful
properties like Gröbner-reducedness in all higher syzygy modules. For a subclass of quasi-stable
monomial ideals, we obtain closed formulas for the differential of the induced resolution, thereby
significantly generalizing the formula by Eliahou–Kervaire [3] for stable monomial ideals. More-
over, we relate our results to a resolution formula for square-free Borel ideals in zero-dimensional
Clements–Lindström rings found by Gasharov et al. [4].

The article is organized as follows. In Section 2, we recall well-known facts about involutive
bases, syzygies and (infinite) free resolutions. In Section 3 we will start by analysing the resolutions
induced by relative Pommaret bases. We focus on obtaining minimal Pommaret bases for the syzygy
modules in each homological degree and observe phenomena that distinguish the relative situation
from the case of resolutions over P . Pommaret-like bases are generally smaller than their Pommaret
counterparts and hence they provide better chances to obtain minimal resolutions. In Section 4 we
study Pommaret-like induced resolutions over P . In order to be able to carry out an analogous study
over quotient rings, we introduce relative involutive-like divisions in Section 5. In Section 6 we anal-
yse Pommaret-like induced resolutions over Clements–Lindström rings. We obtain a combinatorial
formula for the bigraded Betti numbers of the induced resolutions when they are minimal. In Sec-
tion 7, we obtain for some classes of monomial ideals inP explicit formulas for the differential of the
Pommaret-like induced resolution, generalizing for example constructions by Eliahou and Kervaire
[3] and by Seiler et al. [21, 1]. Finally, some conclusions are given in Section 8

2. Preliminaries
Let P = K[x1, . . . , xn] be the polynomial ring in n variables over a field K, let I ⊴ P be an ideal
and let P/I denote the quotient ring defined by I.

As a K-vector space, P has the basis T = {xµ1

1 ⋯x
µn
n ∣ µ1, . . . , µn ∈ N0} of terms, which are

products of non-negative integer powers of the variables. If Y = {y1, . . . , yk} ⊆ X is a subset of
variables, then we denote by TY = {y

µ1

1 ⋯y
µk

k ∣ µi ∈ N0, 1 ≤ i ≤ k} the monoid of all terms in P
depending only on the variables in Y . To each term t = xµ = xµ

1⋯x
µn
n ∈ T we associate its total

degree deg(t) = ∑
n
i=1 µi and its exponent vector, multidegree, or multiindex µ = (µ1, . . . , µn) ∈ Nn

0 .
We write degi(t) = µi for the degree of t in the variable xi. For an integer d ≥ 0, we collect the subset
of all terms of degree d in the set Td ⊂ T . Td generates the finite dimensional K-vector space Pd of
polynomials homogeneous of degree d: Pd ∶= ⟨Td⟩K. (Note that the zero polynomial is homogeneous
of any degree.) Obviously, we have the direct sum of K-vector spaces P = ⊕d≥0Pd, and Pd ⋅ Pe ⊆

Pd+e for all d, e ≥ 0. For a given multidegree µ = (µ1, . . . , µn), we write Pµ = ⟨x
µ⟩K for the

one-dimensional K-vector space of monomials supported on the term xµ. Also for this grading, we
obtain the direct sum of vector spaces P = ⊕µ∈Nn

0
Pµ; and as before, Pµ ⋅Pν ⊆ Pµ+ν for all µ, ν ∈ Nn

0 .
The main idea of an involutive division is to assign to each generator h in a basis H a subset

ML(h,H) ⊆ X of multiplicative variables and to consider only P-linear combinations of the gen-
erators where each generator h ∈ H is multiplied by a coefficient depending only on the variables
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in ML(h,H). In contrast to Gröbner bases, not every monomial basis of a monomial ideal is auto-
matically an involutive basis. The rule for the assignment of the multiplicative variables is called an
involutive division.

Definition 2.1. An involutive division L on T ⊂ P associates to any finite set U ⊂ T of terms
and any term u ∈ U a set of L-non-multipliers L̄(u,U) given by the terms contained in a prime
monomial ideal. The variables generating this prime ideal are called the non-multiplicative variables
NML(u,U) ⊆X of u ∈ U . The set of L-multipliers L(u,U) is given by the order ideal T ∖L̄(u,U);
it is a subring of P generated by the set of multiplicative variables ML(u,U) = X ∖NML(u,U).
For any term u ∈ U , its involutive cone is defined as CL(u,U) = u ⋅ L(u,U). For an involutive
division, the involutive cones must satisfy the following conditions:

(i) For two terms v ≠ u ∈ U with CL(u,U)∩CL(v,U) ≠ ∅, we have u ∈ CL(v,U) or v ∈ CL(u,U).
(ii) If a term v ∈ U lies in an involutive cone CL(u,U), then L(v,U) ⊂ L(u,U).

(iii) For any term u in a subset V ⊂ U , we have L(u,U) ⊆ L(u,V ).
We write u ∣L w for a term u ∈ U and an arbitrary term w ∈ T , if w ∈ CL(u,U). In this case, u is
called an L-involutive divisor of w and w an L-involutive multiple of u.

Conditions (i) and (ii) ensure that involutive cones can intersect only trivially. Condition (iii) is
often called the filter axiom. Obviously, it suffices for defining an involutive division to say what are
the (non-)multiplicative variables for each term u in a finite set U . Note that involutive divisibility
u ∣L w implies ordinary divisibility, but not vice versa.

As with Gröbner bases, involutive bases are defined via monomial structures. For monomial
ideals, we define involutive bases as follows.

Definition 2.2. For a finite set of terms U ⊂ T and an involutive division L on T , the involutive
span of U is the union CL(U) = ⋃u∈U CL(u,U). The set U is an L-involutive basis of the ideal
generated by it, if CL(U) = T ⋅ U and the union is disjoint, i. e. every term in CL(U) has a unique
involutive divisor. An involutive division L is Noetherian, if every monomial ideal in P possesses
an L-involutive basis. The L-involutive basis H of a monomial ideal I is minimal, if any other
L-involutive basis H ′ of I contains H as a subset.

For involutive divisions that are continuous (see [21, Def. 4.1.3]) or even constructive (see [21,
Def. 4.1.7]), the following useful properties hold:

Proposition 2.3. [21, Prop. 4.1.4] For a continuous involutive division L, a finite set of terms U ⊂ T
is an L-involutive basis of the monomial ideal ⟨U⟩ if and only if, for each u ∈ U and x ∈ NML(u,U),
we have xu ∈ CL(U).

We call the criterion implied by Proposition 2.3 the criterion of local involutivity.

Proposition 2.4. [21, Cor. 4.2.4] For a constructive noetherian involutive division L, every mono-
mial ideal has a unique minimal L-involutive basis.

Given a finite set H of polynomials, a monomial ordering ≺ and an involutive division L, we
call H a weak L-involutive basis of the ideal I = ⟨H⟩, if lt(H) is a weak L-involutive basis of
lt(I). For a (strong) L-involutive basis, we require in addition that lt(H) is a strong L-involutive
basis and that all generators h ∈ H have pairwise disjoint leading monomials. We assign to each
polynomial h ∈ H the multiplicative variables ML(lt (h), lt (H)) and define the involutive cone
CL,H,≺(h) ∶= hK[ML(lt (h), lt (H))]. A strong involutive basis H of an ideal I induces then a
disjoint decomposition I = ⊕h∈H CL,H,≺(h) as K-linear spaces. In particular, each ideal element
f ∈ I has a unique involutive standard representation f = ∑h∈H ph ⋅h, in which the coefficients ph ∈
K[ML(lt (h), lt (H))] additionally fulfil lt(ph) ⋅ lt(h) ≤ lt(f). H is a minimal L-involutive basis
of I, if lt(H) is a minimal L-involutive basis of lt(I). If G is an involutive basis of the polynomial
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ideal I, then lt (G) is an involutive basis of the monomial ideal lt (I). Thus any involutive basis is
also a Gröbner basis.

Two involutive divisions are particularly important in applications: The Janet and Pommaret
divisions.

The Janet division was, like the Pommaret division, already introduced by Janet [15, pp. 16-
17]. Let U ⊂ T be a finite set of terms. For each sequence d1, . . . , dn of non-negative integers and
for each index 1 ≤ i ≤ n, we introduce the corresponding Janet class as the subset

U[di,...,dn] = {u ∈ U ∣ degj (u) = dj , i ≤ j ≤ n} ⊆ U . (2.1)

The variable xn is called Janet multiplicative (J-multiplicative) for the term u ∈ U , if it holds
degn (u) = max{degn (v) ∣ v ∈ U}. For i < n, xi is Janet multiplicative for u ∈ U[di+1,...,dn], if
degi (u) =max{degi (v) ∣ v ∈ U[di+1,...,dn]}. The Janet division is Noetherian, continuous, and con-
structive. We sometimes write MinJB(I) for the minimal Janet basis of a given monomial ideal I.
We write MJ(u,U) for the set of Janet multiplicative variables of a term u ∈ U , and by NMJ(u,U)
we denote the non-multiplicative variables.

Example 2.5. In the polynomial ring K[x1, x2, x3], consider the ideal I = ⟨x1x
2
3, x2x3, x

2
1x3⟩. The

given minimal generating set is not a Janet basis of I, but enlarging the generating set by the term
x2x

2
3, we obtain the Janet basis {x1x

2
3, x2x3, x

2
1x3, x2x

2
3} of I.

We now proceed to the Pommaret division. The class of a term 1 ≠ xµ ∈ T with µ =
(µ1, . . . , µn) is defined as the index cls (xµ) = min{i ∣ µi ≠ 0}. A variable xi is Pommaret mul-
tiplicative for xµ, if i ≤ cls (xµ). All variables are Pommaret multiplicative for the trivial term 1.
We write MP (u) for the set of Pommaret multiplicative variables of a term u ∈ T , and by NMP (u)
we denote the non-multiplicative variables. Note that the thus defined Pommaret division is global,
i. e. the assignment of multiplicative variables is independent of any finite set U ⊂ T . In contrast to
the Janet division, the Pommaret division is not Nœtherian, as e. g. the ideal I = ⟨x1x2⟩ does not
possess a finite Pommaret basis (it does not contain an element of class 2). Nevertheless, the Pom-
maret division is continuous and constructive. If a monomial ideal I possesses a Pommaret basis,
we sometimes write MinPB(I) for its minimal Pommaret basis.

For sufficiently large fields K, non-Nœtherianity of the Pommaret division is only a problem
of the used coordinates. After a generic linear change of variables any ideal I ⊆ P admits a finite
Pommaret basis [21, Thm. 4.3.15]. In this case, I is said to be in quasi-stable position. An in-depth
study of this question can be found in [11] together with a deterministic algorithm for the explicit
construction of “good” coordinates for any given ideal I ⊂ P . For Pommaret bases, we will always
consider the degree reverse lexicographical ordering ≺ with x1 ≺ ⋯ ≺ xn, as it is the only class-
respecting term ordering [21, Lem. A.1.8]. As generally a monomial ideal does not remain monomial
after a linear change of variables, Pommaret bases exist only for a special class of monomial ideals.

Definition 2.6. A monomial ideal I is called quasi-stable, if for any term xµ ∈ I and for any index
i with cls(xµ) < i ≤ n an exponent s ≥ 0 exists such that xs

ix
µ/xcls(xµ) ∈ I. A polynomial ideal I is

in quasi-stable position, if lt(I) is quasi-stable.

Quasi-stable ideals appear in many places (and are known under many different names like
ideals of Borel type, ideals of nested type or weakly stable ideals). Besides the above combinatorial
definition, they can be characterised by many algebraic properties. For our purposes, the following
characterisation is relevant.

Proposition 2.7 ([21, Prop. 5.3.4]). A monomial ideal I possesses a finite Pommaret basis, if and
only if it is quasi-stable.

There are two important generalisations of the concept of involutive divisions: Firstly, relative
involutive divisions, which are defined relative to a given monomial ideal I ≠ {0}. Given a usual
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involutive division L, one can derive its relative counterpart LI , which then induces a theory of
involutive bases in the quotient ring P/I. The details are documented in [8, Sec. 5]. Secondly,
involutive-like divisions are defined by the assignment of non-multiplicative pure variable powers
instead of non-multiplicative variables [9, Sec. 6]. The prototype of an involutive-like division is the
Janet-like division [7, 6]:

Definition 2.8. Let U ⊂ T be a finite set of terms. For any term u ∈ U and a Janet non-multiplicative
variable xi ∈ NMJ(u,U), the power xki

i with

ki =min{degi (v) − degi (u) ∣ v, u ∈ U[di+1,...,dn],degi (v) > degi (u)}

is called a non-multiplicative power of u for the Janet-like division. The set of all non-multiplicative
powers of u ∈ U is denoted by NMP(u,U). The elements of the set

NM(u,U) = {v ∈ T ∣ ∃w ∈ NMP(u,U) ∶ w ∣ v}

are called the J-non-multipliers for u ∈ U . The terms outside of it are the J-multipliers for u. An
element u ∈ U will be called a Janet-like divisor of w ∈ T , if w = u ⋅ v with v a J-multiplier for u.

A Janet-like head autoreduced and finite set U ⊂ T is called Janet-like basis of the monomial
ideal ⟨U⟩, if every term t ∈ ⟨U⟩ ∩ T has a Janet-like divisor in U . A finite set of polynomials
F ⊂ P ∖ {0} is a Janet-like basis of I = ⟨F ⟩, if we have lt(f) ≠ lt(g) for all f ≠ g ∈ F and lt(F )
forms a Janet-like basis for lt(I).

The Pommaret-like division was defined in [9, Def. 6.11].

Definition 2.9. The Pommaret-like division P assigns to each term t ∈ T contained in a finite set of
terms U ⊂ T non-multiplicative powers as follows:

1. The Janet non-multiplicative variables xa with a > cls(t),
2. The Janet non-multiplicative powers xpb

b with b > cls(t).
Note that no non-multiplicative power is assigned to any variable xb with b ≤ cls (t).

Let F = {f1, . . . , fr} ⊆ Ps be an enumerated finite subset of a finitely generated free module
Ps. The syzygy module of F is a submodule of Pr defined by

Syz(F ) = {(g1, . . . , gr)
T
∈ P

r
∣

r

∑
i=1

gifi = 0} .

For subsets F ⊆ (P/I)s, we write SyzP/I(F ) to emphasize that we are working over the quotient
ring.

We use syzygies to construct free resolutions of homogeneous ideals I ⊴ P . A free resolution
F of I is given by finitely generated free P-modules F0, F1, . . . and homogeneous P-linear maps
δ0, δ1, δ2, . . . as in the following diagram

F ∶ ⋯
δm+2
Ð→ Fm+1

δm+1
Ð→ Fm

δm
Ð→ Fm−1

δm−1
Ð→ ⋯

δ2
Ð→ F1

δ1
Ð→ F0

δ0
Ð→ I → 0,

such that im(δ0) = I and im(δm+1) = ker(δm) for all m ∈ N0. The collection {δm}m≥0 of maps
is called the differential of the resolution. Leaving aside degree shifts, we can write Fm = P

rm for
m ≥ 0. Each map δm is completely described by the images δ(ei), i ∈ {1, . . . , rm}; equivalently,
δm is represented by a matrix Dm ∈ P

rm−1×rm , whose ith column is exactly δm(ei). (Note that we
interpret the module I as a submodule of P1, so the matrix D0 describing δ0 is of format (r0 × 1).)
Moreover, Dm ⋅Dm+1 = 0 for all m.

The above discussion now implies the next observation: G ∶= {δ0(e1), . . . , δ0(er0)} is a ho-
mogeneous generating set of I and the columns of D1 form a homogeneous generating set G1 of
Syz(G). Generally, the set Gm of columns of Dm is a homogeneous generating set of the iterated
syzygy module Syzm(G).
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Finally, we note that also for ideals J ⊴ P/I in a quotient ring over a homogeneous ideal I,
resolutions by finitely generated free P/I-modules exist. For these resolutions, δ0(F0) = J /I and
all modules Fm, m ≥ 0, are direct sums of copies of P/I. Otherwise, the terminology is the same.

Since we work with homogeneous ideals I, the matrices in any free resolution of I have
homogeneous polynomials as entries. A free resolution is minimal if all entries in the matrices are
either 0 or of positive degree. Up to isomorphism, there is exactly one minimal free resolution for
each ideal I. Since the ranks of the involved free modules Fm in a minimal free resolution are
invariant under isomorphisms, they are a homological invariant of I. They are called (bigraded)
Betti numbers of I.

Assume that in a minimal free resolution F of I, Fm = ⊕d≥0P(−d)
βm,d for m > 1; then the

numbers βm,d = βm,d(I) are the Betti numbers of I. By Hilbert’s syzygy theorem, the minimal free
resolution of I ⊴ P is of finite length. Thus, the collection {βm,d(I)}m,d≥0 of non-zero Betti num-
bers of I is finite. By minimality of F, the sequence (min{d ≥ 0 ∣ βm,d(I) > 0})m≥0 is increasing;
thus we can present the non-zero Betti numbers in a matrix (bd,m)0≤d≤r,0≤m≤s = (βm,d+m(I)) ∈

N(r+1)×(s+1)0 for some positive integers s = s(I), r = r(I), such that there are neither trailing zero
rows nor trailing zero columns.

Consider a homogeneous ideal I ⊴ P and a finimal free resolution of it, yielding the numbers
r(I) and s(I) of rows and columns in its Betti table. Then reg(I) ∶= r(I) is the Castelnuovo-
Mumford regularity, or simply regularity, of I, and projdim(I) ∶= s(I) is its projective dimension.

The minimal P/I-free resolutions of homogeneous ideals J ⊴ P/I are in general infinite in
the sense that inifinitely many non-zero Betti numbers exist. Thus, ideals in P/I in general do not
have finite regularity or projective dimension. As a succinct way of writing the infinitely many Betti
numbers, we use Poincaré series. They are formal power series in two independent variables—u and
s, say—such that the coefficient of a term umsd is given by the Betti number βm,d(J ).

Consider an L-involutive basis H ⊂ P of a polynomial ideal I = ⟨H⟩with respect to a continu-
ous involutive division L. The set lt(H) is a strong L-involutive basis of the leading ideal lt(I). One
can construct an acyclic directed graph, the L-graph, with node set lt(H) and arrows from lt(hi) to
lt(hj) whenever there is a non-multiplicative variable x ∈ NML(lt(hi), lt(H)) such that lt(hj) is
an L-divisor of x lt(hi) [21, Lem. 5.4.5]. Now consider the following method of enumerating lt(H):
As first element lt(h1), take any leading term whose node in the L-graph is not the target of any
arrow. Deleting lt(h1) and its associated arrows from the graph, we obtain another acyclic graph,
and as the second element lt(h2) in the enumeration we take a leading term whose node is not the
target of any arrow in the modified graph. Continuing in this manner, we obtain an L-ordering of
lt(H).

Adapting a construction due to Schreyer [18], one can use the L-involutive basis H , ordered
according to an L-ordering, to construct a Gröbner basis GSyz of Syz(H) that has as leading terms
exactly the module terms xei, where x ∈ NML(lt(hi), lt(H)). If L is of Schreyer type [21, Def.
5.4.8], then GSyz is again an L-involutive basis, and the construction can be iterated to yield a linear,
but generally non-minimal, free resolution of ⟨H⟩. The Pommaret and Janet divisions are of Schreyer
type [21, Lem. 5.4.9]. We will use Schreyer-type constructions also for relative involutive bases.

The resolution induced by the Pommaret basis of a homogeneous ideal I in quasi-stable po-
sition can be used to determine the Castelnuovo-Mumford regularity and projective dimension of I
without computing the minimal free resolution of I. The Castelnuovo-Mumford regularity is simply
the largest degree of a generator in the Pommaret basis; the projective dimension is the maximal
number of non-multiplicative variables that an element of the Pommaret basis can have. For further
details, see [21, Sec. 5.5].

For a quasi-stable monomial ideal I, we refer to [21, Thm. 5.4.18] for an explicit formula for
the differential of the resolution induced by the monomial Pommaret basis. It is immediate from [21,
Eq. (5.53)] that the resolution is minimal if and only if I is stable. The formula can be read off from
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the weighted P -Graph of the basis, which includes for each arrow hi → hj not only the variable
x ∈ NMP (hi) with xhi ∈ CP (hj), but also the cofactor t ∈ K[MP (hj)] such that xhi = thj .

3. Resolutions induced by relative Pommaret bases
Let us recall the definition from [8] of the concept of an involutive division LI relative to a monomial
ideal I of Schreyer type. As our aim is to define a related notion better suited to the computation of
free resolutions, we repeat it here for the reader’s convenience.

Definition 3.1. Let I ⊴ P be a polynomial ideal and LI an involutive division relative to lt(I)
induced by a continuous involutive division L on T . We say that LI is of Schreyer type if, whenever
H is a strong LI-involutive basis of ⟨H⟩ + I relative to I and G is a strong L-involutive basis of I,
we have that for all xµ ∈ lt(H) the monomial set

B = ({
lcm(xν , xµ)

xµ
∣ xν
∈ lt(G)} ∖ lt(I)) ∪ (NMLI(x

µ, lt(H))) (3.1)

is an Llt(I)-involutive basis of the ideal ⟨B⟩ + lt(I) relative to lt(I).

The following example shows that Definition 3.1 is not optimal:

Example 3.2. In P = K[x, y], consider the following ideals (see [16, Ex. 5.2]): I = ⟨x3, y3⟩,
J = ⟨x2, xy, y2⟩. Note that the monomial ideals I and J are quasi-stable. The minimal Pom-
maret basis of I is G = {x3, x3y, x3y2, y3} and the minimal Pommaret basis of J relative to I is
H = {x2, xy, y2}. We can now apply [8, Prop. 5.14] to obtain a Pommaret basis for SyzP/I(H)—
note that G and H are already ordered according to a PI ordering. Precisely, the enumerations are
g1 = x

3, g2 = x
3y, g3 = x

3y2, g4 = y
3 and h1 = x

2, h2 = xy, h3 = y
2.

Using [8, Thm. 5.13], we compute a Pommaret basis of the first syzygy module of H relative
to I, being a subset of the free P/I-module (P/I)3 with the canonical basis {e(1)1 ,e

(1)
2 ,e

(1)
3 } (the

superscript encodes the homological degree.) We underline the leading module terms.
● As A-syzygies, we obtain A1 = xe

(1)
1 , A2 = xye

(1)
1 , and A3 = xy

2e
(1)
1 for h1, A4 = x

2e
(1)
2 ,

A5 = x
2ye

(1)
2 , and A6 = y

2e
(1)
2 for h2, as well as A7 = ye

(1)
3 for h3.

● As syzygies from non-multiplicative prolongations, we obtain S1 = ye
(1)
1 − xe

(1)
2 for h1 and

S2 = ye
(1)
2 − xe

(1)
3 for h2.

We notice immediately that the relative Pommaret basis {A1, . . . ,A7,S1,S2} is not minimal, be-
cause the leading terms of the syzygies A2, A3, A5, A6 are redundant.

As seen in Example 3.2, for relative Pommaret divisions, Definition 3.1 implies that the rel-
ative Pommaret bases computed for the syzygy modules of an P/I-free resolution are generally
non-minimal. What is more, relative Janet divisions are in general not of Schreyer type if one ap-
plies Definition 3.1 — see Example 5.15 of [8]. While it is true that the definition ensures that
relative divisions of Schreyer type are suitable for the computation of free resolutions, the construc-
tion is not optimal. The reason for this is that the set B in Equation (3.1) is not chosen optimally.
Indeed, it is in general not autoreduced with respect to classical (non-restricted) division, because,
the multipliers of the form lcm(xν , xµ)/xµ, which are needed for the A-syzygies, may be divisible
by non-multiplicative variables. Thus, it is natural to propose the following adapted definition:

Definition 3.3. Let I and LI be as in Definition 3.1. Then LI is of strong Schreyer type if, whenever
H is a strong LI-involutive basis of ⟨H⟩+I relative to I and G is a strong L-involutive basis for I,
then for all xµ ∈ lt(H), the set

M(xµ, lt(H), lt(G)) ∪NMLI(x
µ, lt(H))
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is a strong LI-involutive basis for the monomial ideal it generates relative to lt(I) where the set of
multiplicative A-multipliers M(xµ, lt(H), lt(G)) is defined by

M(xµ, lt(H), lt(G)) = {
lcm(xν , xµ)

xµ
∣ xν
∈ lt(G)} ∖ (lm(I) + ⟨NMLI(x

µ, lt(H))⟩). (3.2)

Note that the set M(xµ, lt(H), lt(G))∪NMLI(x
µ, lt(H)) from Definition 3.3 is a subset of

the set B defined in Equation (3.1).

Proposition 3.4. Let I ⊴ P be a polynomial ideal in quasi-stable position and P the Pommaret
division on T . Then the relative involutive division Plt(I) induced by P is of strong Schreyer type.

Proof. Let G be the strong Pommaret basis of I and let H be a strong Pommaret basis of the ideal
⟨H⟩+I relative to I. For each xµ ∈ lt(H), we have to show that the set B′ ∶=M(xµ, lt(H), lt(G))∪
NMPlt(I)(x

µ) is a strong Pommaret basis of the ideal it generates relative to lt(I). We know that
B′ ⊆ B, where B is defined as in Equation (3.1). Moreover, from the definitions, it is easy to see
that ⟨B, lt(I)⟩ = ⟨B′, lt(I)⟩. We still have to show that B′ is a strong relative Pommaret basis. Note
that B is a weak Pommaret basis and each term in t ∈ B ∖ B′ is divisible by a variable xj with
j > cls(xµ), i.e., by a non-multiplicative variable for xµ. Assume that j is the maximal index having
this property. Then, t ∈ CP (xj). We can deduce that B′ is also a weak Pommaret basis. Also, it is
clear that the Pommaret cones CP (xj) and CP (t), where xj ∈ NMP (x

µ) and t ∈ K[MP (x
µ)] ∩B′,

have empty intersection (look at the xj-degrees). Finally, we need to show that all Pommaret cones
CP (t), CP (s), where s ≠ t ∈ K[MP (x

µ)] ∩ B′, have empty intersection. For this, first note that
cls(s) = cls(s) and cls(t) = cls(t), where s, t ∈ lt(G) are the terms inducing the multipliers s, t
for xµ. Indeed, s and t are Pommaret multiplicative for xµ, and so the only indices i for which
degi(s) > degi(x

µ) is possible are indices i ≤ cls(xµ). And there must be an index with this
property, as otherwise s∣xµ, which is impossible. The minimal such index then obviously is just
cls(s), and similarly for t. Hence, a non-empty intersection of the Pommaret cones of s and t would
imply a non-empty intersection of the Pommaret cones s and t. This is impossible, because s, t are
elements of the strong Pommaret basis of the ideal lt(I). ◻

Remark 3.5. The Janet division JI relative to a monomial ideal I is not of strong Schreyer type,
even when I is quasi-stable: Consider I = ⟨x2

1x
2
3, x

3
3, x2x

2
3⟩ = ⟨G⟩ and H = {x1, x2}. I is a stable

ideal, and H is a Janet basis relative to I. Consider the term xµ = x1. The set M(xµ,H,G) ∪
NMJI(x

µ,H) is given by {x1x
2
3}∪{x2}. This is not a Janet basis relative to I, because the variable

x3 is non-multiplicative for x2 in this set, but x2x3 does not possess a Janet divisor in the same set.

Proposition 3.4 ensures that we get minimal Pommaret bases in each step of the resolution
computation. We use Schreyer orderings for these Pommaret bases, which depend on P -orderings
(i.e., orderings adapted to the Pommaret-involutive structure). There is an easy procedure by which
P -orderings can be obtained automatically for the next syzygy module. Indeed, for any given gen-
erator of the current module, we need to take first the multiplicative A-syzygies in the order that is
induced by the ordering on G. Then we take the non-multiplicative variables in ascending order. We
do this for each generator sequentially, and we obtain a minimal Pommaret basis, already P -ordered,
for the next syzygy module.

Example 3.6. As in Example 3.2 consider I = ⟨x2, xy, y2⟩, J = ⟨x3, y3⟩ = ⟨x3, x3y, x3y2, y3⟩.
Applying Proposition 3.4 repeatedly, we obtain relative Pommaret bases for the next iterated syzygy
modules as follows. Note that that the columns of Dk represent the minimal relative Pommaret basis
for the k-th iterated syzygy module.
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D2 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

x2 y 0 0 0 0 0
0 −x y2 0 0 0 0
0 −1 0 x y 0 0
0 0 xy 0 −x2 y2 0
0 0 x2 0 0 xy y2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,D3 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x y 0 0 0 0 0 0 0
0 −x2 y2 0 0 0 0 0 0
0 0 x y 0 0 0 0 0
0 −x 0 0 x2 y 0 0 0
0 0 y 0 0 −x y2 0 0
0 0 0 −x 0 0 x2 y 0
0 0 0 0 0 0 0 −x y

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

D4 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x2 y 0 0 0 0 0 0 0 0 0
0 −x y2 0 0 0 0 0 0 0 0
0 0 x2 y 0 0 0 0 0 0 0
0 0 0 −x y2 0 0 0 0 0 0
0 −1 0 0 0 x y 0 0 0 0
0 0 xy 0 0 0 −x2 y2 0 0 0
0 0 0 −1 0 0 0 x y 0 0
0 0 0 0 xy 0 0 0 −x2 y2 0
0 0 0 0 x2 0 0 0 0 xy y2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, . . .

Remark 3.7. Example 3.6 shows that constants can appear in some homological degree i of the
Pommaret-induced resolution even if there are no constants in the differential at the previous homo-
logical degree i − 1. This is for instance the case for the homological degree 4 in Example 3.6: the
matrix D4 contains constants even though D3 does not. This behaviour of the induced resolution
is new, compared to the Pommaret-induced resolutions for P-modules. Compare [21, Lem. 5.5.1],
where it is shown that a Pommaret-induced resolution over P is minimal if and only if the first
differential does not contain any constant terms.

Example 3.8. In P = K[x, y, z], consider the ideals I = ⟨z3⟩, J = ⟨xyz, y2z, yz2,I⟩. With the usual
notation, we verify by computation that the Pommaret-induced resolution is the minimal P/I-free
resolution of the P/I-module J :

D0 = (xyz y2z yz2) ,

D1 =
⎛
⎜
⎝

y z 0 0
−x 0 z 0
0 −x −y z

⎞
⎟
⎠
,

D2 =

⎛
⎜
⎜
⎜
⎝

z 0 0 0
−y z2 0 0
x 0 z2 0
0 xz yz z2

⎞
⎟
⎟
⎟
⎠

,

D3 =

⎛
⎜
⎜
⎜
⎝

z2 0 0 0
y z 0 0
−x 0 z 0
0 −x −y z

⎞
⎟
⎟
⎟
⎠

,

D4 =D2.
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4. Resolutions induced by Pommaret-like bases
In order to analyse free resolutions induced by Pommaret-like bases, a necessary first step is to
understand resolutions over the polynomial ring P of quasi-stable monomial ideals I generated by
a Pommaret-like basis H . If H is also a Pommaret basis, then the structure of the induced resolution
is known; for results about this, see [21]. In the case that I is a monomial ideal, the resolution
is minimal if and only if H is the minimal generating set of I, see [21]. Note that if I is not
monomial, this result does not hold in general, see e.g. [21, Ex. 5.5.9]. As a first step to a similar result
for Pommaret-like bases, some combinatorial characterization of monomial ideals whose minimal
generating set is also a Pommaret-like basis may be helpful.

Remark 4.1. If a Pommaret-like basis H of a monomial ideal I is given, then ordering the elements
ascendingly with respect to the lexicographic ordering with x1 ≺ ⋯ ≺ xn gives a P -ordering, because
for each h ∈H and x

pj

j ∈ NMPP (h,H), the Pommaret-like divisor u ∈H of xpj

j ⋅h fulfills degj(u) =
degj(h)+pj and degℓ(u) = degℓ(h) for ℓ > j. Thus, h ≺lex u. From this P -ordering, one can derive
a Schreyer ordering in the syzygy module which has non-multiplicative powers as leading terms.

A Pommaret-like basis H of an ideal I ⊴ P in quasi-stable position induces a free resolution
of I over P , and at each homological degree, the corresponding syzygy module is generated by a
Pommaret-like basis [9]. There are special classes of ideals for which this induced resolution is in fact
the minimal free resolution. One class of ideals for which this is true is the class of componentwise
linear ideals (provided that the ideal is in componentwise quasi-stable position [11, Thm. 19]). We
can apply [21, Thm. 5.5.2] to see this, even though that result is concerned with Pommaret bases,
because Pommaret bases are a special kind of Pommaret-like bases. Moreover, for stable monomial
ideals the induced Pommaret-like resolution is also minimal because the Pommaret resolution is [21,
Prop. 5.5.6]. The following result shows that the class of monomial ideals for which the Pommaret-
like resolution is minimal is larger than the class of ideals for which the Pommaret resolution is
minimal i.e., stable monomial ideals:

Theorem 4.2. Let I ⊴ P be a quasi-stable monomial ideal (with I ∉ {{0},P}) generated by the
minimal Pommaret-like basis H ⊂ I ∩ T . Assume that H is simultaneously the minimal monomial
generating set of I. Moreover, assume that for each Pommaret-like non-multiplicative power xpj

j of
t with respect to the set H , it holds (t/xcls(t))x

pj

j ∈ I. Then the free resolution of I over P induced
by the basis H is the minimal free resolution of I over P .

Before we prove Theorem 4.2, we need the following lemma.

Lemma 4.3. Let H ⊂ T be a minimal Pommaret-like basis generating the ideal I = ⟨H⟩. The
condition (xpj

j ⋅t)/xcls(t) ∈ I in Theorem 4.2 is equivalent to the statement that the unique Pommaret-
like divisor s ∈H of xpj

j ⋅ t fulfills cls((xpj

j ⋅ t)/s) ≤ cls(s).

Proof. Let k ∶= cls(t) and let s be the unique Pommaret-like divisor in H of (xpj

j ⋅ t). Note that
j > k. Moreover, since H is minimal, f ∶= (xpj

j ⋅ t)/s ≠ 1. By the definition of Pommaret-like
non-multiplicative powers, it is clear that (xpj

j ⋅ t)∣x1=⋯=xj−1=1 = s∣x1=⋯=xj−1=1. Hence we have
cls(f) < j. Now, if cls(f) ≤ cls(s), then k = cls(f), and xk is multiplicative for s. From this we see
(x

pj

j ⋅ t)/xk ∈ I. Conversely, if cls(f) > cls(s), then s ⋅ f is an element of the minimal Pommaret
basis of I, and k = cls(s). Thus (s ⋅ f)/xk ∉ I and consequently (xpj

j ⋅ t)/xk ∉ I. ◻

Proof of Theorem 4.2. We need to show that no non-zero constant terms appear in the matrices de-
scribing the differential of the induced resolution. Write the resolution as

F ∶ ⋯
d3
Ð→ P

b2 d2
Ð→ P

b1 d1
Ð→ P

∣H ∣ d0
Ð→ I → 0.
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The matrix D0 describing d0 consists of one row containing the elements of H as entries. Hence, no
constant terms appear there. As the next step, we show that in the matrix D1 describing d1 there are
no constant terms. By construction and using the fact that I is a monomial ideal, each column of D1

contains only two non-zero entries: xpa
a (a non-multiplicative power of a term t ∈ H) and a cofactor

f ∈ T such that

t ⋅ xpa
a = s ⋅ f, (4.1)

where s ∈ H is the unique term such that t ⋅ xpa
a ∈ CP (s,H). Since the set H is by assumption

the minimal monomial generating set of I, we have f ≠ 1. Hence, no column of D1 contains any
constant term and the whole matrix D1 is free of constant terms.

The columns of D1 represent a minimal Pommaret-like basis of the first syzygy module
Syz(H) ⊂ P ∣H ∣ of H . The leading module terms xµe

(1)
i of this syzygy module are exactly of the

form xpa
a e

(1)
i where xpa

a is a non-multiplicative power of the ith element of H . They are found in
the ith row of D1. There may be other non-zero entries in the said row, but they are cofactors f as
given in Equation (4.1). Moreover, in the situation of Equation (4.1), it is clear that cls(t) ≤ cls(s)
and hence, by Lemma 4.3,

cls(f) ≤ cls(s). (4.2)

From this it follows that cls(f) < cls(xpb

b ) for all non-multiplicative powers xpb

b of s. We will use
this property in the next step.

The matrix D2 has as many rows as D1 has columns. Each column of D2 contains at least
the non-zero entry xpc

c , a non-multiplicative power of a generator of the leading module of Syz(H).
Since this leading term module is generated by module terms whose monomial parts are the non-
multiplicative powers of the set H , also the non-multiplicative powers of this leading term module
will have monomial parts of the same form. These non-multiplicative powers are obviously not
constants. The further non-zero entries of a column of D2 result from the involutive-like standard
representation of the vector xpc

c ⋅c, where c is a column of D1, with respect to the set of all columns of
D1. We focus on the possible non-zero entries that can be generated by the cancellations which hap-
pen in the i-th row. During the involutive-like reduction process, it can happen that an intermediate
result has a non-zero entry there, but this entry will be of the form f ⋅ p, where p is some polynomial
and f is a term with the properties given in (4.2). In the column of D2 encoding the involutive-like
reduction we are studying at present, a non-zero entry (other than the one already analysed) can be
created in row j only if the jth column cj of D1 has as its leading module term xpb

b e
(1)
i , where xpb

b

is as studied in Equation (4.2). The class condition given in Equation (4.2) now guarantees that the
non-zero entry generated in the jth row of the column of D2 will be free of constant terms. What
is more, all terms in the support of this entry will have class less or equal to cls(f). Now, since the
indices i and j in the discussion above were arbitrary, we have proved that also the matrix D2 does
not contain any constant terms.

The last thing we need to prove is that, also in D2, we have a condition on the classes of terms
analogous to that given in Equation (4.2). If we can show this, then an iteration of the arguments
used for the analysis of D2 can be applied to all successive matrices in the resolution.

To prove this class condition, again consider the jth row of D2, where a non-zero entry q
with cls(q) ≤ cls(f) is located resulting from a step in an involutive-like reduction which uses the
leading module term xpb

b e
(1)
i of the jth column of D1. We need to compare this class with the

classes of all leading module terms of Syz2(H) of the form u ⋅e
(2)
j . But these leading module terms

arise from non-multiplicative powers of the leading module term xpb

b e
(1)
i in the leading module of

Syz(H), and hence u = xpd

d for some index b < d ≤ n. Using Equation (4.2), it is now clear that
cls(q) ≤ cls(f) < cls(xpb

b ) < cls(x
pd

d ), i.e., the class condition we need is fulfilled. ◻
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We continue by giving two examples for minimal free resolutions induced by Pommaret-like
bases.

Example 4.4. In this example, we show that the class of monomials satisfying the conditions of
Theorem 4.2 is larger than the class of monomial ideals for which we can construct minimal free
resolutions as proved in [21]. Let a, b, c ≥ 1 be any three positive integers and let I = ⟨xa, yb, zc⟩
be an irreducible monomial ideal given by its minimal generating system H = {xa, yb, zc}, which
is easily seen to be also a Pommaret-like basis. Moreover, H satisfies the additional assumptions of
Theorem 4.2. Hence, it induces a minimal Pommaret-like free resolution of I. The matrices of the
differentials are given as follows:

D0 = (x
a yb zc) , D1 =

⎛
⎜
⎝

yb zc 0
−xa 0 zc

0 −xa −yb

⎞
⎟
⎠
, D2 =

⎛
⎜
⎝

zc

−yb

xa

⎞
⎟
⎠
.

Example 4.5. In the polynomial ring K[w,x, y, z] with w ≺ x ≺ y ≺ z, consider the monomial ideal
I = ⟨H⟩ with

H = {w9x3y2z2, x5y2z2,w7y4z2, x3y4z2, y6z2, x3y2z4, y4z4, z8}.

(The elements have been ordered lexicographically from lowest to highest.) One can verify that
H is simultaneously the minimal generating system of I and a Pommaret-like basis satisfying the
additional assumptions of Theorem 4.2. Hence, it induces a minimal Pommaret-like free resolution
of I. The matrices of the differentials are given as follows:

D0 = (w
9x3y2z2 x5y2z2 w7y4z2 x3y4z2 y6z2 x3y2z4 y4z4 z8) ,

D1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x2 y2 z2 0 0 0 0 0 0 0 0 0 0 0
−w9 0 0 y2 z2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 x3 y2 z2 0 0 0 0 0 0
0 −w9 0 −x2 0 −w7 0 0 y2 z2 0 0 0 0
0 0 0 0 0 0 −w7 0 −x3 0 z2 0 0 0
0 0 −w9 0 −x2 0 0 0 0 0 0 y2 z4 0
0 0 0 0 0 0 0 −w7 0 −x3 −y2 −x3 0 z4

0 0 0 0 0 0 0 0 0 0 0 0 −x3y2 −y4

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

D2 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

y2 z2 0 0 0 0 0 0 0
−x2 0 z2 0 0 0 0 0 0
0 −x2 −y2 0 0 0 0 0 0
w9 0 0 z2 0 0 0 0 0
0 w9 0 −y2 0 0 0 0 0
0 0 0 0 y2 z2 0 0 0
0 0 0 0 −x3 0 z2 0 0
0 0 0 0 0 −x3 −y2 0 0
0 0 0 0 w7 0 0 z2 0
0 0 w9 x2 0 w7 0 −y2 0
0 0 0 0 0 0 w7 x3 0
0 0 −w9 −x2 0 0 0 0 z4

0 0 0 0 0 0 0 0 −y2

0 0 0 0 0 0 0 0 x3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, D3 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

z2 0
−y2 0
x2 0
−w9 0
0 z2

0 −y2

0 x3

0 −w7

0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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We shall notice that Theorem 4.2 does not completely cover the class of quasi-stable monomial
ideals whose Pommaret-like bases induce minimal free resolutions. In other words, there exist quasi-
stable monomial ideals that do not satisfy the theorem’s assumptions but whose Pommaret-like bases
nevertheless induce the minimal free resolution:

Example 4.6. In the polynomial ring K[x, y, z], consider the monomial ideal I with minimal gener-
ating set G = {xy, y3, xz, y2z, z2}. As one can check, G is also a Pommaret-like basis. The generator
t = xy has the non-multiplicative powers y2 and z. While it is true that (t/x) ⋅ y2 = y3 ∈ I, we have
(t/x) ⋅ z = yz ∉ I. Only if we increase the exponent of the variable z to 2, i.e., higher than the
non-multiplicative power, we reach the term yz2 ∈ I.

The Pommaret-like basis G induces a minimal free resolution with differential represented by
the following matrices:

D0 = (xy y3 xz y2z z2) , D1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

y2 z 0 0 0 0
−x 0 z 0 0 0
0 −y 0 y2 z 0
0 0 −y −x 0 z
0 0 0 0 −x −y2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, D2 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

z 0
−y2 0
x 0
−y z
0 −y2

0 x

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We finish this section with a result that is useful for relating resolutions induced by Pommaret-
like bases to other free resolutions.

Proposition 4.7. Let I with {0} ≠ I ≠ P be a polynomial ideal in quasi-stable position and let
H be its minimal Pommaret-like basis. Then the free resolution induced by H consists of reduced
Gröbner bases for all syzygy modules Syzm(H), m ≥ 1. In other words, in each homological degree
m ≥ 1, the set of columns of the matrix describing the differential is the unique reduced Gröbner
basis of Syzm(H) for the chosen module term order.

Proof. For m ≥ 1 let Dm be the matrix in the induced free resolution that represents the differ-
ential map δm. By [9, Thm. 7.7], the set of columns of D1, say C(D1), is a Pommaret-like basis
of Syz(H). The leading monomials of this basis are given by Z ∶= {xpa

a ⋅ ei ∣ hi ∈ H ∧ xpa
a ∈

NMPP (hi,H)}, and ∣C(D1)∣ = ∣Z ∣. Since Z is the minimal generating set for the module it gen-
erates then C(D1) is a minimal Gröbner basis. It is reduced because all non-leading module mono-
mials arise as coefficients in an involutive-like reduction computation. More precisely, if the first
syzygy generators induced by H do not form a reduced set, then there exists a Pommaret-like mul-
tiplicative term t for xµi ∈ H which is divisible by a Pommaret-like non-multiplicative term s for
xµi , leading to a contradiction. Thus we have shown the claim for m = 1.

Note that C(D1) is in particular again a strong Pommaret-like basis. The claim now follows
by induction on m, using [9, Thm. 7.7] in the induction step. ◻

5. Relative involutive-like divisions
In this section, we present a generalization of the concepts of relative involutive divisions and
involutive-like divisions. For a detailed explanation of relative involutive divisions, see [8]. For the
definition and properties of involutive-like divisions, see [9, Sec. 6].

Definition 5.1. Let {0} ≠ I ⊴ P be a non-zero monomial ideal. An involutive-like division LI rela-
tive to I associates to any finite set U ⊂ T ∖I of terms and any term u ∈ U a set of LI-non-multipliers
LI(u,U) given by the terms contained in an irreducible monomial ideal. The powers generating this
irreducible ideal are called the non-multiplicative powers and the set of these powers is denoted by
NMPLI(u,U). The set of LI-multipliers LI(u,U) is given by the order ideal T ∖ LI(u,U). For
any term u ∈ U , its relative involutive-like cone is defined as CLI(u,U) = u ⋅ LI(u,U) ∖ I. For a
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relative involutive-like division, the relative involutive-like cones must satisfy the following condi-
tions:

1. For two terms v ≠ u ∈ U with CLI(u,U) ∩ CLI(v,U) ≠ ∅, we have u ∈ CLI(v,U) or
v ∈ CLI(u,U).

2. If a term v ∈ U lies in an involutive cone CLI(u,U), then LI(v,U) ⊂ LI(u,U).

Remark 5.2. Following [9, Def. 6.1], Definition 5.1 does not require a filter axiom.

It is straightforward to prove that from an involutive-like division L on T , one can derive a
relative involutive-like division LI by using the same rule for the assignment of non-multiplicative
powers as for L and merely adapting the cones to make them subsets of T ∖ I. One can do this, in
particular, for the important special case of the Janet-like division J :

Definition 5.3. Let I ◁P be a non-zero monomial ideal and let U ⊂ T ∖ I be a finite set of terms.
Let u ∈ U be a term. Then the non-multiplicative powers of u with respect to U , I and the relative
Janet-like division JI are defined as follows:

NMPJI(u,U) = NMPJ(u,U) ∖ (I ∶ u). (5.1)

Therefore, and in other words, the relative Janet-like division uses the same rule for the assignment
of non-multiplicative powers as the Janet-like division J , but it excludes variable powers that form
part of the ideal quotient associated with the term u in question.

If xa is a variable for which a relative Janet-like non-multiplicative power for u exists, then we
write the exponent of this power as

p(JI , u,U, a).

Remark 5.4. The relative Janet-like division JI is an involutive-like division relative to I. This fact
can be easily proven by using the properties of the Janet-like division J . Also, other properties like
the continuity of the Janet-like division J are inherited by JI .

There are a number of different options how one could define the Pommaret-like division PI
relative to a monomial ideal I. One possibility is using the same assignment of non-multiplicative
powers that the Pommaret-like division P also employs. However, this is not an optimal choice for
the definition. The definition should aim to guarantee that the following properties are fulfilled:

1. Cones should of course be disjoint if they are not contained in each other.
2. For u ∈ U , no non-multiplicative powers should be assigned for variables x1, , . . . , xcls(u).
3. For A ⊃ I, a relative Pommaret-like bases should exist if and only if A is quasi-stable relative

to I.
4. A unique minimal relative Pommaret-like basis should exist for any monomial ideal A that is

quasi-stable relative to I.
5. The minimal relative Pommaret-like basis should be as small as possible.

The following definition is designed to guarantee the above enumerated properties:

Definition 5.5. Let {0} ≠ I ⊴ P be a non-zero monomial ideal. The Pommaret-like division PI
relative to I assigns to each term u ∈ T contained in a finite set of terms U ⊂ T ∖I non-multiplicative
powers as follows: For each xa with a > cls(u), if xa ∈ NMJ(u,U), then set p(PI , u,U, a) =
p(JI , u,U, a). If xa ∈ MJ(u,U) and there does not exist any exponent s ∈ N with u ⋅ xs

a ∈ I, set
p(PI , u,U, a) = 1. No other variable gets assigned a non-multiplicative power with respect to the
relative Pommaret-like division PI . In particular, no variable xb with b ≤ cls(u) is assigned a relative
Pommaret-like non-multiplicative power for the term u.

Proposition 5.6. The relative Pommaret-like division PI is a relative involutive-like division.
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Proof. Let u ≠ v ∈ U be two terms in the finite subset U ⊂ T ∖ I. Let k = max{cls(u), cls(v)}. If
k = n = cls(u) = cls(v), the disjointness of the relative Pommaret-like cones is easily seen, as also in
the case where k = n but one of cls(u), cls(v) is less than n. If k < n and the projections u∣x1=⋯=xk=1,
v∣x1=⋯=xk=1 are equal, then either disjointness or containment of the relative Pommaret-like cones is
also easily seen. It remains the case when k < n but the projections on the subring K[xk+1, . . . , xn]

are not equal. There, note that from any two elements u′ = su and v′ = tv, where s and t are PI-
multiplicative terms, we get in the subring that the projections of s and t are Janet-like multipliers
of the projections of u and v. Hence the projections of the relative Pommaret-like cones of u and v
on the same subring are either contained one in the other or they are disjoint. If they are disjoint, the
same also holds true for the full cones in the whole ring P . If they are contained one in the other,
then checking the k-degrees of u and v will yield that the full cones are either disjoint or contained.
A containment will hold if and only if the term with larger class, without loss of generality v, has a
smaller or equal xk-degree compared to that of the other term and the projection of the cone of v in
the subring is a superset of the other cone projection. ◻

Definition 5.7. Let {0} ≠ I ⊴ P be a non-zero monomial ideal and letA ⊃ I be a further monomial
ideal in P . Let LI be an involutive-like division relative to I. A finite set of terms H ⊂ T ∩ (A∖ I)
is called a weak LI-involutive-like basis of A relative to I if every term t ∈ T ∩ (A ∖ I) has an LI
involutive-like divisor in the set H . Such a basis H is called strong if every term t ∈ T ∩ (A∖I) has
a unique LI involutive-like divisor in the set H .

We recall the following definition from [8, Def. 7.1].

Definition 5.8. Let I ⊆ J ⊴ P be two monomial ideals. We say that J is quasi-stable relative to I,
if for all terms xµ ∈ J ∖ I and for all indices i with cls(xµ) < i ≤ n there exists an exponent s ≥ 0
such that either xs

ix
µ ∈ I or xs

ix
µ/xcls(xµ) ∈ J .

Theorem 5.9. Let I ⊂ J ⊴ P be two monomial ideals. Then there exists a Pommaret-like basis of
J relative to I if and only if J is quasi-stable relative to I.

Proof. First assume that J is quasi-stable relative to I. By [8, Prop. 7.4], we know that there exists a
relative Pommaret basis H of J . Since relative Pommaret-like cones are always supersets of relative
Pommaret cones, the set H is also a relative Pommaret-like basis of J . (It need not be a minimal
relative Pommaret-like basis, though.)

Now assume that there exists a Pommaret-like basis H ⊂ T ∩ (J ∖ I) of J relative to I.
Arguing by reductio ad absurdum, suppose that J is not quasi-stable relative to I. In particular,
H is a generating set of J relative to I. Since J is not quasi-stable relative to I, there is a term
1 ≠ h ∈ H and an index j > k =∶ cls(h) such that for every exponent s ∈ N we have (h/xk)x

s
j ∉ J

and hxs
j ∉ I. Consider the Janet class C ∶= H[degj+1(h),...,degn(h)]. Among the terms in C, there is

one with maximal xj-degree. Let this degree be denoted by d.

Now, since H is a relative Pommaret-like basis, the term h ⋅x
d−degj(h)
j has a PI-divisor u in H .

By definition of the PI-like division, u must be an element of the Janet class H[d,degj+1(h),...,degn(h)].

Moreover, it must be a divisor (in the non-involutive sense) of h ⋅x
d−degj(h)
j , so there is a term t ∈ T

with h ⋅x
d−degj(h)
j = u ⋅ t. Now, if there were an exponent e ∈ N with u ⋅xe

j ∈ I, then also u ⋅ t ⋅xe
j ∈ I

and hence h ⋅ x
e+d−degj(h)
j ∈ I, in contradiction to the assumptions made for h. Hence, such an ex-

ponent e does not exist. Moreover, by construction, xj ∈ MJ(u,H). Additionally, it is not possible

that cls(u) ≥ j, because otherwise u would be a divisor of (h/xk)x
d−degj(h)
j , again in contradiction

to the assumptions made for h.
By the statements just shown, and by Definition 5.5, one PI-non-multiplicative power of u

with respect to the set H is x1
j . Now, u ⋅ xj ∈ J ∖ I, and it cannot have any PI-divisor in the set
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H , since such a divisor would be an element of a Janet class H[d+1,degj(h),...,degn(j)]. But this Janet
class is empty by the maximality property of d. All in all, we have shown that there is a term in
J ∖I which has no PI-like divisor in the set H . This contradicts the assumption that H is a relative
Pommaret-like basis of J . ◻

Example 5.10. Consider the ideals I = ⟨x6, y6, z6⟩ and J = ⟨I, xy, yz⟩. These ideals are taken from
[4, Ex. 4.12]. Here, the set H = {xz, yz} is a Pommaret-like basis of J relative to I.

To see this, use as a first step the Janet division to see that MJ(yz,H) = {x, y, z} and
MJ(xz,H) = {x, z}. The set of Janet-like non-multiplicative powers of xz is NMPJ(xz,H) = {y}.
Note that for each term h ∈H and for each variable in the ring, by multiplying h with a high enough
power of that variable, we get a term in I. Hence, the relative Pommaret-like non-multiplicative
powers of the terms in H are NMPPI(yz,H) = ∅, NMPPI(xz,H) = {y}.

Now, it is clear that all non-multiplicative multiples of xz are in the relative Pommaret-like
cone of yz and H is a relative Pommaret-like basis as claimed.

Example 5.10 can be generalized. In [4], Gasharov et al. studied the (infinite) free resolution of
a special type of squarefree ideal in a particular quotient ring, so-called Clements–Lindström ring.
In the rest of this paper, by applying relative Pommaret-like bases, we give an alternative approach
to construct such a resolution. As the first step, in this setting, in Proposition 5.13, we show that the
minimal generating set of a square-free Borel monomial ideal is a relative minimal Pommaret-like
basis. In this direction, we need two definitions. The first is taken from [4]. The second goes back
essentially to [2]. We adapt both to our conventions on variable orderings. Below, for a term s, we
refer to supp(s) as the set of all variables appearing in s. Furthermore, for a given monomial ideal
I, Min(I) stands for its minimal generating set of terms.

Definition 5.11. We call a monomial ideal I ⊴ P generated by squarefree terms squarefree Borel, if
for any (necessarily squarefree) term s ∈Min(I) the following holds: For any variable xi ∈ supp(s)
and any index j with i < j ≤ n such that xj ∉ supp(s), it holds (s/xi) ⋅ xj ∈ I.

Definition 5.12. We say that an irreducible, non-zero monomial ideal I ⊴ P is Clements–Lindström,
if Min(I) is of the form {xai

i , xai+1
i+1 , . . . , xan

n } with 2 ≤ an ≤ an−1 ≤ ⋯ ≤ ai+1 ≤ ai. We call P/I a
Clements–Lindström ring.

Proposition 5.13. Let I be a zero-dimensional Clements–Lindström ideal and let H be the minimal
generating set of a square-free Borel monomial ideal. Then the ideal J = ⟨I,H⟩ is quasi-stable
relative to I and the set H is the minimal Pommaret-like basis of J relative to I.

Proof. As a zero-dimensional Clements–Lindström ideal, I = ⟨xa1

1 , . . . , xan
n ⟩ with a1 ≥ ⋯ ≥ an ≥

2. The square-free minimal generating set H of J is disjoint from I. Hence, it is the minimal
generating set of J relative to I. Exclude in the following the trivial special case H = {1}. H fulfils
the square-free Borel property. Hence, for any term 1 ≠ h ∈H and any index j > k = cls(h) such that
xj ∉ supp(h), there is another term u1 ∈ H dividing (h/xk)xj . Since H is a minimal generating
set, we have cls(u1) ≤ j. If either cls(u1) = j or

supp(u1) ⊇ {xj} ∪ {xa ∈ supp(h) ∣ a > j}

then we have are done and obtained the desired term u1. Otherwise, we repeat this process, by finding
u2 ∈ H such that u2 divides (h/xcls(u1))xℓ with ℓ > j and xℓ ∈ supp(h). We know that for i, the
constructed term ui fulfils the condition cls(ui) ≤ j. It is clear to see that the sequence of u1, u2, . . .
is finite. Assume that um is the last constructed term. If supp(um) ⊇ {xj}∪ {xa ∈ supp(h) ∣ a > j}
then we are done. Otherwise, we have cls(um) = j and supp(um) /⊇ {xj}∪ {xa ∈ supp(h) ∣ a > j}.
Repeating the mentioned process on um leads to a contradiction to the minimality of H . Thus, at the
end, for each index j with j > cls(h), we arrive at a term v such that supp(v) ∩ {xcls(v), . . . , xn} =

{xj} ∪ {xa ∈ supp(h) ∣ a ≥ cls(v)}.
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Now, for a given index j > cls(h), assume that the term v satisfies the above equality. Both h
and v are in the Janet class H[degj+1(h),...,degn(h)] and this shows that xj ∈ NMJ(h,H) and xj is a
PI-non-multiplicative power of h with respect to H . On the other hand, we know that each variable
xa ∈ supp(h) with a > cls(h) lies in MJ(h,H), because H is square-free and dega(h) = 1.
Additionally, for each such variable xa, of course there is an exponent e ∈ N such that hxe

a ∈ I,
because I is zero-dimensional. Hence, for such variable xa, no PI-non-multiplicative power exists
for h. These arguments imply that xj ⋅h ∈ CPI(v). Applying a local involution argument, we see that
H is a relative Pommaret-like basis of J . ◻

Remark 5.14. A close inspection of the proof of Proposition 5.13 shows that the proposition holds
also under slightly weaker conditions. Let k ∈ {1, . . . , n} be defined as min{cls(h) ∣ h ∈ H}. Then
the proposition also holds if I is an irreducible quasi-stable ideal for which some power of xk+1 is a
minimal generator.

6. Pommaret-like free resolutions over Clements–Lindström rings
Since relative Pommaret-like bases are a special kind of relative Gröbner bases, they induce free
resolutions via the relative involutive Schreyer Theorem [8]. If we assume that the ambient quotient
ring is P/I, where I is a quasi-stable monomial ideal, and if we complete the relative Pommaret-
like basis to a relative Pommaret basis, then the induced resolution will consist of Pommaret bases
for the syzygy modules in each homological degree. In this section, we will show that if we restrict
to the class of irreducible quasi-stable monomial ideals, then we can skip the completion step from
Pommaret-like basis to Pommaret basis: The relative Pommaret-like basis will then induce a free
resolution which consists of Pommaret-like bases for each syzygy module. Up to a permutation
of coordinates, the class of irreducible quasi-stable monomial ideals is equivalent to the class of
Clements–Lindström ideals. We will formulate our results in the most general form possible, but for
simplicity one can think of the ring in which computations take place as a Clements–Lindström ring
P/⟨xak

k , . . . , xan
n ⟩ with ak ≥ ⋯ ≥ an ≥ 2. We shall note that a variant of the next proposition in the

non-relative setting was given in [9, Thm. 7.7].

Proposition 6.1. Let I be an irreducible quasi-stable monomial ideal. We work in the ring P/I.
Let H be a Pommaret-like basis relative to I of the (polynomial) ideal J ⊃ I. If H is ordered
according to a P -ordering for its set of leading terms, then a Pommaret-like basis of SyzP/I(H) is
given by the S-polynomials of H induced by non-multiplicative multiples of the leading terms and
the A-polynomials induced by multiplicatively annihilating leading terms of H modulo I. Iteration
of this result implies that a free resolution is induced consisting of relative Pommaret-like bases in
each homological degree.

Sketch of Proof. The proof is similar to that of the corresponding results in [8, Thm. 5.13 and Prop.
5.14], where relative Pommaret bases are treated. As in the proof of [8, Prop. 5.14], quasi-stability
of I is needed to ensure the relative quasi-stability of the leading module of the first syzygy module
SyzP/I(H); the irreducibility of I implies that the leading module terms have pure powers as their
polynomial parts, from which it is easily seen that the set of these leading terms forms a relative
Pommaret-like basis. Moreover, the proof uses continuity of the Pommaret-like division [9, Prop.
6.15] (for the P -ordering) and the relative Schreyer Theorem [8, Thm. 3.12]. Note that "gaps" can
appear in the lists of leading module terms in some syzygy module components. These gaps appear
for the variables where one can reach I by multiplying by a power of that variable. That one can
reach I implies that relative quasi-stability is not destroyed by these gaps. ◻

Remark 6.2. Only those A-polynomials whose annihilating factor is not identical to a generator of
I contribute non-zero syzygies [8, Cor. 4.9].
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As in the non-relative case, we are interested in a description of at least a part of the class
of monomial ideals J ⊃ I quasi-stable relative to I whose relative Pommaret-like bases induce
minimal free resolutions by the process of Proposition 6.1. Recall that an estimate for the classes of
"tail" terms compared to the classes of leading module terms was central to the proof of Theorem
4.2. In order to be able to use a similar argument, we need to impose even stricter assumptions on
the relative Pommaret-like basis generating J than we had to impose in Theorem 4.2. The reason
for this is that in the relative case, the contributions of A-polynomials have an effect which amounts
to a "non-increasing" property for the classes of leading module terms in the resolution.

Example 6.3. Continuing Example 4.5, in the ring K[w,x, y, z]/⟨x10, y10, z10⟩, we consider the
monomial ideal J = ⟨H⟩ minimally generated by the relative Pommaret-like basis

H = {w9x3y2z2, x5y2z2,w7y4z2, x3y4z2, y6z2, x3y2z4, y4z4, z8}.

Note that y2 ⋅x5y2z2−x2 ⋅x3y4z2 = 0 (compare the fourth column of the matrix D1 in Example 4.5);
moreover, x5 ⋅ x5y2z2 = 0 = x7 ⋅ x3y4z2. We obtain the three elements S1 = y2e2 − x

2e4, S2 =

x5e2, and S3 = x7e4 of the first syzygy module of H . Observe that y2 is a Pommaret-like non-
multiplicative power of S2. Multiplying and reducing, we see that y2S2 − x

5S1 − S3 = 0. Thus, a
constant appears in the Pommaret-like induced resolution, which is consequently not minimal.

Theorem 6.4. Let I ⊴ P be an irreducible quasi-stable monomial ideal (with I ∉ {{0},P}) and
let J ⊃ I be a larger monomial ideal generated by the minimal Pommaret-like basis {1} ≠ H ⊂
(J ∖I)∩T relative to I. Assume that H is simultaneously the minimal monomial generating set of
J relative to I. Moreover, let H be such that for each t ∈ H and xpa

a ∈ NMPPI(t,H), the unique
PI-divisor s ∈ H of t ⋅ xpa

a is of greater class than t i.e. cls(s) > cls(t). Then the free resolution of
J over P/I induced by the basis H is minimal.

Moreover, for each m ≥ 1, the set of columns of the matrix Dm describing the differential con-
sists of the unique relative reduced Gröbner basis of SyzmP/I(H) for the chosen module monomial
ordering.

Proof. We need to show that the matrices describing the differential do not contain any constant
terms. By assumption, H ≠ {1} and hence it does not contain any constant. We now analyse the
matrices D1,D2, . . . iteratively. For every h ∈ H , the matrix D1 contains as leading module terms
the non-multiplicative powers of h as well as, for k = cls(h), a factor xdk−degk(h)

k if xdk

k is a min-
imal generator of I. The tail terms in D1 arise by division of terms h ⋅ x

pj

j , where x
pj

j is a non-
multiplicative power, by their unique Pommaret-like divisor s in H:

h ⋅ x
pj

j = s ⋅ u. (6.1)

Since H is the minimal relative generating set of A, these tail terms are not constant. Moreover, by
assumption, we have cls(s) > cls(h) and in turn cls(u) = cls(h). A tail term u will be found in the
row corresponding to the generator s ∈H , and the leading terms in that row will be of class ≥ cls(s),
and so u has strictly smaller class than the leading terms in the same row. Note that columns of D1

belonging to annihilating factors do not have any tail term. Summarizing, D1 does not contain any
constant terms and all tail terms have a strictly smaller class than the leading terms in the same row.

It is now straightforward to proceed analogously as in the proof of Theorem 4.2, showing by
induction on homological degree that no constant terms appear in the resolution, and thus to show
its minimality.

Central to this induction proof is the fact that tail terms always have strictly smaller class than
leading terms in the same row. The reducedness of the Gröbner bases in each degree is an obvious
consequence. ◻

As a consequence, we see below that using this theorem and Proposition 5.13, we are able to
describe minimal free resolutions for the class of monomial ideals considered in Proposition 5.13.
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Corollary 6.5. Let I be a zero-dimensional Clements–Lindström ideal and let H be the minimal
generating set of a square-free Borel monomial ideal. Then the free resolution induced by H is
minimal.

Proof. A close inspection of the proof of Proposition 5.13 shows that the elements of H fulfil the
class condition imposed in Theorem 6.4 and this completes the proof. ◻

Example 6.6. Let us continue Example 5.10 by considering the ideals I = ⟨x6, y6, z6⟩ and A =
⟨I, xz, yz⟩. The set H = {xz, yz} is the minimal generating system of the ideal A relative to I,
and it is simultaneously a relative Pommaret-like basis, as proven in Example 5.10. Since cls(xz) <
cls(yz), the additional conditions of Theorem 6.4 are also fulfilled. Hence, H induces an infinite
minimal free resolution of A over P/I, with the first differential matrices given by:

D0 = (xz yz) , D1 = (
x5 y z5 0 0
0 −x 0 y5 z5

) ,

D2 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

x y z5 0 0 0 0 0 0
0 −x5 0 y5 z5 0 0 0 0
0 0 −x5 0 −y z 0 0 0
0 0 0 x 0 0 y z5 0
0 0 0 0 x 0 0 −y5 z

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Remark 6.7. The minimal free resolution constructed by Gasharov et al. [4, Cons. 4.4] for square-
free borel ideals relative to a zero-dimensional Clements–Lindström ring is necessarily isomorphic
to the Pommaret-like resolution of the same ideal, since both resolutions are minimal.

In fact, one can always find an isomorphism that consists only of permutations of bases. One
can prove this by assigning leading terms to the syzygies defined in [4, Eqn. 4.10]. This assignment
can be done in such a way that the leading terms for each homological degree will coincide with
the leading terms in the Pommaret-like resolution. The sets of leading terms being equal, we can
conclude that the syzygies of [4, Eqn. 4.10] form Gröbner bases in each homological degree; the
reducedness can then be shown in a straightforward manner using a basic result on Borel monomial
ideals.

The uniqueness of the reduced Gröbner basis then shows that the resolution of [4, Cons. 4.4]
and the Pommaret-like resolution coincide. This also gives an explicit formula for the differential,
depending only on the data contained in the first two matrices D0 and D1.

The next example demonstrates that our construction covers many elementary cases:

Example 6.8. Let a1, . . . , an be positive integers. By fixing i ∈ {1, . . . , n}, let 1 ≤ bi < ai be another
integer. Then, relative to the irreducible monomial ideal I = ⟨xa1

1 , . . . , xan
n ⟩, the set H = {xbi

i } is
a relative Pommaret-like basis of A = ⟨H,I⟩ and the induced resolution over P/I is the obvious
2-periodic minimal free resolution with differentials described by the following matrices:

D0 = (x
bi
i ) , D1 = (x

ai−bi
i ) , D2 = (x

bi
i ) =D0.

A final, more or less "generic" example shows the general behaviour of the construction:

Example 6.9. If I = ⟨y4, z5⟩ and A = ⟨I, x2y3, xy2z2, y3z2, z3⟩, then H = {x2y3, xy2z2, y3z2, z3}
is the minimal relative generating set of A, and it is simultaneously a relative Pommaret-like basis
satisfying the additional conditions of Theorem 6.4. Hence, it induces a minimal free resolution of
A over P/I, with the first maps of the differential represented by the following matrices:

D0 = (x
2y3 xy2z2 y3z2 z3) , D1 =

⎛
⎜
⎜
⎜
⎝

y z2 0 0 0 0 0
0 0 y z 0 0 0
0 −x2 −x 0 y z 0
0 0 0 −xy2 0 −y3 z2

⎞
⎟
⎟
⎟
⎠

,
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D2 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

y3 z2 0 0 0 0 0 0 0 0
0 −y z3 0 0 0 0 0 0 0
0 0 0 y3 z 0 0 0 0 0
0 0 0 0 −y z4 0 0 0 0
0 −x2 0 xy2 0 0 y3 z 0 0
0 0 x2z2 0 x 0 0 −y z4 0
0 0 0 0 0 xy2z2 0 0 y3z2 z3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In the remainder of this section, we will derive formulas for the Betti numbers of minimal
free resolutions induced by Pommaret-like bases over factor rings of the form P/I, where I is
an irreducible quasi-stable monomial ideal. We understand this to include also the case I = {0},
and hence all resolutions induced by Pommaret-like bases over the ordinary polynomial ring P =
P/{0} = K[x1, . . . , xn]. The results can also be applied to non-minimal free resolutions induced by
Pommaret-like bases, but then one gets only formulas for the ranks of the free modules in these non-
minimal resolutions. These ranks can be understood as pseudo-Betti numbers of these resolutions.
They yield, degree by degree, upper bounds for the true Betti numbers of the resolved ideals.

We need the following definition.

Definition 6.10. Let I = ⟨xak

k , xak+1
k+1 , . . . , xan

n ⟩ be an irreducible quasi-stable monomial ideal. Then
we write cls(I) ∶= k and supp(I) ∶= {xk, xk+1, . . . , xn}.

Let now J ⊇ I be any homogeneous polynomial ideal in quasi-stable position relative to I
with respect to the degrevlex term ordering, and let H be its minimal relative Pommaret-like basis.
We construct a basis for the bigraded free R-module supporting the induced resolution, only using
the Pommaret-like basis of the leading ideal of J relative to I.

The resolution induced by H is supported on free R-modules. The first free R-module M0 has
a basis that we enumerate as {eα ∣ hα ∈H}. Write tα = lt(hα) for each hα ∈H . As always, we order
H according to a P -order. The next free module M1 has a basis whose cardinality equals that of the
minimal Pommaret-like basis of Syz(H) with respect to the Schreyer module term order—note that
this is a reduced Gröbner basis. Hence, the free basis of M1 is in bijection with the elements of this
Gröbner basis; in other words, it is in bijection with the leading module terms of the Gröbner basis.
These leading module terms are given as follows (cf. Proposition 6.1):
● xpa

a ⋅ eα, where xpa
a ∈ NMPPI(tα, lt(H)),

● x
ai−degi(tα)
i ⋅eα, where xi ∈ supp(tα)∩ supp(I) and there is no PI-non-multiplicative power

for tα at xi. (If ℓ = cls(tα) ≥ cls(I), then this case will always include x
aℓ−degℓ(tα)
ℓ ⋅ eα.)

Since the two cases are mutually exclusive, and each concerns leading module terms whose polyno-
mial parts are pure variable powers, we can identify each leading module term by its position and
the variable involved. Thus, a free basis of M1 can be enumerated as

{eα,xi ∣ xi ≥ cls(tα) ∧ (xi ∈ NMPI(tα, lt(H)) ∨ xi ∈ supp(tα) ∩ supp(I))}.

We keep the condition "xi ≥ cls(tα)" for clarity, even though it could be omitted, being implicit in
the other conditions. At this stage, it is useful to introduce notation for the leading ideals in each
module component of M1, because we can use them to describe, by an iteration, all further leading
terms in the resolution. Set

Jα = ⟨x
di

i ∣ x
di

i ⋅ eα ∈ lt(Syz(H))⟩.

These ideals are irreducible and we will use the notation supp(Jα) for the set of variables appearing
in their respective generating sets.

Consider now the leading terms of the Pommaret-like basis of Syz2(H), which are in bijection
to a free basis of the next module in the resolution, M2. Each of them is induced by a leading term of
the basis of Syz(H). Such a leading term, xdi

i ⋅ eα, say, induces exactly the following leading terms
in Syz2(H):
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● x
dj

j ⋅ eα,xi , where xj ∈ supp(Jα) and j > i,
● xai−di

i ⋅ eα,xi , if xi ∈ supp(I).
Note that the polynomial part of the new leading term will be supported on a variable whose index is
not less than that of the polynomial part of the term which induces it. We can now list the free basis
of M2: Leading terms induced as in the first case correspond to basis elements eα,xixj , whereas
leading terms induced as in the second case correspond to basis elements eα,x2

i
.

We can iterate this construction. For the rth module in the resolution, Mr, it yields a basis
consisting of elements of the form eα,xµ , where xµ is a term of degree r with cls(xµ) ≥ cls(tα).
Moreover, xµ is supported on supp(Jα), and if for each variable xi ∈ supp(I) we substitute 1 into
xµ, we get a squarefree term supported on supp(Jα) ∖ supp(I).

From this description of the free bases, we obtain the following formula for the total Betti
numbers of the resolution, where we write Sα for supp(Jα) and S for supp(I): For r = 0,
rank(M0) = ∣H ∣; for r ≥ 1,

rank(Mr) = ∑
hα∈H
Sα∩S≠∅

min{r, ∣Sα∖S∣}

∑
j=0

(
∣Sα ∖ S ∣

j
) ⋅ (
∣Sα ∩ S ∣ + r − j − 1

∣Sα ∩ S ∣ − 1
)

+ ∑
hα∈H
Sα∩S=∅

[r ≤ ∣Sα∣](
∣Sα∣

r
),

(6.2)

where the product of binomial coefficients counts the number of terms xµ of degree r supported on
Jα with the additional restriction of being squarefree outside supp(I). Moreover, the term [r ≤ ∣Sα∣]
is defined as having values in {0,1}, yielding 1 exactly when the statement enclosed in the square
brackets is true.

We now turn to the bigraded Betti numbers, which we will compute in the form of a Poincaré
series, which is a formal power series in two variables, which we name s and u. The first variable
encodes homological degrees and the second encodes degrees as given by the ordinary grading of
the polynomial ring P . Recall that each basis element eα,xµ has homological degree deg(xµ). Its
polynomial degree is the sum of deg(tα) (recall tα = lt(hα)) and the degrees of the polynomial parts
of all leading module terms involved in the building up of the syzygy Sα,xµ ∈ Syzdeg(x

µ)
(H). These

polynomial parts are pure powers of variables from supp(Jα). Moreover, their indices form a non-
decreasing sequence. There can be repeated indices in this sequence, and if an index j is repeated,
it means that the next syzygy is formed from the annihilation of the current leading term. So if a
module term with polynomial part xcj

j is to annihilate, the next leading term will have polynomial
part xaj−cj

j (recall that I is generated by the x
aj

j ). More repetitions of the same index will cause the
involved leading terms to have polynomial parts oscillating between x

cj
j and x

aj−cj
j . This means that

the contribution of xj-terms to the overall polynomial degree of Sα,xµ depends, on one hand, on the
parity of µj , and the remaining part is just hj ⋅ ⌊µj/2⌋. Since Jα is generated by terms xdj

j , we get
the following formula for the Poincaré series of our resolution, where we write Sα for supp(Jα)
and S for supp(I):

∑
hα∈H

⎛

⎝
udeg(tα) ⋅

⎛

⎝
1 + ∑

B⊆Sα

(
∣Sα∣

∣B∣
)s∣B∣ ∏

xb∈B
udb ∏

xj∈Sα∩S

1

1 − s2uaj

⎞

⎠

⎞

⎠
. (6.3)

Example 6.11. Let us continue Example 6.9 where I = ⟨y4, z5⟩ and H = {x2y3, xy2z2, y3z2, z3}.
We will use Equation (6.2) to compute the Betti numbers of the ideal generated by H relative to I
and then compare it with the results of Example 6.9.

We write hα = x
2y3, hβ = xy

2z2, hγ = y
3z2, and hδ = z

3. An analysis of the Pommaret-like
non-multiplicative powers of these generators shows that Jα = {y, z2}, Jβ = {y, z}, Jγ = {y, z},
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and Jδ = {z2}. Since supp(I) = {x, y}, we have supp(Jα) = supp(Jα) ∩ supp(I), and the same
equality holds also for the other indices. Thus, Equation (6.2) reduces to:

rank(Mr) = ∑
hα∈H

(
∣ supp(Jα)∣ + r − 1

∣ supp(Jα)∣ − 1
),

and this gives, since we have three generators with ∣ supp(J●)∣ = 2 and one generator with
∣ supp(J●)∣ = 1, the formula

rank(Mr) = 3(
1 + r

1
) + (

r

0
) = 4 + 3r,

which is for r ∈ {1,2,3} in perfect agreement with the results of Example 6.9, as expected.

7. An explicit formula for the differential
In this section, we will give explicit formulas for the derivatives of resolutions of some monomial
ideals induced by Pommaret-like bases over the ordinary polynomial ring P = K[x1, . . . , xn]. These
formulas will generalize those described in [21] for resolutions induced by Pommaret bases. While
in [21], such a formula was found for all quasi-stable ideals and their minimal Pommaret bases, we
will here restrict our attention to a smaller class of ideals.

Our first goal is to establish a subclass of quasi-stable ideals whose minimal Pommaret-like
basis satisfies conditions analogous to those found in [21, Lemma 5.4.17] for minimal Pommaret
bases of arbitrary quasi-stable ideals. For this subclass, we will then have the technical tools needed
to give an explicit formula for the differential of the induced resolution.

Definition 7.1. Let H = {hα ∣ α ∈ A} ⊂ T be the minimal Pommaret-like bases of the quasi-stable
ideal I = ⟨H⟩. A is a finite index set. For each α ∈ A, and for each of its Pommaret-like non-
multiplicative powers xpa

a = x
p(P,hα,H,a)
a , there exists exactly one generator hβ ∈ H with xpa

a ⋅ hα ∈

CP (hβ). For such a configuration of terms, we write

∆(α,a) = β (7.1)

for the index of the Pommaret-like divisor, and

tα,a = (x
pa
a ⋅ hα)/hβ (7.2)

for the Pommaret-like multiplicative cofactor involved.

The following result states some elementary properties satisfied by the objects just defined.

Lemma 7.2. Let H = {hα ∣ α ∈ A} ⊂ T be the minimal Pommaret-like basis of the quasi-stable
ideal I = ⟨H⟩. The associated function ∆ and the terms tα,a (as given in Definition 7.1) satisfy the
following properties:

1. The inequality cls(hα) ≤ cls(h∆(α,a)) ≤ a holds for all non-multiplicative indices a > cls(hα).
2. Let b > a > cls(hα) be two non-multiplicative indices.

● The variable xb is non-multiplicative for h∆(α,a) and the non-multiplicative power of
h∆(α,a) at xb equals that of hα at xb.
● If cls(h∆(α,b)) ≥ a, then ∆(∆(α,a), b) =∆(α, b) and xpa

a ⋅ tα,b = tα,a ⋅ t∆(α,a),b.

Proof. Property (1.) follows from the minimality of the Pommaret-like basis H: h∆(α,a) is a divisor
of xpa

a ⋅hα and thus its class must be at least as high as that of hα; it cannot be higher than a, because
otherwise h∆(α,a) would be a strict Pommaret-like divisor of hα, contradicting minimality.

Property (2.) is split into two items. The first item follows from property (1.) and the definition
of the Pommaret-like division, because the terms h∆(α,a) and hα must agree in their xj-degrees for
all j > a. Now if, to prove the second item, we additionally assume cls(h∆(α,b)) ≥ a, then since
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xpb

b ⋅ h∆(α,a) and xpb

b ⋅ hα agree in their xj-degrees for all indices j > a, the same must be true for
h∆(∆(α,a)),b and h∆(α,b). We also know that dega(h∆(α,b)) ≤ dega(hα) < dega(x

pb

b ⋅ h∆(α,a)).
By the class assumption on h∆(α,b), we can now conclude that h∆(α,b) is the unique Pommaret-
like divisor in H of xpb

b ⋅ h∆(α,a). Hence, we have shown ∆(∆(α,a), b) = ∆(α, b). The remaining
statement is a consequence of the following chain of equations:

xpa
a ⋅ tα,b ⋅ h∆(α,b) = x

pa
a ⋅ (x

pb

b ⋅ hα)

= xpb

b ⋅ (x
pa
a ⋅ hα)

= xpb

b ⋅ tα,a ⋅ h∆(α,a)

= tα,a ⋅ x
pb

b ⋅ h∆(α,a)

= tα,a ⋅ t∆(α,a),b ⋅ h∆(∆(α,a),b)

= tα,a ⋅ t∆(α,a),b ⋅ h∆(α,b)

◻

For arbitrary minimal Pommaret bases, the associated ∆ functions satisfy a commutativity
property of the form

∆(∆(α,a), b) =∆(∆(α, b), a) (7.3)
whenever both of these terms are defined, i.e., when the involved variable indices a, b are always
non-multiplicative [21, Lemma 5.4.17]. In general, minimal Pommaret-like bases do not have this
property. What is more, for Pommaret bases, also the equation tα,a ⋅t∆(α,a),b = tα,b ⋅t∆(α,b),a holds in
this situation. In contrast to this, there are minimal Pommaret-like bases for which the commutativity
property holds, but not the equation just mentioned. This is caused by differences of degrees of non-
multiplicative powers for the same variable.

Example 7.3. Consider the minimal Pommaret-like basis H = {hα, hβ , hγ , hδ, hϵ} with hα = xy,
hβ = y4, hγ = xz, hδ = y2z, and hϵ = z3. Its associated ∆ function satisfies the commutativity
property of Equation (7.3). For this only one condition needs to be checked:

∆(∆(α, y), z) = δ =∆(∆(α, z), y).

However, we have tα,y = x, t∆(α,y),z = y2, tα,z = y, and t∆(α,z),y = x, so that tα,y ⋅ t∆(α,y),z =
xy2 ≠ xy = tα,z ⋅ t∆(α,z),y . This is caused by a difference in the degrees of the non-multiplicative
powers at the variable y between hα (degree 3) and hγ (degree 2).

We now define a subclass of quasi-stable ideals having ∆-functions with properties useful for
the analysis of their Pommaret-like resolutions:

Definition 7.4. Let H = {hα ∣ α ∈ A} ⊂ T be the minimal Pommaret-like basis of the quasi-
stable ideal I = ⟨H⟩. The ideal I together with the basis H is called ∆-commuting if the associated
function ∆ and the terms tα,a (as given in Definition 7.1) satisfy the following properties:

1. If b > a > cls(hα) are two non-multiplicative indices and cls(h∆(α,b)) < a, then the ex-
ponent of the non-multiplicative power of h∆(α,b) at the variable xa equals that of the non-
multiplicative power of hα at the variable xa.

2. We have ∆(∆(α,a), b) =∆(∆(α, b), a).
3. We have tα,a ⋅ t∆(α,a),b = tα,b ⋅ t∆(α,b),a.

For ∆-commuting quasi-stable ideals, we are able to give an explicit formula for the differential
of the resolution induced by the minimal Pommaret-like basis. As is usual for such formulas, the
summands obey a certain sign rule, and for this we need the following definition:

Definition 7.5. Let xi ∈ A ⊆ {x1, . . . , xn} be a variable contained in a subset A of variables. Then
we write

sgn(xi,A) ∶= (−1)
∣{xj∈A∣j>i}∣.
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Theorem 7.6. Let H = {hα ∣ α ∈ A} ⊂ T be the minimal Pommaret-like basis of the ∆-commuting
quasi-stable ideal I = ⟨H⟩. We write NMP(hα,H) = {x

pj

j ∣ j > cls(hα)}. The Pommaret-like
induced resolution of I is supported on free generators of the form ehα,xµ , where the xµ are square-
free terms supported on {xj ∣ j > cls(hα)}. The differential δ of the resolution is given by δ(eα,1) =
hα, and, for deg(xµ) > 0,

δ(eα,xµ) = ∑
xj∈supp(xµ)

sgn(xj , supp(x
µ
)) ⋅ (x

pj

j eα,xµ/xj
− tα,je∆(α,j),xµ/xj

) . (7.4)

In this formula, we interpret all summands to be zero which involve a non-existent free generator
eβ,xν , i.e., an expression of this form for which supp(xν) ⊈ {xj ∣ j > cls(hβ)}.

Proof. The proof is a straightforward adaptation of the proof of [21, Thm. 5.4.18], replacing non-
multiplicative variables by their associated non-multiplicative powers where appropriate. ◻

Corollary 7.7. Let I = ⟨H⟩ be a ∆-commuting quasi-stable ideal minimally generated by the set
H ⊂ T , for which H is also a Pommaret-like basis. Then the Pommaret-like resolution of I induced
by H is minimal.

Proof. By minimality of H , we have tα,a ≠ 1 for the terms defined in Definition 7.1. Now, the
minimality of the induced resolution is a trivial consequence of the explicit differential formula 7.4,
which applies because all assumptions of Theorem 7.6 are fulfilled for I and H . ◻

Example 7.8. Let us continue Example 4.5. We have the minimal Pommaret-like basis

H = {hα = w
9x3y2z2, hβ = x

5y2z2, hγ = w
7y4z2, hδ = x

3y4z2,

hϵ = y
6z2, hζ = x

3y2z4, hη = y
4z4, hθ = z

8
}.

Using Formula 7.4, we obtain the following values of the differential δ of the induced resolution for
basis elements of homological degrees 2 and 3:

δ(eα,xy) = y
2eα,x − x2eα,y +w9eβ,y

δ(eα,xz) = z
2eα,x − x2eα,z +w9eβ,z

δ(eα,yz) = z
2eα,y −w9eζ,y − y

2eα,z +x2eδ,z

δ(eβ,yz) = z
2eβ,y −x2eζ,y − y

2eβ,z +x2eδ,z

δ(eγ,xy) = y
2eγ,x − x3eγ,y +w7eδ,y

δ(eγ,xz) = z
2eγ,x − x3eγ,z +w7eδ,z

δ(eγ,yz) = z
2eγ,y − y2eγ,z +w7eϵ,z

δ(eδ,yz) = z
2eδ,y − y2eδ,z +x3eϵ,z

δ(eζ,yz) = z
4eζ,y − y2eζ,z +x3eη,z

δ(eα,xyz) = z
2eα,xy −y2eα,xz + x

2eα,yz −w9eβ,yz

δ(eγ,xyz) = z
2eγ,xy −y2eγ,xz + x

3eγ,yz −w7eδ,yz

The P -graph of this Pommaret-like basis is given in Figure 1.

Example 7.9. Let us continue Example 4.6. Thus, we consider the minimal Pommaret-like basis
H = {xy, y3, xz, y2z, z2} and we write hα = xy, hβ = y

3, hγ = xz, hδ = y
2z, and hϵ = z

2. Using
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α

β

δ

γ

ϵ

ζ

η

θ

x2;w9

y2;w9

z2;w9

y2;x2z2;x2

x3;w7

y2;w7

z2;w7

y2;x3

z2;x3

z2; y2

y2;x3

z4;x3y2

z4; y4

FIGURE 1. P -graph of Pommaret-like basis of Example 7.8. Each arrow is la-
belled with a Pommaret-like non-multiplicative power of the basis element be-
longing to the source. This non-multiplicative power is printed bold. Moreover,
the label contains the associated cofactor, which is Pommaret-like multiplicative
for the basis element belonging to the target of the arrow.

Formula 7.4, we obtain the following values of the differential δ of the induced resolution for basis
elements of homological degree 2:

δ(eα,yz) = zeα,y −yeγ,y − y
2eα,z +xeβ,z

δ(eγ,yz) = zeγ,y − y2eγ,z +xeδ,z

The P -graph of this Pommaret-like basis is given in Figure 2.

In the remainder of this section, we aim to find a family of quasi-stable monomial ideals
as large as possible such that for each ideal in the family, the resolution induced by its minimal
Pommaret-like basis admits an explicit differential formula akin to Equation (7.4). For a given min-
imal Pommaret-like basis H = {hα ∣ α ∈ A}, we would like to find terms uα,j,µ such that the
Pommaret-like induced resolution of the ideal ⟨H⟩ is described by the formula

δ(eα,xµ) = ∑
xj∈supp(xµ)

sgn(xj , supp(x
µ
)) ⋅ (x

pj

j eα,xµ/xj
− uα,j,µe∆(α,j),xµ/xj

) . (7.5)

In particular, we still work with resolutions supported on module basis elements eα,xµ where xµ is a
square-free term supported on {xcls(hα), . . . , xn}, and deg(xµ) is the homological degree of the ba-
sis element. Moreover, the leading terms of the involved syzygies have polynomial parts xp(a,hα,H)

a ,
i.e., they are Pommaret-like non-multiplicative powers of some original basis element. Thus we can
associate the multidegree hα ⋅∏xa∈supp(xµ) x

p(a,hα,H)
a to the basis element eα,xµ .

The original ideal is monomial or, in other words, multihomogeneous; thus, so is the induced
resolution. The terms uα,j,µ need to ensure the multihomogeneity. The resolution is assumed to be
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α β

γ δ

ϵ

y2;x
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y2;x

z;x
z; y2

FIGURE 2. P -graph of Pommaret-like basis of Example 7.9. See Figure 1 for
instructions on how to read this graph.

Pommaret-like induced; hence, the leading terms, which are given by non-multiplicative powers, de-
termine the multidegrees of all involved syzygies. The differential δ is 0-multihomogeneous. Hence
all terms in δ(eα,xµ)must be exactly of multidegree hα∏xa∈supp(xµ) x

p(a,hα,H)
a . This is true for the

terms xpj

j eα,xµ/xj
since the multidegree of eα,xµ/xj

is hα∏xa∈supp(xµ)
a≠j

x
p(a,hα,H)
a . For each index

j, a natural candidate for uα,j,µ is tα,j since x
pj

j ⋅ hα = tα,j ⋅ h∆(α,j) and thus, the multidegree of

tα,je∆(α,j),xµ/xj
is hα ⋅ x

pj

j ⋅∏xa∈supp(xµ)
a≠j

x
p(a,h∆(α,j),H)
a . Consider now the term

vα,j,µ = ∏
xa∈supp(xµ)

a≠j

x
p(a,hα,H)−p(a,h∆(α,j),H)
a ∈ K[x±11 , . . . , x±1n ].

If tα,j ⋅ vα,j,µ ∈ T , then the terms uα,j,µ ∶= tα,j ⋅ vα,j,µ make (7.5) multihomogeneous. It is not
hard to see that ∆-commuting quasi-stable ideals satisfy these conditions.

Before proving that Equation (7.5) indeed describes the Pommaret-like induced resolution, we
first need to make explicit the P -orderings that we use in each homological degree of the Pommaret-
like induced resolution.

Remark 7.10. Let H = {hα ∣ α ∈ A} ⊂ T be a minimal Pommaret-like basis and let eα,xµ , eβ,xν

with deg(xµ) = deg(xν) = d be two basis elements of the free module Fd in the induced resolution.
We work with the following P -ordering: eα,xµ precedes eβ,xν if and only if either hα precedes hβ

in the P -ordering of H , or α = β and xµ ≺revlex xν .

Definition 7.11. Let H = {hα ∣ α ∈ A} ⊂ T be the minimal Pommaret-like basis of the quasi-stable
ideal I = ⟨H⟩. The ideal I together with the basis H is called weakly ∆-commuting if the associated
function ∆ and the terms tα,a (as given in Definition 7.1) satisfy the following property:

If b > a > cls(hα) are two non-multiplicative indices and cls(h∆(α,b)) < a, then we have
∆(∆(α,a), b) =∆(∆(α, b), a).

Before proceeding to the main theorem, we need the following elementary lemma:

Lemma 7.12. Let xµ be a squarefree monomial and let xj , xj ∈ supp(x
µ) =∶ A with i < j be two

variables that divide xµ. Then sgn(xi,A) ⋅ sgn(xj ,A ∖ {xi}) = −sgn(xj ,A) ⋅ sgn(xi,A ∖ {xj})

Proof. Without loss of generality, we may assume that xj has the highest index in supp(xµ). Then,
sgn(xj ,A ∖ {xi}) = sgn(xj ,A) = 1. Thus, we need to show that sgn(xi,A) = −sgn(xi,A ∖ {xj}).
But this is clear, as xj ∈ A and j > i. ◻
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Theorem 7.13. Let H = {hα ∣ α ∈ A} be the minimal Pommaret-like basis of the weakly ∆-
commuting quasi-stable monomial ideal ⟨H⟩. Let the terms uα,j,µ be given such that Equation (7.5)
together with δ(eα,1) = hα defines a 0-multihomogeneous map δ of homological degree −1. Then δ
is the differential of the Pommaret-like induced resolution of ⟨H⟩.

Proof. Let ∂ denote the differential of the Pommaret-like induced resolution. We need to show that
δ = ∂. First, note that the two maps are defined on the same free module(s). It is clear by definition
that δ0 = ∂0. Assume that we can prove that δ2 = 0. Then, elements of the form δ(eα,xj) are in
Syz1(H), and, more generally, if deg(xµ) = d, we have δ(eα,xµ) ∈ Syzd(H). We work with the
term ordering induced by the P -ordering on the basis H . For each d ∈ N0, we consider the set
Gd ∶= {δ(eα,xµ) ∣ deg(xµ) = d + 1}; we denote by Fd the analogous set for the differential ∂. If we
can show that lt(Gd) = lt(Fd) for all d, and that Gd is autoreduced with respect to these leading
terms, then since Fd is a reduced Gröbner basis and by the uniqueness of reduced Gröbner bases, it
must hold that Gd = Fd.

We first show that δ2 = 0. So let eα,xµ be a module generator with deg(xµ) ≥ 2. We claim
that S ∶= δ2(eα,xµ) = 0. S is a sum of module monomials supported on module basis elements
of the form eβ,xµ/xixj

, where {xi, xj} ∈ supp(xµ) (assume i < j), and β lies in the index set
I(i, j) ∶= {α,∆(α, i),∆(α, j),∆(∆(α, i), j)}. (Note that, if ∆(∆(α, j), i) exists, then it is equal
to ∆(∆(α, i), j).) As module monomials supported on basis elements of the form eβ,xµ/xixj

and
eβ,xµ/xkxℓ

, where {i, j} ≠ {k, ℓ}, cannot cancel, it remains only to be seen that the summands
supported on basis elements eβ,xµ/xixj

, with i and j now fixed, cancel. As δ is multihomogeneous,
we only need to determine the existing summands and show that their signs sum to zero.

The index set I(i, j) has at least 3 distinct elements, as α < ∆(α, i) < ∆(∆(α, i), j) in the
P -order of the Pommaret-like basis H . We now distinguish two main cases:

If ∣I(i, j)∣ = 4, then ∆(α, j) ≠ ∆(∆(α, i), j) and hence ∆(∆(α, j), i) = ∆(∆(α, i), j).
These four nodes form a square in the P -graph. For each node, S contains exactly two summands.
The sum of the the signs of the monomials supported on eβ,xµ/xixj

is as follows, where A =
supp(xµ):

● For β = α:

sgn(xi,A)sgn(xj ,A ∖ {xi}) + sgn(xj ,A)sgn(xi,A ∖ {xj}),

● For β =∆(α, i):

sgn(xj ,A)(−1)sgn(xi,A ∖ {xj}) + (−1)sgn(xi,A)sgn(xj ,A ∖ {xi}),

● For β =∆(α, j):

sgn(xi,A)(−1)sgn(xj ,A ∖ {xi}) + (−1)sgn(xj ,A)sgn(xi,A ∖ {xj}),

● For β =∆(∆(α, i), j):

(−1)sgn(xi,A)(−1)sgn(xj ,A ∖ {xi}) + (−1)sgn(xj ,A)(−1)sgn(xi,A ∖ {xj}).

The monomials in each of the four cases sum to zero by Lemma 7.12 and multihomogeneity of δ.
If ∣I(i, j)∣ = 3, then, as α < ∆(α, j) and ∆(α, j) ≠ ∆(α, i), we must have ∆(α, j) =

∆(∆(α, i), j). The three nodes in I(i, j) form a triangle in the P -graph. For each node, S contains
exactly two summands, but no others, as e∆(α,j),xµ/xj

= 0 by convention, because cls(h∆(α,j)) ≥ i.
The sum of the signs of the monomials supported on eβ,xµ/xixj

is as follows, where A = supp(xµ):

● For β = α: As in the case ∣I(i, j)∣ = 4.
● For β =∆(α, i): As in the case ∣I(i, j)∣ = 4.
● For β =∆(α, j) =∆(∆(α, i), j):

(−1)sgn(xi,A)(−1)sgn(xj ,A ∖ {xi}) + sgn(xi,A)(−1)sgn(xj ,A ∖ {xi}).
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The monomials in each of the three cases sum to zero by Lemma 7.12 and multihomogeneity of δ.
Thus we have shown δ2 = 0.

Now we proceed by analysing leading terms and showing autoreducedness. For S ∶= δ(eα,xµ) ∈

Gd, define x̂ = xĵ as the variable with maximal index dividing xµ. Then lt(S) = x
pĵ

ĵ
eα,xµ/xĵ

, be-
cause terms of the form xνeα,● precede terms of the form xρe∆(α,●),● in the P -ordering and xµ/xĵ

is the revlex-smallest term among terms of the form xµ/xi. So lt(S) equals the leading term of the
element ∂(eα,xµ) as desired. It remains to show autoreducedness. Assume that lt(S) divides a term
in the support of T ∶= δ(eβ.xν ). Necessarily, deg(xν) = deg(xµ). If β = α, then it is clear that lt(S)
does not divide any term of the form xζe∆(β,●),... in the support of T, as ∆(β, ●) ≠ β = α. Assume
it divides a term in the support of T of the form xpa

a eα,xν/xa
. Then we must have a = ĵ and xν = xµ,

i.e., S = T. If β ≠ α, then it is clear that lt(S) does not divide any term of the form xpa
a eβ,xν/xa

in
the support of T, as β ≠ α. Assume now that lt(S) divides a term of the form uβ,re∆(β,r),xν/xr

in
the support of T. Then we must have ∆(β, r) = α and xν/xr = x

µ/xĵ . The latter relation implies
xĵ ∉ supp(x

ν). Thus, the definition of uβ,r gives degĵ(uβ,r) = degĵ(tβ,r). But, as ∆(β, r) = α,
tβ,r is Pommaret-like multiplicative for hα, and so degĵ(uβ,r) < p(ĵ, hα,H) = degĵ(lt(S)), con-
tradicting the assumed divisibility. Thus the collection of all the δ(eα,xµ) is indeed autoreduced as
claimed. ◻

Example 7.14. Consider the minimal Pommaret-like basis H = {hα = xy, hβ = y
4, hγ = xyz, hδ =

y2z, hϵ = z
3} ⊂ K[x, y, z].

It induces a minimal free resolution with differential represented by the following matrices:

D0 = (xy y4 xyz y2z z2) , D1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

y3 z 0 0 0 0
−x 0 z 0 0 0
0 −1 0 y z2 0
0 0 −y2 −x 0 z2

0 0 0 0 −xy −y2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, D2 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

z 0
−y3 0
x 0
−y2 z2

0 −y
0 x

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

One checks easily that the P -graph of H is, up to labels, the same as in Figure 2. Thus, H
is weakly ∆-commuting. However, it is not ∆-commuting, because, even though ∆(α, z) = γ and
cls(hγ) = x < z, the non-multiplicative powers of hα and hγ differ, being y3 and y, respectively.

Thus we cannot use Theorem 7.6 for finding the differential, but must resort to using Theo-
rem 7.13. Assume we wanted to use Theorem 7.6. Then we would obtain the expression

zeα,y − eγ,y − y
3eα,z + xeβ,z.

This does not correspond to the first column of D2. Using Theorem 7.13, the coefficient of eγ,y is
multiplied by the correction term y2, which is exactly the quotient of the non-multiplicative powers
at y of hα and hγ , respectively. This way, we obtain the correct differential value

δ(eα,yz) = zeα,y − y
2eγ,y − y

3eα,z + xeβ,z.

Example 7.15. Consider the minimal Pommaret-like basis H = {hα = x
3y, hβ = y

5, hγ = x
3z, hδ =

xy3z, hϵ = y
4z, hζ = z

4} ⊂ K[x, y, z]. It is not weakly ∆-commuting, because ∆(∆(α, y), z) = ϵ ≠
δ =∆(∆(α, z), y). In fact, ∆(∆(∆(α, z), y), y) = ϵ and the P -graph of H contains a pentagon.

8. Conclusion
The Pommaret involutive division is known to be well suited to the analysis of free resolutions and
homological invariants of polynomial ideals in quasi-stable position and of quasi-stable monomial
ideals. In this article, we studied the resolutions obtained by using several generalizations of this
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division: The relative Pommaret and Pommaret-like divisions. These divisions allowed us to study
also ideals in polynomial quotient rings as well as to obtain smaller bases. At the same time, we
showed that the combinatorial properties of the Pommaret division are preserved. Our results not
only enlarge the scope of the study of involutive bases, but also open new opportunities for enhancing
the efficiency of involutive algorithms for the computation of free resolutions.

It is to be expected that the resolutions induced by Pommaret bases can be proven to be induced
by mapping cones (see [12] for a definition), as is true for the resolutions induced by Pommaret bases
[1]. Moreover, it may be worthwhile to investigate whether the Pommaret-like induced resolution is
cellular, for instance using the techniques described by Iglesias and Sáenz de Cabezón [13].

In this work, we focused on resolutions over the ordinary polynomial ring and over quotient
rings defined by Clements–Lindström ideals. However, the presented techniques are valid for any
quotient ring defined by an ideal in quasi-stable position. A natural direction for further research
is to find more general classes of such quotient rings for which the induced resolution has special
properties.
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