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Abstract

We combine the theory of Pommaret bases with a (slight generalisation of a) recent
construction by Sköldberg based on discrete Morse theory. This combination allows
us the explicit determination of a (generally non-minimal) free resolution for a
graded polynomial module with the computation of only one Pommaret basis. If
only the Betti numbers are needed, one can considerably simplify the computations
by determining only the constant part of the differential. For the special case of a
quasi-stable monomial ideal, we show that the induced resolution is a mapping cone
resolution. We present an implementation within the CoCoALib and test it with
some common benchmark ideals.
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1 Introduction

Free resolutions are of fundamental importance in commutative algebra and
algebraic geometry. In particular, the minimal free resolution of a homoge-
neous polynomial ideal encodes much relevant information about the ideal
and is related to many important invariants like the Betti numbers. However,
the explicit determination of the minimal free resolution (or in fact of any free
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resolution) is a computationally demanding task and only for certain special
cases closed-form expressions for a resolution are known. Most algorithms pre-
sented in the literature follow either a vertical or a horizontal strategy, i. e.
they construct the resolution either one homological degree after the other or
they proceed according to the symmetric degree. Discussions can be found in
(Kreuzer and Robbiano, 2005) or (La Scala and Stillman, 1998).

Seiler (2009b) showed that the (revlex) Pommaret basis of a polynomial ideal
or submodule induces a free resolution. More precisely, via the involutive form
of the Schreyer theorem, one can read off the Pommaret basis without any
further computations the shape of a free resolution (leading to sharp upper
bounds for the Betti numbers). However, a closed form of the differential could
be derived by Seiler (2009b) only for quasi-stable monomial ideals. In general,
the induced resolution is not minimal. One obtains a minimal resolution (in
generic coordinates), if and only if the module is componentwise linear.

The free resolution induced by the Pommaret basis is highly structured con-
sisting of “linear layers.” Despite the fact that it is generally not minimal, this
structure allowed Seiler (2009b) to obtain important homological invariants
like the Castelnuovo-Mumford regularity or the projective dimension from the
Pommaret basis without further computations. This article presents some new
results from our ongoing analysis of this resolution with emphasis on “topo-
logical” methods for its construction.

Sköldberg (2006) and independently Jöllenbeck and Welker (2009) developed
an algebraic version of the discrete Morse theory of Forman (1998) and started
to apply it to the construction of resolutions. More recently, Sköldberg (2011)
derived the minimal free resolution for modules with initially linear (min-
imal) syzygies from a two-sided Koszul complex. His definition of initially
linear syzygies contains a minimality condition which restricts the applicabil-
ity of his results to componentwise linear modules, but which is only needed
for ensuring that the final resolution is the minimal one. Our first main result
is that, after dropping this condition, one can apply his construction to the
Pommaret basis of a submodule of a free module and obtains then a reso-
lution isomorphic to the one presented in (Seiler, 2009b). In particular, we
show that his construction yields then a Pommaret basis of each syzygy mod-
ule. Thus combining Sköldberg’s work with Pommaret bases makes it fully
effective and applicable to arbitrary finitely presented polynomial modules, as
the Pommaret bases lead automatically to initially linear syzygies whereas in
Sköldberg’s work even the existence of such a presentation remains an open
question.

In algebraic geometry it often suffices to obtain the (bigraded) Betti numbers;
the whole resolution is not really needed. Our second main result consists of
showing that it is possible to extract directly the constant part of Sköldberg’s
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differential without determining the remainder of the resolution. Then the
determination of the Betti numbers is reduced to linear algebra over the ground
field. This approach yields an algorithm which seems to be faster than any
other proposed in the literature so far.

For arbitrary monomial ideals, a free resolution in closed form was e. g. pro-
vided by Taylor (1960). However, the problem of giving a closed form minimal
resolution for arbitrary monomial ideals is wide open and different approaches
to it have produced many interesting results, see e. g. (Miller and Sturmfels,
2004). One line of research in this area studies the minimal free resolution of
particular families of monomial ideals. A seminal result in this respect is the
minimal resolution of stable ideals found by Eliahou and Kervaire (1990).

Pommaret bases only exist in generic coordinates. For polynomial ideals, this
is not a fundamental problem. However, in the case of monomial ideals, the
required coordinate transformations generally destroy the monomiality. This
observation leads to the class of quasi-stable ideals as those monomial ideals
possessing a monomial Pommaret basis. In the literature, these ideals have
been called ideals of nested type by Bermejo and Gimenez (2006), ideals of
Borel type by Herzog et al. (2003) or weakly stable ideals by Caviglia and
Sbarra (2005). Stable ideals are now those monomial ideals where already the
minimal basis is the Pommaret basis (Mall, 1998). In this case, the resolution
induced by the Pommaret basis is the Eliahou-Kervaire resolution, i. e. the
minimal one. For arbitrary quasi-stable ideals, the induced resolution is very
similar to the Eliahou-Kervaire resolution, but no longer minimal.

Another approach to the construction of—generally non-minimal—resolutions
that can be used for any monomial ideal consists of iterated mapping cones
and has been studied by various authors like Charalambous and Evans (1995)
or Herzog and Takayama (2002). In particular, it was shown that both the
Eliahou-Kervaire and the Taylor resolution can be obtained this way. Our
third main result is that this is also the case for the resolutions of quasi-stable
ideals induced by their Pommaret bases. The proof is based on the recent
observation (Hashemi et al., 2012) that the notion of linear quotients intro-
duced by Herzog and Takayama (2002) is closely related to Pommaret bases
and the construction of a contracting homotopy for polynomial resolutions via
Gröbner bases (Seiler, 2002).

Section 2 briefly reviews Pommaret bases and describes the free resolution
induced by them. The following section gives a brief survey over algebraic dis-
crete Morse theory and presents Sköldberg’s construction of a resolution for
modules with initially linear syzygies. In Section 4, we combine this construc-
tion with the theory of Pommaret bases and show that the two resolutions
are isomorphic. The next section discusses a special case where the differen-
tial becomes much simpler and which includes in particular monomial ideals.
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Section 6 describes our implementation in CoCoA and discusses the efficient
determination of Betti numbers. In Section 7, we specialise to quasi-stable
monomial ideals and show that here the Pommaret basis induces an iterated
mapping cone resolution. Finally, some conclusions are given.

2 Pommaret Bases and the Induced Resolution

Involutive bases are Gröbner bases with additional combinatorial properties.
They were introduced by Gerdt and Blinkov (1998a,b) who combined Gröbner
bases with ideas from the algebraic theory of partial differential equations
(Janet, 1929; Riquier, 1910)—see also related earlier works by Amasaki (1990)
and Wu (1991). A survey over their basic theory can be found in (Seiler, 2009a)
or (Seiler, 2010, Chapts. 3/4). Pommaret bases represent a special case which
has turned out to be particularly useful in the context of algebraic geometry,
as the (revlex) Pommaret basis of an ideal reflects many of its algebraic and
homological properties—see (Seiler, 2009b) or (Seiler, 2010, Chapt. 5).

Throughout this work, k denotes a sufficiently large (preferably infinite) field
of arbitrary characteristic and P = k[x1, . . . , xn] = k[X ] the polynomial ring
in n variables over k together with the standard grading. For notational sim-
plicity, we will present much of the theory for a homogeneous ideal 0 6= I �P
but everything extends straightforwardly to a graded submodule 0 6= U ⊆ P t.
The homogeneous maximal ideal is denoted by m = 〈x1, . . . , xn〉. In contrast
to the standard conventions, we define the reverse lexicographic order for two
terms of the same degree by xµ ≺revlex x

ν , if the first non-vanishing entry of
µ − ν is positive (this corresponds to reverting the ordering of the variables
compared with the standard definition and thus is equivalent). If not explicitly
stated otherwise, we always use revlex and in the module case its TOP lift.

Given an exponent vector µ = [µ1, . . . , µn] 6= 0 (or the term xµ or a polynomial
f ∈ P with lt f = xµ for some fixed term order), we call min {i | µi 6= 0}
the class of µ (or xµ or f), denoted by clsµ (or clsxµ or cls f). Then the
multiplicative variables of xµ or f are XP (xµ) = XP (f) = {x1, . . . , xclsµ};
the remaining variables are the non-multiplicative ones X P (f) = X \ XP (f).
We say that xµ is an involutive divisor of another term xν , if xµ | xν and
xν−µ ∈ k[x1, . . . , xclsµ]. Given a finite set F ⊂ P , we write degF for the
maximal degree and clsF for the minimal class of an element of F .

Definition 2.1. Assume first that the finite set H ⊂ P consists only of terms.
H is a Pommaret basis of the monomial ideal I = 〈H〉, if as a k-linear space⊕

h∈H
k[XP (h)] · h = I (1)
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(in this case each term xν ∈ I has a unique involutive divisor xµ ∈ H). A
finite polynomial set H is a Pommaret basis of the polynomial ideal I for the
term order ≺, if all elements of H possess distinct leading terms and these
terms form a Pommaret basis of the leading ideal lt I.

As the simple example I = 〈x1x2〉 � k[x1, x2] demonstrates, not every ideal
possesses a finite Pommaret basis. One can show that this is solely a problem
of the used coordinate system: in generic coordinates, every ideal has a finite
Pommaret basis. A deterministic approach for constructing “good” coordi-
nates can be found in (Hausdorf et al., 2006). In the sequel, we always assume
that such coordinates have been chosen. A monic, involutively autoreduced
Pommaret basis is unique (Gerdt and Blinkov, 1998b).

It is well-known that Pommaret bases can be characterised similarly to Gröbner
bases (Apel, 1998; Gerdt and Blinkov, 1998a). However, involutive standard
representations, i. e. standard representation where each coefficient contains
only multiplicative variables for the corresponding generator, are unique. The
S-polynomials in the theory of Gröbner bases are replaced by products of the
generators with one of their non-multiplicative variables.

Proposition 2.2. (Seiler, 2009a, Thm. 5.4) The finite set H ⊂ I is a Pom-
maret basis of the ideal I � P for the term order ≺, if and only if every
polynomial 0 6= f ∈ I possesses a unique involutive standard representa-
tion f =

∑
h∈H Phh where each non-zero coefficient Ph ∈ k[XP (h)] satisfies

lt (Phh) � lt (f).

Proposition 2.3. (Seiler, 2009a, Cor. 7.3) Let H ⊂ P be a finite set of poly-
nomials and ≺ a term order such that no leading term in ltH is an involutive
divisor of another one. The set H is a Pommaret basis of the ideal 〈H〉 with
respect to ≺, if and only if for every h ∈ H and every non-multiplicative index
clsh < j ≤ n the product xjh possesses an involutive standard representation
with respect to H.

The classical Schreyer Theorem (Schreyer, 1980) describes how every Gröbner
basis induces a Gröbner basis of its syzygy module for a suitable chosen term
order. If H = {h1, . . . ,hs} ⊂ P t is a finite subset and ≺ a term order on P t,
then the Schreyer order ≺H is the term order on Ps defined by xµeα ≺H xνeβ,
if lt (xµhα) ≺ lt (xνhβ) or if these leading terms are equal and β < α.

Obviously, the Schreyer order ≺H depends on the ordering of the elements of
the set H. For the involutive version of the Schreyer Theorem, we must order
the elements of the Pommaret basis in a suitable manner. For this purpose,
we recall some notions from (Seiler, 2009b). We associate a directed graph
with each Pommaret basis H. Its vertices are given by the elements in H. If
xj ∈ XH,≺(h) for some generator h ∈ H, then, by definition of a Pommaret
basis, H contains a unique generator h̄ such that lt h̄ is an involutive divisor of
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lt (xjh). In this case we include a directed edge from h to h̄. The thus defined
graph is called the P -graph of the Pommaret basis H. We order the elements
of H as follows: whenever the P -graph of H contains a path from hα to hβ,
then we must have α < β. Any ordering satisfying this condition is called a P -
ordering. An explicit P -ordering can be described as follows: we require that
if either cls hα < cls hβ or cls hα = cls hβ = k and and the last non-vanishing
entry of lt hα − lt hβ is negative, then we must have α < β. Thus we sort
the generators hα first by their class and within each class lexicographically
(according to our “reverse” conventions).

Assume that H = {h1, . . . ,hs} is a Pommaret basis of U . According to Propo-
sition 2.3, for every non-multiplicative variable xk of a generator hα we have an
involutive standard representation xkhα =

∑s
β=1 P

(α;k)
β hβ and thus a syzygy

Sα;k = xkeα −
s∑

β=1

P
(α;k)
β eβ (2)

where {e1, . . . , es} denotes the standard basis of Ps. Let HSyz be the set of all
these syzygies.

Lemma 2.4. (Seiler, 2009b, Lemma 5.7) If the Pommaret basis H is P -
ordered, then for all admissable values of α and k we find with respect to the
Schreyer order ≺H that

lt Sα;k = xkeα . (3)

Theorem 2.5. (Seiler, 2009b, Thm. 5.10) Let H be a P -ordered Pommaret
basis of the polynomial submodule U ⊆ P t. Then HSyz is a Pommaret basis
of Syz(H) with respect to the Schreyer order ≺H.

Like the classical Schreyer Theorem, we can iterate Theorem 2.5 and obtain
then a free resolution of the submodule U . 1 However, in constrast to the
classical situation, the involutive version yields the full shape of the arising
resolution without any further computations. We present here a bigraded ver-
sion of this result which is obtained by a trivial extension of the arguments in
(Seiler, 2009b). It provides sharp upper bounds for the Betti numbers of U .

Theorem 2.6. (Seiler, 2009b, Thm. 6.1) Let H be the Pommaret basis of the

polynomial submodule U ⊆ P t. If we denote by β
(k)
0,j the number of generators

h ∈ H such that deg h = j and cls lt h = k and by d = min {k | ∃j : β
(k)
0,j > 0}

the minimal class of a generator, then U possesses a finite free resolution

0 −→
⊕
P [−j]rn−d,j −→ · · · −→

⊕
P [−j]r1,j −→

⊕
P [−j]r0,j −→ U −→ 0

(4)

1 Related results were obtained earlier by Amasaki (1990) who uses the terminology
Weierstraß basis instead of Pommaret basis.
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of length n− d where the ranks of the free modules are given by

ri,j =
n−i∑
k=1

(
n− k
i

)
β

(k)
0,j−i . (5)

For the proof of this result, one shows that the Pommaret basis Hj of the
jth syzygy module Syzj(H) with respect to the Schreyer order ≺Hj−1

consists
of the syzygies Sα;k with an ordered integer sequence k = (k1, . . . , kj) where
clshα < k1 < · · · < kj ≤ n. These syzygies are defined recursively. We denote
for any 1 ≤ i ≤ j by ki the sequence obtained by eliminating ki from k. Now
Sα;k arises from the involutive standard representation of xkjSα;kj :

xkjSα;kj =
p∑

β=1

∑
`

P
(α;k)
β;` Sβ;` . (6)

Here the second sum is over all ordered integer sequences ` of length j − 1
satisfying cls hβ < `1 < · · · < `j−1 ≤ n. Lemma 2.4 implies that

lt Sα;k = xkjeα;kj (7)

—leading by a simple combinatorial computation to the ranks ri,j—and that

the coefficient P
(α;k)
β;` lies in k[x1, . . . , x`j−1

].

One can furthermore show that the free resolution (4) is of minimal length
(i. e. pdU = n− d) (Seiler, 2009b, Thm. 8.11) and that regU = degH (Seiler,
2009b, Thm. 9.2). Nevertheless, it is generally not minimal. Assuming that we
are in generic coordinates (more precisely, in componentwise δ-regular coordi-
nates (Hashemi et al., 2012, Def. 18)), one can show (Seiler, 2009b, Thm. 9.12)
that it is minimal, if and only if U is componentwise linear (see (Herzog and
Hibi, 1999) for a definition of this notion). We also note that it is minimal,
if and only if the first syzygies Sα;k do not contain constants (Seiler, 2009b,
Lemma 8.1). These observations lead to a simple effective criterion for com-
ponentwise linearity.

For later use, we give an alternative description of the complex underlying
the resolution (4). Let W =

⊕s
α=1Pwα and V =

⊕n
i=1Pvi be two free P-

modules whose ranks are given by the size of the Pommaret basis H and
by the number of variables in P , respectively. Then we set Ci = W ⊗P ΛiV
where Λ• denotes the exterior product. A P-linear basis of Ci is provided by
the elements wα ⊗ vk where vk = vk1 ∧ · · · ∧ vki for an ordered sequence
k = (k1, . . . , ki) with 1 ≤ k1 < · · · < ki ≤ n. Then the free subcomplex
S• ⊂ C• generated by all elements wα ⊗ vk with clshα < k1 corresponds to
(4) upon the identification eα;k ↔ wα ⊗ vk. The differential comes from (6),

dS(wα ⊗ vk,kj+1
) = xkj+1

wα ⊗ vk −
∑
β,`

P
(α;k,kj+1)
β;` wβ ⊗ v` , (8)
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and thus requires the explicit determination of all the higher syzygies (6).

3 Algebraic Discrete Morse Theory and Sköldberg’s Resolution

Algebraic discrete Morse theory was mainly developed by Sköldberg (2006)
and by Jöllenbeck and Welker (2009). It provides techniques to reduce a large
complex to a smaller one with the same homology. We briefly recall the main
concepts; for further details and proofs we refer to the above cited works.

We consider a finite chain complex C• of P-modules

0 −→ Cp −→ Cp−1 −→ · · · −→ C0 −→ 0 (9)

where each module Cm =
⊕

a∈Im Ka is written as a direct sum of k-linear
spaces with disjoint index sets Im (Sköldberg calls this a based complex ). To
such a complex, we associate a directed graph ΓC• . The set of vertices is
V = tmIm and the graph contains the edge a → b if and only if a ∈ Im+1,
b ∈ Im and db,a = πb(dC |Ka) 6= 0 where dC is the differential in C• and
πb : Cm =

⊕
c∈Im Kc → Kb for b ∈ Im the canonical projection.

A partial matching on a directed graph D = (V,E) with vertices V and edges
E is a subset A ⊆ E of edges such that any vertex is incident to at most
one edge in A. For such a partial matching A, we define a new directed graph
DA = (V,EA) by reversing all the arrows contained in A: thus the graph DA

has the same vertices as D and it contains the edge a → b if and only if
(b → a) ∈ A ∨

(
(a → b) ∈ E ∧ (a → b) 6∈ A

)
. We define A+ ⊆ V to be the

subset of those vertices that are the targets of the reversed arrows in A and
A− ⊆ V as their sources; finally A0 ⊆ V contains all vertices which are not
incident to any reversed arrow.

Definition 3.1. A Morse matching on the directed graph ΓC• is a partial
matching A satisfying the following conditions:

• For every edge a→ b, the map db,a is an isomorphism.
• Every index set Im possesses a well-founded partial order ≺ such that for

any a, c ∈ Im for which there is a path a→ b→ c in ΓAC• we have c ≺ a. We
say that such an order ≺ respects the Morse matching A.

The goal is to reduce the complex C• to a smaller complex with the same
homology using a Morse matching A. For the definition of the differential
in the smaller complex, we will use reduction paths in ΓAC• . An elementary
reduction path is a “zig-zag” path α0 → β → α1 of length two in ΓAC• with

8



α0, α1 ∈ Im that also satisfies

β ∈ Im−1 ⇐⇒ α0 ∈ A0 ∪ A+ and β ∈ Im+1 ⇐⇒ α0 ∈ A− .

Note that there are also paths α0 → β → α1 of length two in the graph
ΓAC• with α0, α1 ∈ Im which are not elementary reduction paths: a path with
β ∈ Im−1 and α0 ∈ A− is considered by Sköldberg not as an elementary
reduction path; we will see later that it would not make any difference to
include them. For the elementary reduction path α0 → β → α1, we define the
corresponding elementary reduction as the map

ρα1,α0 =

−d
−1
β,α1
◦ dβ,α0 if β ∈ Im−1 ,

−dα1,β ◦ d−1
α0,β

if β ∈ Im+1 .

A (general) reduction path p is a composition of elementary reduction paths

p = α0 → β1 → α1 → · · · → βq → αq

where q ≥ 0. For two indices α, α∗ ∈ Im, there may exist several reduction
paths from α to α∗; we write [α  α∗] for the set of all such paths. For a
general reduction path p, the reduction ρp is given by

ρp = ραq ,αq−1 ◦ ραq−1,αq−2 ◦ · · · ◦ ρα1,α0 .

Definition 3.2. A graded polynomial moduleM has initially linear syzygies,
if M possesses a finite presentation

0 −→ ker η −→W =
s⊕

α=1

Pwα
η−→M −→ 0 (10)

such that with respect to some term order ≺ on the free moduleW the leading
module lt ker η is generated by terms of the form xjwα. We say that M has
initially linear minimal syzygies, if the presentation is minimal in the sense
that ker η ⊆ ms.

These notions go back to Sköldberg (2011) who, however, does not consider
the non-minimal case. In his work “initially linear syzygies” always means
initially linear minimal syzygies. His construction begins with the following
two-sided Koszul complex (F , dF) defining a free resolution of the moduleM.
Let V be a k-linear space with basis {v1, . . . ,vn} (with n still the number
of variables) and set Fj = P ⊗k ΛjV ⊗kM which obviously yields a free P-
module. Choosing a k-linear basis {ma | a ∈ A} of M, a P-linear basis of Fj
is given by the elements 1 ⊗ vk ⊗ ma with ordered sequences k of length j.
The differential is now defined by

dF(1⊗ vk ⊗ma) =
j∑
i=1

(−1)i+1
(
xki ⊗ vki ⊗ma − 1⊗ vki ⊗ xkima

)
(11)
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where ki denotes the sequence k without the element ki. Here it should be
noted that the second term on the right hand side is not yet expressed in
the chosen k-linear basis of M. For notational simplicity, we will drop in the
sequel the tensor sign ⊗ and leading factors 1 when writing elements of F•.

Under the assumption that the module M has initially linear syzygies via a
presentation (10), Sköldberg (2011) constructs a Morse matching leading to a
smaller resolution (G, dG). He calls the variables

crit (wα) = {xj | xjwα ∈ lt ker η} ; (12)

critical for the generator wα; the remaining non-critical ones are contained in
the set ncrit (wα). A k-linear basis of M is then given by all elements xµhα
with hα = η(wα) and xµ ∈ k[ncrit (wα)].

For each module element m ∈M, consider the following set of vertices in the
graph ΓF• :

Vm =
{
vIx

µhα | xIxµhα = m ∧ xµ ∈ k[ncrit wα]
}
. (13)

Then Vm is not empty, if and only if m is the product of some generator hα
with a monomial. Furthermore, we define

Am =
{
vIx

µhα → vI\ixix
µhα ∈ ΓF |Vm |

i = min {I ∩ ncrit (wα)} ∧ i ≤ cls (xµ)
}
. (14)

Sköldberg (2011) gives a slightly different definition for the sets Am; however,
we think that our definition is more precise. By (Sköldberg, 2011, Lemma 2),
the union A =

⋃
m∈MAm is a Morse matching on the graph ΓF• . A vertex

vkhα is not contained in A, if and only if k ⊆ crit (wα); in particular, all
vertices of the form vIx

µhα with µ 6= 0 appear in this Morse matching. We
now define Gj ⊆ Fj as the free submodule generated by those vertices vkhα
where the ordered sequences k are of length j and such that every entry ki
is critical for wα. In particular, W ∼= G0 with an isomorphism induced by
wα 7→ v∅hα.

Sköldberg (2011) gives two descriptions of the differential dG in the reduced
complex, a recursive one and an explicit one. For our purposes, the explicit
one is better suited. It is based on reduction paths in the associated Morse
graph and expresses the differential as a triple sum. If we assume that after
expanding the right hand side of (11) in the chosen k-linear basis of M the
differential of the complex F• can be expressed as

dF(vkhα) =
∑

m,µ,γ

Qk,α
m,µ,γvm(xµhγ) , (15)
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then dG is defined by

dG(vkhα) =
∑
`,β

∑
m,µ,γ

∑
p

ρp
(
Qk,α

m,µ,γvm(xµhγ)
)

(16)

where the first sum ranges over all ordered sequences ` which consists entirely
of critical indices for wβ and the second sum may be restricted to all values
such that a polynomial multiple of vm(xµhγ) effectively appears in dF(vkhα)
and the third sum ranges over all reduction paths p going from vm(xµhγ) to
v`hβ. Finally, ρp is the reduction associated with the reduction path p satis-

fying ρp
(
vm(xµhγ)

)
= cpv`hβ for some polynomial cp ∈ P . In Appendix A,

we show for a concrete ideal how the evaluation of (16) works in practice.

Sköldberg’s main result is that (G, dG) is the minimal free resolution of M,
if one starts with initially linear minimal syzygies. However, independent of
this minimality assumption, his construction always yields a free resolution.
We will show in the next section that for a submodule of a free module, his
resolution is isomorphic to the resolution induced by a Pommaret basis.

4 Sköldberg’s Construction and Pommaret Bases

We now combine Sköldberg’s construction with Pommaret bases. Assume that
the considered graded module is presented as M = P t/U for a graded sub-
module U ⊆ P t. Obviously, a free resolution of U immediately yields one of
M. Therefore we will restrict from now to the construction of resolutions for
such submodules U ⊆ P t given by a Pommaret basis H = {h1, . . . ,hs}. Unless
stated otherwise, we will always assume that any Pommaret basis is enumer-
ated according to a P -ordering. Furthermore, we extend the notion of class
to positive homological degrees by setting cls (vkhα) = max k for elements
vkhα ∈ G|k| with k 6= ∅. As an immediate consequence of Lemma 2.4, we
obtain the following trivial assertion.

Lemma 4.1. The submodule U ⊆ P t has initially linear syzygies 2 for the
Schreyer order ≺H and crit (wα) = X P (hα), i. e. the critical variables of the
generator wα are the non-multiplicative variables of hα = η(wα).

Sköldberg (2011, Cor. 4) proves that a module with initially linear minimal
syzygies is always componentwise linear. It now follows from the above men-
tioned results of (Seiler, 2009b) on componentwise linearity that the converse
is also true: modulo a coordinate transformation any componentwise linear
module has initially linear minimal syzygies.

2 Note that we apply here Definition 3.2 directly to U and not to M = Pt/U , i. e.
in (10) one must replace M by U .
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Corollary 4.2. If the graded polynomial moduleM is componentwise linear,
then it can be presented asM = P t/U such that the submodule U has initially
linear minimal syzygies in componentwise δ-regular coordinates.

For later use, we will now distinguish three types of elementary reduction
paths p in the graph ΓAF• .

Type 0: In this case p is a path α0 → β → α1 with α0, α1 ∈ Im and β ∈ Im−1.
We will later see that these paths are irrelevant for the construction of the
differential dG of the reduced complex G•.

All other elementary reduction paths are of the form

vk(xµhα) −→ vk∪i(
xµ

xi
hα) −→ v`(x

νhβ) .

Here k ∪ i is the ordered sequence which arises when i is inserted into k;
likewise k \ i stands for the removal of an index i ∈ k.

Type 1: Here ` = (k ∪ i)\j, xν = xµ

xi
and β = α. Note that i = j is allowed.

We define ε(i; k) = (−1)|{j∈k|j>i}|. Then the corresponding reduction is

ρ(vkx
µhα) = ε(i; k ∪ i)ε(j; k ∪ i)xjv(k∪i)\j

(xµ
xi

hα
)
.

Type 2: Now ` = (k ∪ i) \ j and xνhβ appears in the involutive standard

representation of xµxj
xi

hα with the coefficient λj,i,α,µ,ν,β ∈ k. In this case, by
construction of the Morse matching, we have i 6= j. The reduction is

ρ(vkx
µhα) = −ε(i; k ∪ i)ε(j; k ∪ i)λj,i,α,µ,ν,βv(k∪i)\j(x

νhβ) .

These reductions follow from the differential (11): the summands appearing
there are either of the form xkivkima or of the form vki(xkima). For each
of these summands, we have a directed edge in the graph ΓAF• . Thus for an
elementary reduction path

vk(xµhα) −→ vk∪i
(xµ
xi

hα
)
−→ v`(x

νhβ) ,

the second edge can originate from summands of either form. For the first
form we then have an elementary reduction path of type 1 and for the second
form we have type 2.

For completeness, we note the following simple result which shows that the free
resolution G indeed extends the presentation (10) and hence yields essentially
the same first syzygies as the Pommaret basis.
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Lemma 4.3. For an 3 i ∈ crit (hα) let xihα =
∑s
β=1 P

(α;i)
β hβ be the involutive

standard representation. Then we have dG(vihα) = xiv∅hα−
∑s
β=1 P

(α;i)
β v∅hβ.

Proof. Looking at the different types of reduction paths, we immediately see
that in the differential (16) we can only have concatenations of elementary
reduction paths of type 1 which are of the form

v∅(x
µhα) −→ vi

(xµ
xi

hα
)
−→ v∅

(xµ
xi

hβ
)
.

The corresponding reduction is ρ(v∅x
µhα) = xiv∅(

xµ

xi
hα) . As dF(vihα) =

xiv∅hα −
∑s
β=1 v∅P

(α;i)
β hβ, the reduction paths move the variables in a way

that gives us the correct reduced differential dG.

Our next result states that if one starts at a vertex vi(x
µhα) with i ∈ ncrit (hα)

and follows through all possible reduction paths in the graph, one will never
get to a point where one must calculate an involutive standard representation.
If there are no critical (i. e. non-multiplicative) variables present at the starting
point, then this will not change throughout any reduction path. In order to
generalise this lemma to higher homological degrees, one must simply replace
the conditions i ∈ ncrit (hα) and j ∈ ncrit (hβ) by ordered sequences k, ` with
k ⊆ ncrit (hα) and ` ⊆ ncrit (hβ).

Lemma 4.4. Assume that i∪ supp (xµ) ⊆ ncrit (hα). Then for any reduction
path p = vi(x

µhα) → · · · → vj(x
νhβ) we have j ∈ ncrit (hβ) and β = α. In

particular, in this situation there is no reduction path p = vi(x
µhα)→ · · · →

vkhβ with k ∈ crit (hβ).

Proof. Assume first that p is an elementary reduction path. We distinguish
two cases depending on the position of the starting point of p.

Case 1: Here vi(x
µhα) ∈ A0 ∪ A+. Then the elementary reduction path

must be of type 0 and p is either of the form vi(x
µhα) → v∅(xix

µhα) →
vcls(xixµ)(

xix
µ

xcls(xix
µ)

hα) or vi(x
µhα)→ xiv∅(x

µhα)→ xivcls(xµ)(
xµ

xcls(xµ)
hα). Since

by assumption i∪supp (xµ) ⊆ ncrit (hα), we also have cls(xix
µ) ∈ ncrit (hα)

and cls(xµ) ∈ ncrit (hα), resp., as claimed.
Case 2: If vi(x

µhα) ∈ A−, then p can be either of type 1 or type 2.
Type 1: If p is of the form vi(x

µhα)→ vi,cls(xµ)(
xµ

xcls(xµ)
hα)→ vi(

xµ

xcls(xµ)
hα),

then the statement is obvious. If, however, p is of the form vi(x
µhα) →

vi,cls(xµ)(
xµ

xcls(xµ)
hα)→ vcls(xµ)(

xµ

xcls(xµ)
hα), then the assumption supp (xµ) ⊆

ncrit (hα) entails that also cls(xµ) ∈ ncrit (hα).

3 For notational simplicity, we will often identify sets X of variables with sets of
the corresponding indices and thus simply write i ∈ X instead of xi ∈ X.
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Type 2: Here the path p is of the form vi(x
µhα) → vi,cls(xµ)(

xµ

xcls(xµ)
hα) →

vcls(xµ)(
xix

µ

xcls(xµ)
hα). As above cls(xµ) ∈ ncrit (hα) and by assumption i ∈

ncrit (hα). Thus xix
µ

xcls(xµ)
hα is already an involutive standard representation.

(Which means that, while in general a reduction path of type 2 might
introduce a hβ for β 6= α, this does not happen under the additional
assumptions of this lemma).

For arbitrary reduction paths p, the claim now follows by an induction over
the length of p.

Now we can show the above claim that reduction paths of type 0 are irrelevant.
Implicitly, this statement is already contained in (Sköldberg, 2006, Lemma 5).

Lemma 4.5. In the differential (16), no reduction path appearing in the third
sum contains an elementary reduction path of type 0; i. e. all reduction paths
appearing in the third sum are concatenations of elementary reduction paths
of type 1 or 2.

Proof. Let p be a reduction path appearing in the sum in (16) ending at
the vertex vjhγ and vi(x

µhα)→ v∅(x
νhβ)→ vcls(xν)(

xν

cls(xν)
hβ) an elementary

reduction path of type 0 appearing in p. As in the proof of Lemma 4.4, we
then have cls(xν) ∈ ncrit (hβ) and Lemma 4.4 implies that j ∈ ncrit(hγ). On
the other hand, for any such reduction path appearing in (16), we must have
j ∈ crit (hγ).

The next results use Schreyer orders on the components of the complex G. We
define H0 as the Pommaret basis of dG(G1) ⊆ G0 with respect to the Schreyer
order ≺H induced by the term order ≺ on P t and Hi as the Pommaret basis
of dG(Gi+1) ⊆ Gi for the Schreyer order ≺Hi−1

. For the next lemma, we further
remark that in order to apply there these Schreyer orders, we need to have both
xκ+µvjhβ ∈ G1 and xνvihα ∈ G1, i.e. j ∈ crit (hβ) and i ∈ crit (hα). Indeed,
by Lemma 4.4, j ∈ ncrit (hβ) and i ∈ ncrit (hα), respectively, implies that the
reduction path in question cannot be part of a longer reduction path that ends
in a vkhγ with k ∈ crit (hγ) which would be necessary for the reduction path
to appear in (16).

Lemma 4.6. Let p = vi(x
µhα) → · · · → vj(x

νhβ) be a reduction path
that appears in the differential (16) (possibly as part of a longer path). If

ρp
(
vi(x

µhα)
)

= xκvj(x
νhβ), then lt≺H1

(xκ+νvjhβ) �H1 lt≺H1
(xµvihα).

Proof. Again we prove the assertion only for an elementary reduction path p
and the general case follows by induction over the path length. If p is of type 1,
then we have either ρp

(
vi(x

µhα)
)

= xkvi(
xµ

xk
hα), where the claim is obvious,
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or ρp
(
vi(x

µhα)
)

= xivk(
xµ

xk
hα) for an index k ∈ suppxµ, so k ∈ ncrit hα. But

by the same argument as in the proof of Lemma 4.5, the last case cannot
occur.

If p is of type 2, there exists an index j ∈ suppxµ (implying j ∈ ncrit (hα) and

thus j ≤ cls (hα)), a multi index ν and a scalar λ ∈ k such that ρp
(
vi(x

µhα)
)

=

λvj(x
νhγ) where xνhγ appears in the involutive standard representation of

xµxi
xj

hα with a non-vanishing coefficient. Lemma 4.4 implies j ∈ crit (hγ). By

construction, lt≺ (xix
µ

xj
hα) � lt≺ (xνhγ).

Here we must distinguish between equality and strict inequality. In the first
case, lt≺ (xix

µ

xj
hα) = lt≺ (xνhγ) and hence cls (hα) ≤ cls (hγ). But then j ∈

ncrit(hα) ⊆ ncrit(hγ). Analogously to Lemma 4.5, such reduction paths do
not appear in the differential (16). If in the second case the strict inequality
lt≺ (xix

µ

xj
hα) � lt≺ (xνhγ) holds, then also lt≺ (xµxihα) � lt≺ (xνxjhγ) and

now, by definition of the Schreyer order, lt≺H1
(xµvihα) �H1 lt≺H1

(xνvjhγ)
which proves the claim.

For notational simplicity, we formulate the two decisive corollaries only for the
special case of second syzygies, but they remain valid in any homological de-
gree. The first one already indicates the great similarity between Sköldberg’s
resolution and the one induced by a Pommaret basis, as a comparison with
Lemma 2.4 shows that there is a one-to-one correspondence between the lead-
ing terms of the syzygies contained in the two resolutions.

Corollary 4.7. If i < j, then lt≺H1

(
dG(vi,jhα)

)
= xjvihα.

Proof. As described in Section 2, we assume that the elements of the given
Pommaret basis are numbered according to a P -order. Consider now the dif-
ferential dG. We first compare the terms xivjhα and xjvihα. Lemma 4.4 (or
the minimality of these terms with respect to any order respecting the used
Morse matching) entails that there are no reduction paths [vjhα  vkhδ] with
k ∈ crit (hδ) (except trivial reduction paths of length 0), since vjhα ∈ A0; the
same argument applies to vihα. By definition of the Schreyer order, we have
xivjhα ≺H1 xjvihα.

Now consider any other term in the sum. We will prove xjvihα �H1 x
κvihβ,

where xκhβ effectively appears in the involutive standard representation of
xjhα. The claim then follows from applying Lemma 4.6 with xjvihα �H1

xκvihβ �H1 lt≺H1

(
ρp(vix

κhβ)
)
.

We always have lt≺ (xjxihα) � lt≺ (xκxihβ). If this is a strict inequality, then
xjvihα �H1 x

κvihβ follows at once by definition of the Schreyer order. So now
assume lt≺ (xjxihα) = lt≺ (xκxihβ). By construction, xκ ∈ k[x1, . . . , xcls (hβ)].
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Again by definition of the Schreyer order, the claim follows, if we can prove
lt≺H0

(xjxiv∅hα) �H0 lt≺H0
(xκxiv∅hβ). Since j ∈ crit (hα) and lt≺ (xjhα)

is involutively divisible by lt≺ (hβ), we have α < β, by definition of a P -
ordering. As we have here lt≺ (xjhα) = lt≺ (xκhβ), this implies the esti-
mate lt≺H0

(xjxiv∅hα) �H0 lt≺H0
(xκxiv∅hβ) and therefore lt≺H1

(xjvihα) �H1

lt≺H1
(xκvihβ).

Corollary 4.8. The set
{
dG(vk⊗hα) | |k| = 2; k ⊆ crit (wα)

}
is a Pommaret

basis with respect to the term order ≺H0 .

Based on these two corollaries, it is now comparatively straightforward to
prove our main result by explicitly constructing an isomorphism between the
two resolutions we consider.

Theorem 4.9. Assume the situation of Lemma 4.1, i. e. we have a submodule
U ⊆ P t and the presentation comes from a P -ordered Pommaret basis H of
U . Then the resolution (G, dG) is isomorphic to the resolution induced by H.

Proof. First, we recall the alternative description of the resolution induced by
a Pommaret basis given at the end of Section 2, and especially the definition
of the differential in the complex S• as in (8). There, we start with W =⊕s

α=1Pwα and V =
⊕n
i=1Pvi. Then we consider the modules Ci =W⊗P ΛiV .

By identifying wα = wα ⊗P v∅ ∈ C0 with mα = dS(wα) ∈ U , we get the
isomorphism

Ci =
( s⊕
α=1

Pwα

)
⊗P Λi

( n⊕
j=1

Pvj

)
∼= P ⊗k

( s⊕
α=1

kmα

)
⊗k Λi

( n⊕
j=1

kvj

)
⊆ Fi

and we can view Ci as a submodule of Fi. In the same way, we see that for the
submodules Si ⊆ Ci and Gi ⊆ Fi we have isomorphisms Si ∼= Gi. Using these
isomorphisms, we will identify Si and Gi in the rest of this proof.

We write the two resolutions as rows in a diagram denoting the components
of dS by di and those of dG by d∗i :

· · · //G2
d1 //

ϕ2

��

G1
d0 //

ϕ1

��

G0

ϕ0

��

//U // 0

· · · //G2
d∗1 //G1

d∗0 //G0
//U // 0

. (17)

Let {ei,1, . . . , ei,ri} be the basis of the free module Gi. By Corollary 4.8, the
vectors hi−1,α = di(ei,α) define a Pommaret basis Hi of im di. Analogously,
we obtain a Pommaret basis H∗i of im d∗i . Here we set H−1 = H∗−1 = H, the
given Pommaret basis of U , and define the term orders ≺i on Gi recursively
as the Schreyer orders ≺i=≺Hi−1

. Because of Corollary 4.7, we always have
lt hi,α = lt h∗i,α and hence also ≺i=≺H∗i−1

.
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Assume now that an automorphism ϕ0 : G0 → G0 is given which satisfies
ϕ0(im d0) = im d∗0 and which preserves the term order ≺0 in the sense that

we have lt≺0

(
ϕ0(f)

)
= lt≺0 (f) for all vectors 0 6= f ∈ G0. Obviously, the

identity is such an automorphism. We now show that ϕ0 can be lifted to
automorphisms ϕi : Gi → Gi preserving the term orders ≺i such that the
diagram (17) commutes.

If ϕ0(h0,α) =
∑r1
β=1 P

β
αh∗0,β is an involutive standard representation with re-

spect to the Pommaret basis H∗0, then we set ϕ1(e1,α) =
∑r1
β=1 P

β
α e1,β and

extend P-linearly. It is trivial that for this choice of ϕ1 the rightmost square
in the diagram (17) becomes commutative.

We temporarily renumber the elements of the Pommaret bases H0 and H∗0 so
that now lt hα ≺0 lt hβ, if and only if α < β. By definition of an involutive
standard representation, the matrix (P β

α ) is then an upper triangular matrix
for this ordering and since ϕ0 preserves the term order ≺0 the elements Pα

α on
the diagonal are non vanishing constants. This fact trivially implies that ϕ1 is
an automorphism.

Finally, we must show that ϕ1 preserves the term order ≺1. Obviously, it
suffices to check this for terms. By definition, ϕ1(xκe1,α) = xκ

∑r1
β=1 P

β
α e1,β.

Using the definition of a Schreyer order and the fact that the coefficients P β
α

come from an involutive standard representation, we find that the equality

lt≺1 ϕ1(xκe1,α) = max
≺1

{
xκ lt≺1 (P β

α e1,β) | β = 1, . . . , r1

}
is equivalent to the equality

max
≺0

{
xκ lt≺0 (P β

αh∗0,β) | β = 1, . . . , r1

}
= xκ lt≺0 (h∗0,α) .

Using again the definition of a Schreyer order, we may now conclude that
lt≺1 ϕ1(xκe1,α) = lt≺1 (xκe1,α) as required.

Since ϕ1 is an automorphism and the rows in the diagram (17) are exact,
we have ϕ1(im d1) = im d∗1. Thus we can iterate the construction and obtain
automorphisms ϕi : Gi → Gi for all values of i. Because of Lemma 4.3, choosing
the identity for ϕ0 then proves our assertion.

5 A Simple Special Case

Whenever a reduction path p contains an elementary reduction of type 2
which is reversed in the Morse matching, then in the situation of Lemma 4.1
a factor P (•;•)

• (cf. (2)) appears in the the differential dG in the coefficient cp
associated with the reduction ρp. A special case, in which one obtains a much

17



simpler expression for the differential dG (Sköldberg, 2011, Thm. 2), arises
when no appearing reduction path contains an elementary reduction of type
2. Sköldberg provides a simple sufficient condition for being in this special
case, namely when the module M is crit-monotone.

Translated into the situation of Lemma 4.1, a submodule U is crit-monotone
when on the right hand side of (2) only those generators eβ effectively appear
which satisfy cls hβ ≥ cls hα. It is very rare that submodules satisfy this con-
dition. There exists one notable exception: it is always satisfied for monomial
submodules possessing a Pommaret basis. In fact, the arising resolution is a
simple generalisation of the closed-form resolution obtained in (Seiler, 2009b)
for such monomial submodules (see Theorem 7.1 below). We provide now an
independent proof of this result which is also much simpler than the proof
given in (Seiler, 2009b) for the monomial case.

Theorem 5.1. Assume that in the syzygies (2) the coefficients P
(α;k)
β are non-

zero only, if cls hβ ≥ cls hα. Then the Pommaret basis Hj of the jth syzygy
module consists of the syzygies 4

Sα;k =
j∑
`=1

(−1)j−`
(
xk`eα,k` −

s∑
β=1

[
(k`)1 > cls hβ

]
P

(α,k`)
β eβ;k`

)
(18)

where again k = (k1, . . . , kj) is an integer sequence with cls hα < k1 < · · · < kj.

Proof. It suffices to consider the second syzygy module, as the assertion is
then also true for all higher syzygy modules by iteration. Since we have the
right leading terms (with respect to the corresponding Schreyer order), it
furthermore suffices to prove that (18) is indeed a syzygy. Thus, with the short
hand [k, β] = [k > cls hβ], there remains to show that for cls hα < k1 < k2

xk2Sα;k1 −
s∑

β=1

[k1, β]P
(α;k2)
β Sβ;k1 = xk1Sα;k2 −

s∑
β=1

[k2, β]P
(α;k1)
β Sβ;k2 . (19)

In order to see that this equation always holds after substitution of the first
syzygies, we compare two different ways to determine a standard representa-
tion of xk1xk2hα: one time we first take the involutive standard representation
of xk2hα and then multiply it by xk1 ; the second time we revert the role of xk1

4 The Kronecker-Iversion symbol [·] is 1, if the contained condition is true, and 0
otherwise.
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and xk2 . The first operation yields

xk1xk2hα =
s∑

γ=1

(
[cls hγ ≥ k1]xk1P

(α,k2)
γ +

s∑
β=1

[cls hβ < k1]P
(α,k2)
β P (β,k1)

γ

)
hγ ;

(20)

the second one yields the same result with k1 and k2 swapped. Due to our
assumption on the coefficients P

(α,k)
β , we obtain in both cases the involutive

standard representation which is unique by Proposition 2.2. Hence both ways
must lead to identical coefficients for each generator hγ. Substituting the ob-
tained equalities into (19) yields the desired result.

Example 5.2. The condition in Theorem 5.1—and similar in (Sköldberg,
2011, Thm. 2)—is sufficient but not necessary for the conclusion. The homo-
geneous ideal I � k[x, y, z] generated by the Pommaret basis

h1 = x2y , h2 = x2z , h3 = y2 + xz , h4 = yz − xz , h5 = z2 + xy (21)

provides a concrete instance where the assumptions of Theorem 5.1 are not
satisfied, but the conclusion is nevertheless correct. The Pommaret basis of
the first syzygy module consists of

S1;3 = ze1 − xe2 − x2e4 , (22a)

S2;3 = xe1 + ze2 − x2e5 , (22b)

S3;3 = e1 − e2 + ze3 − (x+ y)e4 − xe5 , (22c)

S4;3 = −e1 − e2 + xe3 + ze4 + (x− y)e5 , (22d)

S1;2 = ye1 + xe2 − x2e3 , (22e)

S2;2 = (y − x)e2 − x2e4 . (22f)

Obviously, the syzygies S3;3 and S4;3 come from generators of class 2 but
contain basis vectors corresponding to generators of class 1. The Pommaret
basis of the second syzygy module comprises

S1;2,3 = ze1;2 − xe2;2 − ye1;3 − xe2;3 + x2e3;3 , (23a)

S2;2,3 = ze2;2 + xe1;2 − (y − x)e2;3 + x2e4;3 (23b)

which is exactly (18).
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6 Implementation in CoCoALib

We now describe an implementation of the above results in the computer al-
gebra library CoCoALib (Abbott and Bigatti, 2013). 5 In contrast to the
remainder of this article, our implementation is based on the standard con-
ventions for the reverse lexicographic order in order to be consistent with
CoCoALib. This also implies that a number of things like the definitions of
multiplicative or critical variables must be adapted. The change of conven-
tion means that everywhere the ordering of the variables must be reverted:
x1, . . . , xn becomes xn, . . . , x1. Our implementation is currently restricted to
ideals.

We want to construct the reduced complex G•. We first need the two-sided
Koszul complex F•. Because of the form of the reduced differential (16), we
only have to determine the differential dF for basis elements of the form vkhα
where k ⊆ crit hα, which is in principle straightforward with (11).

The only problem which may occur is that we obtain in the right hand sum-
mands a term vki(xkihα) where ki /∈ ncrit hα. In this case, we determine
the involutive standard representation of xkihα and split the coefficients into
monomials:

xkihα =
s∑

β=1

∑
µ

Qk,α
ki,µ,β

xµhβ

with µ ⊆ XP (hβ) and scalars Qk,α
ki,µ,β

∈ k. So we can replace vki(xkihα) by basis
elements of the right form. Thus we arrive at the following, easily computable,
explicit form of the differential dF (we assume that k is of length j)

dF(vkhα) =
j∑
i=1

(−1)i+1
(
xkivkihα −

s∑
β=1

∑
µ

Qk,α
ki,µ,β

vki(x
µhβ)

)
. (24)

Now we perform the Morse reduction. Assume that we have an edge vkhα →
vm(xµhβ) in the graph ΓF• with |k| = |m| + 1 and µ ⊆ ncrit hβ, e. g. vkhα
maps to Qk,α

m,µ,βvm(xµhβ). By (16), the element Qk,α
m,µ,βvm(xµhβ) must reduce

to ∑
v`hγ

`⊆ncrithγ

∑
p∈[vm(xµhβ) v`hγ ]

ρp
(
Qk,α

m,µ,βvm(xµhβ)
)
.

We see that the result of the reduction does not really depend on the start-
ing point vkhα of the path; it solely requires the knowledge of its image. It
is furthermore possible to combine some reduction paths. Assume that two
reduction paths with starting points coming from the same preimage pass at

5 Our implementation is part of the official distribution of the CoCoALib and thus
freely available.
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some later point through the same vertex vk(xµhβ). Due to the fact that an
elementary reduction path only depends on its starting point, we can com-
bine the two paths from this point on and thus compute their remaining parts
simultaneously.

We introduce now a partial order on the set of basis elements vk(xµhβ), as
this considerably simplifies the determination of the reduction dG(vkhα) from
dF(vkhα). We first compute dF(vkhα) which is a P-linear combination of
terms of the form vm(xµhβ). Then we pick the greatest term according to
our ordering and perform an elementary reduction which leads to a new sum.
This process is iterated, until there are only elements of the form vmhβ with
m ⊆ crit hβ left which then form the differential dG(vkhα). Our next result
explicitly describes a useful partial order for this purpose.

Proposition 6.1. Let vk(xµhα) and vm(xνhβ) be two basis elements such
that suppxµ ⊆ ncrit hα and suppxν ⊆ ncrit hβ and such that there is an
elementary reduction path vkx

µhα → vmx
νhβ. If we set vkx

µhα > vmx
νhβ

whenever one of the conditions 6

|k| > |m| , (25)

|k| = |m| ∧ xkx
µ lt hα � xmx

ν lt hβ , (26)

|k| = |m| ∧ xkx
µ lt hα = xmx

ν lt hβ ∧ xµ lt hα ≺ xν lt hβ (27)

is satisfied, then this defines a total order on the set which contains the basis
elements of all the modules Fm for m ≥ 0.

Proof. Along every elementary reduction path we have |k| = |m|. Assume
that the path is an elementary reduction of type 1. Then m = (k ∪ b) \ a
and xν = xµ/xb for some a, b ∈ {1, . . . , n}. Hence deg xkx

µ = deg xmx
ν + 1

entailing xkx
µ � xmx

ν which leads to vk(xµhα) < vm(xνhβ).

Now we consider elementary reductions of type 2. There are two possibili-
ties: either xkx

µ lt hα � xmx
ν lt hβ or for at least one reduction of type 2,

xkx
µ lt hα = xmx

ν lt hβ. In the first case the statement is obvious. For the
second one, we note that

xν lt hβ =
xax

µ

xb
lt hα ,

where a ∈ k and b = min supp xµ and b < min k, according to the construction
of a Morse matching (14). Therefore a > b and hence we can deduce with the
reverse lexicographic order that

xµ lt hα <
xax

µ

xb
lt hα ,

6 xk denotes here the product of the xki with ki ∈ k.
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which completes the proof.

Remark 6.2. The proof does not use the condition (25). This condition is
trivially satisfied. But with the help of condition (25), we are able to store the
complete complex F• in only one list. Then we can start the Morse reductions
at the greatest element, lying in the last module of the free resolution, and
proceed until the first module is reached.

Based on these results, we are now able to formulate a novel algorithm for
computing a free resolution for an ideal I�P given a Pommaret basis H of it.
For the sake of completeness, we first discuss the determination of the relevant
part of the two-sided Koszul complex F•. It is a straightforward application
of (24). Consider the map dF restricted to the free submodule P · vkhα. To
calculate the differential dF(vkhα), we at worst have to calculate dF for all
basis elements in F|k| that are smaller than vkhα with respect to the partial
order introduced in 6.1. As there are only finitely many smaller basis elements
in F|k|, we conclude that the computation terminates.

Usually the differentials are represented as a list of pairs (preimage, image)—or
(key, value) in computer science terminology—sorted according to the preim-
ages. However, we sort the list first according to the images and only the pairs
with the same image value (we cannot expect our maps to be injective) are
then sorted by their preimage values. In the sequel, Mvn(xξhγ) denotes a set
of pairs {vm(xνhβ), p} where the first component is the preimage and the
polynomial p in the second component defines the image 0 6= pvn(xξhγ).

Throughout the algorithm, basis elements are always sorted according to the
order defined in Proposition 6.1. We first compute the partial differential of
the complex F•. Then we reduce this differential. Among the finitely many
sets Mvn(xξhγ), we start with the greatest element, e. g. the greatest element

vk(xµhα) ∈ Fm where m is the largest index such that Fm 6= 0. If k ⊆ X P (hα)
and xµ = 1, then this element is also a generator of the complex G• and we do
not need to perform a reduction. If this is not the case, then we check whether
there are possible elementary reductions of type 1 or 2 and perform them all.
If there is no elementary reduction possible, then we remove this element. It
may happen that for both the starting and the final point of a reduction path
a map exists such that each point has the same preimage under “its” map. In
this case we simply add the reduced map to the second map and thus combine
all subsequent reduction steps.

The output consists of two sets G and M representing the complex G• which
defines a free resolution of the ideal I. The first set contains the basis elements
of free submodules Gm and the second stores the differentials in the form of sets
Mvn(xξhγ) as introduced above. The algorithm works for any ideal possessing a
Pommaret basis, even for non-homogeneous ideals. In the homogeneous case,
the obtained resolution can subsequently be minimised. Currently, we use for
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this purpose the simple linear algebra algorithm described in Cox et al. (1998).

Although the current implementation is still in a fairly early stage, it contains
already a number of optimisations. As often involutive standard representa-
tions of the same element are needed, these are stored after they have been
computed once. Furthermore, we check for every element vk(xµhα) whether
there is a possible reduction path even before creating it. The minimisation
procedure has not yet been optimised. Much more details on the implementa-
tion and the used optimisations can be found in (Albert, 2013).

For benchmarking the implementation, we used a number of standard exam-
ples 7 given in (Yanovich et al., 2001). As most of these ideals are not homoge-
neous, we homogenised them by adding a new smallest variable, also we used
always k = Z/101Z as the base field. In addition, we used the following two
examples where we always worked over the base field k = Z/101Z.

Example 6.3. In the polynomial ring P = k[x1, . . . , xn] we consider the ideal
I = 〈x2

1, . . . , x
2
n, (x1 + · · · + xn)2〉 which possesses a homogeneous Pommaret

basis.

Example 6.4. Let 6 ≤ g ∈ N and P = k[x0, . . . , xg−4]. Then we generate the
ideal I by the following binomials with 2 ≤ i ≤ j ≤ g − 2

(i+ j − 1)xi−2xj−2 − (i · j)xi+j−3xg−4 , i+ j ≤ g − 1 ,

(2g − i− j − 1)xi−2xj−2 − (g − i) · (g − j)xi+j−gxg−4 , i+ j > g − 1 .

This example was deduced from (La Scala and Stillman, 1998, Ex. 6.4). As
their example leads to some negative indices, we modified it a bit so that we
only get indices between 0 and g− 4. This ideal also possesses a homogeneous
Pommaret basis.

For the benchmarks presented in Table 1, we used a MacBook Pro with 2.53
GHz Intel Core 2 Duo processor and 4GB DDR3 main memory. Besides the
CoCoALib, we used Macaulay2 (Grayson and Stillman, 2013) and Sin-
gular (Decker et al., 2012) for comparison. For both systems we used the
standard resolution command res which uses La Scala’s method (La Scala
and Stillman, 1998) to compute the resolutions. The running times are given

7 For the benchmarks presented here, we specifically chose examples possessing
Pommaret bases in the given coordinates. In our experience, between 70% and
80% of the classical benchmark examples for Gröbner bases computations satisfy
this condition. This is to a considerable extent due to the fact that many of these
examples are zero-dimensional and such ideals always possess a Pommaret basis. We
currently work on an implementation realising an efficient deterministic algorithm
for constructing Pommaret bases for arbitrary ideals by making an appropriate
linear change of coordinates which is as sparse as possible. A description of this
work will appear elsewhere.
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CoCoALib Red. Minim. Macaulay2 Singular

Ex. 6.3 (n = 7 ) 17.777 2.383 15.394 4.527 593.780

Ex. 6.3 (n = 8 ) 928.853 22.338 906.515 483.931 *

Ex. 6.4 (g = 11) 3.273 0.584 2.689 0.499 0.440

Ex. 6.4 (g = 12) 30.426 1.833 28.593 6.828 4.710

Reimer 5 12.927 7.970 4.957 8.756 0.880

Noon 5 6.189 4.064 2.125 0.252 0.130

Noon 6 691.004 130.652 560.352 30.831 7.420

Redeco 7 25.918 9.793 16.125 7.703 0.440

Redeco 8 1 270.735 168.005 1 102.730 862.337 19.650

Eco 7 31.914 15.727 16.187 138.369 23.490

Eco 8 3 024.956 365.836 2 659.120 * 2 370.020

Katsura 6 133.124 49.585 84.539 161.985 26.670

Katsura 7 6 288.220 1 146.260 5 141.960 * 2 439.710

Cyclic 6 14.940 4.358 10.582 2.823 1 413.320

Table 1
Timings for computing minimal free resolutions of some classical examples

in seconds and we aborted computations after two hours. A * marks when we
run out of time or memory. The timings obtained with our implementation are
split into two parts: Red gives the time need to compute the complex G•, i. e.
the non-minimal resolution, and Minim the time required by the subsequent
minimisation.

Obviously, our current implementation is still generally slower than either
Macaulay2 or Singular, although one can see that—at least compared to
Macaulay2—its relative performance improves the larger the examples get.
The main reasons are the size of the complex G• (see Table 2 below) and the
still very naive minimisation process. In most examples, we need much more
time to minimise G• than to construct it. There are a number of quite obvious
possible optimisations which should bring considerably savings. We hope to
implement these in the near future.

The real power of our approach becomes apparent when one considers the
problem of determining the Betti numbers. Often knowledge of the Betti num-
bers is sufficient and one does not really need the whole resolution. To our
knowlege, however, all current implementations compute Betti numbers via
the minimal resolution. This also becomes evident by the fact that for both
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Macaulay2 and Singular the timings for the minimal resolution and for
the Betti numbers, respectively, hardly differ.

In our approach, it is easily possible to modify the above presented algorithms
so that they determine only the constant part of the complex G•. If we perform
an elementary reduction of type 2, then the degree of the map does not change.
For an elementary reduction of type 1, the degree increases by one. Thus if
we start with the constant part of the two-sided Koszul complex F• and only
apply reductions of type 2, then we obtain the constant part of G•. It follows
from the explicit form (24) of the differential dF that the left summand yields
always elements of degree one and the right summand elements of degree zero.
Hence, by simply skipping the left summands, we directly obtain the constant
part of G•.

The Betti numbers of I are now easily computed. Because of the above proven
isomorphy between the complex G• and the resolution induced by the Pom-
maret basis, the bigraded ranks ri,j of the components of the complex G• can
be directly determined with (5). Then, as described above, we construct (de-
greewise) the constant part of the matrices of dG. Subtracting their ranks from
the corresponding ri,j yields the Betti numbers bi,j. We emphasise that com-
puting these ranks requires only linear algebra over the base field k and not
over the polynomial ring P as for a minimisation.

The benchmarks presented in Table 2 show that our approach is generally
much faster than the standard methods requiring the minimal free resolution
(often by orders of magnitude) and it allows for the treatment of considerably
larger examples. In particular, it scales much better when examples are getting
larger. If one compares for instance the timings for Eco 7 and Eco 8 or for
Katsura 6 and Katsura 7, respectively, then they increase in our approach by
a factor of about 13 whereas Singular needs roughly 100 times longer.

In Table 2 we also exhibit some data about the sizes of the resolutions. The
considered benchmarks are too large to write down their full Betti diagrams.
Therefore, as a simple measure for their sizes we just include the total sum
of all Betti numbers (column “Σ-Betti”). For comparison, we also show the
corresponding values of the resolution induced by the Pommaret basis (column
“Σ-PBetti”). One can see that for some examples the non-minimal resolution
is up to 100 times larger, whereas for other examples the factor is as low as 2.
In some families of examples the factor seems to remain about constant when
moving to larger members, in other families the factor grows considerably.
To some extent these observations can be explained from the combinatorial
structure of the differential (16), but we have not yet performed a detailed
analysis.

25



Σ-PBetti Σ-Betti CoCoALib Macaulay2 Singular

Ex. 6.3 (n = 8 ) 12066 3770 11.118 483.931 *

Ex. 6.3 (n = 9 ) 44322 7540 223.083 * *

Ex. 6.4 (g = 14) 20482 9328 23.619 765.979 710.830

Ex. 6.4 (g = 15) 45058 19670 175.845 * *

Ex. 6.4 (g = 16) 98306 41466 1 460.890 * *

Reimer 6 5302 64 57.673 1 908.11 283.900

Noon 6 9558 322 15.010 30.831 7.420

Noon 7 56666 770 372.791 * *

Redeco 8 6828 256 15.352 862.337 19.650

Redeco 9 27308 512 248.092 * *

Redeco 10 109228 1024 6 981.240 * *

Eco 7 1828 656 2.285 138.369 23.490

Eco 8 6916 1248 31.204 * 2 370.020

Eco 9 28292 6188 406.463 * *

Katsura 6 1812 128 3.883 161.985 26.670

Katsura 7 6900 256 49.162 * 2 439.710

Katsura 8 27252 512 1 169.300 * *

Cyclic 6 1060 320 1.158 2.823 1 413.320

Cyclic 7 10356 1688 107.591 2 453.73 *

Table 2
Timings for computing Betti numbers of some classical examples

7 The Monomial Case

We call a monomial ideal I quasi-stable, if it possesses a finite monomial
Pommaret basis. Such ideals can be characterised by a combinatorial condi-
tion generalising the definition of stable ideals. 8 Another explanation of the
terminology is given by the fact that for any degree q ≥ reg I the truncation
I≥q is stable.

Let H = {h1, . . . , hs} be the Pommaret basis of I. For any generator hα

8 See (Seiler, 2009b, Prop. 4.4) for a number of equivalent characterisations of these
ideals independent of Pommaret bases.
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and any non-multiplicative variable xk ∈ X P (hα) there exists a unique index
∆(α, k) and a unique term tα;k ∈ k[XP (h∆(α,k))] such that xkhα = tα;kh∆(α,k).
With these notations one can now give a simplified version of Theorem 5.1
which entails that a weighted version of the P -graph with the terms tα;k as
weight on the edge from hα to h∆(α,k) contains all necessary information about
the resolution.

Theorem 7.1. (Seiler, 2009b, Thm. 7.2) Let I be a quasi-stable monomial
ideal with Pommaret basis H = {h1, . . . , hs}. A Pommaret basis Hj of the jth
syzygy module Syzj(H) with respect to the Schreyer order ≺Hj−1

is given by

Sα;k =
j∑
`=1

(−1)j−`
(
xk`eα;k` − tα,k`e∆(α,k`);k`

)
. (28)

Herzog and Takayama (2002) introduced the notion of linear quotients. In our
“reverse” conventions, a monomial ideal I has linear quotients with respect
to an ordered basis {h1, . . . , hr}, if the colon ideals 〈hk+1, . . . , hr〉 : hk are all
generated by a subset Xk ⊆ X . The following result exhibits the relation of
this notion to Pommaret bases.

Proposition 7.2. (Hashemi et al., 2012, Prop. 26) Let H = {h1, . . . , hs} be
a P -ordered monomial Pommaret basis of the quasi-stable monomial ideal
I � P . Then I possesses linear quotients with respect to the basis H and

〈hα+1, . . . , hs〉 : hα = 〈X P (hα)〉 α = 1, . . . s− 1 . (29)

Conversely, assume that H = {h1, . . . , hs} is a monomial generating set of the
monomial ideal I � P such that (29) is satisfied and clshs = n. Then I is
quasi-stable and H its Pommaret basis.

Let the ordered set {m1, . . . ,ms} generate an ideal I � P and consider the
following short exact sequence

0→ P/Ĩ ·m1−→ P/I ′ −→ P/I → 0 (30)

where Ĩ = I : m1 and I ′ = 〈m2, . . . ,ms〉. A free resolution of I can now
always be obtained as a mapping cone of resolutions of Ĩ and I ′. We first note
the following simple consequences of Proposition 7.2 and the definition of a
P -ordering.

Lemma 7.3. Let I�P be a quasi-stable monomial ideal andH = {h1, . . . , hs}
a P -ordered Pommaret basis of it. Then

(1) Ĩ = 〈xk, . . . , xn〉, where k = clsh1, and
(2) I ′ is again a quasi-stable ideal with Pommaret basis {h2, . . . , hs}.
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Since Ĩ is generated by a subset of the variables, it is minimally resolved
by a Koszul complex. By adding one element of H in each iteration, we can
construct a resolution of I as an iterated mapping cone.

Theorem 7.4. Let H = {h1, . . . , hs} be a P -ordered Pommaret basis of the
quasi-stable monomial ideal I�P and the complex (C, d) the iterated mapping
cone produced by the short exact sequences

Sα : 0→ P/Ĩα
·hα−→ P/I ′α −→ P/Iα → 0 (31)

with ideals Iα = 〈hα, . . . , hs〉, I ′i = 〈hα+1, . . . , hs〉 and Ĩα = 〈xkα , · · · , xn〉
where kα = clshα. Then (C, d) is isomorphic to the resolution of I induced by
the Pommaret basis H.

Proof. It is clear that we obtain a resolution, so it only remains to prove that it
is the same as the one induced by the Pommaret basis H. The proof proceeds
by induction on s, the number of generators in H.

For s = 2, the result is easily proven. In this case, h2 = xan for some a ∈ N
and h1 = xbn−1x

a−1
n for some b ∈ N and this ideal is stable. Now the assertion

follows from the already mentioned fact that in this case the Eliahou-Kervaire
resolution coincides with the resolution induced by the Pommaret basis.

Assume that the result is true for all s − 1 ≥ 2. We are now in the situation
of the sequence (30). We have the following diagram where φ is some chain
complex morphism that lifts the map given by multiplication with hα:

F ′2 F ′1 P P/I ′

F̃2 F̃1 P P/Ĩ

0

0

d′2 d′1

d̃2 d̃1

·hα·hαφ1φ2

Each module in the mapping cone is given by Cj = F ′j⊕F̃j−1 and the differen-

tial is given by dj =

d′j φj−1

0 −d̃j−1

. Given a generator eα⊗k of the jth module

of the mapping cone complex, its differential is given by d(eα ⊗ k) = φj−1 −
d̃j(eα ⊗ k). We make here explicit use of the correspondence eα ⊗ k ↔ eα;k.
On the other hand, by Theorem 7.1, the differential of the resolution induced
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by the Pommaret basis H is given by

δ(eα ⊗ k) =
j∑
`=1

(−1)σ(`,k)xk`eα ⊗ k` −
j∑
`=1

(−1)σ(`,k)tα,k`e∆(α,k`) ⊗ k`

= A+B ,

where σ(l,k) is the place of l in k. One easily sees that d̃j(eα ⊗ k) = −A, so
we only have to prove that φj(eα ⊗ k) = B.

Let ψj : F ′j−1 7→ F ′j be a contracting homotopy for d′j. Then φj = ψjφj−1d̃j.
According to (Seiler, 2002, Thm. 5.2), a contracting homotopy ψj consists
essentially of computing the involutive normal form with respect to the Pom-
maret basis of F ′i which is given by the jth syzygies induced by the Pommaret
basis H of I.

Now we proceed by induction on j. For j = 1 and j = 2, we obtain as a
corollary to (Seiler, 2009b, Lemma 7.1) by direct computation that

φj
( j∑
`=1

(−1)σ(l,k)xk`eα ⊗ k`
)

= B .

For the general case, observe that d̃j(eα ⊗ k) =
∑j
`=1(−1)σ(`,k)xk`eα ⊗ k`.

Assuming that φh
(∑h

`=1(−1)σ(`,k`)xk`eα⊗k`
)

= B for all h < j and computing
B explicitly, we find that

φj−1d̃j(eα ⊗ k) =
j∑
`=1

(−1)σ(`,k)xk`

( ∑
k∈k`

clskk`>clsw∆(1,k)

(−1)σ(k,k`)+1t1,ke∆(1,k) ⊗ k`k

)
. (32)

Using normal form computations, we have that

ψjφj−1d̃j(eα ⊗ k) =
j∑
`=1

(−1)σ(`,k)
∑
k∈k`

clskk`>clsw∆(1,k)

clsxk`>clsk`k

(−1)σ(k,k`)+1t1,ke∆(1,k) ⊗ kk .

(33)
Finally, in order to see that the expression in equation (33) equals B, observe
that t1,k is always multiplicative for e∆(1,k)⊗kk and hence the right hand side
of equation (33) is involutively autoreduced.
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8 Conclusions

In the first part, we combined the construction of a free resolution for poly-
nomial modules due to Sköldberg (2011) with the theory of Pommaret bases
as given in (Seiler, 2009b). This combination makes Sköldberg’s approach via
algebraic discrete Morse theory fully algorithmic, as Pommaret bases provide
us with a systematic method for generating presentations with initially linear
syzygies: the existence of such presentations can be seen as one of the core
ideas underlying the theory of Pommaret bases.

A distinctive feature of our algorithm compared to other approaches for con-
structing resolutions is the fact that only one Pommaret basis (namely for the
given submodule U) is needed whereas usually several Gröbner bases (typically
the number is given by pdU) have to be computed. Although the evaluation
of the closed formula for the differential might appear very complicated, it
requires mainly very cheap operations. The only polynomial operations are
some involutive normal forms of products xµhα for generators hα in the Pom-
maret basis of U . As we observed that the same product often appears many
times, significant savings could be achieved by simply storing these.

The main reasons for the not yet satisfactory timings are our currently still
very naive implementation of the minimisation process and the sometimes
extreme difference in the sizes of the non-minimal and the minimal resolu-
tion, respectively. Here one can expect on one side substantial improvements
just by optimisations of the code. On the other hand, it is obvious that a
decisive factor is simply the size of the complex G•. While this size is com-
pletely determined by the Pommaret basis of U , it can be affected by linear
coordinate transformations. In a forthcoming work, we will present a determin-
istic approach to construct generally fairly sparse coordinate transformations
such that the leading module ltU is not only quasi-stable but stable (or even
strongly stable). Then the complex G• should be considerably smaller; more
precisely, it will have the same size as the minimal resolution of ltU . Finally,
our current approach first determines the full complex G• and then minimises
it. Probably very significant gains in efficiency are possible by interweaving
the construction of this complex with the minimisation process (as it is done
by classical algorithms to compute minimal resolutions).

The full power of our approach becomes already now apparent, if one does not
need the whole resolution but only the Betti numbers. To our knowledge we
presented here the first method to compute them which does not require the
minimal resolution. As Table 2 demonstrates, for all examples save one our
implementation was the fastest to compute the Betti numbers, often even by
orders of magnitude. The main reasons are of course that, due to the knowledge
of a closed form of the differential, we can construct directly only the constant
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part of the resolution and the subsequent “minimisations” require only linear
algebra over the base field k and not over the polynomial ring P . Obviously,
similar techniques should exist for tackling other questions where only certain
parts of the minimal resolution are relevant like an analysis of the linear part
of the resolution or its linear strand.

In the second part of this work, we specialised to a particular class of monomial
ideals, the quasi-stable ideals. We proved that the resolution induced by the
Pommaret basis is also obtainable via iterated mapping cones. Thus we showed
that this interesting property of the Eliahou-Kervaire resolution remains valid
for our generalisation of it to quasi-stable ideals. An interesting question here
is whether further nice properties of the Eliahou-Kervaire resolution like the
fact that it is a cellular resolution (Mermin, 2010) also extend to the resolution
induced by a Pommaret basis.

A A Detailed Example

We elaborate on some of the notions introduced in Section 3. Our starting
point is the ideal I = 〈x2

1, x
2
0, x2 + x0〉 � P = k[x0, x1, x2] over the base field

k = Z/2Z. A Pommaret basis H for I is given by

h1 = x2
0, h2 = x2

0x1, h3 = x2
1, h4 = x2 + x0 .

We start with the two-sided Koszul complex (F , dF) induced by the initially
linear syzygies associated with the Pommaret basis H, see Lemma 4.1. This
complex has the shape

0 −→ F3 = P ⊗k Λ3V ⊗k I −→ · · · −→ F0 = P ⊗k Λ0V ⊗k I = P ⊗k I

with the differential given by (11).

In order to construct the resolution (G, dG), more precisely its differential de-
fined by (16), we study the graph ΓF . As this graph is huge, we will only
show how to find dG(v1,2h2). The argument v1,2h2 is indeed an element of the
module G2 as 1, 2 ∈ crit (h2). According to (15), the first step is to calculate
the image dF(v1,2h2) =

∑
m,µ,γ Q

(1,2),2
m,µ,γ vm(xµhγ). For each non-vanishing coef-

ficient Q(1,2),2
m,µ,γ , the graph ΓF contains the edge v1,2 ⊗ h2 → vm(xµhγ). By the

definition (11) of the differential dF , we have

dF(v1,2h2) = x1v2h2 + v2x
2
0h3 + x2v1h2 + v1x

2
0x1h4 + v1x0h2

So we get the top half of the following graph (which we want to be a subgraph
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of ΓAF• , see the subsequent discussion):

v1h2

v2h2

v1,2h2 v1(x2
0x1h4)

. . . v2(x2
0h3)

. . . v1(x0h2)

v0,1h2 v1h2

v0h2

v0(x2
0h3)

x1

x2

x1

x0

(A.1)

According to (16), we search for reduction paths originating in the vertices
on the right side of the graph and therefore we must look at the graph ΓAF• ,
where A is the Morse matching defined in (14) and the paragraph following it.
It immediately follows from (14) that no path (in ΓF•) ending in v2h2 or v1h2,
respectively, is contained in the Morse matching, so there are no reduction
paths originating in either of these two vertices.

For the other vertices, we look at v1(x0h2) and note that there are also re-
duction paths originating in the remaining vertices (indicated by the dashed
arrows). The edge v0,1h2 → v1(x0h2) is contained in the Morse matching A or
equivalently the graph ΓAF• contains the edge v1x0h2 → v0,1h2. Now we need
to find the edges originating in v0,1h2, i. e. to calculate dF(v0,1h2). Again, by
(11), we have

dF(v0,1h2) = x0v1h2 + v1(x0h2) + x1v0h2 + v0(x2
0h3) .

This gives us the bottom half of the above graph.

Then we should reiterate this process for the three new vertices we just con-
structed. But this time, (14) tells us that no edges ending in either of these
three vertices are contained in the Morse matching. So we have found all
reduction paths originating in v1(x0h2).

In order to find the associated reduction maps, we “collect the coefficients”
along each reduction path. Note that in general, we would have to pay a
little more attention to signs and coefficients, which we have avoided here by
working in Z/2Z. For longer paths, all coefficients along the path have to be
multiplied. Here, all paths are elementary reduction paths, so we can also look
at their types.

The paths v1(x0h2) → v0,1h2 → v1h2 and v1(x0h2) → v0,1h2 → v0h2, re-
spectively, are of type 1. Essentially the only things that happen are vari-
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ables/indices being moved around towards components more to the left within
the tensor product. This is due to the fact that those paths are coming from
left summands in (11) of the differential in the two-sided Koszul complex.

The right summands in (11) yield the path v1(x0h2) → v0,1h2 → v0(x2
0h3),

which accordingly is of type 2. Here we take the product of an element of
the Pommaret basis with a critical variable, x1h2. The vertex comes from the
involutive standard representation of this product.

However, for the differential dG(v1,2h2), only one of these reduction paths
is relevant, as the restrictions of the sums in (16) require that only those
reduction paths appear that end in a vertex v`hβ where ` ⊆ crit (hβ). Of the
reduction paths in our example, only the path ending in v1h2 satisfies this
condition. The final result is then

dG(v1,2h2) = (x2 + x0)v1h2 + x1v2h2 + x2
0v2h3

and we have explicitly demonstrated the construction of all terms in it except
the last one which stems from one of the dashed pathes in (A.1).
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