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Abstract

We discuss existence, non-uniqueness and regularity of one- and two-sided solu-
tions of initial value problems for scalar quasi-linear ordinary differential equa-
tions where the initial condition corresponds to an impasse point of the equation.
With a differential geometric approach, we reduce the problem to questions in
dynamical systems theory. As an application, we discuss in detail second-order
equations of the form g(x)u′′ = f (x, u, u′) with an initial condition imposed at a
simple zero of g. This generalises results by Liang and also makes them more
transparent via our geometric approach.
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1. Introduction

In this work, we are concerned with initial value problems for scalar implicit
ordinary differential equations

F(x, u, u1, . . . , uq) = 0 (1.1)

where ui denotes the ith derivative of the unknown real-valued function u(x) (for
convenience we identify u0 = u). Initial data consist of a point (x̄, ū, ū1, . . . , ūq) ∈
R

q+2 on which F vanishes. We call such an initial value problem singular, if
the derivative Fuq(x̄, ū, ū1, . . . , ūq) vanishes implying that around our initial point
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(1.1) cannot be solved for the highest derivative uq and thus that standard exis-
tence and uniqueness theorems do not apply.

In the first part of this article (Sections 2–4), we will recall the relevant struc-
tures to study equations like (1.1) from a geometric point of view and define what
we mean by (geometric) singularities of a differential equation. The basic idea
of our approach is to associate with (1.1) a vector field on a submanifold of a
jet bundle such that its integral curves correspond to (prolonged) solutions. This
idea leads naturally to a generalised notion of solutions – geometric solutions
– which do not necessarily represent the graph of a function, but which can be
understood as a concatenation of graphs and thus are very useful for a solution
theory at singularities.

The main emphasis of this article will be on the special case of quasi-linear
equations of the form

g(x, u, u1, . . . , uq−1)uq = f (x, u, u1, . . . , uq−1) . (1.2)

Here it suffices to provide an arbitrary point (x̄, ū, ū1, . . . , ūq−1) ∈ Rq+1 as ini-
tial data. The corresponding initial value problem is singular, if the function g
vanishes at this point. Many classical equations in mathematical physics are of
this form for q = 2. They are usually written in explicit form with a rational
right hand side. For the kind of problems studied by us, it is, however, better
to use the implicit representation. We will always assume that (1.2) is in re-
duced form, i. e. that the functions f and g do not have a non-trivial common
factor. Furthermore, we will assume that (1.2) does not admit singular inte-
grals which is equivalent to the overdetermined system of differential equations
f (x, u, u1, . . . , uq−1) = g(x, u, u1, . . . , uq−1) = 0 being inconsistent and thus not
possessing any solutions.

The second part of this article (Sections 5–7) is concerned with adapting the
geometric approach outlined in the first part to quasi-linear equations. Geometric
singularities of differential equations can be understood as a special case of the
theory of singularities of smooth maps between two manifolds [1, 2]. The main
emphasis in this theory has been on classification problems for generic implicit
equations of low order (see e. g. [3, 4]). Since quasi-linear equations are not
generic, they are not covered by these works. By contrast, in the context of
the theory of differential algebraic equations, essentially only the quasi-linear
case has been considered (see e. g. [5, 6, 7, 8]), but the relation to singularity
theory has not been explored. We will show that in the case of a quasi-linear
equation the relevant geometric structure can be projected to a lower order (this
has already been noted in [9]). This fact leads to new phenomena not present in
general implicit equations.
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Our geometric approach allows us the reduce the problem essentially to the
analysis of a stationary point of a vector field and thus to a classical question in
dynamical systems theory. However, the situation is not so trivial, as for q ≥ 2
the arising stationary points can never be hyperbolic. Only for planar vector
fields a fairly extensive qualitative theory exists of the behaviour around non-
hyperbolic points (see e. g. [10]). We will therefore concentrate in this article on
situations where at most two-dimensional centre manifolds can arise.

As a concrete demonstration of the power of the geometric approach, we
will provide in the third and final part of the article (Section 8) an essentially
complete analysis of second-order initial value problems of the particular form

g(x)u′′ = f (x, u, u′) , u(y) = c0 , u′(y) = c1 (1.3)

where y is a simple zero of the function g. For the special case g(x) = x, this
problem has already been studied by Liang [11] with classical analytical meth-
ods. It seems to us that it is not straightforward to extend his results to more
general functions g and that the analytic approach requires a certain amount of
ingenuity to guess, say, the right integrating factor and estimates. Furthermore,
the analytic proofs cannot really explain why in this problem a certain dichotomy
and resonances appear. By contrast, in our geometric point of view everything
arises in a completely natural and transparent manner and it will turn out that the
key parameters are nothing but eigenvalues of Jacobians at stationary points.

As we aim at answering for our initial value problems the standard analytical
questions of existence, (non-)uniqueness and regularity of solutions, our study
will be within the smooth category, i. e. we assume that the functions F and
f , g, respectively, are smooth and we search primarily for smooth solutions,
although it will turn out that sometimes only solutions of lower regularity ex-
ist. In the Conclusions we will comment on the extension of our results to the
case of equations of finite regularity Cr which is possible. Furthermore, we will
distinguish between one-sided solutions which are required to exist only on in-
tervals of the form (a, x̄] or [x̄, b) and two-sided solutions where x̄ is required to
be an interior point of the existence interval. In the theory of explicit systems,
such a distinction is rarely made, as typical existence results like the theorem
of Picard-Lindelöf automatically provide solutions existing on both sides of the
initial point. However, we will see that for implicit systems there are usually less
two-sided solutions than one-sided ones.

For the special case of analytic equations, there also exists a long tradition of
applying algebraic techniques to such problems like Newton-Puiseux polygons
and similar constructions. This goes back at least to Fine [12, 13]; more modern
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references are e. g. [14, 15, 16]. The main thrust of these works is the con-
struction of explicit solutions in form of Puiseux series and a discussion of their
convergence. Such results are surely of great interest, not least because of their
algorithmic character. However, they concern only a narrower class of equations
and – more importantly – of solutions. In particular, one-sided solutions cannot
be described by series, but are characteristic for certain types of singularities. In
this article, we therefore rely exclusively on methods from geometry and dynam-
ical systems theory with the consequence that we obtain only non-constructive
existence results. Combining the algebraic and geometric approaches is an inter-
esting task for future works. In [17], where the here used notions of singularities
were extended to general systems of ordinary and partial differential equations,
we demonstrated already that such a combination can be very powerful.

This article is structured as follows. In the next section, we briefly recall
some basics of the geometric theory of ordinary differential equations and in
particular discuss our key tool, the Vessiot spaces. Section 3 introduces two gen-
eralised notions of solutions: generalised solutions are curves in a jet bundle and
geometric solutions are their projections to the base space. Statements about the
regularity of solutions require the analysis of prolongations of the given equa-
tion. In Section 4, we will in particular study how singularities behave under
prolongation. The next section specialises to quasi-linear equations. We will
demonstrate that their analysis can be performed one order lower which leads
to the notion of impasse points. We will show that impasse points do not nec-
essarily come from singularities, an observation which entails that quasi-linear
equations indeed require their own theory. In Section 6, we introduce and study
weak generalised solution as a form of generalised solutions adapted to quasi-
linear equations. Section 7 describes our approach of reducing the local solution
behaviour around a proper impasse point to the analysis of a stationary point of
a dynamical system. Finally, we apply in the following section all the developed
tools to the analysis ofthe initial value problem (1.3).

2. The Geometry of Ordinary Differential Equations

In the geometric theory of differential equations [18, 19], (systems of) dif-
ferential equations are represented by an intrinsic object, a fibred submanifold
of the appropriate jet bundle. The q-jet of a smooth function1 φ : R → R at a

1For notational simplicity, we will use throughout a global notation, although all our results
are of a local nature. Thus strictly speaking, φ is only defined on some open subset of R which
we, however, suppress.
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point x ∈ R is the equivalence class [φ](q)
x of all smooth functions which have

at x the same Taylor expansion up to order q as φ and can be identified with the
corresponding Taylor polynomial. The qth order jet bundle Jq = Jq(R,R)
consists of all such q-jets and defines an (q + 2)-dimensional manifold. We
identify J0 = R

1+1 with the space of the independent variable x and the de-
pendent variable u. By the theorem of Taylor, coordinates on Jq are given by
(x, u, u′, . . . , u(q)) = (x,u(q)) where u(q) denotes the derivatives of order q and u(q)

the collection of all derivatives from order 0 up to q. For orders q > r, there
are natural projection maps πq

r : Jq → Jr between the corresponding jet bun-
dles where simply the higher derivatives are “forgotten”. In addition, we have the
projection πq : Jq → R to the base space where everything except the expansion
point x is “forgotten”. We define a scalar differential equation as a hypersurface
Rq ⊆ Jq such that πq(Rq) lies dense in R. In the classical geometric theory, one
requires that the restriction of πq to Rq defines a surjective submersion. How-
ever, this condition excludes the appearance of any kind of singularity. We will
therefore use our relaxed condition which still suffices to ensure that x is indeed
an independent variable.

Remark 1. In practice, the set Rq is given as the zero set of some smooth function
F : Jq → R. Even if we assume for simplicity that this function is analytic,
we must expect that Rq is not a manifold, but only an analytic variety which
may possess singularities in the sense of analytic geometry. We call such points
algebraic singularities in contrast to the geometric singularities which are the
topic of this article. As currently not much is known about the local solution
behaviour around algebraic singularities (see the recent works [16, 20] for some
results), we will ignore them here. Thus, strictly speaking, we do not work with
the whole variety Rq, but always restrict to its smooth part (which we call again
Rq). In concrete examples, we will ensure that we study only smooth points.

A very important geometric structure on the jet bundle Jq for q ≥ 1 is pro-
vided by the contact distribution C(q) ⊂ TJq which encodes geometrically the
chain rule and thus the different roles played by the various jet variables. In our
case of scalar ordinary differential equations, it is spanned by two vector fields:
a transversal one

C(q) = ∂x + u(1)∂u + · · · + u(q)∂u(q−1) (2.1)

and a vertical one (with respect to the fibration πq to the base space)

Cq = ∂u(q) . (2.2)

To avoid case distinctions, we set C(0) = ∂x and C0 = ∂u. By abuse of notation,
5



we use the vector fields C(q) and Cq on any jet bundle Jr with r ≥ q without
writing out the needed pull-back.

Given a differential equation Rq ⊆ Jq and a (smooth) point ρ = (x̄, ū(q)) ∈ Rq

on it, that part of the contact distribution which is tangential to Rq is the Vessiot
space Vρ[Rq] = TρRq ∩ C

(q)|ρ at ρ. We will see below that the elements of the
Vessiot space may be interpreted as infinitesimal solutions (or integral elements
in the language of Cartan). The family of all Vessiot spaces is called the Vessiot
distribution V[Rq] of Rq, although in general V[Rq] defines a regular smooth
distribution only on an open subset of Rq.

Computing the Vessiot space Vρ[Rq] at a point ρ ∈ Rq is straightforward
and requires only linear algebra. Any vector X ∈ Vρ[Rq] lies in the contact
distribution C(q)|ρ and thus is a linear combination of the basic contact fields:
X = aC(q)|ρ+bCq|ρ. On the other hand, X must be tangent to Rq. It is well-known
that hence X must satisfy the equation X(F)(ρ) = 0 where we again assume that
Rq is given as the zero set of the function F : Jq → R. Entering our ansatz
yields then the following linear equation for the two coefficients a and b:

C(q)(F)(ρ)a + Cq(F)(ρ)b = 0 . (2.3)

Note that X is vertical for πq, if and only if the coefficient a vanishes. Obviously,
at almost all points ρ ∈ Rq the Vessiot spaceVρ[Rq] is one-dimensional.

3. Generalised and Geometric Solutions

From a geometric point of view, we identify any function φ : R → R with
its graph or, more precisely, we prefer to consider instead of the function φ the
section σφ : R → R

2, x 7→
(
x, φ(x)

)
whose image is the graph of φ. It induces

naturally a section of any jet bundleJq with q ≥ 1, namely the prolonged section

jqσφ : R→ Jq, x 7→
(
x, φ(x), φ′(x), . . . , φ(q)(x)

)
Obviously, jqσφ can be defined only at points x where φ is at least q times dif-
ferentiable. A (strong) solution of a differential equation Rq ⊆ Jq is a function φ
such that the image of jqσφ lies completely in the manifold Rq. This represents
a natural geometric formulation of the usual notion of a solution. The Vessiot
distribution allows us to introduce a more general concept of solutions which
helps in the understanding of singularities.

Definition 2. A generalised solution of the differential equation Rq is a one-
dimensional integral manifold N ⊆ Rq of the Vessiot distribution V[Rq], i. e. at
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every point ρ ∈ N we have TρN ⊆ Vρ[Rq]. A generalised solution is proper,
if there does not exist a point x ∈ R such that N ⊆ (πq)−1(x). The projection
π

q
0(N) ⊂ J0 of a proper generalised solution is called a geometric solution.

If φ is a strong solution, then imσφ is a geometric solution coming from the
generalised solution im jqσφ. However, not all geometric solutions are graphs of
functions. In fact, they are not even necessarily smooth curves, as they arise via
a projection. If a generalised solution is not proper, then it is of no interest for
an existence theory, as it lives completely over a single point x ∈ R. Sometimes
such solutions can be useful as separatrices.

In an initial value problem, we prescribe a point2 ρ = (x̄, ū(q)) ∈ Rq and
look for proper generalised solutions containing ρ. We distinguish between one-
sided generalised solutions N where ρ is a boundary point of N and two-sided
solutions where ρ is an interior point of N .

In the case of an explicit equation, the classical existence and uniqueness
theorems for ordinary differential equations imply the existence of a unique two-
sided generalised solution through every point ρq ∈ Rq and this generalised so-
lution projects on a strong solution (see Theorem 5 below). In the case of an
implicit equation, the situation becomes more involved at certain points, namely
the geometric singularities. Following Arnold [21], we will use the following
taxonomy for smooth points on Rq.3

Definition 3. A smooth point ρ ∈ Rq is an irregular singularity of the differential
equation Rq ⊂ Jq, if dimVρ[Rq] > 1. In the case of a one-dimensional Vessiot
space, we further distinguish whether or not it lies transversal to the canonical
fibration πq. If Vρ[Rq] is vertical (i. e. all solutions of (2.3) satisfy a = 0), then
the point ρ is a regular singularity. Otherwise ρ is a regular point.

It follows thus from (2.3) that ρ ∈ Rq is a regular point, if and only if
Cq(F)(ρ) , 0. A singularity is irregular, if and only if not only Cq(F)(ρ) vanishes
but also C(q)(F)(ρ). Hence, we may conclude that generically all the singulari-
ties form a submanifold of codimension 1 and the irregular singularities one of
codimension 2.

2For implicit equations, it is generally necessary to prescribe also a value for the qth order
derivative, as it is usually not uniquely determined by the differential equation.

3Rabier [22] considers this terminology as “inappropriate”, because the same terms appear
in the Fuchs-Frobenius theory of linear ordinary differential equations with a different meaning.
However, from a geometric point of view, the terminology is very natural and as it has become
standard in singularity theory, we will stick to it.
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Remark 4. It follows trivially from (2.3) that away from the irregular singularities
the Vessiot distribution is smooth and regular. Thus in any simply connected do-
main Ω ⊆ Rq without irregular singularitiesV[Rq] can be generated by a smooth
vector field X. One can show that such a field X can be smoothly extended to
any irregular singularity ρ lying in the boundary of Ω and that generically it will
vanish there [20, Prop. 20].4 Now generalised solutions of Rq through ρ are
invariant manifolds of the extended vector field X and thus we may study the
local solution behaviour around ρ with the help of dynamical systems theory.
In particular, it is now obvious that generally several generalised solutions will
intersect at an irregular singularity.

Away from irregular singularities, the existence and uniqueness theory of
differential equations satisfying our assumptions is rather simple. We recall the
following result from [23] which generalises the classical existence and unique-
ness theorem for explicit ordinary differential equations. We also include the
short proof, as it makes the underlying geometry more transparent.

Theorem 5. Let Rq ⊂ Jq be a scalar ordinary differential equation of order q
such that at every point ρ ∈ Rq the Vessiot spaceVρ[Rq] is one-dimensional (i. e.
there are no irregular singular points). If ρ is a regular point, then there exists
a unique strong solution σ with ρ ∈ im jqσ. This solution is two-sided. More
precisely, it can be extended in both directions until im jqσ reaches either the
boundary of Rq or a regular singular point. If ρ is a regular singular point, then
either two strong one-sided solutions σ1, σ2 exist with ρ ∈ im jqσi which either
both start or both end in ρ or only one strong two-sided solution exists whose
(q + 1)th derivative blows up at x = πq(ρ).

Proof. By the made assumptions, V[Rq] is a smooth regular one-dimensional
distribution and hence trivially involutive. The Frobenius theorem guarantees
for each point ρ ∈ Rq the existence of a unique generalised solution Nρ with
ρ ∈ Nρ. This generalised solution is a smooth curve which can be extended until
it reaches the boundary of Rq and around each regular point ρ̄ ∈ Nρ it projects
onto the graph of a strong solution σ, sinceVρ̄[Rq] is transversal.

Assume that in an open, simply connected neighbourhood of ρ the Vessiot
distribution V[Rq] is generated by the vector field X. If ρ is a regular singular
point, then Xρ is vertical for πq, i. e. its ∂x-component vanishes. The behaviour

4In an earlier version of this result [23, Thm. 4.2] some crucial conditions were omitted.
There are certain non-generic situations – in particular when singular integrals exist – where X
may not vanish at the irregular singularity.
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of the projection Ñρ = π
q
0(Nρ) depends on whether or not the ∂x-component

changes its sign at ρ. If the sign changes, then Ñρ has two branches correspond-
ing to two strong solutions which either both end or both begin at ρ̂ = π

q
0(ρ).

Otherwise Ñρ is around ρ̂ the graph of a strong solution, but Remark 7 below
implies that the (q + 1)th derivative of this solution at x = πq(ρ) is infinite.

As already mentioned in Remark 4, we expect that at an irregular singularity
several (possibly infinitely many) generalised solutions meet and thus the classi-
cal uniqueness statements fail. However, there are situations when only a unique
proper generalised solution goes through an irregular singularity. In such a case,
this solution is completely regular and the singular character of the singular point
lies solely in the behaviour of the nearby generalised solutions. Around a regular
point, the generalised solutions define a regular foliation.

Example 6. We consider the scalar first-order equation R1 ⊂ J1 described by
u(u′)2+x = 0. The linear equation defining the Vessiot spaces takes here the form(
1 + (u′)3)a + 2uu′b = 0. Hence singularities are all those points on R1 where

either u = 0 or u′ = 0. Irregular singularities must satisfy in addition (u′)3 = −1.
Hence we have exactly one irregular singularity, namely the point ρ = (0, 0,−1).
Outside of this point ρ, the Vessiot distribution V[R1] is one-dimensional and
spanned by the vector field X = 2uu′(∂x + u′∂u) −

(
1 + (u′)3)∂u′ .

It should be noted that – although the explicit coordinate expression seems
to indicate otherwise – the vector field X is defined only on the two-dimensional
manifold R1 and not on the whole jet bundle J1. In this particular case, it is ob-
vious that u and u′ could be used as parameters, as R1 is the graph of a function
x = h(u, u′). In general, it is hard (if not impossible) to find a global parametri-
sation. Therefore, we will work throughout this article with the redundant coor-
dinates of the ambient jet bundle.

Obviously, at the point ρ the vector field X vanishes. The Jacobian of X
evaluated at the singularity ρ is given by the matrix0 −2 0

0 2 0
0 0 −3

 .
It has the eigenvalues 0, 2 and −3. The eigenvector to the first eigenvalue,
(1, 0, 0)T , is not tangential to R1 and hence irrelevant.5 The eigenvector to the
third eigenvalue, (0, 0, 1)T , is tangent to the fibre (π1

0)−1(0, 0) and it is easy to

5The appearance of this spurious eigenvalue/vector is a consequence of our use of redundant
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see that this fibre actually represents the corresponding invariant manifold: it
is completely contained in R1 and the vector field X is vertical at every point
on it. Moreover, the fibre consists entirely of regular singularities. Thus we
do not get a proper generalised solution out of this eigenvalue. The invariant
manifold corresponding to the second eigenvalue (which is tangent to the eigen-
vector (1,−1, 0)T ) is the unique proper generalised solution through ρ. Since
the tangent vector is transversal with respect to the fibration π1 (its first compo-
nent does not vanish), the corresponding geometric solution is a strong solution,
namely u(x) = −x.

It is not difficult to compute the general solution of this implicit equation via
separation of variables: it is given by

u(x) =


3
√

(C ±
√
−x3)2 x ≤ 0

−
3
√

(C ±
√

x3)2 x ≥ 0
(3.1)

which yields for C = 0 the above mentioned strong solution whose prolongation
passes through the irregular singularity. For all other values of the parameter C,
the corresponding generalised solutions hit the regular singularities (0,± 3

√
C2, 0)

depending on whether we approach x = 0 from the left or from the right. In the
first case we always find two solutions ending in this point, in the second case
two solutions start in this point. The two solutions are always obtained by the
two different signs in the corresponding branch of (3.1). Thus we are here in the
generic case of Theorem 5. Note that the unique generalised solution through
the irregular singularity is the only generalised solution existing for positive and
for negative values of x.

4. Prolongations

By the definition of a jet bundle, the manifold Rq ⊆ Jq contains only infor-
mation about derivatives up to order q. For a regularity theory, we must also be
able to speak about higher-order derivatives. This means that we must also look
at the prolongations of Rq. An intrinsic geometric description of the prolonga-
tion process is somewhat cumbersome [19], but in local coordinates it becomes
straightforward. Assume that the differential equation Rq ⊆ Jq is given as the

coordinates. If we had worked with a proper parametrisation of R1, we would have obtained
a 2 × 2 Jacobian and no spurious eigenvalue could have arisen. It is, however, generally much
easier to check an eigenvector for tangency than to find good parametrisations.

10



zero set of a function F : Jq → R. Then the first prolongation Rq+1 ⊆ Jq+1 is
the zero set of both the function F and its formal derivative

DxF = C(q)(F) + Cq(F)u(q+1) : Jq+1 → R . (4.1)

Rq+1 is not necessarily a manifold anymore, but for simplicity we will assume
in the sequel that it is. Iteration of this process yields the higher prolongations
Rq+r ⊆ Jq+r for any r ∈ N: at each prolongation order r we have to add one
further equation Dr

xF(x,u(q+r)) = 0. Note that the formal derivative always yields
a quasi-linear function, since we have ∂(DxF)/∂u(q+1) = Cq(F) = ∂F/∂u(q).
Remark 7. Prolonging the differential equation Rq requires essentially the same
computations as determining its Vessiot spaces Vρ[Rq]. Indeed, we may con-
sider (2.3) as a homogenised (or “projective”) form of (4.1) considered as a linear
equation for u(q+1). For any solution (a, b) of (2.3) with a , 0, we may identify
the quotient b/a with the coordinate u(q+1) of a point ρ̂ ∈ Rq+1 ∩ (πq+1

q )−1(ρ) and
conversely any such point defines a one-parameter family of solutions (a, b) of
(2.3). If we assume that (2.3) has no solution (a, b) with a , 0, i. e. the Vessiot
space Vρ[Rq] is vertical, then by the same reasoning there cannot exist a point
ρ̂ ∈ Rq+1 ∩ (πq+1

q )−1(ρ) which implies that any strong solution φ with ρ ∈ im jqσφ

lies in Cq \ Cq+1, i. e. is of finite regularity.
This observation has the following implications for solutions of a differential

equation Rq ⊂ Jq. Assume that we have a proper generalised solution Nr ⊆ Rr

living on some prolongation of order r ≥ q which projects on a strong solu-
tion, i. e. the corresponding geometric solution is the graph of a function. Then
this function is – by definition of the jet bundle – at least of class Cr and all
projections πr

r′(Nr) to an order q ≤ r′ ≤ r define generalised solutions of the cor-
responding prolongations Rr′ . However, a generalised solution Nr+1 of the next
prolongation Rr+1 projecting ontoNr will only exist, if this function is at least of
class Cr+1.

Hence we can make statements about the regularity of solutions by studying
the behaviour of the prolongations. As a first step, we translate the observa-
tion made in Remark 7 into a statement about the fibres above points on Rq by
combining it with Definition 3.

Proposition 8. Let ρq ∈ Rq be an arbitrary point on the qth order differential
equation Rq and consider the fibre Fq+1 = (πq+1

q )−1(ρq)∩Rq+1 above it in the first
prolongation Rq+1. If ρq is a regular point, then Fq+1 is non-empty and consists
entirely of regular points ofRq+1. If ρq is a regular singularity, thenFq+1 is empty.
In the case of an irregular singularity, the fibre Fq+1 is non-empty and consists
entirely of singular points of Rq+1.
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Proof. For regular singularities, the assertion follows immediately from Re-
mark 7, as for them the Vessiot space is vertical by definition. The remark also
implies that in the other two cases, the fibre is non-empty. The respective state-
ment about the nature of the points in the fibre follows from the quasi-linearity
of the formal derivative. Singular points are characterised by the vanishing of
the Jacobian with respect to the highest order derivative and hence the above
mentioned equality ∂F/∂u(q) = ∂(DxF)/∂u(q+1) entails the claim.

Note that in the case of an irregular singularity, we only assert that the fi-
bre consists of singular points – nothing is said about whether these are regular
or irregular. As we will see later, essentially everything is possible. One con-
sequence of Proposition 8 is that there can never exist a smooth (generalised)
solution through a regular singular point (we saw this already in Theorem 5).
The regularity of any geometric solution reaching a regular singularity ρ ∈ Rq is
there always q.

A necessary condition for the existence of a generalised solution through an
irregular singular point ρq ∈ Rq projecting on a geometric solution which is the
graph of a function of regularity Cr for some r ≥ q is that the fibre above it con-
tains at least one irregular singularity ρq+1 ∈ Rq+1 and that the same holds for the
fibre Fq+2 above ρq+1 and so on until prolongation order r. If some fibre contains
more than one irregular singularity, then it is possible that several such solutions
go through ρq. In the case of a fibre consisting entirely of irregular singularities,
this may even be infinitely many. In Remark 4, we mentioned that we can study
the generalised solutions around the irregular singularity ρq ∈ Rq by analysing
the local phase portrait of a vector field X. If there are local solutions of different
regularity, then the local phase portraits around the sequence of irregular singu-
larities ρq, ρq+1, . . . may qualitatively change at some order. This observation
will allow us statements about the regularity of solutions.

5. Impasse Points of Quasi-Linear Equations

In the previous sections, we considered arbitrary implicit ordinary differential
equations. From now on, we specialise to quasi-linear equations of the form
(1.2), i. e. g(x,u(q−1))u(q) = f (x,u(q−1)). From a geometric point of view, quasi-
linearity means that Rq is an affine subbundle of Jq (see the discussion in [19,
Rem. 10.1.4]). The linear equation (2.3) determining the Vessiot space at a point
ρ = (x̄, ū(q)) ∈ Rq takes then the form[

C(q)(g)(ρ)ū(q) −C(q)( f )(ρ)
]
a + g(ρ)b = 0 . (5.1)
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Whether or not the point ρ is a singularity is independent of the value of ū(q),
as all singularities are obviously characterised by the condition g(ρ) = 0 and by
assumption the function g does not depend on u(q). A singularity is irregular, if
and only if in addition the equation

C(q)(g)(ρ)ū(q) −C(q)( f )(ρ) = 0 (5.2)

holds and this condition generally depends on the value of ū(q).
The key property of a quasi-linear equation Rq ⊂ Jq is that its analysis can be

performed already in the jet bundleJq−1 of one order less (see also the discussion
in [9]). Consider the subset R̃q−1 = π

q
q−1(Rq) ⊆ Jq−1 obtained by projecting the

qthe order differential equation Rq into the jet bundle Jq−1 of one order less. A
point ρ̃ ∈ Jq−1 lies in R̃q−1, if and only if either g(ρ̃) , 0 (in this case the fibre
Fq = (πq

q−1)−1(ρ̃) ∩ Rq consists of exactly one point ρ which is regular for Rq) or
g(ρ̃) = f (ρ̃) = 0 (now the fibre Fq is one-dimensional, i. e. it contains infinitely
many points which are all singularities).

On the open subset Sq ⊆ Rq obtained by removing all irregular singularities
of the differential equation, the Vessiot spaces form a one-dimensional smooth
distributionV[Rq] generated by the vector field

X = gC(q) −
[
C(q)(g)u(q) −C(q)( f )

]
Cq . (5.3)

This follows immediately from solving (5.1). Writing out C(q) and noting that
everywhere on Rq we have gu(q) = f , we find that the vector field X is projectable
along πq

q−1 to the subset S̃q−1 = π
q
q−1(Sq) ⊆ R̃q−1 ⊆ Jq−1. In other words, if we

take for each point ρ ∈ Sq the vector Xρ ∈ TρRq obtained by evaluating the vector
field (5.3) at ρ and then project it with the tangent map Tρπ

q
q−1 into the tangent

space Tρ̃R̃q−1 at the point ρ̃ = π
q
q−1, then we obtain on S̃q−1 a well-defined vector

field6 given by

Y = g
(
∂x + u(1)∂u + · · · + u(q−1)∂u(q−2)

)
+ f∂u(q−1) = gC(q−1) + fCq−1 . (5.4)

The thus constructed vector field Y can trivially be analytically continued to
any point ρ̃ ∈ Jq−1 where both functions f and g are defined. We will assume in

6In an arbitrary implicit equation typically several points ρ ∈ Rq project on the same point
ρ̃ ∈ R̃q−1, but there is no reason why the corresponding vectors Xρ should be mapped on the same
vector. However, in the case of a quasi-linear equation, there exists only one point ρ ∈ Rq over
every point ρ̃ ∈ S̃q−1 and hence we obtain a unique vector.
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the sequel for simplicity that this is the case on the whole jet bundle Jq−1, as in
many applications f and g are polynomials and thus indeed everywhere defined.
We continue to call this field Y and note for later use that by construction it is a
contact vector field, i. e. it lies in the contact distribution C(q−1) on Jq−1.

Remark 9. Any other vector field X̃ that also generates the distribution V[Rq]
is of the form X̃ = hX with a nowhere vanishing function h. It will also be
projectable provided h does not depend on u(q) and in this case its projection is
simply hY . Thus we actually obtain a whole projected distribution. Because
of our assumption that f and g have no non-trivial common factor, Y may be
considered as a “minimal” generator of this distribution without spurious zeros.
Therefore we will work in the sequel exclusively with Y .

Definition 10. A point ρ̃ ∈ Jq−1 is an impasse point7 for the quasi-linear differ-
ential equation Rq ⊂ Jq, if the vector field Y given by (5.4) is not transversal to
the fibration πq−1 at ρ̃ (i. e. if its ∂x-component vanishes at ρ̃). Otherwise it is a
regular point. An impasse point is proper, if the field Y vanishes at ρ̃. Otherwise
it is improper.

Remark 11. This possibility to first project the vector field X defined on an open
subset of the original differential equation Rq obtaining the vector field Y de-
fined on some subset of R̃q−1 and then to continue analytically Y to all of Jq−1

is specific to quasi-linear equations and has no analogon for fully non-linear
equations. In particular, for fully non-linear equations it is not possible to study
solutions outside of projections of Rq, i. e. a notion like an improper impasse
point cannot be introduced in classical singularity theory. Indeed, there cannot
be a (prolonged) strong solution through an improper impasse point, but we will
see below that it makes sense to study initial value problems at such points.

Obviously, impasse points are characterised by the condition g(ρ̃) = 0 and at
proper impasse points we find in addition that also f (ρ̃) = 0 which is equivalent
to ρ̃ ∈ R̃q−1. We now study the relationship of impasse points and singularities.
Using the splitting C(q) = C(q−1) + u(q)Cq−1, the irregularity condition (5.2) can be
written as a quadratic equation for the coordinate ū(q):

C(q−1)( f )(ρ̃) +
[
Cq−1( f )(ρ̃) −C(q−1)(g)(ρ̃)

]
ū(q) −Cq−1(g)(ρ̃)

(
ū(q))2

= 0 . (5.5)

7We use the word “impasse point” to clearly distinguish from “singular points” which for
us always live in Rq, i. e. one order higher. In the literature, the name “impasse point” appears
mainly in the context of differential algebraic equations where almost exclusively quasi-linear
systems are studied. But it seems that every author has here his/her own terminology. . .
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Together with the above made observations on R̃q−1, the various cases for this
equation lead immediately to the following result.

Proposition 12. Let ρ̃ ∈ Jq−1 be an arbitrary point. If ρ̃ is regular, then there
exists a unique point ρ ∈ Rq with πq

q−1(ρ) = ρ̃ and this point is regular, too. If ρ̃ is
an improper impasse point, then there exists no point ρ ∈ Rq with πq

q−1(ρ) = ρ̃. If
ρ̃ is a proper impasse point, then every point ρ ∈ Jq with πq

q−1(ρ) = ρ̃ lies in Rq

and is a singularity. Four different cases arise:

(i) If Cq−1(g)(ρ̃) , 0, then the fibre above ρ̃ contains either two or no irregular
singularities (counted with multiplicity). We find two irregular singulari-
ties, if and only if in addition[

Cq−1( f )(ρ̃) −C(q−1)(g)(ρ̃)
]2

+ 4C(q−1)( f )(ρ̃)Cq−1(g)(ρ̃) ≥ 0 . (5.6)

(ii) If Cq−1(g)(ρ̃) = 0 and Cq−1( f )(ρ̃) , C(q−1)(g)(ρ̃), the fibre contains a unique
irregular singularity.

(iii) If Cq−1(g)(ρ̃) = 0 and Cq−1( f )(ρ̃) = C(q−1)(g)(ρ̃) and C(q−1)( f )(ρ̃) , 0, then
there are no irregular singularities in the fibre.

(iv) If Cq−1(g)(ρ̃) = 0 and Cq−1( f )(ρ̃) = C(q−1)(g)(ρ̃) and C(q−1)( f )(ρ̃) = 0, then
the entire fibre consists only of irregular singularities.

Obviously, the first case is the generic one and the non-generic cases are
above ordered by their codimension. We see that proper impasse points always
arise below irregular singularities of Rq. But the first and the third case show that
proper impasse points can exist without the presence of an irregular singularity.
In the generic first case, this happens when the solutions of (5.5) are complex.
In such a situation a classical nonlinear singularity analysis, as e. g. described
in [21], would yield nothing. We are then dealing with a truely quasi-linear
phenomenon requiring a special analysis based on the vector field Y . Concrete
instances will be studied below in Example 19.

6. Weak Generalised Solutions

Instead of studying the original equation (1.2) in Jq, we may analyse the
projected vector field Y living on Jq−1 which means that we have transformed
a non-autonomous implicit problem into an autonomous explicit one. This idea
furthermore leads naturally to weaker notions of solutions, as we now no longer
have to require the existence of derivatives of order q.
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Definition 13. A weak generalised solution of the quasi-linear differential equa-
tion (1.2) is a one-dimensional invariant manifoldN ⊂ Jq−1 of the vector field Y ,
i. e. we have at every point ρ ∈ N that Yρ ∈ TρN . A weak generalised solutionN
is proper, if in addition TN ⊆ C(q−1) and there does not exist a point x ∈ R such
thatN ⊆ (πq−1)−1(x). The projection πq−1

0 (N) ⊂ J0 of a proper weak generalised
solution is a weak geometric solution.

Remark 14. Note the difference in the definitions of generalised and weak gen-
eralised solutions: in Definition 2 we used integral manifolds of the Vessiot dis-
tribution V[Rq], whereas Definition 13 is based on invariant manifolds of the
projected vector field Y . This difference is due to the opposite behaviour of the
Vessiot distribution and its projection at singularities and impasse points, respec-
tively. If ρq ∈ Rq is an irregular singularity, then dimVρq[Rq] jumps to an higher
value. By contrast, a proper impasse point ρq−1 is a stationary point of the vector
field Y and hence the dimension of the projected Vessiot distribution jumps there
to a lower value. Our definitions are always formulated in such a way that it is
possible to have (weak) generalised solutions going through the singularity or
the impasse point, respectively.

Again, only proper weak generalised solutions are of interest for the analysis
of initial value problems. It is obvious that we have to exclude generalised solu-
tions lying completely in the fibre above a point x ∈ R. Superficially seen, it may
seem as if the first condition for a proper weak generalised solution was always
automatically satisfied, as the vector field Y is constructed with the help of the
Vessiot spaces and thus of contact vector fields. However, if N consists entirely
of stationary points of Y , then it is trivially an invariant manifold, but there is
no reason why its tangent spaces should lie in the contact distribution. Finding
invariant manifolds at a stationary point of an autonomous vector field repre-
sents a standard task in dynamical systems theory. In particular, we can apply
the (un)stable and the centre manifold theorem, respectively (see e. g. [24]).

Example 15. Like for an irregular singularity, it is possible that only a unique
proper weak generalised solution passes through an impasse point. As a concrete
example, we consider an autonomous quasi-linear second-order equation of the
form g(u)u′′ = f (u′) where we assume the existence of values ū and ū′ such
that g(ū) = f (ū′) = 0 and ū′g′(ū) f ′(ū′) < 0 (this implies in particular that we
have simple zeros of g and f respectively). Projection of the Vessiot distribution
yields the vector field Y = g(u)∂x + u′g(u)∂u + f (u′)∂u′ . For arbitrary values of
x̄, the points (x̄, ū, ū′) are stationary points of Y and thus proper impasse points.
The Jacobian of the field Y at any of these points has three simple eigenvalues:
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0, ū′g′(ū) and f ′(ū′). By our assumptions, the latter two eigenvalues possess
opposite signs. The centre manifold consists entirely of these stationary points
(and is thus unique [25, Cor. 3.3]). At any of them, the tangent space of the
centre manifold is trivially spanned by the vector ∂x. However, our assumptions
imply that ū′ , 0 and thus this vector does not lie in the contact distribution, as it
only contains the transversal vector ∂x + ū′∂u. Consequently, the centre manifold
does not define a proper weak generalised solution. As at any point with u-
coordinate equal to ū the vector field Y becomes vertical, it is easy to see that
the invariant manifold corresponding to the last eigenvalue is simply the fibre
(π1

0)−1(x̄, ū) and hence also does not define a proper weak generalised solution.
Only the invariant manifold corresponding to the second eigenvalue leads to a
proper weak generalised solution and one can show that the corresponding weak
geometric solution is actually a strong solution. Again the singular behaviour
appears in the relation to the neighbouring generalised solutions. If one considers
the vector field Y restricted to the u-u′ plane, then the point (ū, ū′) is a saddle
point so that the generalised solutions cannot define a regular foliation.

For the remainder of this section, we assume that the functions f and g are not
only smooth, but analytic. Then a one-dimensional invariant manifold N con-
sists either entirely of stationary points or the stationary points lie discrete and
the points between two neighbouring stationary points form an integral curve
of the vector field Y which is an analytic manifold. However, if a weak gener-
alised solution N consists of several integral curves, then it is not analytic at the
connecting points. More precisely, we obtain the following result.

Proposition 16. A weak geometric solution of an analytic differential equation
(1.2) which comes from a weak generalised solution containing only a discrete
set of stationary points is composed of graphs of functions. If (α, ω) is the max-
imal open interval of definition of such a function φ and either α or ω is finite,
then the function φ can be continued to α or ω, respectively, and it is there q − 1
times continuously differentiable, but its qth derivative blows up.

Proof. Let N ⊂ Jq−1 be a proper weak generalised solution of (1.2) which does
not consists entirely of stationary points and Ñ = π

q−1
0 (N) the corresponding

weak geometric solution. The form of Ñ depends on the behaviour of the re-
striction of the function g to the curve N . We first note that g cannot vanish
identically on N , as then Y was everywhere on N vertical with respect to the
fibration πq−1 and N was not a proper weak generalised solution.

If C ⊆ N is a connected open subset on which g vanishes nowhere, then
the field Y is everywhere on C transversal to the fibration πq−1 and we may use
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the independent variable x as parameter for the curve C. This implies that C
is the graph of a section (α, ω) → Jq−1. Since the tangent field Y of C is a
contact field, it follows from the properties of the contact distribution (see e. g.
[19, Prop. 2.1.6]) that this section is the prolongation of the section associated
to a function φ : (α, ω) → R. Hence the corresponding piece C̃ of the weak
geometric solution Ñ is the graph of this function φ.

If C ⊆ N is a connected open subset of the curve N which is an integral
curve of Y , then C possesses an analytic parametrisation and we may consider the
restriction ĝ = g|C as a univariate analytic function of the curve parameter. Thus
ĝ either vanishes identically or it has only isolated zeros. Let s be such an isolated
zero and x the x-coordinate of the corresponding point ρ ∈ N . Alternatively, let
x be the x-coordinate of a stationary point of the field Y which is an ω limit point
of the integral curve C.

For a sufficiently close value x < x, there exists a function φ : (x, x) → R

such that its graph defines a piece of the weak geometric solution Ñ . We study
now what happens in the limit x → x. For the derivatives of φ up to order q − 1,
it follows immediately from the continuity of the weak generalised solution N
that they converge against the value of the corresponding coordinate of ρ. By
assumption, the vector field Y is vertical at the point ρ. Hence, according to
Remark 7, the qth derivative of φ blows up at x. Of course, the same happens,
if we consider a function defined to the right of the point x or a stationary point
which is an α limit point of the curve C.

An initial value problem for the quasi-linear equation (1.2) consists of pre-
scribing a point ρ̃ ∈ Jq−1 and asking for proper weak generalised solutions going
through it. Improper impasse points show then a similar behaviour as regular sin-
gularities for fully non-linear differential equations. Therefore we obtain in close
analogy to Theorem 5 the following existence and (non-)uniqueness theorem.

Theorem 17. Let U ⊆ Jq−1 be an open domain without proper impasse points
of the quasi-linear differential equation Rq ⊂ Jq. Then there exists through
every point ρ̃ ∈ U a unique weak generalised solutionNρ̃ of Rq. If ρ̃ is a regular
point, then the corresponding weak geometric solution Ñρ̃ = π

q−1
0 (Nρ̃) is a strong

solution (in some neighbourhood of x̄ = πq−1(ρ̃)). If ρ̃ is an improper impasse
point, there are three possibilities depending on the behaviour of the function g
along the curve Nρ̃:

(i) If the restricted function ĝ = g|Nρ̃
vanishes identically on the curve Nρ̃,

then Nρ̃ is a vertical line and thus is not a proper weak generalised solu-
tion. Hence no weak geometric solution exists.
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(ii) If ĝ does not change its sign when passing through ρ̃, then the weak geo-
metric solution Ñρ̃ is the graph of a function φ which is at the point x̄ only
q − 1 times continously differentiable, as its qth derivative blows up.

(iii) If the sign of ĝ changes when passing through ρ̃, then Ñρ̃ consists locally
of the graphs of two functions φ1, φ2 separated by ρ̃. If the sign changes
from minus to plus, then the two functions are defined only for x ≥ x̄, i. e.
the initial value problem has two solutions starting in x̄. In the opposite
case the functions are defined only for x ≤ x̄, i. e. the initial value problem
has two solutions ending in x̄.

Remark 18. In the first case of Theorem 17, the corresponding initial value prob-
lem is obviously unsolvable, as not even a weak geometric solution exists. In the
first-order case, the projection of the weak generalised solution is a vertical line
which is of some interest, if it extends over the whole u-axis, as it then represents
a separatrix. In the absence of proper impasse points on this line, no other weak
geometric solution can cross it. Hence, if x̄ is the x-coordinate of the line, then
no strong solution can be defined on an open interval (α, ω) that contains x̄.

In all other cases, the initial value problem at an improper impasse point is
solvable only in a weak sense, as the weak geometric solution is the graph of a
function which is at the initial point only q−1 times differentiable. In the second
case we have then a unique weak solution, whereas in the third and generic case
the initial value problem has exactly two weak solutions (and depending on the
direction of the sign change one should speak of a “terminal value problem”). A
classical analytical proof of a similar result can be found in [22, Thm. 4.1].

We can now continue the discussion started after Proposition 12 of situations
that cannot be handled by a classical fully nonlinear analysis.

Example 19. A scalar first-order quasi-linear differential equation is of the form
g(x, u)u′ = f (x, u) and thus defined by two functions f , g : J0 → R. Our
approach requires then the analysis of the vector field Y = g(x, u)∂x + f (x, u)∂u

defined everywhere on the plane J0. Thus obviously any phenomenon that can
appear at a stationary point of a planar vector field may also arise at a proper
impasse point of first-order quasi-linear equation.

Let ρ̃ = (x̄, ū) be a proper impasse point of our equation, i. e. a stationary
point of the field Y . The local behaviour of the trajectories of Y around ρ̃ is
largely determined by the Jacobian of Y evaluated at ρ̃; we call it J̃. The generic-
ity condition of Proposition 12 takes the simple form gu(ρ̃) = 0 and the discrimi-
nant deciding on the existence of real irregular singularities in the fibre over ρ̃ is
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given by
∆ =

[
fu(ρ̃) − gx(ρ̃)

]2
+ 4 fx(ρ̃)gu(ρ̃) . (6.1)

In a straightforward computation one can show that ∆ is also the discriminant of
the characteristic polynomial of J̃.

Thus if there are only complex irregular singularities above ρ̃, then the eigen-
values of J̃ are complex, too. If their real part does not vanish, then infinitely
many weak geometric solutions approach the impasse point. However, none of
them has a well defined tangent in the limit. This implies that it is not possi-
ble to combine two of them with the impasse point to a C1 manifold. Hence no
strong solution can go through the impasse point. If the eigenvalues are purely
imaginary, then no weak geometric solution approaches the impasse point.

A concrete example for the former case is provided by the functions g(x, u) =

u and f (x, u) = u − x. Here the impasse points form the x-axis in J0 = R2 and
the only proper impasse point is the origin. The eigenvalues of the Jacobian
of the (here even linear) vector field Y at the origin are 1

2 (1 ±
√

3i). All weak
geometric solutions spiral towards the origin. Only those parts of them that lie
completely either in the upper or in the lower half plane represent the graph of
strong solution. The improper impasse points represent turning points where we
see the behaviour described in Theorem 17(iii) with two strong solutions either
starting or ending.

As a concrete example corresponding to the case (iii) of Proposition 12, we
consider the choice g(x, u) = x2 and f (x, u) = u2 + x. Again the origin is the only
proper impasse point and there do not exist any irregular singularities in the fibre
above it. At none of the points in this fibre the gradient (2xu1 − 1,−2u, x2) of the
defining equation for R1 vanishes. Thus the fibre does not contain any algebraic
singularity. We study the phase portrait of the vecor field

Y = x2∂x + (u2 + x)∂u (6.2)

near the origin which is obviously an isolated stationary point. One easily verifies
that one is dealing with a nilpotent stationary point which is, according to [10,
Theorem 3.5 (4.i2)], a saddle-node.

For a detailed analysis of the phase portrait, we used the programme P4
(described in [10, Chapt. 9]). Via quasi-homogeneous blow-ups, it determines
the existence of two hyperbolic and two parabolic sectors and computes Tay-
lor approximations of the separatrices between the sectors. Figure 1 shows the
phase portrait of (6.2) on the Poincaré disc with the origin at the centre (see [10,
Chapt. 5] for a detailed description of this presentation). The blue and red curves
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Figure 1: Phase portrait of (6.2) on the Poincaré disc

represent separatrices and in each region two representative trajectories are plot-
ted in green. The two parabolic sectors are in the lower left part of the Poincaré
disc bounded by two blue separatrices and separated by a red separatrix.

For the original quasi-linear equation, we can make the following observa-
tions based on this phase portrait. The only weak generalised solution going
through the origin is the u-axis which does not induce a geometric solution.
Hence the initial value problem u(0) = 0 does not possess any two-sided so-
lutions. All one-sided solutions are only defined for x ≤ 0.8 The Taylor approx-
imations of the red and the blue separatrices in the left half of the Poincaré disc
show that they both enter the origin with a vertical tangent. As all trajectories
inside the two parabolic sectors tend asymptotically towards the red separatrix,
all one-sided geometric solutions have a vertical tangent at the origin, implying
that the corresponding functions are not differentiable for x = 0. Hence, our
initial value problem possesses a one-parameter family of solutions each living
in C0((−δ, 0]

)
∩ C∞

(
(−δ, 0)

)
for some δ > 0. All solutions in the upper parabolic

sector are actually defined on the whole negative real axis and tend for x → −∞
against a finite value. By contrast, all solutions in the lower parabolic sector
become singular at a finite value δ > 0 depending on the solution.

8If one takes a closer look at the surface R1 ⊂ J1 defined by our equation, then one sees that
it consists of two disjoint components: one containing all points with x ≤ 0 and one containing
all points with x > 0. Only asymptotically the two components meet in the “point” (0, 0,∞).
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7. Proper Impasse Points

It follows immediately from their definition that proper impasse points are
stationary for the vector field Y . Hence the analysis of the local solution be-
haviour in their neighbourhood requires to understand the local phase portrait of
Y at a stationary point. However, one should note important differences in the
interpretation of the results of such an analysis. For studying a quasi-linear equa-
tion, we do not really need the specific vector field Y , but only the distribution
generated by it. Thus instead of Y we may also take any vector field obtained by
multiplying Y with a nowhere vanishing function. As this includes the field −Y ,
absolute signs of eigenvalues have no meaning for us; only relative signs matter.
Furthermore, according to our definition of a weak generalised solution, we are
not directly interested in trajectories but in one-dimensional invariant manifolds
passing through the impasse point. Hence for deciding the existence of weak
generalised solutions of a certain regularity, it is necessary to analyse whether it
is possible to combine two trajectories of Y approaching the impasse point with
the impasse point to an invariant curve of the desired regularity.

In the case that the proper impasse point is a hyperbolic stationary point, the
stable manifold theorem asserts the existence of a unique stable and a unique
unstable manifold which are both smooth under our assumptions. Any trajec-
tory approaching the impasse point must lie on one of these two manifolds.
Hence also weak generalised solutions can only exist on these manifolds. If
the (un)stable manifold is one-dimensional, it is simultaneously a weak gener-
alised solution. However, it is still possible that the manifold is vertical and thus
does not define a proper weak generalised solution.

Unfortunately, it is easy to see that for any scalar quasi-linear equation (1.2)
of an order q > 1, no proper impasse point can be hyperbolic. Indeed the spe-
cial form of the projected vector field Y given by (5.4) trivially implies that its
Jacobian possesses at any point where g vanishes zero eigenvalues. This implies
that the situation becomes much more complicated, as the analysis of the centre
manifolds is more delicate. First of all, we find in general infinitely many centre
manifolds. For applications like centre manifold reductions, these are usually
considered as equivalent, as asymptotically they are exponentially close. If we
assume for a moment that the centre manifolds are one-dimensional, then each
represents in our point of view a different weak generalised solution and thus
matters for uniqueness questions. Secondly, the regularity of the centre mani-
folds may drop compared to the regularity of the functions f and g. Finally, if a
one-dimensional centre manifold consists entirely of stationary points (and then
is automatically unique by [25, Cor. 3.3]), it generally does not define a proper
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weak generalised solution and hence does not even lead to a weak geometric so-
lution. Higher-dimensional centre manifolds require a much more sophisticated
analysis (using e. g. normal forms), as many different possibilities arise.

Finally, we come back to the remark following Proposition 12 and consider
the case that the fibre over the proper impasse point does not contain an irregular
singularity. We will now show that in such a “truely quasi-linear” situation only
weak solutions may exist.

Proposition 20. Let ρ̃ ∈ Jq−1 be a proper impasse point of the scalar quasi-
linear equation Rq ⊂ Jq such that for the restricted projection π̂q

q−1 : Rq → Jq−1

the fibre
(
π̂

q
q−1

)−1(ρ̃) does not contain any irregular singularity. Then there does

not exist a strong solution φ with ρ̃ ∈ im jq−1σφ. The fibre
(
π̂

q
q−1

)−1(ρ̃) ⊂ Jq

is a generalised solution and it does not intersect with any other generalised
solution.

Proof. For a scalar quasi-linear differential equation of the form (1.2), a point
ρ̃ is a proper impasse point if and only if g(ρ̃) = f (ρ̃) = 0. But this implies
immediately that the fibre

(
π̂

q
q−1

)−1(ρ̃) is the whole line
(
π

q
q−1

)−1(ρ̃). If it does not
contain an irregular singularity, then at every point in it the Vessiot space is one-
dimensional and vertical, i. e. tangential to the fibre. Hence the fibre defines a
generalised solution. Since generalised solutions may intersect only in irregular
singularities, no other one contains a point of the fibre. But this observation
immediately implies the non-existence of a strong solution φ with ρ̃ ∈ im jq−1σφ:
if such a φ existed, im jqσφ would be a generalised solution intersecting the fibre
(at the point correspoding to the value of qth derivative of φ).

Note that it is nevertheless possible that the initial value problem defined by
the point ρ̃ possesses one or more weak geometric solutions. However, none of
these can correspond to a Cq-function.

8. Second-Order Initial Value Problems

For a quasi-linear second-order equation g(x, u, u′)u′′ = f (x, u, u′), the vector
field Y = gC(1) + fC1 generating the projected Vessiot distribution lives on the
three-dimensional manifoldJ1. In contrast to the situation in the first-order case,
we cannot produce any three-dimensional vector field Z = a∂x + b∂u + c∂u′ , but
only those satisfying the “syzygy” u′a − b = 0. As already mentioned, this
constraint immediately excludes the existence of hyperbolic stationary points
for Y . The analysis of non-hyperbolic stationary points of three-dimensional
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dynamical systems may become highly non-trivial and there does not yet exist a
complete theory as in planar case.

We will consider here the special case that the function g depends only on one
variable, as it leads to considerable simplifications. As many equations arising in
concrete applications are of this particular form, it is also of practical relevance.
We will analyse in detail the case that g = g(x) and that the initial condition is of
the form u(y) = c0 and u′(y) = c1 with y a simple zero of g. Liang [11] studied
this situation for g(x) = x (and y = 0) with classical analytical techniques. We
will show how the results in [11] can be reproduced with our geometric tech-
niques. It will turn out that our techniques are not only more straightforward
and “automatic”, as they do not require steps like guessing of a good integrating
factor or finding the right estimates, but they also provide a much clearer expla-
nation of the findings. The two other univariate cases g = g(u) and g = g(u1)
behave – somewhat surprisingly – rather similar and will be studied elsewhere.

To obtain regularity results, we need to study not only the original differential
equation R2 ⊂ J2 defined as the zero set of F2(x,u(2)) = g(x)u′′ − f (x,u(1)), but
also all its prolongations Rq ⊂ Jq for q > 2. They are given by the zero sets of
the functions

Fq(x,u(q)) = g(x)u(q) +
[
(q − 2)g′(x) − fu′(x,u(1))

]
u(q−1) − hq(x,u(q−2)) (8.1)

where the contributions of the lower-order derivatives are collected in functions
hq recursively defined for q > 2 by

h3(x,u(1)) = C(1) f (x,u(1)) ,

hq(x,u(q−2)) = C(q−2)
(
hq−1(x,u(q−3)) −

[
(q − 3)g′(x) − fu′(x,u(1))

]
u(q−2)

)
.

(8.2)

Obviously, dimRq = 3 for all q ≥ 1.
We determine first the singular points on the differential equations Rq for any

q ≥ 2. If ρq = (x̄, ū(q)) is a point on Rq, we denote by ρk = π
q
k(ρq) its projection

to Jk for any 0 ≤ k < q. We note that R2 is a manifold except at points ρ2

with g(x̄) = 0, fu(ρ1) = fu′(ρ1) = 0 and fx(ρ1) = g′(x̄)ū′′. Together with the
differential equation itself, this represents five conditions for four coordinates.
Thus generically R2 is everywhere a manifold. By a similar argument, the same
is true also for all prolongations Rq. We will therefore assume from now on that
no algebraic singularities appear at any order.

Lemma 21. For any order q ≥ 2, the point ρq = (x̄, ū(q)) ∈ Rq is singular, if and
only if g(x̄) = 0. It is an irregular singular point, if and only if in addition[

(q − 1)g′(x̄) − fu′(ρ1)
]
ū(q) = hq+1(ρq−1) .
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Proof. If we make the ansatz X(2) = aC(2)|ρ2 + bC2|ρ2 for a vector in the Ves-
siot space Vρ2[R2], then we obtain for the coefficients a, b the following linear
system: ([

g′(x̄) − fu′(ρ1)
]
ū′′ − h3(ρ1)

)
a + g(x̄)b = 0 .

For an irregular singularity, both coefficients must vanish. For a regular singular-
ity the coefficient of b must vanish, whereas the coefficient of a must be non-zero.
This proves the assertion for q = 2.

For q > 2, we make the corresponding ansatz X(q) = aC(q)|ρq + bCq|ρq and
obtain the linear system (cf. Remark 7):([

(q − 1)g′(x̄) − fu′(ρ1)
]
ū(q) − hq+1(ρq−1)

)
a + g(x̄)b = 0 .

The assertion follows now by the same argument as above.

We will assume in the sequel that ρ1 is determined by the initial data of our
initial value problem: ρ1 = (x̄ = y, ū0 = c0, ū1 = c1) with y a simple zero of g
so that we are indeed at an impasse point. Furthermore, we will set δ = g′(y)
and γ = fu′(ρ1). Note that the assumption of a simple zero implies that δ , 0.
Lemma 21 indicates that a special case arises when γ is an integral multiple of δ.

Definition 22. The singular initial value problem determined by ρ1 ∈ J1 has a
resonance at order k ∈ N, if kδ = γ. In this case, we introduce at any point
ρk ∈ (πk

1)−1(ρ1) above ρ1 the resonance parameter Ak = hk+2(ρk) and call the
resonance critical at ρk for Ak , 0 and smooth at ρk for Ak = 0.

Remark 23. It will later turn out that only a unique point ρk ∈ (πk
1)−1(ρ1) is of

relevance for the initial value problem considered by us. Depending on the value
of the resonance parameter at this point, we will simply speak of a critical or
smooth resonance, respectively. It is not difficult to see that the calculations
forming the core of the proof of [11, Lemma 3.1] are equivalent to those under-
lying the proof of Lemma 21 for the special case g(x) = x. Hence, if in this
special case a resonance occurs at order k, then Liang’s parameter A is exactly
our resonance parameter Ak.

Corollary 24. Let ρq ∈ Rq be an irregular singularity. Then the whole fibre
Fq+1 = (πq+1

q )−1(ρq) is contained in the prolonged equation Rq+1. If the initial
value problem is not in resonance at order q, then Fq+1 contains exactly one
irregular singularity. In the case of a critical resonance at order q, the fibre
Fq+1 consists entirely of regular singularities. If the resonance is smooth, then
all points in Fq+1 are irregular singularities.

25



Proof. The first assertion was already shown in Proposition 8. According to
Lemma 21, a point ρq+1 ∈ Fq+1 is an irregular singularity, if and only if its
highest component ū(q+1) satisfies the equation (qδ − γ)ū(q+1) = Aq. If the initial
value problem has not a resonance at order q, then this condition determines
ū(q+1) uniquely. In the case of a smooth (critical) resonance, this condition is
satisfied by any (no) value ū(q+1).

From the proof of Lemma 21, it is straightforward to obtain a generator X(q)

for the Vessiot distribution V[Rq] outside of the irregular singularities of Rq.
Since Rq is quasi-linear, we are more interested in the projected Vessiot distribu-
tion (πq

q−1)∗V[Rq]. For q = 2, it is generated by the vector field

Y (1) = g(x)∂x + g(x)u′∂u + f (x,u(1))∂u′

and for an arbitrary order q > 2 by the field

Y (q−1) = g(x)C(q−1)

+
(
hq(x,u(q−2)) −

[
(q − 2)g′(x) − fu′(x,u(1))

]
u(q−1)

)
Cq−1 .

(8.3)

Obviously, each of these vector fields can be extended to the whole correspond-
ing equation Rq−1. In the sequel, we will indeed consider them as vector fields
on these three-dimensional manifolds and study the corresponding autonomous
dynamical systems. As we do not have an explicit parametrisation of Rq−1, we
have expressed Y (q−1) in the full set of coordinates of Jq−1 which means that we
have extended Y (q−1) to the whole jet bundleJq−1. However, this extension is not
uniquely defined. Using the equations defining Rq−1, we may instead consider
for example the vector field

Ŷ (q−1) = g(x)∂x + g(x)u′∂u + f (x,u(1))∂u′ +
q∑

k=3

(
hk(t,u(k−2)) −

[
(k − 2)g′(x) − fu′(x,u(1))

]
u(k−1)

)
∂u(k−1)

(8.4)

which coincides with Y (q−1) on Rq−1 but not on the rest of Jq−1.
Recall from above that we assume that the projection ρ1 = (y, c0, c1) defines

our singular initial data, i. e. g(y) = 0. Thus all points ρq = (x̄, ūq) ∈ Rq ∩

(πq
1)−1(ρ1) with x̄ = y, ū = c0 and ū′ = c1 are singular, too. If we choose one of

them, then a comparison of (8.1) and (8.3) shows immediately that the projection
ρq−1 = π

q
q−1(ρq) ∈ Rq−1 is a proper impasse point of Rq and hence a stationary
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point of both Y (q−1) and Ŷ (q−1). For an analysis of the local phase portrait, we need
the Jacobian at ρq−1. A straightforward computation yields for the field Y (q−1)

J(q−1) =


δ 0 · · · 0
δū′ 0 · · · 0
...

...
...

δū(q−1) 0 · · · 0
a0 · · · aq−1 γ − (q − 2)δ


(8.5)

where the parameter a0, . . . , aq are placeholders for complicated expressions in y,
ūq−1. Obviously, its eigenvalues are δ, γ− (q−2)δ and (q−1) times 0. Recall that
Y (q−1) should be considered as a vector field on the three-dimensional manifold
Rq−1 and therefore the question arises which three of these eigenvalues are the
relevant ones? Brute force approaches would consist of either computing the
corresponding (generalised) eigenvectors and checking which ones are tangent
to Rq−1 or of constructing an explicit parametrisation of Rq−1.

However, it turns out that a simpler possibility exists: we do the same com-
putations for the field Ŷ (q−1) where we get for the Jacobian at ρq−1

Ĵ(q−1) =



δ 0 0
δc1 0

fx(ρ1) fu(ρ1) γ
γ − δ

γ − 2δ
. . .

? γ − (q − 2)δ


. (8.6)

Again, it is straightforward to determine the eigenvalues which are all distinct if
we do not have a resonance at an order less than q − 1.

We will see later that there is no need to consider Y (q−1), if there is a resonance
at an order less than q − 1. Hence we exclude these cases. Comparing now the
results for the two vector fields, we conclude that the relevant eigenvalues are δ,
0 and γ− (q− 2)δ. If there is a resonance at order q− 1, then the first and the last
one are equal; otherwise all eigenvalues are distinct.

Let us first consider the case without resonance. The eigenspace for the
eigenvalue γ − (q − 2)δ is obviously spanned by (0, . . . , 0, 1)T . The eigenspace
for the eigenvalue 0 is also easy to interpret using the vector field Ŷ (q−1). The set
of all proper impasse points of Rq is a curve on Rq−1 described by the singularity
condition g(x) = 0 and the q − 1 equations of Rq (which can be interpreted as
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equations on Jq−1 when g(x) = 0, as then nowhere u(q) appears). It follows from
Remark 7 that the kernel of Ĵ(q−1) describes the tangent space of this curve at the
point ρq−1. Finally, explicitly writing out the expressions for the placeholders ai

and comparing with the recursive definition of hq+1, we find that an eigenvector
for the eigenvalue δ is

(
1, ū′, . . . , ū(q−1),

−hq+1(y, ū, . . . , ū(q−1))
γ − (q − 1)δ

)T
.

Note that it is the only eigenvector transversal to the projection πq−1.
In the case of a resonance at order q− 1, it is easy to see that one eigenvector

for the eigenvalue δ is given by (0, . . . , 0, 1)T . Computing the kernel of the ma-
trix (J(q−1) − δ1q+1)2, one obtains as second, linearly independent (generalised)
eigenvector (1, ū′, . . . , ū(q−1), 0)T . More precisely, we must distinguish two cases.
If a0 +

∑q−1
i=1 aiū(i) = 0, then both vectors are proper eigenvectors. Otherwise,

the second vector is only a generalised eigenvector and for obtaining the basis
leading to the Jordan normal form one must divide it by a0 +

∑q−1
i=1 aiū(i). If one in-

serts the explicit expressions for the placeholders ai, then it is not difficult to see
from our formula for the prolonged equations that the resonance parameter Aq−1

is given by the sum a0 +
∑q−1

i=1 aiū(i) = hq+1(y, ū, . . . , ū(q−1)). Hence the above case
distinction corresponds to the question whether or not the resonance is smooth.

Based on these observations, we can now give a complete overview over the
existence, (non)uniqueness and regularity of solutions for the studied singular
initial value problem. It recovers in our slightly more general situation all the
results of Liang [11] except that we describe the asymptotic behaviour of the
solutions as they approach the singularity in a different way. We begin with the
case that no resonance appears.

Theorem 25. Consider for the differential equation g(x)u′′ = f (x, u, u′) the ini-
tial value problem determined by the point ρ1 = (y, c0, c1) with y a simple zero of
g and f (y, c0, c1) = 0. We set δ = g′(y), γ = fu′(ρ1) and assume that at no order
a resonance appears.

(i) If δγ < 0, then the initial value problem possesses a unique two-sided
smooth solution and no additional one-sided solutions.

(ii) If δγ > 0, then there exists a one-parameter family of two-sided solutions.
One of these solutions is smooth; the other ones are in Ck \ Ck+1 with their
regularity given by k = dγ/δe. All of these solutions possess the same
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Taylor polynomial
∑k

i=0
ci
i! (x − y)i of degree k around y and each of them is

uniquely characterised by the limit

lim
x→y

u(k)(x) − ck

|x − y|(γ−(k−1)δ)/δ .

Proof. Consider the fibre F2 = (π2
1)−1(ρ1). It is trivial to see that F2 ⊂ R2. Be-

cause of the absence of resonances, it follows from Lemma 21 and Corollary 24
that F2 contains exactly one irregular singularity ρ2 = (y, c0, c1, c2); all other
points in F2 with ū(2) , c2 are regular singularities. As discussed in the proof of
Theorem 5, the unique generalised solution through any of these latter points is
the fibre F2 itself. As this is obviously not a proper generalised solution, we con-
clude that the second prolongation of any C2 solution of our initial value problem
must pass through ρ2.

We can now proceed by induction. If ρq is the unique irregular singularity
in the fibre Fq, then Proposition 8 entails that the entire fibre Fq+1 over ρq is
contained in Rq+1. By Lemma 21 and Corollary 24, it contains a unique irregular
singularity ρq+1. By the same argument as above, the prolongation of order q + 1
of any Cq+1 solution of our initial value problem must pass through ρq+1. We
denote the value ū(q) of the u(q)-coordinate of ρq by cq, i. e. from now on we
always assume that ρq = (y, c0, . . . , cq).

We consider now first the case that δγ < 0. Without loss of generality we
assume that δ > 0, as otherwise we simply multiply our equation by −1. The
Jacobian J(1) of the vector field Y (1) at the initial point ρ1 has the three eigenval-
ues δ, 0, γ all of which have a different sign under our assumption δγ < 0. It
follows from the classical Centre Manifold Theorem (see e. g. [26, Thm. 3.2.1])
that there are three unique one-dimensional invariant manifolds tangent to the
corresponding eigenvectors. The uniqueness of the centre manifold follows here
again from the fact that we have a whole curve of stationary points.

Based on the above discussion of the eigenvectors, it is easy to identify two
of the three invariant manifolds. The stable manifold belonging to the negative
eigenvalue γ is simply the fibre (π1

0)−1(y, c0). Indeed, the fibre is an invariant
manifold, as Y (1) is vertical everywhere on this fibre and thus tangential to the
fibre. Since at ρ1 it is tangential to the eigenspace γ, the claim follows from
the uniqueness of the stable manifold. Thus the stable manifold is not a proper
weak generalised solution. The centre manifold is the curve of all proper impasse
points which is completely contained in the fibre (π1)−1(y) and hence also not a
proper weak generalised solution. Only the unstable manifold corresponding to
the positive eigenvalue δ defines locally a proper weak generalised solution pro-
jecting on a weak geometric solution which is the graph of a classical solution.
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The smoothness of this solution can be proven by considering the prolonga-
tions. At any prolongation order q ≥ 2, we find the same picture. The Jacobian
J(q) of the vector field Y (q) at the point ρq has the three eigenvalues δ > 0, 0,
γ − (q − 1)δ < 0. Only the unstable manifold defines a proper generalised solu-
tion projecting on a geometric solution which is the graph of a function. Because
of the uniqueness of the unstable manifold, we obtain always the same geometric
solution which is thus smooth. It follows immediately from our construction that
this solution is two-sided and that no further one-sided solutions can exist.

In the case δγ > 0, we find different phase portraits. J(1) has now two dis-
tinct positive and one zero eigenvalue. Again the argument given above im-
plies that the centre manifold does not define a proper weak generalised solution
whereas the trajectories on the two-dimensional unstable manifold yield a one-
parameter family of one-sided proper weak generalised solutions. This picture
remains qualitatively unchanged at the orders q = 2, . . . , k so that the correspond-
ing one-sided geometric solutions are the graphs of Ck functions. The Taylor
polynomial of degree k around y of any of these functions is given by the k-jet
ρk = (y, c0, . . . , ck) ∈ Jk.

More precisely, for 1 ≤ q ≤ k, the dynamics on the unstable manifold corre-
sponds to that around an unstable two-tangent node. If q < k, then the eigenvalue
γ − (q − 1)δ is the larger one by the definition of k. Hence almost all trajectories
of Y (q) reach the point ρq tangential to the transversal eigenvector belonging to
the smaller eigenvalue δ. Thus we can always combine two trajectories coming
from the left and the right, respectively, to a two-sided proper generalised so-
lution which is the prolonged graph of a function of class Cq. However, at the
order q = k there is a change: now δ is the larger eigenvalue and hence almost all
generalised solutions are tangential to the vertical eigenvector belonging to the
eigenvalue γ− (k− 1)δ. The verticality implies that the (k + 1)th derivative of the
corresponding classical solution becomes infinite at x = y. Thus all these gener-
alised solutions come from functions which are of class Ck, but not of class Ck+1

at y. There is only one generalised solution which is tangential to the transversal
eigenvector belonging to δ and which thus corresponds to an at least k + 1 times
differentiable function.

Obviously, in the above argument we are implicitly applying the Hartman-
Grobman Theorem asserting an equivalence between the phase portraits of a
dynamical system in the neighbourhood of a hyperbolic stationary point and of
its linearisation around this point. The standard formulation of this theorem, as
one can find it in most textbooks like [24], asserts only a topological equivalence
entailing that no statements about tangents are possible. However, in the case of
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a smooth dynamical system the linearising homeomorphism is differentiable at
the stationary point and thus preserves tangents [27]. Hence the above statements
about the tangents of the trajectory at the stationary point can indeed be gleaned
from the Jacobian.

At all orders q > k, the third eigenvalue is negative so that now we ob-
tain qualitatively the same phase portraits as in the case δγ < 0 with a one-
dimensional unstable manifold. Hence we find that the one solution which is
at least k + 1 times differentiable is actually smooth (and again trivially two-
sided). These phase portraits imply again that all the other members of the one-
parameter family of Ck solutions are not contained in Ck+1.

For the remaining claim, we look at the phase portrait of Y (k) around ρk. As
already mentioned above, ρk is a two-tangent node for the reduced dynamics on
the two-dimensional unstable manifold with the two eigenvalues 0 < γ − (k −
1)δ < δ. The trajectories of the linearised system lie in the plane spanned by the
above computed eigenvectors and (except the two irrelevant vertical ones) can
be written in parametrised form as

x(t) = y + αeδt , u(t) = c0 + c1αeδt , . . . u(k−1)(t) = ck−1 + ckαeδt ,

u(k)(t) = ck −
hk+2(ρk)
γ − kδ

αeδt + βe(γ−(k−1)δ)t ,
(8.7)

where the constants α , 0 and β may be considered as the coordinates of an
initial point on the plane. It suffices to consider α = ±1 to obtain all trajectories
uniquely and the sign decides whether the trajectory is reaching ρk from the left
or from the right. In the limit x→ y, the trajectories of the reduced system on the
unstable manifold approach the ones of its linearisation. In (8.7), this limit corre-
sponds to t → −∞. If we use the first equation in (8.7) to eliminate t, then the last
equation in (8.7) shows that the corresponding value of the parameter β describ-
ing the trajectory uniquely is obtained as the limit of

(
u(k)(x)−ck

)
/|x−y|(γ−(k−1)δ)/δ

for x → y, since the term proportional to αeδt vanishes in the limit. We see fur-
thermore from the linearised dynamics that we may combine the trajectories for
the initial points (α, β) and (−α,−β), respectively, to a C1 curve through the sta-
tionary point ρk. Hence the same is possible for the nonlinear reduced dynamics
and by construction the obtained generalised two-sided solution corresponds to
a strong Ck solution.

Remark 26. If the functions f and g are even analytic, then everywhere in the
above theorem we can replace smooth by analytic. Indeed, it is well-known that
then the unstable manifold of a stationary point is also analytic. The construction
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in our proof shows that the unstable manifolds are always the graph of some
prolongation of our smooth solution. Hence, this solution must be analytic.

In the case of solutions with a finite regularity, one can further strengthen the
statement of Theorem 25: the kth derivatives of the Ck solutions are Hölder con-
tinuous with Hölder exponent λ = (γ − (k − 1)δ)/δ < 1. This follows easily from
our proof of Theorem 25. Indeed, (8.7) entails that the solution of the linearised
dynamics is Hölder continuous with exponent λ at ρk. As already discussed
above, in a sufficiently small open neighbourhood of ρk, the homeomorphism
mapping it to the solution of the nonlinear system is C1 and thus in particular
Lipschitz continuous at ρk by [27]. It then follows from standard results about
the composition of Hölder continuous functions that the solution of the nonlinear
system is also Hölder continuous with exponent λ (see e. g. [28]).

Before we study the effect of a resonance, we analyse the case γ = 0 (ignored
by Liang [11]). It could be considered as a resonance at order k = 0. However, it
must be treated in a rather different manner. At a resonance, the relevant Jacobian
has a double eigenvalue δ and its eigenspace contains transversal vectors. By
contrast, in the case γ = 0 it possesses a double eigenvalue 0 and its complete
eigenspace lies vertical.

Theorem 27. In the situation of Theorem 25, assume that γ = 0. Then there
exists a unique smooth two-sided solution (and possibly further one-sided solu-
tions).

Proof. In the case γ = 0, the Jacobian J(1) of Y (1) at the initial point ρ1 has 0 as a
double eigenvalue with two vertical (generalised) eigenvectors and δ as a simple
non-zero eigenvalue (again assumed to be positive). Analogously to the proof of
Theorem 25, one shows that the unstable manifold is the graph of a prolonged
smooth two-sided solution.

The uniqueness of this solution is now a bit more subtle. In contrast to the
situation in the proof of Theorem 25, we have now a two-dimensional centre
manifold which is not necessarily unique. As both (generalised) eigenvectors are
vertical, it is also easy to see that there is a unique analytic centre manifold given
by the plane (π1)−1(y) which, however, cannot contain any proper generalised
solutions. There may exist further centre manifolds (not necessarily smooth)
and on these there could exist trajectories through ρ1 not contained in (π1)−1(y)
which could correspond to the prolongation of a function graph. However, even
if such a trajectory exists, then it must have a vertical tangent in ρ1 and hence the
corresponding function is not twice differentiable at y. Thus there cannot exist
any further two-sided strong solutions.
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Remark 28. The theorem above leaves open the question of the existence of
further one-sided solutions. We will now show with the help of a simple concrete
example that such solutions may or may not exist. Consider the equation xu′′ =

d(u′)m with a parameter 0 , d ∈ R and an exponent 1 < m ∈ N. For it δ = 1,
γ = 0 and y = 0. Its irregular singularities are the points (0, c0, 0, c2) for arbitrary
values c0, c2 ∈ R. Projection of the Vessiot distribution yields the dynamical
system

ẋ = x , u̇ = xv , v̇ = dvm (8.8)

defined onJ1 where we introduced v = u′ for notational simplicity. Its stationary
points are the impasse points (0, c0, 0). They all possess the same unique analytic
centre manifold, namely the plane (π1)−1(0).

The first and the third equation in (8.8) form a closed subsystem (which is in-
dependent of c0) with a semihyperbolic stationary point at the origin. According
to [10, Thm. 2.19], we must distinguish three different cases:

m odd, d < 0 In this case, the origin is a saddle point of the subsystem and the
only invariant manifolds reaching it are the centre and the unstable mani-
fold. Going back to our differential equation, we see that only two weak
generalised solutions exist. It follows from the form of the eigenvectors
that only the unstable manifold of (8.8) provides us with a proper weak
generalised solution. Hence in this case the initial value problem u(0) = c0,
u′(0) = 0 possesses only the unique two-sided solution from Theorem 27
and no further one-sided solutions.

m odd, d > 0 Now the origin is an unstable node of the subsystem implying the
existence of many additional weak generalised solutions of our differential
equations. However, all of these possess a vertical tangent at the origin
and thus cannot be of class C2 for x = 0. In fact, the generalised solutions
show a turning point behaviour at x = 0 and thus each of them corresponds
to two one-sided solutions which are both only defined either for x ≥ 0 or
for x ≤ 0.

m even This yields a combination of the two cases above, as the subsystem has
now a saddle node at the origin. Depending on the sign of d, we find above
the unstable manifold the same phase portrait as for an unstable node and
below as for a saddle point or vice versa. In any case, we have again
infinitely many additional one-sided solutions.

In fact, for our simple system it is straightforward to integrate the system (8.8) at
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least partially. We find

x(t) = aet , v(t) =
(
c − (m − 1)dt

)− 1
m−1 ,

with an integration constant c ∈ R. The function u(t) is then obtained by integrat-
ing the product x(t)v(t). The result can be expressed in terms of the generalised
exponential integrals En(t).

In the general situation of Theorem 27, the stationary points are given by the
curve f (y, u, v) = 0 and the common unique analytic centre manifold of them
is again a plane, namely (π1)−1(y). The form of the reduced dynamics on it in
the neighbourhood of a stationary point (y, c0, c1) is determined by the order m
of the first non-vanishing derivative ∂m f

∂vm (y, c0, c1) and the sign of its value d and
corresponds to the different cases arising in our simple example. However, the
value of m and the sign of d may now change at certain stationary points and there
now arise further case distinctions. For example, the Jacobian at the stationary
point (y, c0, c1) is diagonalisable only if the derivative ∂ f

∂u (y, c0, c1) vanishes as in
our example. We refrain here from a complete analysis of all possible cases.

Theorem 29. In the situation of Theorem 25, assume that a resonance occurs
at the order k > 0. There exists a one-parameter family of two-sided solutions
all possessing the same Taylor polynomial

∑k
i=0

ci
i! (x − y)i of degree k around y.

In the case of a smooth resonance, all of these solutions are smooth and each is
uniquely determined by the value of its (k + 1)st derivative in y. In the case of
a critical resonance, all solutions live in Ck \ Ck+1 and each of them is uniquely
characterised by the value of

lim
x→y

(x − y) exp
(
−δ

u(k)(x) − ck

x − y

)
.

Proof. We find by the same reasoning as in the proof of Theorem 25, a unique
sequence of irregular singularities ρ j ∈ R j for j = 2, . . . , k above the initial
point ρ1. At the point ρk the Jacobian J(k) of Y (k) has a double eigenvalue δ and
hence there exists a unique two-dimensional unstable manifold. It follows from
our above analysis of the (generalised) eigenvectors that ρk is a star node for a
smooth resonance and a one-tangent node for a critical resonance.

We consider first the smooth case. Here we can always combine two tra-
jectories reaching the node to a two-sided (weak in the case k = 1) generalised
solution. One of these generalised solutions is vertical and of no interest. All the
other ones have in ρk a transversal tangent and hence correspond locally to a so-
lution of at least class Ck+1. If we apply Lemma 21 with q = k +1, then it follows
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immediately from the definition of a smooth resonance at order k that all points
in the fibre (πk+1

k )−1(ρk) are irregular singularities of Rk+1. To each generalised
solution through ρk corresponds exactly one of these irregular singularities with
the value ck+1 of its u(k+1)-coordinate determined by the slope of the tangent of
the generalised solution in ρk. The Jacobian J(k+1) of the vector field Y (k+1) has
a double eigenvalue 0. The analysis of the local dynamics is analogous to the
case γ = 0 treated in Theorem 27. Hence we conclude that all these generalised
solutions correspond to smooth two-sided solutions. Opposed to the discussion
in Remark 28, there is now no need to study the existence of further one-sided
solutions, as these would have already shown up in our analysis at order k.

In the case of a critical resonance, the same combination of two trajectories
into one generalised solution is possible (for k = 1 one obtains only a weak gen-
eralised solution). All of these (weak) generalised solutions possess the same
vertical tangent at ρk and thus correspond locally to graphs of prolonged func-
tions which are of class Ck at y. Because of the vertical tangent, none of these
solutions can be of class Ck+1 at y. Proceeding as in the proof of Theorem 25, one
finds for the trajectories of the linearised dynamics after elimination of the curve
parameter t that u(k)(x) − ck =

x−y
δ

ln
( x−y
η

)
with a constant η , 0. We have set the

second arising constant to zero, as then every trajectory is uniquely described by
the value of η. Taking the limit y→ x and solving for η yields our claim.

Example 30. We consider the equation xu′′ = (u′)2 + x − 1/4. All points of the
form (0, u,±1/2) are impasse points. At any of them, we find δ = 1 and γ = ±1.
Thus at the points (0, u,−1/2) we are in the first case of Theorem 25 asserting the
existence of a unique smooth solution through any of them. At any of the points
(0, u, 1/2), we find a resonance at order k = 1. As the resonance parameter is
given by A1 = 1, it is always a critical resonance and no solution can be twice
differentiable at x = 0.9

The projected Vessiot distribution defines on J1 the dynamical system

ẋ = x , u̇ = xv , v̇ = v2 + x −
1
4

(8.9)

where we again abbreviated v = u′. Obviously, the first and third equation form
a closed planar system which can be explicitly integrated in terms of (modified)

9Note that the existence of a resonance and its order are completely determined by the
constant term in the equation. If we consider the slightly more general class of equations
xu′′ = (au′)2 + x − b2 with two parameters a, b > 0, then we obtain a resonance at order k
if and only if b = ka/2.
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Bessel functions of the first and second kind. Elimination of the auxiliary curve
parameter t yields

u′(x) =


1
2
−
√

x
CY0(2

√
x) + J0(2

√
x)

CY1(2
√

x) + J1(2
√

x)
x ≥ 0

1
2

+
√
−x

CK0(2
√
−x) − I0(2

√
−x)

CK1(2
√
−x) + I1(2

√
−x)

x ≤ 0

with a parameter C ∈ R. Here, one can explicitly verify that none of these
solutions are twice differentiable at the origin. C is not exactly the parameter
appearing in the proof of Theorem 29. If one evaluates the limit appearing in
this theorem, calling the result η, then in the case that one approaches the origin
from the left, one obtains C = 2/

(
ln (−1/η) − 2γ), whereas for an approach from

the right one finds C = π/(2γ+ln (η)) where now γ denotes the Euler constant and
is not related to our γ above. In any case there is thus a bijective correspondence
between the limit η and the parameter C.

Figure 2: Phase portrait of subsystem of (8.9)

Figure 2 shows the phase portrait of the closed subsystem consisting of the
first and the third equation in (8.9). One sees that the point (0,−1/2) is a saddle
point and its unstable manifold (shown in red) is the graph of the first derivative
to the unique solution through (0, u,−1/2) (the solutions for different values of
u are all parallel to each other and thus have the same derivative). The stable
manifold is the v-axis and hence irrelevant for our purposes. The point (0, 1/2)
is a one-tangent node. The eigenvector again points in the v-direction and thus
all trajectories enter the node with a vertical tangent. This implies that none of
the corresponding solutions of our second-order equation is twice differentiable
at the origin.

Finally, we comment on the situation that the initial point ρ1 = (s, c0, c1)
is chosen in such a way that g(s) = 0 but f (ρ1) , 0. It is obvious that no
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strong, i. e. at least twice differentiable solution can exist in this case, as no point
ρ2 ∈ R2 exists with π2

1(ρ2) = ρ1. In principle, it was possible that in this case a
unique two-sided solution existed which is everywhere smooth except at t = s
where it is only C1. Indeed, by our assumptions the vector field Y (1) is defined
everywhere on J1 and does not vanish at such a point ρ1. Hence, there exists a
unique weak generalised solution through ρ1. However, it is easy to see that it
runs vertically and hence is not proper. Generally, this weak generalised solution
will not run through the entire fibre, as generally for some values τ we will
have f (s, c0, τ) = 0 and thus hit a point at which our above analysis applies.
In this analysis, we mentioned that there are further weak generalised solutions
through our singularity which are, however, not proper. One of them we have
now recovered in a different manner.

9. Conclusions

We presented a geometric approach to the analysis of singular initial value
problems of quasi-linear ordinary differential equations. As sketched in the first
part, it is based on considering a differential equation as a submanifold of a jet
bundle and using the associated contact geometry via the Vessiot spaces. We
showed in the second part of this work that quasi-linear equations are special
in the sense that their Vessiot distribution is projectable. This observation al-
lows for relating the geometric singularity analysis of fully non-linear implicit
equations – as e. g. discussed by Arnold [21] or Remizov [29] – with the more
analytic approach to singularities of quasi-linear equations – as used e. g. by Ra-
bier [22]. We could show in Proposition 12 that not all impasse points arising in
the analysis of a quasi-linear equation stem from a singularity of the equation.
Hence one indeed needs a special theory for the quasi-linear case.

In the third part of this article, we gave a detailed geometric analysis of a spe-
cial class of second-order initial value problems, namely equations of the form
g(x)u′′ = f (x, u, u′) with initial data prescribed at a simple zero y of g. The
results represented a slight generalisation of those obtained by Liang [11] with
completely different methods. In our opinion, our approach makes the appear-
ance of a dichotomy or of a resonance and the possible existence of solutions
with only finite regularity much more transparent. All these effects follow im-
mediately from considering the phase portraits around proper impasse points at
different prolongation orders. In particular, the analysis is almost automatic and
requires essentially no ingenuity.

The restriction to simple zeros of g is crucial for this simplicity, as it guar-
antees that the eigenvalue δ = g′(y) is always non-zero. Hence, even in the
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border case γ = 0 (which was ignored by Liang), we never encountered a triple
eigenvalue 0. The situation is quite different for (generalised) Ginzburg-Landau
equations of the form x2u′′ + axu′ + bu = f (u) for some function f satisfying
f (0) = 0 as studied by Ignat et al. [30]. If one analyses such an equation via
our approach, then one faces already in the first step the problem of studying a
stationary point of a three-dimensional system where the Jacobian has a triple
eigenvalue 0. If one succeeds here, for instance by blowing up the initial point,
then the remaining analysis should be quite similar to the one presented here.

Another critical point in our approach is generally the question whether one
is able to determine the eigenvalues and -vectors of all required Jacobians. For
the class studied here, we obtained triagonal matrices so that this step was al-
most trivial posing only the problem of identifying the relevant eigenvalue. In
a preliminary study of equations of the form g(u)u′′ = f (x, u, u′) and g(u′)u′′ =

f (x, u, u′), i. e. of equations with a truely non-linear left hand side, it turned out
that this step becomes only a little bit more difficult, but remains solvable at any
prolongation order. We will present the findings for these two classes of equa-
tions elsewhere.

We assumed throughout this article that we work with smooth functions (only
in Proposition 16 and in Remark 26 we considered the analytic case). In fact,
almost all of our results remain true with only minor modifications, if we assume
that F or f and g, respectively, are only in Cr for some r ≥ 2. Obviously, we
can now consider prolongations only up to order r and also solutions can only be
guaranteed to be in class Cr. Thus we simply must replace smooth by Cr.

The situation is slightly more complicated for Theorems 25 and 29. For the
interesting results about finite regularity, we must assume that r ≥ k – in fact
we should have r > k. In the proofs we needed that the homeomorphism in
the Hartman-Grobman theorem is C1 and used the corresponding statement in
[27] which, however, requires smoothness of the considered vector field. Hart-
man [31] showed already much earlier that the homeomorphism is C1 under
weaker conditions, namely when the linear part defines a contraction and the
non-linear part has uniformly Lipschitz continuous partial derivatives. We ap-
plied the Hartman-Grobman theorem to the vector field Y (k) around the station-
ary point ρk. According to (8.3), the field Y (k) depends on hk+1 which by (8.2)
is obtained by differentiating k − 1 times f . If r > k, then hk+1 is still at least
of class C2 and thus the coefficients of Y (k) possess the required regularity. For
the contraction property, we recall that the Jacobian of the reduced dynamics
has the eigenvalues 0 < γ − (k − 1)δ < δ and thus defines a contraction, if and
only if δ < 1. We may perform a rescaling of the independent variable x 7→ αx.
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Then a simple computation shows that the parameters δ and γ rescale accord-
ing to δ 7→ δ/α and γ 7→ γ/α. Thus the resonance condition is not affected by
the rescaling, but we may assume without loss of generality that δ < 1 so that
Hartman’s result can be applied.

A referee pointed out that the resonance condition in the here considered
second-order initial value problem could be derived for analytic equations via
the Newton-Puiseux construction of Cano [15]. This observation represents an
interesting question for future research. For the class of problems considered
here, it was straightforward to derive the conditions both for the dichotomy of
the existence theory and for the resonances. For other initial value problems, this
is no longer the case and the combination of our geometric techniques with such
algebraic approaches may prove very useful here.
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[29] A. Remizov, Multidimensional Poincaré construction and singularities of lifted fields for

implicit differential equations, J. Math. Sci. 151 (2008) 3561–3602.
[30] R. Ignat, L. Nguyen, V. Slastikov, A. Zarnescu, Uniqueness results for an ODE related to

a generalized Ginzburg-Landau model for liquid crystals, SIAM J. Math. Anal. 46 (2014)
3390–3425.

[31] P. Hartman, On local homeomorphisms of Euclidean spaces, Bol. Soc. Mat. Mex. 5 (1960)
220–241.

41


	Introduction
	The Geometry of Ordinary Differential Equations
	Generalised and Geometric Solutions
	Prolongations
	Impasse Points of Quasi-Linear Equations
	Weak Generalised Solutions
	Proper Impasse Points
	Second-Order Initial Value Problems
	Conclusions

