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Abstract

We study characterisations of involutive bases using a recursion over the variables
in the underlying polynomial ring and corresponding completion algorithms. Three
key ingredients are (i) an old result by Janet recursively characterising Janet bases
for which we provide a new and simpler proof, (ii) the Berkesch–Schreyer variant of
Buchberger’s algorithm and (iii) a tree representation of sets of terms also known as
Janet trees. We start by extending Janet’s result to a recursive criterion for minimal
Janet bases leading to an algorithm to minimise any given Janet basis. We then extend
Janet’s result also to Janet-like bases as introduced by Gerdt and Blinkov. Next, we
design a novel recursive completion algorithm for Janet bases. We study then the ex-
tension of these results to Pommaret bases. It yields a novel recursive characterisation
of quasi-stability which we use it for deterministically constructing “good” coordinates
more efficiently than in previous works. A small modification leads to a novel deter-
ministic algorithm for putting an ideal into Nœther position. Finally, we provide a
general theory of involutive-like bases with special emphasis on Pommaret-like bases
and study the syzygy theory of Janet-like and Pommaret-like bases.

Keywords: Polynomial ideals, Gröbner bases, involutive bases, Janet bases, Janet-like
bases, Pommaret bases, Pommaret-like bases, completion algorithms, recursion,
Schreyer’s theorem, quasi-stable ideals, Janet trees, Nœther position
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1. Introduction

Gröbner bases are a fundamental concept in computational commutative algebra
and algebraic geometry and their efficient determination has been an important topic
for a long time. Involutive bases are a special kind of Gröbner bases with additional
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combinatorial properties. The basic ideas underlying them stem from Janet’s works
on general systems of partial differential equations (Janet, 1920, 1929). The first rig-
orous definition of what is nowadays called a Pommaret basis was given by Zharkov
and Blinkov (1996); the general definition of an involutive basis is due to Gerdt and
Blinkov (1998). This work also contains a general algorithm for their construction; a
more efficient algorithm allowing for the construction of minimal involutive bases was
presented in (Gerdt and Blinkov, 1998). For implementations of these algorithms and
extensive benchmarks, we refer to the website http://invo.jinr.ru. For a com-
prehensive study and for applications of the theory of involutive bases to commutative
algebra and to partial differential equations, we refer to (Seiler, 2010).

In this work, we are concerned with recursive structures in the theory of involutive
bases where the recursion will mainly be over the number of variables in the underlying
polynomial ring. The starting point is an old result by Janet providing a recursive
criterion for a set of terms to form a Janet basis (Theorem 3.1). We will give a simpler
proof for a slightly more general version of it (Theorem 3.4). As a first extension, we
will prove a corresponding recursive criterion for minimal Janet bases (Theorem 3.10)
and use it provide an algorithm to minimise an arbitrary Janet basis (Algorithm 3).
Currently, the main algorithm for computing a minimal Janet basis is the T Q-algorithm
of Gerdt and Blinkov (1998) which determines the basis from scratch. While it is
in principle possible to give this algorithm a Janet basis as input, it will not benefit
from this (in fact, this is even bad input). By contrast, our novel algorithm efficiently
minimises any given Janet basis.

Combining our recursive criteria with a variant of the Buchberger algorithm pre-
sented by Berkesch and Schreyer (2015), we develop novel recursive algorithms for
the construction of monomial and polynomial Janet and Janet-like bases (Algorithms 5
and 7). Then we proceed to the construction of Pommaret bases where a key issue
is to find “good” coordinates, i. e. to obtain a quasi-stable position for the given ideal
(see (Hashemi et al., 2018) for an extensive discussion of this topic). We provide
first recursive criteria both for Pommaret bases (Theorem 5.1) and for quasi-stability
(Corollary 5.5) and then a deterministic algorithm for the construction of “good” co-
ordinates (Algorithm 9). Compared with the results by Hashemi et al. (2018), the
novel approach is not only much more efficient, but also the termination proof be-
comes much simpler. Minor modifications of the underlying ideas lead to recursive
criterion for Nœther position (Proposition 5.13) which also translates immediately into
a corresponding deterministic algorithm.

We proceed then to Janet-like bases which were introduced by Gerdt and Blinkov
(2005a,b) to obtain more compact bases, in particular in situations where the degrees of
the leading terms in some variables differ greatly (as e. g. in toric ideals). Again we will
give a recursive criterion for a set to be a (minimal) Janet-like basis (Theorems 3.14
and 3.17). While Gerdt and Blinkov extended solely the Janet division to the Janet-like
division, we will introduce the general concept of an involutive-like division (Defini-
tion 6.1) and related notions like continuity or constructivity. Our main emphasis will
be on Janet-like and Pommaret-like bases and how they are related to each other and
to Janet and Pommaret bases, respectively (Propositions 6.8 and 6.16, Theorem 6.19).
But we will also start developing a syzygy theory for these bases by providing a variant
of Schreyer’s theorem (Theorem 7.7).

2

http://invo.jinr.ru


The structure of the paper is as follows. In the next section, we give basic notations
and definitions that are used throughout the paper. In Section 3, we present recursive
criteria for a monomial set being either a Janet or a Janet-like basis. Similar tests for
the minimality of these bases are discussed in this section as well. In Section 4, we
describe a variant of the Berkesch–Schreyer algorithm to compute Janet(-like) bases.
Section 5 is devoted to our new recursive test for Pommaret bases and its application
to their construction. In the following two sections, we introduce involutive-like bases
for arbitrary divisions and study their basic properties and their construction. Finally,
some conclusions are given.

2. Preliminaries

In this section, we review some basic definitions and notations from the theory
of Gröbner bases and involutive bases that will be used in the rest of the article.
Throughout, we work in the polynomial ring P = K[X] = K[x1, . . . , xn] over a
field K . We consider the polynomials f1, . . . , fk ∈ P and the ideal I = 〈 f1, . . . , fk〉
generated by them. We denote the total degree of and the degree with respect to a
variable xi of a polynomial f ∈ P by deg ( f ) and degi ( f ), respectively. We write
T = {xα1

1 · · · x
αn
n | αi ≥ 0, 1 ≤ i ≤ n} for the monoid of all terms in P. A term ordering

on T is denoted by ≺ and throughout we shall assume that x1 ≺ · · · ≺ xn. The leading
term of a given polynomial f ∈ P with respect to ≺ is denoted by lt( f ). If F ⊂ P
is a finite set of polynomials, we denote by lt(F) the set {lt( f ) | f ∈ F}. A finite set
G ⊂ P is called a Gröbner basis for I with respect to ≺, if its leading ideal satisfies
lt (I) = 〈lt( f ) | f ∈ I〉 = 〈lt(G)〉. We refer e. g. to (Cox et al., 2015) for more details on
Gröbner bases.

Instead of the standard Buchberger algorithm, we are more interested in a variant
presented by Berkesch and Schreyer (2015). First, we shall need a particular form of
the division algorithm based on the enumeration of the divisors. Let f1, . . . , fk ∈ P be
an ordered sequence of nonzero polynomials and f ∈ P a further polynomial. Then
quotients h1, . . . , hk ∈ P and a unique remainder r ∈ P exist such that:
• f = h1 f1 + · · · + hk fk + r,
• No term in hi lt( fi) is divisible by any lt( f j) with j < i,
• No term in r is a multiple of lt( fi) for any i.

Buchberger’s criterion is stated in this setting as follows: An (ordered) finite set G =

{g1, . . . , gm} ⊂ P is a Gröbner basis, if and only if for each index i and each term
t in the minimal generating set of the monomial ideal

〈
lt(g1), . . . , lt(gi−1)

〉
: lt (gi),

the division of tgi by G yields zero as remainder. Based on this result, we can now
describe a variant of Buchberger’s algorithm to compute Gröbner bases. In Algo-
rithm 1, Division( f , [ f1, . . . , fk]) returns the remainder of the division of f by the list
[ f1, . . . , fk] by applying the above procedure. In addition, G(I) denotes the minimal
generating set of the monomial ideal I.

One of the advantages of the Berkesch–Schreyer approach, compared to the clas-
sical Buchberger’s theory, is that one can give a simpler proof of the Schreyer the-
orem (Berkesch and Schreyer, 2015, Corollary 1.11): Keeping the above notations,
there are hi j ∈ P such that tgi = hi1g1 + · · · + himgm. Then, the set of all syzygies
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Algorithm 1: Berkesch–Schreyer Variant of Buchberger Algorithm
Data: A finite list of polynomials F = [ f1, . . . , fk] and a term ordering ≺
Result: A Gröbner basis G of 〈F〉
begin

G ←− F
P←−

{
xµ fi | xµ ∈ G

(
〈lt( f1), . . . , lt( fi−1)〉 : lt( fi)

)
, i = 2, . . . , k

}
while P , ∅ do

Select and remove a product xµ fi from P
r ←− Division(xµ fi,G)
if r , 0 then

P←− P ∪
{
xµr | xµ ∈ G

(
〈lt(G)〉 : lt(r)

)}
G ←− append(G, r)

return G

tei − hi1e1 − · · · − himem for each i and for any choice of t forms a Gröbner basis for the
syzygy module of g1, . . . , gm with respect to the induced Schreyer ordering.

Next, we recall some for us relevant concepts for involutive divisions and bases, see
(Gerdt, 2005; Seiler, 2010) for more details. We provide here a non-standard formula-
tion of the basic definitions adapted to our later extension to involutive-like divisions
and bases in Section 6.

Definition 2.1. An involutive division L on T ⊂ P associates to any finite set U ⊂ T
of terms and any term u ∈ U a set of L-non-multipliers L̄(u,U) given by the terms
contained in a prime monomial ideal. The variables generating this prime ideal are
called the non-multiplicative variables

NML(u,U) ⊆ X of u ∈ U. The set of L-multipliers L(u,U) is given by the order
ideal T \L̄(u,U); it has as Dickson basis the set of multiplicative variables ML(u,U) =

X \ NML(u,U). For any term u ∈ U, its involutive cone is defined as CL(u,U) =

u · L(u,U). For an involutive division, the involutive cones must satisfy the following
conditions:

(i) For two terms v , u ∈ U with CL(u,U) ∩ CL(v,U) , ∅, we have u ∈ CL(v,U)
or v ∈ CL(u,U).

(ii) If a term v ∈ U lies in an involutive cone CL(u,U), then L(v,U) ⊂ L(u,U).
(iii) For any term u in a subset V ⊂ U, we have L(u,U) ⊆ L(u,V).

We write u |L w for a term u ∈ U and an arbitrary term w ∈ T , if w ∈ CL(u,U). In this
case, u is called an L-involutive divisor of w and w an L-involutive multiple of u.

The first two conditions ensure that involutive cones can intersect only trivially.
The third condition is often called the filter axiom. Obviously, it suffices for defining
an involutive division to say what are the (non-)multiplicative variables for each term
u in a finite set U. Note that involutive divisibility u |L w implies ordinary divisibility,
but not vice versa.

Definition 2.2. For a finite set of terms U ⊂ T and an involutive division L on T , the
involutive span of U is the union CL(U) =

⋃
u∈U CL(u,U). The set U is involutively
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complete or a weak involutive basis, if CL(U) = U · T . For a (strong) involutive basis
the union is disjoint, i. e. every term in CL(U) has a unique involutive divisor.

Example 2.3. One of the most important involutive divisions is the Janet division in-
troduced by Janet (1929, pp. 16-17). Let U ⊂ P be a finite set of terms. For each
sequence d1, . . . , dn of non-negative integers and for each index 1 ≤ i ≤ n, we intro-
duce the corresponding Janet class as the subset

U[di,...,dn] =
{
u ∈ U | deg j (u) = d j, i ≤ j ≤ n

}
⊆ U . (2.1)

The variable xn is Janet multiplicative (or shorterJ-multiplicative) for the term u ∈ U,
if degn (u) = max {degn (v) | v ∈ U}. For i < n the variable xi is Janet multiplicative for
u ∈ U[di+1,...,dn], if degi (u) = max {degi (v) | v ∈ U[di+1,...,dn]}.

Definition 2.4. The set F ⊂ P of polynomials is involutively head autoreduced for the
involutive divisionL and the term ordering ≺, if for no f ∈ F there exists an h ∈ F \{ f }
with lt(h) |L lt( f ). Let I ⊂ P be an ideal. An L-involutively head autoreduced subset
G ⊂ I is an involutive basis of I for L and ≺, if for any ideal element f ∈ I there
exists a generator g ∈ G such that lt(g) |L lt( f ).

If G is an involutive basis of the polynomial ideal I, then lt (G) is an involutive
basis of the monomial ideal lt (I). Thus any involutive basis is also a Gröbner basis.

Example 2.5. Consider the monomial ideal I = 〈x1x2
3, x2x3, x2

1x3〉 ⊂ K[x1, x2, x3].
The given minimal generating set is not a Janet basis of I, but if we extend it to the set
{x1x2

3, x2x3, x2
1x3, x2x2

3}, then we obtain one. One can show that any monomial ideal
possesses a finite Janet basis, i. e. the Janet division is Nœtherian.

We will repeatedly use the idea of a tree representation3 of a finite set U of terms.
Assume that U = {xµ1 , . . . , xµk } ⊂ T where µi = (µi1, . . . , µin) for each i and xµ1 ≺lex

· · · ≺lex xµk with x1 ≺lex · · · ≺lex xn. Then, to represent recursively this set as tree, we
consider the root as level 0 and at the first level we write as the nodes the last entries
of the µi’s from the smallest to the largest one by removing the repeated elements.
Now, assume that all the nodes at the level n − i have been determined. To construct
the nodes below a node µi j at the level n − i + 1, we represent the set [µi j, . . . , µin] by
considering only the first i − 1 entries and the node corresponding to µi j as the root.
As a simple example, in the polynomial ring P = K[x1, x2, x3] let us consider the set
U = {x2

1x3
3, x4

2x3
3, x2

1x5
3, x2

2x5
3}. Its tree representation is shown in Figure 1.

The level i in this representation corresponds to the variable xi and one can read
off the Janet multiplicative variables for any node. For example, for x2

1x5
3 ∈ U the

variables x1 and x3 are multiplicative, since the path from the root to the corresponding
leave uses the respective last branch at the levels 1 and 3. However, this is not the case
at level 2 and so x2 is non-multiplicative.

The Janet trees introduced by Gerdt et al. (2001) correspond to a transformation
of the above described tree into a binary tree. They are extensively used for the fast
construction of Janet bases, as many necessary operations like searching for a Janet

3In some references, one speaks of a Janet tree, see e. g. (Seiler, 2010).
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Root

3

0

2

4

0

5

0

2

2

0

Figure 1: Tree representation of U = {x2
1 x3

3, x4
2 x3

3, x2
1 x5

3, x2
2 x5

3}.

divisor can be performed very efficiently with them. The bar codes introduced by
Ceria (2019a) provide a similar representation of a set of terms using a two-dimensional
diagram; the relation between the two representations is studied by Ceria (2019b). We
refer to Lundqvist (2010) for the complexity of constructing a tree representation.

Gerdt (2005) proposed an efficient algorithm for the construction of involutive
bases by a completion process where the products of elements of the current basis
by non-multiplicative variables are reduced with respect to the basis. This process
terminates for any Nœtherian division in finitely many steps. To further improve the
computation of Gröbner bases for ideals where the Janet basis is much larger than the
reduced Gröbner basis (toric ideals are a prototypical example), Gerdt and Blinkov
(2005b) introduced a generalisation of Janet bases where not only non-multiplicative
variables but also non-multiplicative powers are considered in the completion process.

Definition 2.6. Let U ⊂ T be a finite set of terms. For any term u ∈ U and any index
1 ≤ i ≤ n, we set

hi(u,U) = max
{
degi (v) | u, v ∈ U[di+1,...,dn]

}
− degi (u) .

If hi(u,U) > 0, the power xki
i with

ki = min
{
degi (v) − degi (u) | v, u ∈ U[di+1,...,dn], degi (v) > degi (u)}

is called a non-multiplicative power of u for the Janet-like division. The set of all
non-multiplicative powers of u ∈ U is denoted by NMP(u,U). The elements of the set

NM(u,U) = {v ∈ T | ∃w ∈ NMP(u,U) : w | v}

are called the J-non-multipliers for u ∈ U. The terms outside of it are the J-multipliers
for u. An element u ∈ U will be called a Janet-like divisor of w ∈ T , if w = u · v with
v a J-multiplier for u.
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Although the Janet-like division is not an involutive division, it preserves all al-
gorithmic properties of the Janet division and allows for the construction of Janet-like
bases and in turn Gröbner bases. Indeed, the main algorithmic idea for the construc-
tion of Janet-like bases is similar to that of Janet bases, instead of multiplying with
non-multiplicative variables one now multiplies with non-multiplicative powers.

We conclude the section by recalling the definition of the Pommaret division and
the related notion of a quasi-stable monomial ideal which appears independent of in-
volutive bases at many places in commutative algebra and algebraic geometry. Quasi-
stable ideals are also known as ideals of nested type or of Borel type.

Example 2.7. The class of a term xµ ∈ T with µ = (µ1, . . . , µn) is defined as the index
cls (xµ) = min {i | µi , 0}. A variable xi is P-multiplicative for xµ, if i ≤ k. Note
that the thus defined Pommaret division is global, i. e. the assignment of multiplicative
variables is independent of any finite set U ⊂ T . In contrast to the Janet division, the
Pommaret division is not Nœtherian, as e. g. the ideal I = 〈x1x2〉 does not possess a
finite Pommaret basis (it does not contain an element of class 2).

For sufficiently large fields K , this non-Nœtherianity of the Pommaret division is
only a problem of the used coordinates. After a generic linear change of variables
any ideal I ⊆ P admits a finite Pommaret basis (Seiler, 2010, Thm. 4.3.15). An
in-depth study of this question can be found in (Hashemi et al., 2018) together with
a deterministic algorithm for the explicit construction of “good” coordinates for any
given ideal I ⊂ P. For Pommaret bases, we will always consider the degree reverse
lexicographical ordering ≺ with x1 ≺ · · · ≺ xn, as it is the only class-respecting term
ordering (Seiler, 2010, Lem. A.1.8).

Definition 2.8. A monomial ideal I ⊂ P is called quasi-stable, if for any term xµ ∈ I
and for any index k = cls (xµ) < i ≤ n an exponent s ≥ 0 exists such that xs

i xµ/xk ∈ I.
A polynomial ideal I ⊂ P is in quasi-stable position, if lt (I) is quasi-stable.

One easily verifies that it suffices to consider in the definition of a quasi-stable
ideal I only the terms xµ in an arbitrary finite monomial generating set of I. The
notion of quasi-stability is closely related to the existence of finite Pommaret bases.

Proposition 2.9 ((Seiler, 2010, Prop. 5.3.4)). A monomial ideal I possesses a finite
Pommaret basis, if and only if it is quasi-stable.

3. A recursive Janet basis test

Janet (1920, page 86) reported the following recursive criterion for a Janet basis as
a consequence of a lengthy discussion of the properties of the Janet division (see also
(Ceria, 2019, Cor. 4.11) from where we learned of this result). We will provide below
a new proof for an improved variant.

Theorem 3.1. Let U = {t1, . . . , tm} ⊂ T be a finite set of terms. We define t′i = ti|xn=1 for
all i and U′ = {t′1, . . . , t

′
m} ⊂ K[x1, . . . , xn−1]. If α = max {degn (t1), . . . , degn (tm)}, then

we introduce for each degree λ ≤ α the sets Iλ = {i | degn (ti) = λ} and U′λ = {t′i | i ∈ Iλ}.
Then, U is a Janet basis, if and only if the following two conditions are satisfied:
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(i) For each λ ≤ α the set U′λ is a Janet basis in K[x1, . . . , xn−1].
(ii) Each term t′i ∈ U′λ with λ < α lies in the Janet span of U′λ+1.

Example 3.2. In the polynomial ring P = K[x1, x2, x3], we consider the following set
of terms U = {x2x3

3, x2
1x3

3, x2x2
3, x2

2x3, x3
1x2x3}. One observes that:

1. U′3 = {x2, x2
1}, M(x2,U′3) = {x1, x2} and M(x2

1,U
′
3) = {x1},

2. U′2 = {x2} and M(x2,U′2) = {x1, x2},
3. U′1 = {x2

2, x
3
1x2}, M(x2

2,U
′
1) = {x1, x2} and M(x3

1x2,U′1) = {x1}.
One readily checks that all sets U′λ are Janet bases. In addition, we can see that
x2

2, x
3
1x2 ∈ U′1 belong to the Janet span of U′2 and x2 ∈ U′2 lies in the Janet span of

U′3. Thus, the set U is a Janet basis by Janet’s theorem.

We will improve Janet’s Theorem 3.1 by a slight modification: instead of the Janet
span, we use in (ii) the ordinary span which makes the condition easier to verify. For
its proof, we shall need the following lemma which follows immediately from the
definition of the Janet division.

Lemma 3.3. In the situation of Theorem 3.1, for each term ti = xα1
1 · · · x

αn
n ∈ U and for

each variable x j we have
(i) if j = n, then xn is Janet non-multiplicative for t, if and only if αn < α,

(ii) if j < n, then x j is Janet non-multiplicative for ti ∈ U, if and only if it is Janet
non-multiplicative for t′i ∈ U′λ with λ = αn.

Theorem 3.4. In the situation of Theorem 3.1, let β = min {degn (t1), . . . , degn (tm)}.
Then, U is a Janet basis, if and only if the following conditions are satisfied:

(i) For each λ ≤ α, U′λ is a Janet basis in K[x1, . . . , xn−1].
(ii) For each β ≤ λ < α, we have U′λ ⊂ 〈U

′
λ+1〉.

Proof. It is easy to see that any Janet basis U satisfies the given condition: the first one
holds, as multiplying a term with a non-multiplicative variable x j with j < n does not
lead outside the Janet span of U and the second one holds, as the same is true for j = n.

For the converse, consider a term ti = xα1
1 · · · x

αn
n ∈ U. Assume that x j is Janet

non-multiplicative for ti. We distinguish two cases. If j = n, then λ := αn < α. Since
by (i) U′λ+1 is a Janet basis of the ideal it generates and t′i ∈ U′λ lies in this ideal by
(ii), we may conclude that xnti lies in the Janet span of the set {txλ+1

n | t ∈ U′λ+1} ⊆ U.
By Lemma 3.3, xnti is thus in the Janet span of U as required for a Janet basis. If
j < n, then, by Lemma 3.3, we know that x j remains Janet non-multiplicative for
t′i ∈ U′λ. Since U′λ is a Janet basis, x jt′i has an involutive divisor in U′λ implying again
by Lemma 3.3 that x jti lies in the Janet span of {txλn | t ∈ U′λ} and thus of U.

Example 3.5. We consider again the set U of Example 3.2. There we showed already
that all sets U′λ are Janet bases. One can see by direct inspection without determining
any multiplicative variables that we have U′λ ⊂ 〈U

′
λ+1〉 for all 1 ≤ λ < 3 and this shows

that U is a Janet basis.

The criterion provided by Theorem 3.4 translate immediately into the simple recur-
sive Algorithm 2 testing whether a monomial set is a Janet basis.

Theorem 3.6. Algorithm 2 terminates in finitely many steps and is correct. Moreover,
its arithmetic complexity is O(dnm2) where d ≥ 2 denotes the average of the differences
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Algorithm 2: JanetTest
Data: A polynomial ring P = K[x1, . . . , xn] with n variables and a finite set

U = {t1, . . . , tm} ⊂ P of terms.
Result: True if U is a Janet basis for the ideal it generates in P and false

otherwise.
begin

α←− max {degn (t1), . . . , degn (tm)}
if n = 1 then

β←− min {deg (t1), . . . , deg (tm)}
if ∃β < i < α with xi

n < U then
return ( f alse)

else
return (true)

β←− min {degn (t1), . . . , degn (tm)}
for i = β, . . . , α do

U′i ←− {t ∈ K[x1, . . . , xn−1] | t · xi
n ∈ U}

if JanetTest
(
K[x1, . . . , xn−1],U′α

)
, true then

return ( f alse)

for i = α − 1, . . . , β do
if JanetTest

(
K[x1, . . . , xn−1],U′i

)
, true then

return ( f alse)
else if ∃t ∈ U′i \ 〈U

′
i+1〉 then

return ( f alse)

return (true)

between the maximal and minimal degrees of the elements of U with respect to each of
the variables.

Proof. The correctness follows directly from Theorem 3.4 and the termination is triv-
ial. To prove the complexity bound, we first note that using (Lundqvist, 2010, Thm. 4.2),
one can construct the tree representation corresponding to the exponent vectors of the
elements of U by using O(m2 + nm) comparisons. Suppose that ti = xµi with µi =

(µi1, . . . , µin). Now, assume that we are given the tree representation of {µ1, . . . , µm}.
Without loss of generality, we may assume that the cardinality of U′i for each i is m/d.
To check one inclusion U′λ ⊂ 〈U

′
λ+1〉, we need nm/d comparisons for the membership

test of an element of U′λ and thus in all we need nm2/d2 operations. It follows that to
test the chain of inclusions 〈U′β〉 ⊆ · · · ⊆ 〈U

′
α〉 we need O(nm2/d) operations. There-

fore, by taking into account the fact that d ≥ 2, the Janet test on U may be done within
O(nm2/d + nm2/d2 + · · · + nm2/dn) = O(dnm2), which proves the claim.

Remark 3.7. It is worth noting that the naive Janet test for the set U = {t1, . . . , tm}
needs O(n2m2) comparisons. Indeed, the tree representation corresponding to U is
constructed within O(m2 + nm) comparisons. Using this representation, one is able
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to read off the non-multiplicative variables for each term ti ∈ U. Having at most n
non-multiplicative variables for each terms, one needs to perform nm operations to
test whether a non-multiplicative product has a Janet divisor. Thus, all in all, we need
O(n2m2) comparisons for the Janet test of U. This shows that in the case that n � d
Algorithm 2 is more efficient than the classic approach. Note that the case d � n is
e. g. typical for toric ideals and it is well-known that in this case involutive bases are
generally highly redundant, i. e. much larger than reduced Gröbner bases, and therefore
should be avoided anyway.

Example 3.8. We illustrate the steps of Algorithm 3.4 for the set

U = {x3
1x3

3, x2
1x3

3, x2
1x2

2x2
3, x2

1x2
2x3, x1x2

2x3, x2
2x3} ⊂ K[x1, x2, x3] .

One obtains at the first recursion level the following sets in K[x1, x2] and Janet multi-
plicative variables of their elements:

1. U′3 = {x3
1, x

2
1} with M(x3

1,U
′
3) = {x1, x2} and M(x2

1,U
′
3) = {x1},

2. U′2 = {x2
1x2

2} with M(x2
1x2

2,U
′
2) = {x1, x2},

3. U′1 = {x2
1x2

2, x1x2
2, x

2
2} with M(x2

1x2
2,U

′
1) = {x1, x2},M(x1x2

2,U
′
1) = {x1} and

M(x2
2,U

′
1) = {x1} .

These multiplicative variables show that U′1,U
′
2 and U′3 are Janet bases. On the other

hand, since we have x2
2 ∈ U′1 \ 〈U

′
2〉, the algorithm returns correctly false, as indeed the

non-multiplicative product x3 · x2
2x3 does not lie in the Janet span of U.

Since for the Janet division any monomial set is involutively autoreduced, the no-
tion of a minimal Janet basis is crucial for efficiency reasons. We now adapt Theo-
rem 3.4 to a test whether or not a given Janet basis is minimal.

Definition 3.9. An L-involutive (or a Janet-like) basis U ⊂ P is called minimal, if no
proper subset of U is an L-involutive (or a Janet-like) basis of the ideal 〈U〉.

Theorem 3.10. With the notations of Theorem 3.1, let U be a Janet basis for the ideal
it generates. Then, U is minimal, if and only if the following conditions are satisfied:

(i) For each λ ≤ α, U′λ is a minimal Janet basis.
(ii) We have 〈U′α−1〉 , 〈U

′
α〉.

Proof. Suppose that U is a minimal Janet basis. Then U′λ is trivially a minimal Janet
basis for each λ ≤ α, cf. Theorem 3.4. Now, assume that 〈U′α−1〉 = 〈U′α〉. Since U′α−1
is a Janet basis by Theorem 3.4, U \ {ti | t′i ∈ U′α} remains a Janet basis for 〈U〉,
contradicting the minimality of U.

Conversely, assume that the properties (i) and (ii) hold for U, but that there exists
a proper subset V ⊂ U defining a minimal Janet basis for 〈U〉. Let xµ be any element
of U \ V . Then there exists a term xν ∈ V which involutively divides xµ; we write
xµ = xηxν. Assume that x` is the largest variable appearing in xη. This implies that the
two terms xµ and xν lie in the same Janet class U[ν`+1,...,νn] with ν = (ν1, . . . , νn). For
each index i, write ui = ti|x`+1=···=xn=1 and define the set W =

{
ui | ti ∈ U[ν`+1,...,νn]

}
⊂

K[x1, . . . , x`]. Applying property (i) recursively n − ` times to U, we see that W is a
minimal Janet basis. Let γ be the largest x`-degree of a term ui ∈ W. Then, similar to
the notations above, we introduce the sets W ′,W ′0, . . . ,W

′
γ and find xν1

1 · · · x
ν`−1
`−1 ∈ W ′ν`

and ν` < µ` ≤ γ. Furthermore, V cannot contain any element whose image under the
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map φ(u) = u|x`=···=xn=1 lies in one of the sets W ′ν`+1, . . . ,W
′
γ, as otherwise x` could not

be multiplicative for xν. This shows that W ′ν`+1, . . . ,W
′
γ ⊂ 〈W

′
ν`
〉. On the other hand,

Theorem 3.4 entails that 〈W ′ν`〉 ⊂ · · · ⊂ 〈W
′
γ〉 and in particular we get 〈W ′

γ−1〉 = 〈W ′γ〉,
showing that property (ii) does not hold for the minimal Janet basis W, a contradiction.
Hence, no proper subset of U can be a Janet basis of 〈U〉 and U is minimal.

Theorem 3.10 leads immediately to the recursive Algorithm 3 for turning an arbi-
trary Janet basis into the minimal one. To the best of our knowledge, it represents the
first such minimisation algorithm, as alternative approaches like the T Q-algorithm of
Gerdt and Blinkov (1998) determine a minimal Janet basis directly from an arbitrary
generating set and cannot exploit the knowledge of a non-minimal basis. It suffices that
we describe the algorithm for monomial ideals, as also for a polynomial Janet basis the
minimisation process depends only on the leading terms.

Algorithm 3: MinimalJanetBasis
Data: A polynomial ring P = K[x1, . . . , xn] with n variables and a Janet basis

U = {t1, . . . , tm} ⊂ T .
Result: The minimal Janet basis of the ideal 〈U〉.
begin

α←− max {degn (t1), . . . , degn (tm)}
if n = 1 then

β←− min {deg (t1), . . . , deg (tm)}
return ({xβ1})

V ←− ∅
β←− min {degn (t1), . . . , degn (tm)}
for i = β, . . . , α do

U′i ←− {t ∈ K[x1, . . . , xn−1] | t · xi
n ∈ U}

U′i ←− MinimalJanetBasis
(
K[x1, . . . , xn−1],U′i

)
V ←− V ∪ {txi

n | t ∈ U′i }

for i = α, . . . , β + 1 do
if 〈U′i 〉 = 〈U′i−1〉 then

V ←− V \ {txi
n | t ∈ U′i }

else
return (V)

return (V)

Theorem 3.11. Algorithm 3 terminates in finitely many steps and is correct. Its arith-
metic complexity is O(dnm2) with d ≥ 2 the average difference between the maximal
and minimal degrees of the elements of U with respect to each of the variables.

Proof. The correctness follows by Theorem 3.10 and the termination is obvious. The
complexity bound is obtained similarly to the proof of Theorem 3.6.
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Remark 3.12. The complexity bound presented in Remark 3.7 remains true for a naive
algorithm to compute minimal Janet bases.

Example 3.13. We demonstrate the working of Algorithm 3 for the Janet basis

U = {x1x2
2x3

3, x2
2x3

3, x3
1x2x3

3, x2
1x2x3

3, x3
1x3

3, x2
1x3

3, x2
1x2

2x2
3, x1x2

2x2
3,

x2
2x2

3, x2
1x2

2x3, x1x2
2x3, x2

2x3} .
(3.1)

Its tree representation can be seen in Figure 3.13.

Root

1

2

0 1 2

2

2

0 1 2

3

0

2 3

1

2 3

2

0 1

Figure 2: Tree representation of the Janet basis (3.1)

We consider the subset V := U3 = {x1x2
2, x

2
2, x

3
1x2, x2

1x2, x3
1, x

2
1}. Then, we get W :=

V2 = {1, x1}. Finally, applying Theorem 3.10, we have W0 = W1 = {1} which shows
that W is not a minimal Janet basis. Following the structure of the algorithm, in order
to minimise W, we must remove the branch W1. This shows that we shall delete x1x2

2
from V and in turn x1x2

2x3
3 from U. In the same way and by eliminating the extra terms

from U, we see that {x2
2x3

3, x
2
1x2x3

3, x
2
1x3

3, x
2
2x2

3, x
2
2x3} is the minimal Janet basis of 〈U〉.

Its tree representation shown in Figure 3 is obviously a subtree.

Root

1

2

0

2

2

0

3

0

2

1

2

2

0

Figure 3: Tree representation of the minimal Janet basis
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Janet’s criterion can be generalised to Janet-like bases. First, we introduce some
notations. If U = {t1, . . . , tm} is a set of terms, then there exist natural numbers β ≤ α
and a sequence of natural numbers λ0, . . . , λ` with ` depending on U such that each λi

is the xn-degree of some term t j ∈ U and such that conversely for each t j ∈ U there is
a λi which is the xn-degree of t j.

Theorem 3.14. Let U = {t1, . . . , tm} ⊂ P be a set of terms and let β = λ0 < λ1 <
· · · < λ` = α be natural numbers encoding the xn-degrees appearing in U. For each
index 0 ≤ i ≤ `, let Uλi ⊆ U be the subset of terms of U having xn-degree λi and set
U′λi

= {t/xλi
n | t ∈ Uλi }. Then U is a Janet-like basis of the ideal it generates, if and only

if the following two conditions are satisfied:
(i) Every set U′λi

is a Janet-like basis of the monomial ideal 〈U′λi
〉 ⊆ K[x1, . . . , xn−1].

(ii) For each 0 ≤ i < `, the inclusion U′λi
⊂ 〈U′λi+1

〉 holds.

Proof. The necessity of the first condition follows from the observation that xpk
k with

1 ≤ k < n and pk ≥ 0 is a Janet-like non-multiplicative power of t ∈ U, if and only
if it is a Janet-like non-multiplicative power of t′ ∈ U′degn (t) ⊂ K[x1, . . . , xn−1]. The
second condition is entailed by the fact that for each 0 ≤ i < ` the Janet-like non-
multiplicative power of xn of the term t ∈ Uλi is exactly xλi+1−λi

n and that the product
xλi+1−λi

n t can only be contained in the Janet-like span of U, if it lies in the Janet-like
cone of a term s ∈ Uλi+1 .

For the proof of the sufficiency of the two conditions, a main ingredient is again the
observation that xpk

k with 1 ≤ k < n and pk ≥ 0 is a Janet-like non-multiplicative power
of t ∈ U, if and only if it is a Janet-like non-multiplicative power of t′ ∈ U′degn (t) ⊂

K[x1, . . . , xn−1]. We must check that all products by non-multiplicative powers are
contained in the Janet-like span of U. We first consider Janet-like non-multiplicative
powers of the form above: xpk

k with 1 ≤ k < n. Let xpk
k t be a product resulting from such

a power. Then the xn-degrees of t and its product are equal, say, to λi. Since we have
in the polynomial subring with n − 1 variables the relation xpk

k t/xλi
n ∈ 〈U′λi

〉, we see by
the first condition that xpk

k t/xλi
n is in the Janet-like span of U′λi

. But this implies easily
that xpk

k t is also in the Janet-like span of U in the polynomial ring with n variables.
We finally consider the Janet-like non-multiplicative powers of the form xpn

n . For
them, there exists some index i with 0 ≤ i < ` such that pn = λi+1 − λi and such that
this non-multiplicative power belongs to a term t ∈ Uλi . By the second condition, we
have in the polynomial subring with n− 1 variables the relation xpn

n t/xλi+1
n ∈ 〈U′λi+1

〉. By
the first condition, xpn

n t/xλi+1
n is in the Janet-like span of U′λi+1

. It is easy to see that then
xpn

n t is in the Janet-like span of U.

Example 3.15. We consider the set U = {x2
1x3

3, x2
1x2

2x3
3, x4

2x3
3, x2

1x5
3, x2

2x5
3} in the poly-

nomial ring P = K[x1, x2, x3]. Evaluating the xn-degrees appearing in U, we see that,
in the terminology of Theorem 3.14, β = 3 = λ0 < λ1 = 5 = α. We first check that the
sets U′λi

are Janet-like complete:
1. U′5 = {x2

1, x
2
2}. Only one non-multiplicative power exists: NMP(x2

1,U
′
5) = {x2

2}.
The product x2

1x2
2 is in the Janet-like cone of x2

2 so that U′5 is Janet-like complete.
2. U′3 = {x2

1, x
2
1x2

2, x
4
2}. The term x4

2 does not have non-multiplicative powers. Fur-
thermore, NMP(x2

1,U
′
3) = {x2

2}. The corresponding product is already contained
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in U′3. Finally, NMP(x2
1x2

2,U
′
3) = x2

2 and the corresponding product is in the
Janet-like cone of x4

2. Hence, U′3 is a Janet-like basis.
In addition, we have U′3 = {x2

1, x
2
1x2

2, x
4
2} ⊂ 〈U

′
5〉 = 〈x2

1, x
2
2〉 and thus the given set U is a

Janet-like basis by Theorem 3.14.

Example 3.16. Consider the set V = {x2
2x5

3, x4
2x3

3, x2
1x3

3, x2
1x2

2x3
3} obtained by removing

the term x2
1x5

3 from the set U of Example 3.15. We still find β = λ0 = 3 < 5 = λ1 = α.
The singleton set V ′5 = {x2

2} is obviously Janet-like complete; the set V ′3 equals the
set U′3 of Example 3.15 and thus is complete. However, we have V ′3 * 〈V ′5〉, since
x2

1 < 〈x
2
2〉. Thus V is not Janet-like complete by Theorem 3.14. Moreover, observe

that NMP(x2
1x3

3,V) = {x2
3} and that the corresponding product is the eliminated term

x2
1x5

3, which is not contained in the Janet-like span of V . Thus, one can compute the
Janet-like completion U of V by adding this product to V .

Theorem 3.17. Keeping the notations of Theorem 3.14, let U be a Janet-like basis for
the ideal it generates. Then, U is minimal, if and only if the following conditions are
satisfied:

(i) For each i ≤ `, U′λi
is a minimal Janet-like basis.

(ii) For each i < `, we have 〈U′λi
〉 , 〈U′λi+1

〉.

Proof. The proof is similar to the one of Theorem 3.10. If U is a minimal Janet-
like basis, then it is clear that for each i ≤ `, U′λi

is a minimal Janet-like basis, see
Theorem 3.14. To prove the second condition, assume that 〈U′λi

〉 = 〈U′λi+1
〉 for some

i < `. Then, U \ {t′i xλi+1
n | t′i ∈ U′λi+1

} is a Janet-like basis as well, contradicting the
minimality of U.

Conversely, assume that the properties (i) and (ii) hold for U, but that there exists a
proper subset V ⊂ U forming a minimal Janet-like basis for 〈U〉. Let xµ be any element
of U \V . There must exist xν ∈ V which divides xµ for the Janet-like division; we write
xµ = xηxν. Assume that x` is the largest variable appearing in xη. This implies that
xµ and xν lie in the same Janet class U[ν`+1,...,νn] with ν = (ν1, . . . , νn). For each index
i let ui = ti|x`+1=···=xn=1 and set W = {ui | ti ∈ U[ν`+1,...,νn]} ⊂ K[x1, . . . , x`]. Applying
recursively property (i) n − ` times to U, we see that W is a minimal Janet-like basis.
Let δ be the largest x`-degree of a term ui ∈ W. Then, similar to the notations above,
we can introduce the sets W ′,W ′γ0

, . . . ,W ′
γt

with γt = δ. Thus xν1
1 · · · x

ν`−1
`−1 ∈ W ′ν` and

νl < δ. We set u = xν1
1 · · · x

ν`−1
`−1 and v = xµ1

1 · · · x
µ`−1
`−1 with µ = (µ1, . . . , µn) and assume

that γi = ν`. Then, two cases may occur. If v ∈ W ′
γi+1

, then we can remove the terms in
U whose images lie in W ′γi+1

and this shows that W ′γi
= W ′γi+1

which contradicts property
(ii). Otherwise, v belongs to W ′γ j

with j > i + 1. By Theorem 3.14, we have u ∈ 〈W ′γ j
〉

and thus W ′γ j
is not minimal contradicting property (i). Therefore, no proper subset of

U can be a Janet-like basis of 〈U〉 and U is minimal.

Example 3.18. We consider the Janet-like basis U given in Example 3.15 and verify
if it is a minimal Janet-like basis. The tree representation of U is shown in Figure 4.
We observe that V := U′3 = {x2

1, x
2
1x2

2, x
4
2} and check whether it is minimal or not. We

know that V ′0 = {x2
1}, V ′2 = {x2

1} and V ′4 = {1}. Since 〈V ′0〉 = 〈V ′2〉, U is not a minimal
Janet-like basis. It follows that we get the minimal Janet-like basis, if we remove the
useless branch x2

1x2
2x3

3.
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Root

3

0

2

2

2

4

0

5

0

2

2

0

Figure 4: Tree representation of U

4. Janet Completion Procedure

We now show how our results from the previous section allow us to design a variant
of the Berkesch–Schreyer algorithm for Gröbner bases (Berkesch and Schreyer, 2015)
which can compute Janet(-like) bases. We take the lexicographic term ordering induced
by x1 ≺lex · · · ≺lex xn. Let U := (t1, . . . , tm) ∈ T m be a sequence of terms such that we
have tm ≺lex · · · ≺lex t1. We associate to U the following (m − 1)-tuple Q(U) of terms:

Q(U) :=
(
tm−1 : tm, . . . , t1 : tm

)
.

Here u : v = lcm(u, v)/v for any two terms u and v. In addition, using the tree
representation of U, one can compute Q(U) efficiently. However, since such ques-
tions are not the main subject of this work, we do not give further details. The tu-
ple Q(U) is related to the Janet non-multiplicative variables of the term tm. Assume
that Q(U) = (u1, . . . , um−1). We know that there exist a positive integer r, indices
1 ≤ a1 < a2 < · · · < ar ≤ n and indices 1 = b1 < b2 < · · · < br < br+1 = m−1 such that
the highest variable dividing u j is xa` where ` ∈ {1, . . . , r} and b` ≤ j < b`+1. Moreover,
for indices b` ≤ j1 < j2 < b`+1, we have dega` (u j1 ) ≤ dega` (u j2 ). With these notations,
we obtain the following assertion.

Lemma 4.1. NMJ
(
tm, {t1, . . . , tm}

)
=

{
xa1 , . . . , xar

}
.

Proof. We first show that each xai is Janet non-multiplicative for tm. Since xai is the
highest variable appearing in the quotients ubi , . . . , ubi+1 , we have tm ∈ [dai+1, . . . , dn]
where d j = deg j (tm) and degai

(tm) is not maximal among the xai -degree of the el-
ements of this set. Thus, using the fact that the sequence of t1, . . . , tm is sorted in
lexicographical order, xai is Janet non-multiplicative for tm. Conversely, assume that x`
is Janet non-multiplicative for tm. Then we have tm ∈ [d`+1, . . . , dn]. We know that this
set is non-empty and we can choose an element t , tm from this set. Hence, x` is the
highest variable appearing in the quotient t : tm and this end the proof.
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This result induces a partition of the remaining terms {t1, . . . , tm−1} into subsets Qxa`

consisting for each Janet non-multiplicative variable xa` of tm of exactly those quotient
terms u j with xa` as highest dividing variable.

Example 4.2. In the polynomial ring P = K[x1, x2, x3], consider the set of terms U =(
x2x3

3, x2
1x3

3, x2x2
3, x2

2x3, x3
1x2x3

)
which form a Janet basis of the ideal generated by

them. We obtain for the quotients Q(u) =
(
x2, x3, x2

3, x2
3
)
. Now one sees that r = 2 and

NMJ
(
x3

1x2x3, U
)

= {x2, x3}. In addition, Qx2 = {x2} and Qx3 =
{
x3, x2

3, x2
3
}
.

Lemma 4.3. Keeping the above notations, U is a Janet basis, if and only if the set
{t1, . . . , ti} is a Janet basis for each index 1 ≤ i ≤ m.

Proof. If {t1, . . . , ti} is a Janet basis for each index i, then this is in particular true for
U = {t1, . . . , tm}. Conversely, if U = {t1, . . . , tm} is a Janet basis, then consider for
some index 1 < j < m the set U j := {t1, . . . , t j}. Let k be any index with 1 ≤ k ≤ j
and let xi be any Janet non-multiplicative variable for tk ∈ U j with respect to the Janet
division. The definition of Janet multiplicative variables implies that xi is also not Janet
multiplicative for tk ∈ U. Since U is a Janet basis, there is some index 1 ≤ ` ≤ m such
that xitk is in the Janet cone of t` with respect to the set U. The index ` cannot be greater
than j. Indeed, arguing by reductio ad absurdum, assume ` > j. Since by assumption
tk �lex t`, there is a variable xa such that the xa-power of t` is less than that of tk and in
turn xa is Janet non-multiplicative for t` ∈ U. This contradicts the fact that xitk lies in
the Janet cone of t`. Thus we have shown that xitk lies in the Janet cone with respect to
U of an element of U j. By the filter axiom of involutive divisions, xitk must then also
lie in the Janet cone of the same element with respect to U j. This proves that U j is a
Janet basis and this finishes the proof.

Theorem 4.4. With the above notations, U is a Janet basis, if and only if for each i > 1
the following condition holds. If we write Q(t1, . . . , ti) = (u1, . . . , ui−1) and partition{

u1, . . . , um−1
}

=
⊔

x∈NMJ (ti,{t1,...,ti})

Qx ,

then there exists for each non-multiplicative variable x` ∈ NMJ
(
ti, {t1, . . . , ti}

)
a term

u ∈ Qx` such that deg` (u) = 1. Moreover, if in this situation x` , x1, then in the ring
K[x1, . . . , xn−1] we have the relation

ti|x`=···=xn=1 ∈ 〈t j|x`=···=xn=1 | t j : ti ∈ Qx` , j < i, deg` (t j : ti) = 1〉 .

Proof. Let U = {t1, . . . , tm} be a Janet basis. By Lemma 4.3, Uk = {t1, . . . , tk} is also a
Janet basis for all 1 ≤ k ≤ m− 1. Now, let i ∈ {2, . . . ,m} be an arbitrary index; we need
to show that Q(t1, . . . , ti) satisfies the conditions stated. Let x` be the highest variable
which is Janet non-multiplicative for ti ∈ Ui. Write ti = xν with ν = (ν1, . . . , νn). It is
easy to see that the Janet class C = [ν`+1, . . . , νn] is itself a Janet basis of the ideal it
generates. Applying Theorem 3.4 to C, we see that the subset V =

{
t′j = t j|x`+1=···=xn=1 |

t j ∈ C
}

of the polynomial ring K[x1, . . . , x`] is also a Janet basis. In addition, we can
partition the set V into non-empty subsets Vλ where β ≤ λ ≤ α, β = deg` (t′i ) and
α = deg` (t′1). By Theorem 3.4, we know that 〈Vβ〉 ⊂ 〈Vβ+1〉. This implies, for the
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variable x`, simultaneously the degree condition on the elements of Q(t1, . . . , ti) having
highest variable x` and the containment of t′i |x`=1 in the ideal 〈t′j|x`=1 | t′j ∈ Vβ+1〉.

We have thus verified the conditions for the highest Janet non-multiplicative vari-
able. Now we apply again Theorem 3.4 to obtain the Janet basis U =

{
t′j|x`=1 | t′j ∈ Vβ

}
.

By construction, the highest Janet non-multiplicative variable of t′i ∈ U is equal to
the second highest Janet non-multiplicative variable of ti ∈ Ui and exactly those terms
t j ∈ Ui which yield quotients u j in Q(t1, . . . , ti) with highest variable lower than x`
contribute terms to U via the projection t j 7→ t j|x`=···=xn=1. Proceeding as in the case of
x` and then iteratively going through all Janet non-multiplicative variables of ti ∈ Ui,
we arrive at our claim.

Let us now assume that for each 1 ≤ i ≤ m the conditions on the quotient list
Q(t1, . . . , ti) = (u1, . . . , ui−1) are satisfied. We want to show that U is a Janet basis. By
Lemma 4.3, it suffices to show that each set Ui = {t1, . . . , ti} is a Janet basis. Since it
is clear that {t1} is a Janet basis, we may proceed by induction on i and assume that
Ui−1 is a Janet basis. We then need to show that Ui = Ui−1 ∪ {ti} is a Janet basis.
For this, we verify the two conditions of Theorem 3.4 for Ui. We partition Ui into
the sets Uβ, . . . ,Uα according to the xn-degrees of the elements of Ui with β ≤ α for
β = degn (ti), and α = degn (t1). Firstly, we verify the inclusions U′λ ⊂ 〈U

′
λ+1〉 for any

β ≤ λ < α. If β = α, there is nothing to do. Otherwise, xn is a Janet non-multiplicative
variable for ti ∈ Ui and hence xn appears as the highest variable of some quotient term
uk in the list Q(t1, . . . , ti). Furthermore, in at least one uk it must appear with degree
one. Moreover, the containment of the projection ti|xn=1 in the K[x1, . . . , xn−1]-ideal
defined by the projections of all t j such that the xn-degree of the quotient term t j : ti
is one must hold. All these terms t j come from U′β+1. This implies ti|xn=1 ∈ 〈U′β+1〉.
On the other hand, Ui−1 is a Janet basis and by applying Theorem 3.4 on this set, it is
clear that U′β \ {ti|xn=1} ⊂ 〈U′β+1〉 · · · ⊂ 〈U

′
α〉. All these observations together imply that

U′λ is not empty for any λ, that U′β ⊂ 〈U
′
β+1〉 and that the inclusion conditions on the

monomial ideals 〈U′λ〉 are fulfilled by Ui.
We still have to show that each set U′λ is a Janet basis. The sets U′λ with λ > β are

Janet bases, as Ui−1 is a Janet basis and thus fulfills the conditions of Theorem 3.4. If
we have U′β = {ti|xn=1}, we are done. Otherwise, there exists some index 1 < a < i
such that U′β = {ta|xn=1, . . . , ti|xn=1}. Removing the last element of this set, we obtain
the set U′β of the Janet basis Ui−1, which is again a Janet basis. And the quotient terms
of the elements of this set by ti|xn=1 inherit for the variables x1, . . . , xn−1 all properties
which hold for the original quotient terms uk with respect to these variables. By an
induction on the number of variables in the ambient polynomial ring, we are done (the
case of a polynomial ring with one variable being trivial). Thus we have shown that the
individual sets U′λ are Janet bases and verified the conditions of Theorem 3.4 for the
set Ui. This finishes the proof.

Example 4.5. Let U =
(
x3

1x3
3, x2

1x3
3, x2

1x2
2x2

3, x2
1x2

2x3, x1x2
2x3, x2

2x3
)

be a sequence of
terms in P := K[x1, x2, x3]. In the following, we show how we can apply the above
result to compute a Janet basis for U.

1. Since Q
(
x3

1x3
3, x2

1x3
3
)

= (x1), the two first elements form a Janet basis.
2. We have Q

(
x3

1x3
3, x2

1x3
3, x2

1x2
2x2

3
)

= (x3, x1x3). The x3-degrees of x3, x1x3 are
both one and so we check only whether x2

1x2
2 ∈ 〈x

3
1, x

2
1〉. Since this is the case,
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the sequence of the first three elements forms a Janet basis.
3. Let us now consider Q

(
x3

1x3
3, x2

1x3
3, x2

1x2
2x2

3, x2
1x2

2x3
)

=
(
x3, x2

3, x1x2
3
)
. Since all

elements in this quotient tuple contain x3 as the highest variable, we shall con-
sider only the first quotient which is linear. So, we check x2

1x2
2 ∈ 〈x

2
1x2

2〉 which is
true. Thus, the sequence the first four elements forms a Janet basis.

4. As next step we consider

Q
(
x3

1x3
3, x2

1x3
3, x2

1x2
2x2

3, x2
1x2

2x3, x1x2
2x3

)
=

(
x1, x1x3, x1x2

3, x2
1x2

3
)
.

We ignore the first quotient and check whether x1x2
2 ∈ 〈x

2
1x2

2〉. As this does not
hold, we add x1x2

2x2
3 to U and obtain

U1 =
(
x3

1x3
3, x2

1x3
3, x2

1x2
2x2

3, x1x2
2x2

3, x2
1x2

2x3, x1x2
2x3, x2

2x3
)
.

5. We now consider Q
(
x3

1x3
3, x2

1x3
3, x2

1x2
2x2

3, x1x2
2x2

3
)

=
(
x1, x1x3, x2

1x3
)
. Since the

x1-degree of the first element is one, we ignore it. Hence, we must check whether
x1x2

2 ∈ 〈x
2
1〉. As it does not hold, we add x1x2

2x3
3 to U1 and arrive at

U2 =
(
x1x2

2x3
3, x3

1x3
3, x2

1x3
3, x2

1x2
2x2

3, x1x2
2x2

3, x2
1x2

2x3, x1x2
2x3, x2

2x3) .

6. We next consider Q
(
x1x2

2x3
3, x3

1x3
3
)

=
(
x2

2
)
. Since the quotient is not linear, we

must add x3
1x2x3

3 to U2 obtaining

U3 =
(
x1x2

2x3
3, x3

1x2x3
3, x3

1x3
3, x2

1x3
3, x2

1x2
2x2

3, x1x2
2x2

3, x2
1x2

2x3, x1x2
2x3, x2

2x3
)
.

7. We now find Q
(
x1x2

2x3
3, x3

1x2x3
3
)

= (x2) and Q
(
x1x2

2x3
3, x3

1x2x3
3, x3

1x3
3
)

=
(
x2, x2

2
)
.

Since x3
1 ∈ 〈x

3
1〉, the first three terms of U3 form a Janet basis.

8. Next, Q
(
x1x2

2x3
3, x3

1x2x3
3, x3

1x3
3, x2

1x3
3
)

=
(
x1, x1x2, x2

2
)
. Since x2

1 ∈ 〈x
3
1x2〉, we add

x2
1x2x3

3 to U3 obtaining

U4 =
(
x1x2

2x3
3, x3

1x2x3
3, x2

1x2x3
3, x3

1x3
3, x2

1x3
3, x2

1x2
2x2

3, x1x2
2x2

3, x2
1x2

2x3, x1x2
2x3, x2

2x3
)
.

9. We find that Q(U4) =
(
x1, x2

1, x1x3, x2
1x3, x2

1x2
3, x3

1x2
3, x2

1x2
3, x3

1x2
3, x1x2

3
)
. We ig-

nore the first two quotients and check whether x2
2 ∈

〈
x2

1x2
2, x1x2

2
〉
. As this does

not hold, we add x2
2x2

3 to U4 obtaining

U5 =
(
x1x2

2x3
3, x3

1x2x3
3, x2

1x2x3
3, x3

1x3
3, x2

1x3
3,

x2
1x2

2x2
3, x1x2

2x2
3, x2

2x2
3, x2

1x2
2x3, x1x2

2x3, x2
2x3

)
.

10. We consider next

Q
(
x1x2

2x3
3, x3

1x2x3
3, x2

1x2x3
3, x3

1x3
3, x2

1x3
3, x2

1x2
2x2

3, x1x2
2x2

3, x2
2x2

3) =(
x1, x2

1, x2
1x3, x3

1x3, x2
1x3, x3

1x3, x1x3) .

Since x2
2 <

〈
x1x2

2, x3
1x2, x2x2

1, x3
1, x

2
1
〉
, we add x2

2x3
3 to U5 finally reaching the set

U6 =
(
x1x2

2x3
3, x2

2x3
3, x3

1x2x3
3, x2

1x2x3
3, x3

1x3
3, x2

1x3
3,

x2
1x2

2x2
3, x1x2

2x2
3, x2

2x2
3, x2

1x2
2x3, x1x2

2x3, x2
2x3

)
which satisfies all the condition of the above theorem and thus is a Janet basis of
the ideal generated by U.
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Theorem 4.4 translates straightforwardly into Algorithm 4 which checks whether
a given monomial set is a Janet basis of the ideal generated by it. If the output is
false, then the algorithm returns in addition an element which should be added. The
correctness and the termination of the algorithm is obvious.

Algorithm 4: JanetTest
Data: A finite set U ⊂ P of terms.
Result: True if U is a Janet basis for the ideal it generates and false otherwise.
begin

f lag←− f alse
while f lag = f alse do

f lag←− true; (t1, . . . , tm)←− sort(U,≺)
for i from 2 to m do

(u1, . . . , ui−1)←− Q(t1, . . . , ti)
if ∃ j s.t. the highest variable x` in u j is not linear then

return ( f alse, x`ti)
else if the highest variable in the quotients t1 : ti, . . . , tis : ti is
x` , x1 then

if ti|x`=···=xn=1 <
〈
ti1 |x`=···=xn=1, . . . , tis |x`=···=xn=1

〉
then

return ( f alse, x`ti)

return (true)

The strategy applied in Example 4.5 for completing a monomial set to a Janet basis
can then be easily extended to the general monomial completion Algorithm 5.

Algorithm 5: JanetMonomialCompletion
Data: A finite set U ⊂ P of terms.
Result: A Janet basis of 〈U〉.
begin

T ←− U; A←− JanetTest(T )
while A = ( f alse, t) do

T ←− T ∪ {t}
A←− JanetTest(T )

return (T )

Theorem 4.6. Algorithm 5 algorithm terminates in finitely many steps and is correct.

Proof. The termination of this algorithm is a consequence of the fact that Janet divi-
sion is Nœtherian, see (Gerdt and Blinkov, 1998, Proposition 4.5). Its correctness is
a corollary to Theorem 4.4 and the constructivity and continuity of the Janet division,
see (Gerdt and Blinkov, 1998).
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We now proceed to the determination of a Janet basis for a given set of polynomials.
Let U = (t1, . . . , tm) be a sequence of terms and Q(U) = (u1, . . . , um−1). By Lemma 4.1,
we know that the highest variables in the ui’s are the Janet non-multiplicative variables
for um as an element of U. Based on this observation and using the Janet polynomial
completion algorithm (see e. g. (Gerdt, 2005, Section 4) or (Seiler, 2009, Alg. 3)), we
can describe a variant of the Berkesch–Schreyer algorithm which computes a Janet
basis for a polynomial ideal.

Again we begin with the auxiliary Algorithm 6 determining in the described manner
the Janet non-multiplicative variables of the last polynomial in an ordered finite set. Its
correctness is an immediate consequence of Lemma 4.1.

Algorithm 6: JanetNonMultVar
Data: An ordered finite set F ⊂ P of polynomials and a term ordering ≺.
Result: Set of Janet non-multiplicative variables of last polynomial in F.
begin

(t1, . . . , tm)←− lt(F); (u1, . . . , um−1)←− Q(t1, . . . , tm)
return (set of highest variables for ≺ appearing in the ui’s)

Based on this algorithm, we obtain the polynomial completion Algorithm 7. In it,
we denote for any ordered set X by X[i.. j] the ordered subset containing all elements
from the i-th one to the j-th one.

Algorithm 7: JanetPolynomialCompletion
Data: A finite set F ⊂ P of polynomials and a term ordering ≺.
Result: A Janet basis of 〈F〉.
begin

H ←− sort(F,≺) from the highest leading term to the lowest one
while true do

f lag←− f alse
for i from 2 to |H| while f lag = f alse do

A←− JanetNonMultVar
(
H[1..i],≺

)
foreach a ∈ A do

g←− an involutive normal form of a · H[i] with respect to H
if g , 0 then

H ←− sort(H ∪ {g},≺); f lag←− true

if f lag = f alse then
return (H)

Theorem 4.7. Algorithm 7 terminates in finitely many steps and is correct.

Proof. Since the structure of the algorithm is essentially that of (Seiler, 2009, Alg. 3),
its termination and correctness follow by (Seiler, 2009, Thm 7.4).
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Remark 4.8. If H is already a sorted list of polynomials, then one can use an efficient
insertion sort algorithm for sorting H ∪ {g}. For the special case of lists of terms, we
refer to Lundqvist (2008).

We conclude this section by providing a similar approach for the construction of
Janet-like bases. Let again U := (t1, . . . , tm) ∈ T m be a sequence of terms such that
t1 �lex · · · �lex tm and Q(U) = (u1, . . . , um−1). Then, there exist a positive integer r,
indices 1 ≤ a1 < a2 < · · · < ar ≤ n and indices 1 = b1 < b2 < · · · < br < br+1 = m − 1
such that the highest variable dividing u j is xa` for all ` ∈ {1, . . . , r} and for all indices
j with b` ≤ j < b`+1. Furthermore, we denote by da` the xa`d-egree of ub` . Keeping
these notations, we obtain the next result analogous to Lemma 4.1.

Lemma 4.9. NMP
(
tm, {t1, . . . , tm}

)
=

{
x

da1
a1 , . . . , xdar

ar

}
.

Proof. From the proof of Lemma 4.1, we know that {xa1 , . . . , xar } is the set of all Janet
non-multiplicative variables. On the other hand, from the underlying term ordering,
we have that dega` (u j1 ) ≤ dega` (u j2 ) for all indices b` ≤ j1 < j2 < b`+1. It follows
that dega` (ub` ) has the minimal xa` -degree among all elements ub` , . . . , ub`+1−1. These
observations imply the desired assertion.

This lemma induces a partition of the set {u1, . . . , um−1} into subsets Qxa`
consisting

for each Janet non-multiplicative variable xa` of tm exactly of those quotient terms u j

with xa` as highest dividing variable.

Example 4.10. By Example 3.15, the sequence U =
(
x2

2x5
3, x2

1x5
3, x4

2x3
3, x2

1x2
2x3

3, x2
1x3

3
)

forms a Janet-like basis in the ring P = K[x1, x2, x3]. Here Q(U) =
(
x2

2, x4
2, x2

3, x2
2x2

3
)

and thus NMP
(
x2

1x3
3, U

)
=

{
x2

2, x2
3
}
. Furthermore, we find the subsets Qx2 =

{
x2

2, x4
2
}

and Qx3 =
{
x2

3, x2
2x2

3
}
.

Lemma 4.11. With the above notations, U is a Janet-like basis, if and only if the
subsets {t1, . . . , ti} are Janet-like bases for each index 1 ≤ i ≤ m.

The proof of this lemma is analogous to the one of Lemma 4.3 and thus omitted.
Finally, we adapt Theorem 4.4 to the Janet-like division. Taking Theorem 3.14 into
account, its proof is similar to to the one of Theorem 4.4 and hence also not detailed.

Theorem 4.12. With the above notations, U is a Janet-like basis, if and only if for
each i > 1 the following condition holds. If we write Q(t1, . . . , ti) = (u1, . . . , ui−1) and
partition {

u1, . . . , um−1
}

=
⊔

x∈NMJ (ti,{t1,...,ti})

Qx ,

then there exists for each non-multiplicative power xd`
`
∈ NMP

(
ti, {t1, . . . , ti}

)
a term

u ∈ Qx` with minimal x`-degree d`. Moreover, if in this situation x` , x1, then in the
ring K[x1, . . . , xn−1] we have the relation

ti|x`=···=xn=1 ∈ 〈t j|x`=···=xn=1 | t j : ti ∈ Qx` , j < i, deg` (t j : ti) = d`〉 .

Remark 4.13. Based on these results, it is straightforward to provide also algorithms
for computing Janet-like bases for both monomial and polynomial ideals by adapting
Algorithms 5 and 7. We omit the obvious details.
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5. A recursive Pommaret basis construction

So far, we have concentrated on Janet bases. We now provide a criterion similar
to Theorem 3.4 for a finite set to be a Pommaret basis. As the existence of a finite
Pommaret basis is equivalent to the ideal being quasi-stable, it is not surprising that the
criterion can be extended to a recursive test of quasi-stability.

Theorem 5.1. Let U = {t1, . . . , tm} be a finite set of terms. We write t′i = ti|xn=1 for
each index 1 ≤ i ≤ m and set U′ = {t′1, . . . , t

′
m} and α = max

{
degn (t1), . . . , degn (tm)

}
.

For each degree λ ≤ α, we introduce the index set Iλ =
{
i | degn (ti) = λ

}
and the

set U′λ = {t′i | i ∈ Iλ}. Then U is a Pommaret basis, if and only if the following three
conditions are satisfied:

(i) For each degree λ ≤ α, the set U′λ is a Pommaret basis.
(ii) For each degree λ < α, we have the inclusion U′λ ⊂ 〈U

′
λ+1〉,

(iii) We have U ∩ K[xn] = xαn .

Proof. Assume first that U is a Pommaret basis. By Definition 2.4, U is autoreduced
with respect to the Pommaret division. Let λ ≤ α be a non-negative integer such that
there exists a term t ∈ U with degn (t) = λ. We now show that U′λ is a Pommaret
basis of 〈U′λ〉 E K[x1, . . . , xn−1]. Note that U′λ must be Pommaret autoreduced, too,
as otherwise U could not be Pommaret autoreduced. Since the Pommaret division
is continuous, we can check the involutivity of U′λ by testing it for local involution.
Choose a term t′i ∈ U′λ and let xk (with k < n) be a Pommaret non-multiplicative
variable for it. Then, by definition of the Pommaret division, xk is also not Pommaret
multiplicative for ti ∈ U. Since U is a Pommaret basis, there exists a Pommaret divisor
s ∈ U of xk · ti. We claim that s ∈ Uλ. Indeed, degn (s) > degn (ti) is not possible
because of s | xk ·ti. Also, degn (s) < degn (ti) is not possible because then the Pommaret
divisibility of xk ·ti by s implies that s is a pure power of xn and hence a strict Pommaret
divisor of ti, in contradiction to the Pommaret autoreducedness of U. So, s ∈ Uλ as
claimed and s′ is a Pommaret divisor of xk · t′i in the ring K[x1, . . . , xn−1].

That U satisfies Condition (ii) is easily seen: U is the unique Pommaret basis of
the quasi-stable ideal 〈U〉 and hence also a Janet basis of 〈U〉. Condition (ii) now
immediately follows by Theorem 3.4. Finally, Condition (iii) follows from the fact that
the Pommaret autoreducedness of U implies that U contains exactly one pure xn-power
and this power must be xαn .

Now, we assume conversely that the set U satisfies Conditions (i) to (iii). We first
show that U is Pommaret autoreduced. Arguing by reductio ad absurdum, suppose that
there are terms ti, t j ∈ U with ti , t j and ti is a Pommaret divisor of t j. If degn (ti) =

degn (t j), then there is an integer λ such that {t′i , t
′
j} ⊆ U′λ and t′i is a Pommaret divisor

of t′j in the ringK[x1, . . . , xn−1]. This contradicts the Pommaret autoreducedness of U′λ
which is guaranteed by Condition (i). Otherwise, we have degn (ti) < degn (t j) implying
that ti is a pure xn-power. By Condition (iii), ti = xαn . But now necessarily degn (t j) > α,
in contradiction to the definition of α as the maximal xn-degree appearing in U.

We still need to show the involutivity of U, which we do again via local involution.
Consider a term t ∈ U with degn (t) = λ and let xk be a Pommaret non-multiplicative
variable of t. Now, if k < n, then xk is also a Pommaret non-multiplicative variable of
t′ in the ring K[x1, . . . , xn−1]. Since U′λ is a Pommaret basis by Condition (i), there is
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a term s′ ∈ U′λ and a term xµ ∈ K[x1, . . . , xn−1] Pommaret multiplicative for s′ such
that t′ = xµ · s′. This implies t = xµ · s. It is easy to see that xµ is also Pommaret
multiplicative for s ∈ K[x1, . . . , xn]. Thus, in the case k < n we are done. Now, assume
k = n. Recall that t ∈ Uλ. Since, by Condition (ii), t′ ∈ 〈U′λ+1〉 and, by Condition (i),
U′λ+1 is a Pommaret basis, there are terms t` ∈ Uλ+1 and xν Pommaret multiplicative
for t′` in the ring K[x1, . . . , xn−1] such that t′ = xν · t′`. This implies xn · t = xν · t`. It is
easy to see that xν is also Pommaret multiplicative for t` in the ringK[x1, . . . , xn]. This
finishes the proof of local involutivity of U, and we are done.

We provide two examples for the application of Theorem 5.1, a positive one and a
negative one.

Example 5.2. In the trivariate polynomial ring P = K[x1, x2, x3], we consider the set
U =

{
x3

3, x2
2x2

3, x2
2x3, x1x2x2

3, x2
1x2

3, x2
1x2x3, x2

1x3
}
. One observes that

1. β = 1 ≤ 3 = α,
2. U3 =

{
x3

3
}

and U′3 = {1}, which is obviously a Pommaret basis,
3. U′2 =

{
x2

2, x1x2, x2
1
}
, which is also a Pommaret basis,

4. U′1 =
{
x2

2, x2
1x2, x2

1
}
, which is also a Pommaret basis,

5. U′1 ⊂ 〈U
′
2〉, and finally

6. U′2 ⊂ 〈U
′
3〉.

Hence, U is a Pommaret basis. Here, we have used that in two variables, one can
identify Pommaret bases very easily. But in principle Theorem 5.1 requires to carry the
recursion further, until it is only left to check subsets of K[x1] for being a Pommaret
basis, for which one applies Condition (iii), i. e., one must check whether one has a
singleton set.

Example 5.3. In the same polynomial ring P = K[x1, x2, x3], we consider now the set
U =

{
x3

3, x2
2x2

3, x2
2x3, x1

}
. One observes that

1. β = 0 ≤ 3 = α,
2. U3 =

{
x3

3
}

and U′3 = {1}, which is obviously a Pommaret basis,
3. U′2 =

{
x2

2
}
, which is also a Pommaret basis,

4. U′1 =
{
x2

2
}
, which is also a Pommaret basis,

5. U′0 = {x1}, which is not a Pommaret basis, as U′0 ∩ K[x2] = ∅.
Hence, U is not a Pommaret basis.

Remark 5.4. Theorem 3.10 holds for Pommaret bases, too, if one replaces everywhere
in it “Janet basis” by “Pommaret basis”. This follows immediately from the fact that
any Pommaret basis is also a Janet basis for the ideal it generates.

Since quasi-stability is equivalent to the existence of a finite Pommaret basis by
Proposition 2.9, we can use our results to derive also a recursive criterion for a mono-
mial ideal to be quasi-stable using an arbitrary monomial generating set. This criterion,
formulated in Corollary 5.5, translates directly into Algorithm 8 as an effective test for
quasi-stability similar to Algorithm 4.

Corollary 5.5. Let U = {t1, . . . , tm} ⊂ P be a set of terms with λ0 < λ1 < · · · < λ` being
the xn-degrees of its elements. For each 0 ≤ i ≤ `, we denote by Uλi ⊆ U the subset
containing those terms t with degn (t) = λi and we write U′λi

=
{
t|xn=1 | t ∈ Uλi

}
. Then

the monomial ideal 〈U〉 is quasi-stable, if and only if the following conditions hold:
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Algorithm 8: QuasiStableTest
Data: A finite set U = {t1, . . . , tm} ⊂ P of terms.
Result: True if 〈U〉 is quasi-stable and false otherwise.
begin

(λ0, λ1, . . . , λ`)←− the sequence of xn-degrees of the terms ti ordered such
that λ0 < λ1 < · · · < λ`
if n = 1 then

return (true)

if U ∩ K[xn] = ∅ then
return ( f alse)

for i from 0 to ` do
U′λi
←−

{
t ∈ K[x1, . . . , xn−1] | t · xλi

n ∈ U
}

if QuasiStableTest(
⋃i

j=0 U′λ j
) = f alse then

return ( f alse)

return (true)

(i) For each i ≤ `, the ideal
〈⋃i

j=0 U′λ j

〉
⊆ K[x1, . . . , xn−1] is quasi-stable,

(ii) We have U ∩ K[xn] , ∅.

Proof. Suppose first that 〈U〉 is quasi-stable. By Proposition 2.9, this ideal possesses
thus a finite Pommaret basis H. By Theorem 5.1, H′γ is a Pommaret basis for each
γ ≤ λ` and in addition H′γ ⊂ 〈H

′
γ+1〉 for each γ < λ`. Since 〈U〉 = 〈H〉, we have

〈
⋃i

j=0 Uλi〉 = 〈
⋃
γ≤λi

Hγ〉 for each i < `. Projecting to K[x1, . . . , xn−1] and using the
inclusions H′γ ⊂ 〈H

′
γ+1〉, we get 〈

⋃i
j=0 U′λi

〉 = 〈
⋃
γ≤λi

H′γ〉 = 〈H′λi
〉. Thus H′λi

is a
Pommaret basis for 〈

⋃i
j=0 U′λ j

〉 for each i < `. It follows from Proposition 2.9 that
〈
⋃i

j=0 U′λ j
〉 is quasi-stable and this proves the first item. The second item follows di-

rectly from the definition of quasi-stability, as U must contain a pure power of xn.
Conversely, assume that the two given conditions are satisfied and consider an arbi-

trary term t = xµ j

j · · · x
µn
n ∈ U with µ j , 0 for j = cls (t). A necessary condition for the

quasi-stability of 〈U〉 is that there exists an exponent s such that xs
nt/x j ∈ 〈U〉. From

the last condition, we know that some power xa
n lies in 〈U〉 and hence we can simply

chose any s ≥ a. However, as a sufficient condition for the quasi-stability of 〈U〉, we
must also check the membership xs

kt/x j ∈ 〈U〉 for any index n > k > j and sufficiently
high exponent s. For this, we must recursively descend via the first condition.

Similar to (2.1), we introduce U(ds,...,dn) =
{
u|xs=···=xn=1 | u ∈ U, degi (u) ≤ di, i =

s, . . . , n
}

and consider our term t as an element of the subset V := U(µk+1,...,µn). Let
γ0 < γ1 < · · · < γl be the xk-degrees of the elements of V . By the first condition,
∪
µk
j=0V ′γ j

generates a quasi-stable ideal in K[x1, . . . , xk] which by the second condition
must contain a term xb

k for some exponent b. Hence, the original set U must contain a
term xb

k xνk+1
k+1 · · · x

νn
n with νi ≤ µi. Choosing s ≥ b, this term is a divisor of xs

kt/x j so that
indeed xs

kt/x j ∈ 〈U〉 as required for the completion of the proof.
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Theorem 5.6. Algorithm 8 terminates in finitely many steps and is correct. Moreover,
its arithmetic complexity is O(m2 + nm).

Proof. The termination of the algorithm is trivial due to the recursive structure of the
algorithm and also the use of the for-loops. The correctness of the algorithm is a
consequence of Corollary 5.5.

To determine the complexity of the algorithm, we construct first the tree representa-
tion corresponding to the exponents of the elements of U which needs O(m2+nm) com-
parisons by applying (Lundqvist, 2010, Thm 4.2). Then, we check for each i = n, . . . , 2
whether there is a branch with no child. If this is not the case for some index i, then we
return false and true otherwise. Since for each i, the number of branches is at most m,
these checks need O(mn) comparisons and this completes the proof.

Remark 5.7. For alternative approaches to testing quasi-stability, we refer to (Hashemi,
2010; Seiler, 2012). Hashemi (2010, Prop. 3.4) showed that the complexity of the there
presented algorithm is O(m2n2) and thus our new algorithm has a better performance.
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Figure 5: Tree representation of the set U in Example 5.8

Example 5.8. We consider U =
{
x3

4, x3x2
4, x2

2x2
4, x1x2x2

4, x3
1x2

4, x2
3x4, x3

3
}

in the polyno-
mial ring P = K[x1, x2, x3, x4]. To illustrate the application of our test, we need the
tree representation of U shown in Figure 5. One observes that

1. λ0 = 0, λ1 = 1, λ2 = 2, λ3 = 3,
2. U′3 = {1},
3. U′2 =

{
x3, x2

2, x1x2, x3
1
}
,

4. U′1 =
{
x2

3
}
,

5. U′0 =
{
x3

3
}
.

We have x3
3 ∈ U which satisfies the second condition in Corollary 5.5. In addition, each

〈∪i
j=0U′λ j

〉 for each i is quasi stable. So, the ideal generated by U is quasi-stable.

25



Based on Corollary 5.5, we propose the simple Algorithm 9 to transform a given
(non-necessarily homogeneous) ideal into quasi-stable position. Below, we consider
the degree reverse lexicographical ordering ≺ with x1 ≺ · · · ≺ xn.

Algorithm 9: QuasiStableLinChange
Data: A finite set F ⊂ P of polynomials and a term ordering ≺.
Result: A linear change Φ so that 〈Φ(F)〉 is in quasi-stable position.
begin

Φ←− ∅; G ←− F; U ←− lt(G)
if 1 ∈ U then

return (id)
if no pure power of xn belongs to U then

choose a term t = xµ1
i1
· · · xµk

ik
with minimal number of variables

if t does not contain xn then
π←− permutation xik ←→ xn

φ0 ←− map such that xi j 7→ xi j + xn for j < k and all other variables
unchanged

else
π←− id
φ0 ←− map such that xi j 7→ xi j + xn for j < k and all other variables
unchanged

` ←− 0; G ←− π(G)
repeat

H ←− φ`(G); U ←− lt(H); ` ←− ` + 1
φ` ←− map xi j 7→ xi j + (`2i j + 1)xn for j < k

until U contains a pure power of xn

G ←− H; Φ←− Φ ∪ {φ`−1 ◦ π}

G ←− The reduced Gröbner basis of 〈G〉; U ←− lt(G)
(λ0, λ1, . . . , λm)←− the sequence of xn-degrees of the elements of U with
λ0 < λ1 < · · · < λm

for i from 0 to m do
G ←−

{
f |xn=1 | f ∈ G, degn lt( f ) ≤ λi

}
⊂ K[x1, . . . , xn−1]

Φ←− Φ ∪ QuasiStableLinChange(G)
return (Φ)

Theorem 5.9. Algorithm 9 terminates in finitely many steps and is correct.

Proof. The correctness of the algorithm is an obvious consequence of Corollary 5.5.
Let us deal with its termination. For this purpose, consider a polynomial f of degree d
whose leading monomial is cµxµ := cµxµ1

1 · · · x
µn
n . Assume that we perform a linear

change φ of the form xi 7→ xi + (ci + 1)xn for each i < n where c is a parameter. To
prove the finite termination of the algorithm, we shall prove that there are finitely many
integers c for which the term xµ, after performing this linear change, vanishes. One
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observes that the coefficient of xd
n in φ(xµ) is cµ(c2 + 1)µ1 · · · (c2(n−1) + 1)µn−1 . Thus, the

coefficient of xd
n in φ( f ) is a polynomial in K[c] of the form

p := cµ(c2 + 1)µ1 · · · (c2(n−1) + 1)µn−1 + cν(c2 + 1)ν1 · · · (c2(n−1) + 1)νn−1 + · · ·

where cνxν = cνxν1
1 · · · x

νn
n denotes another monomial of degree d in f . Assume that this

polynomial is zero. Let us order µ, ν, . . . in the lexicographical ordering with xn ≺lex

· · · ≺lex x1. Without loss of generality, suppose that µ �lex ν �lex · · · and µi is the
first non-zero component of µ. Let νi > 0 be minimal among all the i-th non-zero
components. Then, the sum of monomials containing (c2i + 1)νi must be zero. The
number of these monomials is at least two. So, we can consider only this sum and
remove (c2i + 1)νi . By applying this argument repeatedly, we can find at the end two
terms xθ and xη such that θ j = η j for each j = 1, . . . , n − 1. Since these two terms are
of the same degree, we can conclude that xθ = xη, leading to a contradiction.

Since p is a uni-variate polynomial, it has finitely many roots and it follows that
after a finite number of iterations of the repeat-loop, one finds a value at which p is
non-zero. This leads to the desired linear change, finishing the proof.

Example 5.10. As a simple case, consider the set U =
{
x3

3, x2
2x2

3, x1
}
⊂ K[x1, x2, x3]

introduced in Example 5.3. Since no pure power of x2 lies in U′0 = {x1} ⊂ K[x1, x2],
the ideal generated by this set is not quasi-stable and in turn the ideal generated by U
is not quasi-stable. Following Algorithm 9, we apply the permutation x1 ←→ x2 to I
and obtain the ideal Ĩ = 〈x3

3, x2
1x2

3, x2〉 which is quasi-stable.

Example 5.11. We consider the ideal treated by Eisenbud and Sturmfels (1994, Sect. 2)
(see also (Seiler, 2012)) in their quest for the construction of optimal systems of pa-
rameters in the sense that they are as sparse as possible. Take

F =
{

x5x6, x4x6, x4x5, x3x5, x2x5, x3x4, x2x4, x2x3, x1x3, x1x2
}
⊂ K[x1, . . . , x6] .

Algorithm 9 performs first the linear change x5 7→ x5 + x6 which yields a new leading
ideal generated by

U :=
{
x2

6, x4x6, x3x6, x2x6, x4x5, x3x4, x2x4, x2x3, x1x3, x1x2
}
.

Then it considers the set U′0 =
{
x4x5, x3x4, x2x4, x2x3, x1x3, x1x2

}
⊂ K[x1, . . . , x5]

and performs the linear change x4 7→ x4 + x5. This leads to a new leading ideal gener-
ated by

V :=
{
x2

6, x5x6, x3x6, x2x6, x2
5, x3x5, x2x5, x2x3, x1x3, x1x2

}
.

We have W := V ′0 =
{
x2

5, x3x5, x2x5, x2x3, x1x3, x1x2
}
. Since the ideal generated by

W ′0 =
{
x2x3, x1x3, x1x2

}
⊂ K[x1, . . . , x4] is not quasi-stable and since W ′0 does not

contain x4, Algorithm 9 proceeds with the linear change x3 ←→ x4 and x2 7→ x2 + x4.
The new leading ideal is generated by

Z :=
{
x2

6, x5x6, x4x6, x2x6, x2
5, x4x5, x2x5, x2

4, x1x4, x1x2
}
.

Set T := Z′0 =
{
x2

5, x4x5, x2x5, x2
4, x1x4, x1x2

}
and R := T ′0 =

{
x2

4, x1x4, x1x2
}
. Algo-

rithm 9 considers now the set R′0 = {x1x2} ⊂ K[x1, x2, x3]. Since no term in it contains
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x3, it performs the linear change x2 ←→ x3 and x1 7→ x1 + x3 and obtains as new
leading ideal

〈x2
6, x5x6, x4x6, x3x6, x2

5, x4x5, x3x5, x2
4, x3x4, x2

3〉

which is quasi-stable. One sees that the number of elementary linear changes applied
is 4, which is the same as for the transformation proposed in (Seiler, 2012).
Remark 5.12. Consider the ideal generated by U =

{
x3

3, x2
1x3, x2

}
⊂ K[x1, x2, x3]. We

have U′3 = {1}, U′1 = {x2
1} and U′0 = {x2}. One can see that U′0 1 〈U

′
1〉 and therefore the

second condition of Theorem 5.1 does not hold. Indeed, although the ideal is quasi-
stable, U is not its Pommaret basis.

We conclude this section by discussing a recursive test for being in Nœther po-
sition.4 An ideal I ⊂ P with the Krull dimension D is in Nœther position, if the
ring extension K[x1, . . . , xD] ↪→ P/I is integral, i. e. the image in P/I of xi for any
i = D + 1, . . . , n is a root of a polynomial of the form Xs + g1Xs−1 + · · · + gs = 0
where s is an integer and g1, . . . , gs ∈ K[x1, . . . , xD] (see e. g. (Eisenbud, 1995)).
Bermejo and Gimenez (2001) proved that I is in Nœther position, if and only if for
each i = D + 1, . . . , n there exists ri such that xri

i belongs to the leading ideal of I
with respect to ≺. Furthermore, they showed that this is equivalent to the fact that
I+ 〈x1, . . . , xD〉 is zero-dimensional. These observation show that I is in Nœther posi-
tion, if and only if lt(I) is as well. In the next proposition, we give a recursive test for
being in Nœther position using the minimal generating set of a monomial ideal.

Proposition 5.13. Let U = {t1, . . . , tm} ⊂ P be a set of terms with λ0 < λ1 < · · · < λ`
the xn-degrees of its elements. For each 0 ≤ i ≤ `, we denote by Uλi ⊆ U the subset of
U containing the terms t with degn (t) = λi and set U′λi

=
{
t|xn=1 | t ∈ Uλi

}
. Then the

monomial ideal 〈U〉 is in Nœther position, if and only if the following conditions hold:
(i) The ideal 〈U′λ0

〉 ⊆ K[x1, . . . , xn−1] is in Nœther position,
(ii) U ∩ K[xn] , ∅.

Proof. Suppose that the ideal 〈U〉 is in Nœther position and has dimension D. Then,
by (Bermejo and Gimenez, 2001, Lem 4.1), we know that 〈U〉 + 〈x1, . . . , xD〉 is zero-
dimensional and a pure power of xn appears in U. Thus, 〈U′λ0

〉 ⊆ K[x1, . . . , xn−1] is
an ideal of dimension D and 〈U′λ0

〉 + 〈x1, . . . , xD〉 is zero-dimensional, proving the first
item. On the other hand, for any i = D + 1, . . . , n there exists ri such that xri

i ∈ U and
this proves the second item.

Conversely, to prove that 〈U〉 is in Nœther position, we note that a pure power
of xn belongs to U. It follows that 〈U〉 and 〈U′λ0

〉 ⊆ K[x1, . . . , xn−1] share the same
dimension D. From the fact that 〈U′λ0

〉 is in Nœther position, we conclude that 〈U′λ0
〉 +

〈x1, . . . , xD〉 is zero-dimensional and hence that 〈U〉+ 〈x1, . . . , xD〉 is zero-dimensional
too, proving the claim.

Example 5.14. Consider the ideal I = 〈x3
1, x2x3, x2

3〉 ⊂ K[x1, x2, x3]. With U :={
x2

1, x2x3, x2
3
}
, one sees that the ideal 〈U′0〉 = 〈x2

1〉 ⊂ K[x1, x2] is not in Nœther position
and hence, by Proposition 5.13, I is also not in Nœther position.

4While Nœther position is implied by quasi-stable position, the converse is not true.
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Remark 5.15. We can adapt Algorithm 9 to transform a given ideal into Nœther po-
sition by simply performing the last for-loop only for m = 0. If we consider the
ideal presented in Example 5.11, then one finds the same linear change to transform
the ideal into Nœther position. As it has been mentioned, this approach allows us to
perform permutations of the variables to get a sparser linear change.

6. Pommaret-like division

Gerdt and Blinkov (2005a,b) introduced only the concept of a Janet-like basis. It
is natural to expect that the underlying idea can be applied to other divisions, too, but
to the best of our knowledge this has never been done so far. We will give here the
general definition of an involutive-like division based on non-multiplicative powers
and then extend some related notions. Our main emphasis will, however, lie on the
special case of the Pommaret-like division.

Definition 6.1. An involutive-like division L on T ⊂ P associates to any finite set U ⊂
T of terms and any term u ∈ U a set of L-non-multipliers L̄(u,U) given by the terms
contained in an irreducible monomial ideal. The powers generating this irreducible
ideal are called the non-multiplicative powers NMPL(u,U) of u ∈ U. The set of L-
multipliers L(u,U) is given by the order ideal T \ L̄(u,U). For any term u ∈ U, its
involutive cone is defined as CL(u,U) = u · L(u,U). For an involutive division, the
involutive cones must satisfy the following conditions:

(i) For two terms v , u ∈ U with CL(u,U) ∩ CL(v,U) , ∅, we have u ∈ CL(v,U) or
v ∈ CL(u,U).

(ii) If a term v ∈ U lies in an involutive cone CL(u,U), then L(v,U) ⊂ L(u,U).

There are two differences between this definition and Definition 2.1 of an involutive
division. Firstly, the non-multipliers are now only required to generate an irreducible
ideal instead of a prime one. Therefore we must speak of non-multiplicative powers
instead of non-multiplicative variables. Secondly, we have dropped the filter axiom, as
we were not able to come up with a Pommaret-like division respecting it in its classical
form. The filter axiom is relevant for completion algorithms for the Janet and closely
related divisions and for the existence of a strong basis within each weak basis. As we
will show below, all these applications are still possible within our framework.

Definition 6.2. For a finite set of terms U ⊂ T and an involutive-like division L on T ,
the involutive span of U is the union CL(U) =

⋃
u∈U CL(u,U). The set U is involutively

complete or a weak involutive basis, if CL(U) = U · T . For a (strong) involutive basis
the union is disjoint, i. e. every term in CL(U) has a unique involutive divisor.

Definition 6.3. Let L be an involutive-like division on T and let U ⊂ T be a finite
set of terms. The terms t · NMPL(t,U) with t ∈ U are minimal among those terms of
the monomial ideal 〈U〉 which are possibly not contained in the involutive span of U.
Those terms which are indeed not contained in CL(U) are called L-obstructions of U
and we write

ObstrL(U) =
(⋃

t∈U

t · NMP(t,U)
)
\ CL(U).
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The set of minimal elements of ObstrL(U) with respect to divisibility is denoted by
MinObstrL(U).

Example 6.4. The Janet-like division assigns non-multiplicative powers to a term xµ

contained in a finite set U ⊂ T as follows:

NMPJ(xµ,U) =
{

xp(J,xµ,U,a)
a | xa ∈ NMJ (xµ,U)

}
,

where the exponents are given by

p(J, xµ,U, a) = min
{
νa − µa | xν ∈ U[µa+1,...,µn] ∧ νa > µa

}
.

Here, the letter J stands for the Janet-like division, while the classical involutive Janet
division from which it is derived is denoted by the calligraphic letterJ . We will always
use calligraphic letters to denote involutive divisions and roman letters to denote the
involutive-like divisions derived from them.

We extend now important notions for involutive divisions like Nœtherianity, conti-
nuity and constructivity to involutive-like divisions.

Definition 6.5. The involutive-like division L is called
(i) Nœtherian, if for every finite set of terms U ⊂ T there exists a finite set U ⊂ T

with U ⊆ U such that U is an L-basis of the monomial ideal 〈U〉; such a set U is
called an L-completion of U;

(ii) continuous, if for every finite set U ⊂ T every sequence (t1, t2, . . . , tk) ∈ Uk such
that ti ·NMPL(ti,U)∩CL(ti+1,U) , ∅ for each index i ∈ {1, . . . , k− 1} consists of
k distinct terms, i. e. ti , t j for all 1 ≤ i < j ≤ k;

(iii) constructive, if it is continuous and if additionally for every finite set of terms
U ⊂ T and for each term s ∈ MinObstrL(U) no term s′ ∈ CL(U) exists such that
s ∈ CL

(
U ∪ {s′}

)
.

Remark 6.6. The above definitions of Nœtherianity and continuity are straightforward
generalisations of their classical counterparts. However, the definition of constructivity
uses a more restrictive condition than in the classical theory. Because of the filter
axiom, one only has to control there the involutive cone of the newly added term s′. In
the involutive-like case without such an axiom, we must at the same time also control
the involutive cones of all the other terms t ∈ U, as they might get larger when adding
s′ to U.

The following property of an involutive-like division will serve us as a substitute
for the missing filter axiom in some situations.

Definition 6.7. Let L be an involutive-like division on the set of terms T ⊂ P. We
say that L satisfies the strong basis property if for every weak L-basis U ⊂ T of the
monomial ideal 〈U〉, there is a subset Ũ ⊆ U such that Ũ is a strong L-basis of the
same monomial ideal.

Proposition 6.8. The Janet-like division is a Nœtherian, continuous and constructive
involutive-like division. Moreover, it satisfies the strong basis property.
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Proof. The first statement is due to Gerdt and Blinkov (2005b, Prop. 2, Thms. 1–3).
For the strong basis property, we simply remark that every finite set of terms H ⊂ T is
autoreduced with respect to the Janet-like division; this follows also from (Gerdt and
Blinkov, 2005b, Prop. 2).

Theorem 6.9. For a continuous involutive-like division L, the finite set of terms U ⊂ T
is a weak L-basis of the monomial ideal 〈U〉, if and only if MinObstrL(U) = ∅.

Proof. The proof is a straightforward generalisation of the proof of the analogous result
for involutive divisions.

Proposition 6.10. The Janet-like division is related to the Janet division as follows:
(i) For each term t contained in a finite set U ⊂ T , we have CJ (t,U) ⊆ CJ(t,U).

(ii) Every Janet basis of a monomial ideal I E P is also a Janet-like basis.
(iii) From a Janet-like basis U of the monomial ideal I E P, one can obtain a Janet

basis U′ of the same ideal as follows:

U′ =
{
t · xµ | t ∈ U ∧ xµ | Πxpa

a ∈NMPJ (t,U)x
pa−1
a

}
.

Proof. The first item follows directly from the definitions. The second item is a direct
consequence of the first one.

The third item holds, if we can prove that CJ(U) ⊆ CJ (U′). Let v ∈ CJ(U) be an
arbitrary term in the Janet-like span of U. Then there exists a term t ∈ U, a term xµ

dividing Πxpa
a ∈NMPJ (t,U)x

pa−1
a and a term xρ ∈ K[MJ (t,U)] such that v = t · xµ · xρ. By

definition of U′, we see that t · xµ ∈ U′. It remains to show that xρ ∈ K[MJ (t · xµ,U′)].
For this, it suffices to show that MJ (t,U) ⊆ MJ (t · xµ,U′). We do this iteratively
by ordering the set of variables MJ (t,U) descendingly according to their indices and
showing the containments x j ∈ MJ (t · xµ,U′) one after the other.

So let x j be the variable with the highest index in MJ (t,U). By definition of the
Janet division, we have that deg j (t) is maximal among the x j-degrees of the Janet class
U[deg j+1 (t),...,degn (t)]. We know that deg j (t · xµ) = deg j (t) and we have to show that it is
maximal among the x j-degrees of the Janet class U′[deg j+1 (t·xµ),...,degn (t·xµ)]. To see this, we

now analyse which elements s ∈ U induce elements s · xθ in this Janet class of U′. We
consider first those terms s ∈ U which are not in the same Janet class of U as t. If s is
lexicographically smaller than t, then by analysing the highest variable index ` where s
and t differ, we see, by definition of Janet-like non-multiplicative powers, that all terms
u = s · xθ ∈ U′ induced by s have deg` (u) < deg` (t). However, deg` (t · xµ) ≥ deg` (t).
Hence, s · xθ and t · xµ are not in the same Janet class of U′. If s is lexicographically
larger than t, then again by analysing the highest variable index ` where s and t differ,
we see that p(J, t,U, `) ≤ deg` (s)−deg` (t) and hence, deg` (t · xµ) < deg` (s), whereas,
obviously, deg` (s · xθ) ≥ deg` (s) for all terms s · xθ induced by s in U′. Hence, t · xµ

and s · xθ are not in the same Janet class of U′.
It remains to analyse the case of a term s ∈ U which is in the same Janet class

U[deg j+1 (t),...,degn (t)] as t. If deg j(s) < deg j(t), then it is easy to see that also for the
induced term s · xθ, deg j(s · xθ) < deg j(t). If, on the other hand, deg j(s) ≥ deg j(t),
then by the Janet multiplicativity of x j for t, we have in fact deg j(s) = deg j(t) and x j

is also Janet multiplicative for s. Moreover, the Janet-like powers of variables xa with
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a > j are the same for s and t. So s can induce terms s · xθ which are in the same Janet
class of U′ as t · xµ, namely exactly for those xθ which have the same projection on the
subring K[x j+1, x j+2, . . . , xn] as xµ. But since x j is Janet multiplicative for s, we must
have deg j (xθ) = 0 by definition of U′. This proves that deg j (t) is still maximal among
all x j-degrees of elements of the Janet class U′[deg j+1 (t·xµ),...,degn (t·xµ)].

Thus, we have shown that x j ∈ MJ (t · xµ,U′). The iteration over the variables of
MJ (t · xµ,U′) which have lower indices than j can now be performed using similar
arguments, making use of the equality deg j (t) = deg j (t · xµ).

We introduce now an involutive-like division based on the Pommaret division. Note
that it is no longer a global division. This is not very surprising, as the very idea of
involutive-like divisions consists of comparing different terms in a given set.

Definition 6.11. The Pommaret-like division P assigns to each term t ∈ T contained
in a finite set of terms U ⊂ T non-multiplicative powers as follows: For each xa with
a > cls (t), set

p(P, t,U, a) =

1, if xa ∈ MJ (t,U),
p(J, t,U, a), if xa ∈ NMJ (t,U).

Note that no non-multiplicative power is assigned to any variable xb with b ≤ cls (t).

Proposition 6.12. The Pommaret-like division is an involutive-like division.

Proof. Let U ⊂ T be a finite set of terms. Let s and t be two terms in U whose
Pommaret-like cones have a non-empty intersection: CP(s,U)∩CP(t,U) , ∅. Without
loss of generality, cls (s) ≤ cls (t). Consider an arbitrary variable x j ∈ MJ (t,U) with
j > cls (t). By definition of the Pommaret-like division, we have deg j (u) = deg j (t)
for all terms u ∈ CP(t,U). Thus, if we pick a term v ∈ CP(s,U) ∩ CP(t,U), we also
have deg j (v) = deg j (t). By definition, s divides v and hence deg j (s) ≤ deg j (t). If the
strict inequality deg j (s) < deg j (t) were true, then this would imply x j ∈ NMJ (s,U)
and NMPP(s,U) ≤ deg j (t) − deg j (s), in contradiction to v ∈ CP(s,U). Hence, we can
conclude that deg j (s) = deg j (t).

Now let x` be a variable such that ` > cls (t) and ` ∈ NMJ (t,U). A power
of it is a Pommaret-like non-multiplicative power of t and we have that deg` (t) ≤
deg` (u) < deg` (t) + p(P, t,U, `) for all terms u ∈ CP(t,U). In particular, these inequal-
ities hold for any term v ∈ CP(s,U) ∩ CP(t,U). Now let ˆ̀ be the greatest index of
such a variable. Then, since by the first paragraph of this proof s ∈ U[deg ˆ̀+1 (t),...,degn (t)]
and since deg ˆ̀ (s) ≤ deg ˆ̀ (v) < deg` (t) + p(P, t,U, `) by the definition of Janet-like
non-multiplicative powers, deg ˆ̀ (s) ≤ deg ˆ̀ (t). But a strict inequality is not possi-
ble here (apply again the definition of Janet-like non-multiplicative powers). Hence,
deg ˆ̀ (s) = deg ˆ̀ (t). It is now possible to apply the same arguments to the next highest
index ` and so on obtaining after finitely many steps that deg j (s) = deg j (t) for all
j > cls (t).

It now only remains to analyse the degrees at the variable xcls (t). First, let us assume
additionally that cls (s) < cls (t). For any term v ∈ CP(s,U) ∩ CP(t,U), we have
that degcls (t) (v) ≥ degcls (t) (t). If the strict inequality degcls (t) (s) < degcls (t) (t) held,
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then, using the fact that s ∈ U[degcls (t)+1 (t),...,degn (t)] and the definition of Janet-like non-
multiplicative powers, we would obtain the inequality p(P, s,U, cls (t)) ≤ degcls (t) (t) −
degcls (t) (s), in contradiction to the constraints on degcls (t) (v) found above.

Finally, consider the case cls (s) = cls (t). Then, by definition of the Pommaret-
like division, there exists neither for s nor for t a non-multiplicative power of the
variable xcls (t) and, keeping in mind the conclusion of the second paragraph of this
proof, we get that CP(s,U) ⊂ CP(t,U) in the case that degcls (t) (t) < degcls (t) (s)
and CP(t,U) ⊂ CP(s,U) in the case that degcls (t) (s) < degcls (t) (t). This finishes the
proof.

Proposition 6.13. The Pommaret-like division is not Nœtherian.

Proof. The monomial ideal I = 〈x1〉 E K[x1, x2] does not possess a finite Pommaret-
like basis. To see this, observe that for any finite set of terms U ⊂ I and for all terms
t ∈ U with deg2 (t) =: D maximal, x2 ∈ MJ (t,U), and hence x2 ∈ NMPP(t,U). For all
terms s ∈ U with the degree deg2 (s) non-maximal in U, we have deg2 (v) ≤ D for all
v ∈ CP(s,U). So, for all terms u ∈ I with deg2 (u) > D, we have u < CP(U).

Proposition 6.14. The Pommaret-like division is continuous.

Proof. The proof is a generalisation of the proof of the analogous result for the classical
Pommaret division. Let U ⊂ T be a finite set of terms and (t1, . . . , tk) ∈ Uk a sequence
of terms as in the definition of involutive-like continuity. Let i ∈ {1, . . . , k − 1} be an
arbitrary index and let vi ∈ ti · NMPP(ti,U) be a prolongation with vi ∈ CP(ti+1,U).
We know that vi = ti · xp

j for some j > cls (ti). The divisibility of vi by ti+1 implies
that cls (ti+1) ≥ cls (ti) and if cls (ti+1) = cls (ti), then degcls (ti) (ti+1) ≤ degcls (ti) (ti).
Finally, let us assume that degcls (ti) (ti+1) ≤ degcls (ti) (ti). Then ti+1 is in the Janet class
U[deg j+1 (ti),...,degn (ti)]. Indeed, for all indices b > j the divisibility of vi by ti+1 gives
degb (ti+1) ≤ degb (ti) and if any of these inequalities were strict, then we would get
a Pommaret-like non-multiplicative power for ti+1 at that index, in contradiction to
vi ∈ CP(ti+1,U). Moreover, a similar argument now gives that deg j (ti+1) = deg j (vi).
Thus, ti+1 �lex ti. In conclusion, the sequence (t1, . . . , tk) must consist of pairwise
distinct terms, finishing the proof.

Proposition 6.15. The Pommaret-like division is constructive.

Proof. Let U ⊂ T be a finite set of terms, t ∈ U a term in it and s = t · xp
j a prod-

uct of t with xp
j ∈ NMPP(t,U) such that s ∈ MinObstrP(t,U). We must show that

for no term s′ ∈ CP(U) \ U the relation s ∈ CP(U ∪ {s′}) holds. Before coming
to the main part of the proof, let us show that whenever u ∈ ObstrP(U), we must
have u ∈ CP(v,U ∪ {v}) for any term v ∈ CP(U) with u ∈ CP(U ∪ {v}). To see this,
first note that the only way how there can be a term h ∈ U for which a term r ex-
ists with r ∈ CP(h,U ∪ {v}) \ CP(h,U) is if there exists an index ` > cls (h) with
x` ∈ MJ (h,U) such that x` ∈ NMJ (h,U ∪ {v}). This means that deg` (h) is maximal
among the x j-degrees of the Janet class U[deg`+1 (h),...,degn (h)], that there is the additional
term v in the Janet class (U ∪ {v})[deg`+1 (h),...,degn (h)] and that deg` (v) > deg` (h). There
is a term w ∈ U with v ∈ CP(w,U). We now distinguish two cases. If cls (w) > `,
then, by definition of Pommaret-like non-multiplicative powers and by the fact that w
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divides the term v ∈ (U ∪ {v})[deg`+1 (h),...,degn (h)], we have that w is in the Janet class
U[degcls (w)+1 (h),...,degn (h)] and that degcls (w) (w) ≤ degcls (w) (h). But from this it follows in
particular that NMPP(w,U) = NMPP(h,U)∩K[xcls (w)+1, . . . , xn]. But, by construction,
also

NMPP(h,U) ∩ K[xcls (w)+1, . . . , xn] = NMPP(h,U ∪ {v}) ∩ K[xcls (w)+1, . . . , xn] .

We can conclude that CP(h,U∪{v}) ⊆ CP(w,U) and now the assumption u ∈ CP(h,U∪
{v}) would lead to the contradiction u ∈ CP(w,U). Thus, it is not possible that cls (w) >
`. If, on the other hand, cls (w) ≤ `, then, arguing similarly as above, we get that w is in
the Janet class U[deg`+1 (h),...,degn (h)]. Recall that v is in the Pommaret-like cone CP(w,U)
and that deg` (v) > deg` (h). However, we also know that deg` (h) is maximal among
the x j-degrees of the Janet class U[deg`+1 (h),...,degn (h)]. Thus deg` (w) ≤ deg` (h). But this
implies that the exponent p(P,w,U, `) of the Pommaret-like non-multiplicative power
for w at x` is less or equal to deg` (h) − deg` (w). Hence, no term in the Pommaret-like
cone CP(w,U) can have an x`-degree greater than deg` (h). This contradicts deg` (v) >
deg` (h). Thus, we have shown that should it at all be possible to lift the minimal
obstruction s ∈ MinObstrP(U) by adding an element s′ ∈ CP(U) to U, we must have
s ∈ CP(s′,U ∪ {s′}).

Let us return to the terms s = t · xp
j and s′. We distinguish two cases, in ac-

cordance with the case distinction of the assignment of Pommaret non-multiplicative
variables. First, assume that xp

j ∈ NMPJ(t,U). By the definition of the Pommaret-
like division, we know additionally that j > cls (t) and that cls (t) = cls (s). Argu-
ing by reductio ad absurdum, assume that there does exist a term s′ ∈ CP(U) with
s ∈ CP(U ∪ {s′}). Here again, we can distinguish two cases. First, let us assume
that cls (s′) ≤ cls (s). Then, by taking the projections of all the terms in U, of s and
of s′ to the subring K[xcls (s)+1, . . . , xn], we obtain a configuration which is a coun-
terexample to the constructivity of the Janet-like division. Indeed, denoting all pro-
jections by adding a bar on top of the symbols, we have then s ∈ MinObstrJ(U),
s′ ∈ CJ(U) and s ∈ CJ(U ∪ {s′}). So we are left with the other case, i. e. with the
case cls (s′) > cls (s). Note that by construction, s′ is a proper divisor of s, as it
must obviously be a divisor and the two terms cannot be equal since s ∈ ObstrP(U).
In particular, this implies s′ ≺lex s. So there is a maximal index ` where the x`-
degrees of s and s′ differ and we have deg` (s′) < deg` (s). Again we must distin-
guish two cases. Firstly, let us assume that ` ≤ cls (s′). An immediate consequence
is ` ≤ cls (v) for any term v with s′ ∈ CP(v,U). But then also s ∈ CP(v,U), which
is not possible as s ∈ ObstrP(U). Secondly, consider the case ` > cls (s′). Then
x` ∈ NMJ (s′,U ∪ {s′}), because either deg` (s) = deg` (t) and then t ∈ U causes x`
to be Janet non-multiplicative for s′ or j = `, deg` (s) = deg` (t) + p(J, t,U, `) and the
same term, say, r ∈ U, which causes the Janet-like non-multiplicative power for t at
x` in U causes x` to be Janet non-multiplicative also for s′ in U ∪ {s′}. The exponent
of the corresponding Janet-like non-multiplicative power then satisfies the inequality
p(J, s′,U ∪ {s′}, `) ≤ deg` (s)− deg` (s′). This of course then also holds for the induced
Pommaret-like non-multiplicative power. This contradicts s ∈ CP(s′,U ∪ {s′}). The
analysis of the case xp

j ∈ NMPJ(t,U) is now finished.
Let us turn to the analysis of the case x j ∈ MJ (t,U). Here p = 1 and xp

j = x j. So,
s = t · x j. By the definition of the Pommaret-like division, we know additionally that
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j > cls (t) and that cls (t) = cls (s). Arguing again by reductio ad absurdum, assume
that there does exist a term s′ ∈ CP(U) with s ∈ CP(U ∪ {s′}). Similarly to the situation
in the last paragraph, we must have s′ ≺lex s and there is a maximal index ` where
the x`-degrees of s′ and s differ. We know then that deg` (s′) < deg` (s). We now
distinguish several cases which reflect the relation of the indices j and `.

The first main case is ` > j. Then it follows that s′ is in the Janet class (U ∪
{s′})[deg`+1 (t),...,degn (t)] and that deg` (t) = deg` (s) > deg` (s′). Hence x` ∈ NMJ (s′,U ∪
{s′}) and p(J, s′,U∪{s′}, `) ≤ deg` (s)−deg` (s′) leading to a contradiction if this Janet-
like non-multiplicative power is also a Pommaret-like non-multiplicative power for s′.
Otherwise, we would have cls (s′) ≥ ` and from this it is not hard to show that for the
term w ∈ U with s′ ∈ CP(w,U) we would also have s ∈ CP(w,U), in contradiction to
s ∈ ObstrP(U).

The second main case is ` = j. It follows that s′ is in the Janet class (U ∪
{s′})[deg j+1 (t),...,degn (t)]. Again, if cls (s′) ≥ j, then it is not hard to obtain a contradic-
tion to s ∈ ObstrP(U). So we may assume that cls (s′) < j. Since deg j (s) = deg j (t) + 1
and s ∈ CP(s′,U ∪ {s′}), we must have deg j (s′) = deg j (t). But this implies that
x j ∈ MJ (s′,U ∪ {s′}) and we get the Pommaret-like non-multiplicative power x j ∈

NMPP(s′,U ∪ {s′}), in contradiction to s ∈ CP(s′,U ∪ {s′}).
The third main case is ` < j. We then get that s′ is in the Janet class (U ∪

{s′})[deg j (t)+1,deg j+1 (t),...,degn (t)]. Again, if cls (s′) ≥ j, then it is not hard to obtain a con-
tradiction to s ∈ ObstrP(U). So we may assume that cls (s′) < j. But then again, we
know that there is a term w ∈ U with s′ ∈ CP(w,U) and since this term divides s′, one
can see quite easily that it must belong to the Janet class U[deg j+1 (t),...,degn (t)]. If it has
cls (w) ≥ j, then again it is not hard to obtain a contradiction to s ∈ ObstrP(U), and if
cls (w) < j, then, via the fact that x j ∈ MJ (t,U), we get that deg j (w) ≤ deg j (t) and
thus a contradiction to s′ ∈ CP(w,U). This finishes the proof.

Proposition 6.16. The Pommaret-like division is related to the Pommaret division as
follows:

(i) For each term t ∈ T in a finite set U ⊂ T , we have CP(t,U) ⊆ CP(t,U).
(ii) Every Pommaret basis of a monomial ideal I E P is also a Pommaret-like basis.

(iii) From a Pommaret-like basis U of the monomial ideal I E P, one can obtain a
Pommaret basis U′ of the same ideal as follows:

U′ =
{
t · xµ | t ∈ U ∧ xµ | Πxpa

a ∈NMPP(t,U)x
pa−1
a

}
.

(iv) A monomial ideal I E P is quasi-stable, if and only if it possesses a finite
Pommaret-like basis.

Proof. The first item follows directly from the definitions; the second one is a imme-
diate consequence of it. The third item follows, if we can show that CP(U) ⊆ CP(U′).
Let u ∈ CP(U) be an arbitrary term in the Pommaret-like span. Then there exists a term
t ∈ U, a divisor xµ of Πxpa

a ∈NMPP(t,U)x
pa−1
a and a term xρ ∈ K[x1, . . . , xcls (t)] such that

u = t · xµ · xρ. We have to show that there is a Pommaret divisor of u in the set U′. We
know that t · xµ ∈ U′. It is clear that cls (t · xµ) = cls (t). Hence, u ∈ CP(t · xµ) and we
have proved the third item.

The fourth item is a direct consequence of the second and third items, as a mono-
mial ideal is quasi-stable, if and only if it possesses a finite Pommaret basis.
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Lemma 6.17. A finite set of terms U ⊂ T is Pommaret-like autoreduced, if and only if
it is Pommaret autoreduced.

Proof. The only if direction is obvious. So let U ⊂ T be a finite set of terms which
is Pommaret autoreduced. We want to show that it is also Pommaret-like autoreduced.
We argue by reductio ad absurdum. Assume that U is Pommaret, but not Pommaret-
like autoreduced. Then there exist two terms s , t ∈ U such that s ∈ CP(t,U).
Let k = cls (t). We know that deg` (s) ≥ deg` (t) for each index k < ` ≤ n. There
must exist an index k < j ≤ n with deg j (s) > deg j (t), since otherwise t would be
a Pommaret divisor of s, contradicting the assume Pommaret autoreducedness. We
pick the maximal such index j. Then there exists a Janet-like non-multiplicative power
xp(J ,t,U, j)

j ∈ NMPJ (t,U) with 1 ≤ p(J , t,U, j) ≤ deg j (s) − deg j (t). This gives also
a Pommaret-like non-multiplicative power for t at x j with the same exponent. Hence,
s < CP(t,U) contradicting our assumptions.

Corollary 6.18. The Pommaret-like division satisfies the strong basis property.

Proof. Let the finite set of terms U ⊂ T be a weak Pommaret-like basis of the mono-
mial ideal 〈U〉. If it is a strong basis, then we are done. Otherwise, it is not Pommaret-
like autoreduced, and hence it is also not Pommaret autoreduced by Lemma 6.17. We
claim that the Pommaret autoreduction Ũ ⊂ U is a strong Pommaret-like basis of 〈U〉.
More precisely, we will show that CP(u, Ũ) = CP(u,U) for each term u ∈ Ũ which is
equivalent to NMPP(u, Ũ) = NMPP(u,U). The latter statement can be reduced to an
analysis of Janet-like non-multiplicative powers: We have to show that

NMPJ(u, Ũ) ∩ K[xcls (u)+1, . . . , xn] = NMPJ(u,U) ∩ K[xcls (u)+1, . . . , xn] .

The set Ũ arises from U by removing elements which possess strict Pommaret di-
visors in U. It is clear that the removal of strict Pommaret multiples of u does not
change the Janet-like non-multiplicative powers of u lying in K[xcls (u)+1, . . . , xn]. Let
v ∈ Ũ \ {u} be any term for which a strict Pommaret multiple t ∈ U \ Ũ has been
removed. If this removal would change a Janet-like non-multiplicative power of u
lying in K[xcls (u)+1, . . . , xn], then there would be some index ` > cls (u) such that
t lies in the Janet class U[deg`+1 (u),...,degn (u)]. Since the removal of t changes the non-
multiplicative power of u at x` and we know that deg` (v) ≤ deg` (t), we must have
deg` (v) ≤ deg` (u) < deg` (t). Since v is a Pommaret divisor of t, it follows that v is in
the same Janet-class of U as u and t and additionally, cls (v) ≥ `. This in turn shows
that v is a strict Pommaret divisor of u, which is impossible, since u and v both survived
the Pommaret autoreduction of U.

Theorem 6.19. The Pommaret-like and the Janet-like divisions are related as follows:
(i) Let U ⊂ T be a finite set of terms which is autoreduced with respect to the

Pommaret-like division. Then CP(t,U) ⊆ CJ(t,U) for each t ∈ U.
(ii) Let U ⊂ T be a Pommaret-like basis of the monomial ideal 〈U〉. Then U is also

a Janet-like basis of the same ideal.
(iii) Any minimal Janet-like basis is Pommaret-like autoreduced.
(iv) The unique minimal Janet-like basis of a quasi-stable monomial ideal is also a

Pommaret-like basis of the same ideal.
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(v) In the situation of (ii), the set U is the unique minimal Pommaret-like basis of
〈U〉, if and only if it is the unique minimal Janet-like basis of this ideal.

Proof. For the first item, let U be a finite Pommaret-like autoreduced set of terms,
t ∈ U a term and j ≤ cls (t) an index. Then x j is Pommaret-like multiplicative for t and
we must show that it is also Janet-like multiplicative. If not, then there exists a term
s ∈ U in the Janet class U[deg j+1 (t),...,degn (t)] with deg j (s) > deg j (t). By the definition
of Pommaret-like multiplicative powers, we see that s ∈ CP(t,U) \ {t}, in contradiction
to the Pommaret-like autoreducedness of U. It only remains to observe that, by the
definition of Pommaret-like multiplicative powers, it is clear that for indices j > cls (t)
the Janet-like non-multiplicative powers of t are either identical to the Pommaret non-
multiplicative powers or that the Pommaret non-multiplicative powers are linear while
the Janet-like division does not pose any restriction on the given variable. This con-
cludes the proof of the first item.

The second item is a direct consequence of the first item, because a Pommaret-like
basis is by definition autoreduced with respect to the Pommaret-like division.

For the third item, we only need to show that any minimal Janet-like basis is Pom-
maret autoreduced in view of Lemma 6.17. So for a given minimal Janet-like basis
U ⊂ T of the monomial ideal I = 〈U〉, we must show that the Pommaret autoreduc-
tion of U is still a Janet-like basis of I. If U is already Pommaret autoreduced, there is
nothing to prove. If not, then there exists a disjoint partition U = U1 t U2 t . . . t Ur

such that, CP(s) ∩ CP(t) = ∅ for any two indices i , j ∈ {1, . . . , r} and any two
terms s ∈ Ui and t ∈ U j and for each i ∈ {1, . . . , r} there exists a unique term
ti ∈ Ui such that Ui ⊂ CP(ti), i. e. ti is a strict Pommaret divisor of every term
s ∈ Ui \ {ti}. We must show that {t1, . . . , tr} is still a Janet-like basis of 〈U〉. It suf-
fices to show that we have CJ(ti, {t1, . . . , tr}) ⊇

⋃
s∈Ui
CJ(s,U) for each i. To this end,

fix an index i and look at the Janet-like non-multiplicative powers of ti for a vari-
able x` with ` > cls (ti). We have p(J, s,U, `) = p(J, ti,U, `) for each s ∈ Ui, since
deg` (s) = deg` (ti) by Pommaret divisibility. Hence, using (Gerdt and Blinkov, 2005b,
Prop. 3), p(J, s,U, `) ≤ p(J, ti, {t1, . . . , tr}, `) for all s ∈ Ui. Since {t1, . . . , tr} is Pom-
maret autoreduced and hence also Pommaret-like autoreduced, using (i), we see that
there are no Janet-like non-multiplicative powers for ti in {t1, . . . , tr} at any variable x`
with ` ≤ cls (ti). Putting everything together, we get CJ(ti, {t1, . . . , tr}) ⊇ CJ(s,U) for
all s ∈ Ui, which suffices to prove our claim.

For the fourth item, let U be the minimal Janet-like basis of the quasi-stable mono-
mial ideal 〈U〉. The U is Pommaret autoreduced by (iii). By Proposition 6.10 (iii), we
can construct a Janet basis U ⊇ U of 〈U〉. We claim that U is also Pommaret autore-
duced. Indeed, let s, t ∈ U be two distinct terms which arise as multiples of the terms
s, t ∈ U. If s = t, then it is not hard to show that CP(s) ∩ CP(t) = ∅. So assume that
s , t. Without loss of generality, let cls (s) ≤ cls (t) = k. Then s cannot be in the Janet
class U[degk (t),...,degn (t)], because otherwise t would be a strict Pommaret divisor of s,
contradicting the Pommaret autoreducedness of U. Hence, there is a maximal index `
with k ≤ ` ≤ n where deg` (s) , deg` (t).

If now ` = k = cls (t), then we must have deg` (s) < deg` (t) and cls (s) < k, again
since U is Pommaret autoreduced. Hence, s has a Janet-like non-multiplicative power
with respect to the set U at x` with exponent p(J, s,U, `) ≤ deg` (t) − deg` (s). By
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construction of the Janet basis U, this implies deg` (s) < deg` (t) ≤ deg` (t) and, since
cls (s) = cls (s), we getCP(s)∩CP(t) = ∅. If ` > k = cls (t), then ` > max (cls (s), cls (t))
and, similarly as in the last paragraph, we find that CP(s) ∩ CP(t) = ∅. Hence, we have
proved that the Janet basis U is Pommaret autoreduced.

Since the ideal 〈U〉 is quasi-stable, U must be the Pommaret basis of 〈U〉. This
implies that for each term t ∈ U, its Janet multiplicative variables with respect to U
agree with its Pommaret multiplicative variables (Gerdt and Blinkov, 2005b). On the
other hand, it is not hard to show that the Janet non-multiplicative variables of t ∈ U
also agree with the Janet non-multiplicative variables of the term t ∈ U used for the
construction of t. This finally shows that for all u ∈ U, CP(u,U) = CJ(u,U), which
means that U is a Pommaret-like basis of 〈U〉.

The fifth item follows from (ii) and (iv).

7. Syzygy Theory of Janet-like and Pommaret-like bases

In the theory of involutive bases, it is well-known that from a given Pommaret or
Janet basis, respectively, of a polynomial ideal, one can obtain a Pommaret or Janet
basis, respectively, of the syzygy module of this basis with respect to a suitable module
term ordering (Seiler, 2010). The goal of this section is to generalise these results also
to Pommaret-like and Janet-like involutive bases. We start with an analysis of the set of
non-multiplicative powers associated to some term t contained in a finite set of terms
U which is not assumed to be an involutive-like basis.

Lemma 7.1. Let a term t ∈ T contained in a finite set of terms U ⊂ T be given.
Then the set NMPP(t,U) is a Pommaret-like basis of the monomial ideal 〈NMPP(t,U)〉
generated by it and the set NMPJ(t,U) is a Janet-like basis of the monomial ideal
〈NMPJ(t,U)〉.

Proof. Let us first consider NMPP(t,U), which is of the form
{
xp(a)

a , xp(a+1)
a+1 , . . . , xp(n)

n
}

where a = cls (t) + 1 and p(b) ∈ Z>0 for all a ≤ b ≤ n. Let xp
j ∈ NMPP(t,U). Then one

can easily see that cls (xp
j ) = j, NMJ

(
xp

j ,NMPP(t,U)
)

= {x j+1, x j+2, . . . , xn}, and

NMPP
(
xp

j ,NMPP(t,U)
)

= NMPJ
(
xp

j ,NMPP(t,U)
)

=
{
v ∈ NMPP(t,U) | cls (v) > j

}
.

Trivially, xp
j is Pommaret-like multiplicative for all terms in v ∈ NMPP(t,U) with

cls (v) > j and hence xp
j ·NMP

(
xp

j ,NMPP(t,U)
)
⊂ CP

(
NMPP(t,U)

)
, proving the state-

ment for the Pommaret-like division.
We now consider NMPJ(t,U), which is of the form

{
xp(a)

a | xa ∈ NMJ (t,U)
}
. Let

xp
j ∈ NMPJ(t,U) be a non-multiplicative power. One can see easily that

NMJ
(
xp

j ,NMPJ(t,U)
)

=
{
xb ∈ NMJ (t,U) | b > j

}
,

NMPJ
(
xp

j ,NMPJ(t,U)
)

=
{
xp(b)

b ∈ NMPJ(t,U) | b > j
}
.

Furthermore, xp
j is Janet-like multiplicative for all terms xp(b)

b ∈ NMPJ(t,U) with b > j
and hence xp

j · NMPJ
(
xp

j ,NMPJ(t,U)
)
⊂ CJ

(
NMPJ(t,U)

)
, proving the statement for

the Janet-like division.
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Up to now, we have only considered involutive-like bases of monomial ideals. For
general polynomial ideals in P, we use the following definition.

Definition 7.2. Let L be an involutive-like division, ≺ a term ordering on T and I E P
a polynomial ideal. Then a finite set H ⊂ I \ {0} is called an L-involutive-like basis of
I with respect to the term ordering ≺, if the set of leading terms lt(H) is a strong L-
involutive-like basis of the leading ideal lt(I) and |H| = | lt(H)| (i. e. the leading terms
of the elements of H are distinct).

Remark 7.3. Let H ⊂ T be an L-involutive like basis for the ideal I E P with respect
to some involutive-like division L and some term ordering ≺. Then H is also a Gröbner
basis of I for ≺, since lt(H) is a generating system of lt(I). It is also straightforward to
introduce the notion of an involutive-like standard representation for every polynomial
in an ideal generated by an involutive-like basis and to show that it is unique.

We now recall a construction due to Schreyer, which, given a Gröbner basis H of
a polynomial ideal I E P, yields a module term ordering ≺H on the free module P|H|

and a Gröbner basis of the syzygy module Syz(H) ⊂ P|H| for this ordering ≺H .

Construction 7.4. Let H = {H1, . . . ,Hr} be a Gröbner basis of the ideal I E P. On
the module Pr define the Schreyer module term ordering ≺H by

xµei ≺H xνe j ⇐⇒ xµ lm(gi) ≺ xν lm(g j) ∨
(
xµ lm(gi) = xν lm(g j) ∧ j < i

)
. (7.1)

By Buchberger’s criterion, the S -polynomial S(hi, h j) of two generators hi, h j ∈ H
has a standard representation

∑r
`=1 q`h` where lt(q`) lm(h`) � lt

(
S(hi, h j)

)
for all ` ∈

{1, . . . , r} with q` , 0. The leading module term of the corresponding syzygy

Si j :=
lcm

(
lt(hi), lt(h j)

)
lc(hi) lt(hi)

ei −
lcm

(
lm(hi), lm(h j)

)
lc(h j) lt(h j)

e j −

r∑
`=1

q`e` (7.2)

is lcm(lt(gi),lt(g j))
lt(gi)

ei and the set
{
Si j | 1 ≤ i < j ≤ s

}
is a Gröbner basis of Syz(H) for the

module term ordering ≺H .

Let us now consider the special case when H is an L-involutive-like basis of the
polynomial ideal 〈H〉 for a continuous involutive-like division L. Analogously to the
case of involutive bases, we can construct a directed graph with one node for each
leading term lt(h j) ∈ lt(H) and a directed edge from lt(h j) to lt(hi) exactly when
there is an L-non-multiplicative power xp

k ∈ NMPL
(
lt(h j), lt(H)

)
such that xp

k · lt(h j) ∈
CL

(
lt(hi), lt(H)

)
. We call it the L-graph of lt(H). Note that it is acyclic because of the

continuity of L. This leads to the concept of L-orderings.

Definition 7.5. Let U ⊂ T be a strong L-involutive-like basis for the monomial ideal
〈U〉 for a continuous involutive-like division L. Then an L-ordering of U is an enu-
meration U = {u1, . . . , ur} for which i < j whenever there exists a non-multiplicative
power xp

k ∈ NMPL(ui,U) such that xp
k · ui ∈ CL(u j,U).

The following proposition is immediate from the above discussion.
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Proposition 7.6. Let the involutive-like division L be continuous. Then for each strong
L-involutive-like basis U there exists an L-ordering.

We continue the analysis of the syzygies of an L-involutive-like basis H of the
polynomial ideal 〈H〉 with respect to a continuous involutive-like division L. As-
sume that H = {h1, . . . , hr} is enumerated according to an L-ordering. Let xp

k ∈

NMPL
(
lt(hi), lt(H)

)
be a non-multiplicative power of a leading term lt(hi) ∈ lt(H).

Then there exists a unique generator h j ∈ H \ {hi} such that xp
k ∈ CL

(
lt(h j), lt(H)

)
.

The polynomial hi j := xp
k hi − c

(
xp

k lt(hi)/ lt(h j)
)
h j ∈ I has, for a suitably chosen

scalar c ∈ K , the leading term lt(hi j) ≺ xp
k lt(hi). Then, the standard representation

obtained by involutive-like reduction hi j =
∑

hα∈H qα · hα yields the syzygy Si;k =

xp
k ei − c

(
xp

k lt(hi)/ lt(h j)
)
e j −

∑
hα∈H qαeα. We have lt(Si;k) = xp

k ei with respect to the
Schreyer ordering ≺H . We now show that in the case that L is either the Pommaret-like
or the Janet-like division the collection of the thus obtained syzygies is an involutive-
like basis of the syzygy module Syz(H).

Theorem 7.7. Let H = {h1, . . . , hr} ⊂ P be a strong Janet-like or Pommaret-like,
respectively, basis of the polynomial ideal 〈H〉 enumerated according to a J- or P-
ordering, respectively. Then the set

HSyz =
{
Si;k | 1 ≤ i ≤ r ∧ ∃xp

k ∈ NMPL
(
lt(hi), lt(H)

)}
of syzygies induced by non-multiplicative powers from a Janet-like or Pommaret-like,
respectively, basis of the syzygy module Syz(H) with respect to the Schreyer module
term ordering ≺H .

Proof. By construction, HSyz ⊆ Syz(H). Let 0 , S =
∑|H|

i=1 siei ∈ Syz(H) be any
non-zero syzygy. Then there exists a module term xµe` ∈ supp(S) such that xµ lt(h`) <
CL

(
lt(h`), lt(H)

)
, as otherwise the leading terms of the summands sihi are distinct and

the highest appearing term cannot cancel out. Thus, a non-multiplicative power xp
k ∈

NMPL
(
lt(h`), lt(H)

)
exists such that xp

k divides xµ and thus lt(S`;k) divides xµe`. This
means that any non-zero syzygy is reducible with respect to HSyz which implies the
existence of a standard representation of S with respect to HSyz. Hence, HSyz is a
Gröbner basis of Syz(H) with respect to≺H . It is in fact an involutive-like basis because
of Lemma 7.1.

8. Conclusions

We studied a not much known recursive criterion for Janet bases already proven
by Janet himself. We provided a slightly modified form of it with a novel proof and
exploited this for the design of a novel algorithm for the construction of Janet bases.
Right now, we cannot make any statements about the efficiency of this algorithm com-
pared to the classical one. From a theoretical point of view it is interesting to note
that the novel approach also leads to an algorithm for turning a given Janet basis into
a minimal one. To the best of our knowledge, this is the first such algorithm; previous
algorithms only permit the direct construction of minimal Janet bases and cannot really
exploit the previous knowledge of a (non-minimal) Janet basis.
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We extended the recursive approach also to Pommaret bases. In their construction,
a crucial part is always to determine “good” coordinates. We showed that the novel re-
cursive criterion also permits the effective construction of such coordinates. Compared
with the results by Hashemi et al. (2018), the proof of the termination of this process
becomes much simpler, which is a great theoretical advantage. It still remains to be
checked whether the novel approach is also more efficient in practical computations.
There are some indications that this might be the case, as Algorithm 9 e. g. naturally
incorporates permutations (which helps to preserve sparsity) and groups several ele-
mentary moves into one transformations. However, the decisive factor is how sparse
the finally obtained linear change really is and it is difficult to predict how different
approaches fare in this respect.

We then studied Janet-like bases and provided also for them a recursive criterion
leading to a corresponding completion algorithm. Janet-like bases are of interest, as
they are typically smaller than Janet bases, but still permit most of the typical applica-
tions of the latter ones. We then extended the idea behind Janet-like bases to arbitrary
involutive divisions and studied in detail the case of the Pommaret-like division. We
had to drop the filter axiom in this process, but replaced it with the strong basis prop-
erty which is e. g. satisfied by the Pommaret-like division. We could show that the
Pommaret-like division possesses the crucial properties for algorithms: continuity and
constructivity.

Involutive-like bases are of interest, as they are generally smaller than the corre-
sponding involutive bases, but still can be used for most applications. We showed in
particular a Schreyer theorem for Janet-like and Pommaret-like bases. Such a result
represents a first step towards the construction of free resolutions. It is well-known that
Pommaret bases induce nice, though generally non-minimal resolutions (Seiler, 2010;
Albert et al., 2015). It can be expected that Pommaret bases induce smaller resolutions
and thus allow for the more efficient determination of Betti numbers.
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