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Abstract. In this paper, we firstly extend the concept of Gröbner bases to relative Gröbner bases
for ideals in and modules over quotient rings. We develop a “relative” variant of both Buchberger’s
criteria and Schreyer’s theorem for syzygies. We then introduce the new notion of relative invo-
lutive bases and present an algorithm for their construction. Finally, we define the new notion
of relatively quasi-stable ideals and exploit it for the construction of coordinates in which finite
relative Pommaret bases exist.
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1. Introduction
The concept of Gröbner bases along with the first algorithm to compute them was introduced by
Buchberger in his PhD thesis [4, 5]. Since then, many interesting applications of these bases have
been found in mathematics, science, and engineering. Due to this wide range of applications of
Gröbner bases, many improvements of the original algorithm and alternative approaches have been
developed. For example, Buchberger himself proposed two criteria to improve his algorithm by re-
moving superfluous reductions [3]. Based on effective linear algebra methods and by applying these
two criteria, Faugère described the F4 algorithm [8]. He also proposed a signature-based algorithm
known as F5 algorithm [9]. As a final example, Gao et al. [10] presented a new approach to compute
simultaneously the Gröbner bases of an ideal and of its syzygy module.

Involutive bases (which are a special kind of Gröbner bases with additional combinatorial
properties) have their origin in the works by Janet [18] on the analysis of systems of (linear) par-
tial differential equations. Zharkov and Blinkov [29] introduced the notion of involutive polynomial
bases inspired by works of Pommaret [23]. Then, Gerdt and Blinkov [12] introduced the general
concepts of involutive divisions and involutive bases for polynomial ideals and derived with them
an alternative algorithm for computing Gröbner bases. Involutive bases arise via a restriction of the
usual divisibility relation of monomials to an involutive division. Gerdt [11] proposed an efficient al-
gorithm to compute these bases. For an implementation of this algorithm and extensive benchmarks,
we refer to the website http://invo.jinr.ru. For a comprehensive study and applications of
the theory of involutive bases to commutative algebra and the geometric theory of partial differential
equations, we refer to [26].

Let P = K[x1, . . . , xn] be a polynomial ring over a field K. A well-known application of
Gröbner bases as well as involutive bases is the construction of free resolutions of finitely generated
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P-modules, see e. g. [2, 6, 20, 24, 25]. As already the title of Buchberger’s thesis [4] indicates,
Gröbner bases are also used for effective computations in the quotient ring P/I where I ⊲ P is an
ideal. In this work, we are interested in basic tools for the construction of free resolutions of finitely
generated P/I-modules. For this purpose, we are firstly concerned with extending the concept of
Gröbner bases to ideals in and modules over P/I (we refer to these new bases as relative Gröbner
bases). Such an extension is not new. Some ideas can already be found in textbooks like [1]. La
Scala and Stillman [20] sketched the necessary theoretical background and implemented procedures
in MACAULAY2 not only for computing Gröbner bases, but also for free resolutions. Nevertheless,
we believe that it is worth while to take a closer look at the details of such an extension for further
generalisations. We also present a variant of Buchberger’s algorithm for the computation of relative
Gröbner bases. However, our main contribution in this paper consists of introducing the concept
of relative involutive bases for ideals in and modules over P/I and designing an algorithm for
their construction. In this context, we will generalise the notion of well-known combinatorial notion
of a quasi-stable (monomial) ideal to relative quasi-stable ideals for the computation of relative
Pommaret bases in P/I. We note that most of the algorithms proposed in this work have been
implemented in MAPLE and their codes are available at the website https://amirhashemi.
iut.ac.ir/softwares.

This paper is structured as follows. Section 2 recalls the basic notations and definitions used
throughout. In Section 3, we introduce relative Gröbner bases and establish the analogy to the
Schreyer construction for ideals in quotient rings. In Section 4, we provide the basics for the con-
struction of relative Gröbner bases developing criteria analogous to Buchberger’s criterion and Buch-
berger’s (first and second) criteria to improve the computation of relative Gröbner bases. Section 5
is devoted to the study of relative involutive bases. We introduce the notion of a relative involu-
tive division and study the basic properties of relative involutive bases. In Section 6, we thoroughly
investigate the required properties for the construction of relative involutive bases. Section 7 pro-
vides a study of some combinatorial properties of finite relative Pommaret bases. We introduce the
new notion of a relative quasi-stable ideal and apply it to propose a deterministic algorithm for the
construction of finite relative Pommaret bases. We conclude with some remarks on future research.

2. Preliminaries
Let n ≥ 1 be a natural number. We write P ∶= K[X] = K[x1, . . . , xn] for the polynomial ring on
n variables over a field K. Every polynomial f ∈ P is a (finite) linear combination of terms cxµ,
where c ∈ K ∖ {0}, µ ∈ Zn≥0 and xµ = xµ1

1 ⋯xµnn is a monomial. We write supp(f) for the finite set
of monomials appearing in f . The set of all monomials in P defines a monoid for the multiplication
which we denote by the symbolM.

If an ideal I ⊴ P is generated over the ring P by a subset S ⊆ P , we write I = ⟨S⟩P . An ideal
I ⊴ P is called a monomial ideal, if it can be generated by monomials. Such an ideal possesses a
unique finite minimal generating set G(I) ⊆M consisting of those monomials of I which have no
divisor in I other than themselves. An order ideal is a subset O ⊆M such that for each monomial
xµ ∈ O, all divisors of xµ are also contained in O. In other words, O is an order ideal, if and only if
there exists a monomial ideal I such thatM ∖O = I ∩M.

A monomial ordering is a well-ordering ≺ onM which respects the multiplication of mono-
mials, that is, 1 ≺ xµ for all xµ ≠ 1 and if xµ ≺ xν , then xµ ⋅ xρ ≺ xν ⋅ xρ for all xρ ∈ M.
Given a monomial ordering ≺ and a polynomial f ∈ P ∖ {0}, we denote the leading monomial
of f by lm(f) ∶= max≺{supp(f)} where supp(f) stands for the set of all monomials appearing
in f . Also, we write lc(f) for the coefficient of lm(f) in f . The leading term is then written as
lt(f) ∶= lc(f) lm(f). For each subset F ⊂ P , we denote by lm(F ) the set {lm(f) ∣ f ∈ F}.

https://amirhashemi.iut.ac.ir/softwares
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For each ideal I ⊴ P and each monomial ordering ≺, there exists a finite subset G ⊆ I such
that lm(G) generates the monomial ideal lm(I) ∶= ⟨lm(f) ∣ f ∈ I⟩P . Such a subset G of I is
called a Gröbner basis of I for the monomial ordering ≺. Note that every Gröbner basis of I is in
particular also a generating set of I. Gröbner bases are not unique, but every ideal I ⊴ P has for
each monomial ordering ≺ a unique reduced Gröbner basis which satisfies additionally that for each
g ∈ G (i) lc(g) = 1 and (ii) no monomial of g lies in ⟨lm(G ∖ {g})⟩. The monomials in the order
idealM ∖ lm(I) form a K-linear basis of the quotient ring P/I and each polynomial f ∈ P has a
unique normal form with respect to the Gröbner basisG which is a linear combination of monomials
ofM ∖ lm(I). We denote this normal form by NFG(f). If G = {g1, . . . , gt} is a Gröbner basis of
the ideal I for ≺, then there exists for each ideal member f ∈ I a representation f = q1g1 + . . .+ qtgt
with qi ∈ P and where for each index i with qi ≠ 0 we have lm(qigi) ⪯ lm(f). Such a representation
is called a standard representation with respect to G for f ; it is generally not unique.

The concept of monomial orderings and Gröbner bases can straightforwardly be extended to
submodules of free P-modules. Let s ≥ 1 be a positive integer and view the elements of the free
P-module Ps as row vectors. Moreover, let {e1, . . . ,es} be the standard basis of Ps. Then, every
vector f ∈ Ps is a finite K-linear combination of module monomials xµei with xµ ∈ M and i ∈
{1, . . . , s}. A module monomial ordering ≺ is a total ordering and well-ordering on the set of all
module monomials such that, for all i and for all xµ ∈M, if xµei ≺xνej , then xµxρei ≺xνxρej for
all xρ ∈M. Similar to the polynomial case, any element f ∈ Ps can be written as a linear combination
of module monomials and one is able to define the notions of module leading coefficient, module
leading monomial and module leading term for f which are denoted by lc(f), lm(f) and lt(f),
respectively. If u ∶= xµei and v ∶= xνej are two module monomials in Ps, then we say that u
divides v, and write u ∣ v if i = j and xµ divides xν . If u divides v, then the quotient v/u is defined
to be xν/xµ ∈ M. Based on these definitions, one is able to build a theory of Gröbner bases for
submodules of Ps similar to the one for ideals in P . For a description of the division algorithm,
Buchberger’s algorithm to compute Gröbner bases and further details on their theory, we refer to
standard textbooks like [1, 7, 6].

We finally recall some basic notions around involutive bases. More details on them, corre-
sponding algorithms and applications can be found in [26]. Involutive bases are a special form of
Gröbner bases with additional combinatorial properties. The main point is that to each generator h
in a basis H a subset L(h,H) ⊆ X of multiplicative variables is assigned and that one considers
only linear combinations of the generators where each generator h ∈H is multiplied by a coefficient
depending only on the variables in L(h,H). In contrast to Gröbner bases, not every monomial basis
of a monomial ideal is automatically an involutive basis.

The rule for the assignment of the multiplicative variables is called an involutive division. Given
a finite setH of monomials, the involutive divisionL assigns to each monomial h ∈H the multiplica-
tive variables L(h,H) such that the corresponding involutive cones CL,H(h) ∶= hK[L(h,H)]∩M

satisfy the following conditions:

1. IfH contains two monomials h, h′ such that CL,H(h)∩CL,H(h′) ≠ ∅, then either h ∈ CL,H(h′)
or h′ ∈ CL,H(h).

2. If H contains two monomials h, h′ such that h ∈ CL,H(h′), then CL,H(h) ⊆ CL,H(h′).
3. If H ′ ⊂H are two sets both containing the monomial h, then CL,H(h) ⊆ CL,H′(h).

Given a finite set H of monomials and an involutive division L, we call H a weak L-involutive
basis of the monomial ideal I = ⟨H⟩, if ⋃h∈H CL,H(h) generates I as a K-linear space. It is a
(strong) L-involutive basis, if in addition the involutive cones CL,H(h) are pairwise disjoint. The
L-involutive basis H is minimial, if any other L-involutive basis H ′ of I contains H as subset. L is
called noetherian, if every monomial ideal I possesses an L-involutive basis. One can show that for
a constructive (see [26] for a definition), noetherian division every monomial ideal I has a unique
minimal L-involutive basis.
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Given a finite set H of polynomials, a monomial ordering ≺ and an involutive division L, we
call H a weak L-involutive basis of the ideal I = ⟨H⟩, if lmH is a weak L-involutive basis of lmI.
For a (strong) L-involutive basis, we require in addition that lmH is a strong L-involutive basis and
that all generators h ∈ H have pairwise disjoint leading monomials. We assign to each polynomial
h ∈ H the multiplicative variables L(lm (h), lm (H)) and define the involutive cone CL,H,≺(h) ∶=
hK[L(h,H)]. A strong involutive basis H of an ideal I induces then a disjoint decomposition
I = ⊕h∈H CL,H,≺(h) as K-linear spaces. H is a minimal L-involutive basis of I, if lmH is a
minimal L-involutive basis of lmI.

For most purposes, two involutive divisions are particularly important. For the Pommaret di-
vision P , the assignment rule is very simple. Given a monomial xµ, the class of xµ, denoted by
cls(xµ), is defined as k = min{i ∣ µi ≠ 0}. Let P (xµ) = {x1, . . . , xk}. It is a so-called global divi-
sion where the assignment is independent of any ambient set H . For the Janet division, we introduce
for a finite set H ⊂M the following subsets: (νi, . . . , νn) = {xµ ∈ H ∣ ∀j ≥ i ∶ µj = νj}; note that
() =H . We now have that xi ∈ J(xµ,H), if µi = max{νi ∣ x

ν ∈ (µi+1, . . . , µn)}.
In contrast to the Janet division, the Pommaret division is not noetherian. However, one can

show that this is only a problem of the used coordinates: after a generic linear change of variables
any ideal possesses a Pommaret basis provided the coefficient field K is large enough (see [15] for
an extensive discussion and a deterministic algorithm for finding a suitable change of variables). As
generally a monomial ideal does not remain monomial after a linear change of variables, Pommaret
bases exist only for a special class of monomial ideals. For Pommaret bases, we will always consider
the degree reverse lexicographical ordering ≺ with x1 ≺ ⋯ ≺ xn.

Definition 2.1. A monomial ideal I is called quasi-stable, if for any monomial xµ ∈ I and for any
index i with cls(xµ) < i ≤ n an exponent s ≥ 0 exists such that xsix

µ/xcls(xµ) ∈ J . A polynomial
ideal I is in quasi-stable position, if lt(I) is quasi-stable.

Quasi-stable ideals appear in many places (and are known under many different names like
ideals of Borel type, ideals of nested type or weakly stable ideals). Besides the above combinatorial
definition, they can be characterised by many algebraic properties. For our purposes, the following
characterisation is relevant.

Proposition 2.2 ([26, Prop. 5.3.4]). A monomial ideal I possesses a finite Pommaret basis, if and
only if it is quasi-stable.

3. Relative Gröbner Bases and Syzygies
A basic building block of the theory of Gröbner basis is polynomial division. Since we are interested
in establishing an analogous theory for ideals in a quotient ring P/I, we need a division algorithm
that takes the ideal I into account as well. Suppose we are given a reduced Gröbner basis G of
an ideal I ⊴ P with respect to a given monomial ordering ≺. Additionally, let h1, . . . , hr ∈ P be
polynomials which are reduced with respect to G, i. e. NFG(hi) = hi for all 1 ≤ i ≤ r. Finally, we
are given a polynomial f ∈ P which we want to divide by the set H = {h1, . . . , hr} modulo I. The
result is then a polynomial f̃ , reduced with respect toG and with no monomial in its support divisible
by any monomial in lm(H). Algorithmically, this result can be achieved by repeatedly applying the
normal form operation NFG followed by a classical polynomial division step with respect to H .
Algorithm 1 is a formalisation of this idea.

Remark 3.1. The support of the quotient polynomial qk belonging to hk computed during the course
of Algorithm 1 is contained in the order idealM ∖ (lm(I) ∶ lm(hk)). Since H ∪G need not be a
Gröbner basis of ⟨H⟩P +I, the polynomial p in the output of Algorithm 1 is not uniquely determined
by the input, but depends on the chosen polynomials g and hi, resp., in the various reduction steps.
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Algorithm 1: Relative Polynomial Division
Data: A monomial ordering ≺, an ideal I ⊴ P , a Gröbner basis G of I, a set of

polynomials H = {h1, . . . , hr} ⊂ P with NFG(hi) = hi for all i and f ∈ P

Result: A polynomial p ∈ P with support disjoint from ⟨lm(I), lm(H)⟩, polynomials
q1, . . . , qr ∈ P with f − p −∑ri=1 qihi ∈ I

begin
f̃ ←Ð f ; p←Ð 0

for i = 1, . . . , r do
qi ←Ð 0

while f̃ ≠ 0 do
if lm(f̃) ∈ ⟨lm(G)⟩ then

Choose g ∈ G with lm(g)∣ lm(f̃)

f̃ ←Ð f̃ − lt(f̃)
lt(g) g

else if lm(f̃) ∈ ⟨lm(H)⟩ then
Choose hi ∈H with lm(hi)∣ lm(f̃)

qi ←Ð qi +
lt(f̃)
lt(hi) ; f̃ ←Ð f̃ − lt(f̃)

lt(hi)hi
else

p←Ð p + lt(f̃); f̃ ←Ð f̃ − lt(f̃)

return (p, q1, . . . , qr)

Definition 3.2. If the polynomial p is a possible output of Algorithm 1 for input f,H,I,≺, then we
write f Ð→∗

H,I,≺ p and say that f reduces to p with respect to H modulo I. We omit the reference
to the monomial ordering ≺ if no confusion can arise.

Given an ideal I ◁P , we are interested in defining something like Gröbner bases for ideals in
the quotient ring P/I. As it makes no sense to speak of monomials in this ring, a direct approach
does not appear meaningful. Instead, we exploit the well-known fact that any ideal in P/I is of the
form J /I for an ideal I ⊆ J ⊴ P . Therefore our basic idea is to determine suitable bases of J
“relative” to I which may be interpreted as Gröbner bases of J /I.

From now on, we fix a monomial ordering ⪯ on P and leading monomials, terms, coefficients,
Gröbner bases etc. will always be determined with respect to it. In particular, the leading ideal
lm(I) is thus fixed. Every coset1 [f]I = f + I ∈ P/I contains then a unique representative f̃ =

NFI(f) with supp(f̃) ∩ lm(I) = ∅ (it can be easily determined as the normal form of f with
respect to an arbitrary Gröbner basis of I). If not explicitly stated otherwise, we will in the sequel
always assume that each coset [f] is described by this unique representative. This allows us to
define lm([f]) = lm(f) and accordingly lc([f]), lt([f]). For an ideal J /I ⊴ P/I, we then find
lm(J /I) = lm(J ) ∖ lm(I). Finally, we denote by π the canonical projection P → P/I.

Definition 3.3. Let I ⊆ J ◁ P be ideals. The finite subset H ⊂ J is called a Gröbner basis of J
relative to I, if ⟨lm(H)⟩+lm(I) = lm(J ). A finite subset Ĥ = {[h1], . . . , [hr]} ⊂ Ĵ = J /I◁P/I

is a Gröbner basis of Ĵ , if {h1, . . . , hr} is a Gröbner basis of J relative to I or equivalently if
⟨lm(Ĥ)⟩ + lm(I) = lm(J ).

Relative Gröbner bases exist, since every Gröbner basis of J is also a Gröbner basis of J
relative to I. Given a relative Gröbner basis of J with respect to I, we can extend it trivially to a
Gröbner basis of J . Relative Gröbner bases can be characterised similarly to the classical case.

1We omit the index I, if it is clear from the context by which ideal we factor.
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Proposition 3.4. Let H = {h1, . . . , ht} ⊂ J be a finite set and G a Gröbner basis of I. Then the
following statements are equivalent:

● H is a Gröbner basis of J relative to I.
● H ∪G is a Gröbner basis of J .
● For any f ∈ J , we have f Ð→∗

H,I,≺ 0.
● Any f ∈ J has a relative standard representation of the form f = g+∑

t
i=1 qihi where g ∈ I and

lm(qihi) ⪯ lm(f) for each i with qi ≠ 0.

Proof. By definition of a relative Gröbner basis, we know that ⟨lm(H)⟩+ ⟨lm(G)⟩ = lm(J ). Thus,
if f ∈ I, then lm(f) is divisible by some lm(g) with g ∈ G and if f ∈ J ∖ I, then lm(f) is divisible
by some lm(h) with h ∈H . Thus,H being a relative Gröbner basis of J is equivalent toH∪G being
a Gröbner basis of J . The last two statements follow by classical properties of Gröbner bases. ◻

As a consequence, the classical Buchberger algorithm provides us already with a basic proce-
dure to compute relative Gröbner bases. More precisely, we have the following observation.

Proposition 3.5. Let I ⊆ J ⊴ P be two polynomial ideals and F a finite generating set of J . Let
furthermore G be a Gröbner basis of I and call HBuchberger the Gröbner basis of J obtained by
applying Buchberger’s algorithm to the set F ∪G. Then H ∶=HBuchberger ∖ I is a Gröbner basis of
J relative to I.

Proof. Since HBuchberger is a Gröbner basis of ⟨F,G⟩P = J , it is of course also a Gröbner basis of
J relative to I and we can discard all elements belonging to I, as their leading monomials do not
divide any monomial in lm(J ) ∖ lm(I). ◻

Assume, again, that I ⊆ J ⊴ P are polynomial ideals. If F generates J , and G is a Gröbner
basis of I, then NFG(F ) ∪G also generates J . Applying Proposition 3.5 and observing that each
element that is added during the course of Buchberger’s algorithm is reduced with respect to G, i. e.
in normal form with respect to I, we get a Gröbner basis H of J relative to I with H = NFG(H).
Iteratively discarding any element of H whose leading monomial is divisible by the leading mono-
mial of another element of H , then performing a full auto-reduction and finally normalising leading
monomials, we get a reduced Gröbner basis of J relative to I, that is, a set H with NFG(H) = H
with the additional properties

● ∣H ∣ = ∣G(lm(J )) ∖ lm(I)∣,
● {lm(h) ∣ h ∈H} = G(lm(J )) ∖ lm(I),
● ∀h ∈H ∶ lc(h) = 1,
● ∀h ∈H ∶ supp(h − lt(h)) ⊆M∖ lm(J ).

Proposition 3.6. Let H be a Gröbner basis (resp., the reduced Gröbner basis) of J ⊇ I and let G
be a Gröbner basis of I. Then H ∶= NFG(H) is a Gröbner basis (resp., the reduced Gröbner basis)
of J relative to I.

Proof. Let xµ ∈ G(lm(J )) ∖ lm(I). Then there exists a polynomial h ∈H with lm(h) = xµ. Now,
since the leading monomial of h cannot be reduced modulo I and since reduction modulo I (as,
indeed, reduction modulo any set) does not introduce higher monomials than the monomials that are
eliminated by the reduction, we have lm(NFG(h)) = xµ. The claim follows. ◻

We may extend the above theory to modules. This requires a bit care with the used orderings.
We continue to assume that we are given an ideal I◁P and a monomial ordering ≺ defining the
monomial ideal lm(I). Then we fix on the free module Pr with the standard basis {e1, . . . ,er} a
module monomial ordering ≺ which must be compatible to ≺ in the sense that if xµ ≺ xν then also
xµei ≺x

νei for any index 1 ≤ i ≤ r (obviously, any POT or TOP lift of ≺ will be compatible to ≺,
but also any Schreyer ordering based on ≺).
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If we write an element of (P/I)r as a vector of cosets, then we use again the convention
that for each coset the unique representative in normal form with respect to I has been chosen. As
in the scalar case, this convention allows us to extend the notions of leading module monomial,
leading coefficient etc. to vectors of cosets. Denoting again by π the extension of the canonical
projection onto the cosets to the projection Pr → (P/I)r, we associate with any P/I-submodule
N̂ ⊆ (P/I)r the P-submodule N = π−1(N̂ ) and find then analogously to the scalar case that
lm(N ) = lm(N̂ ) +∑

r
i=1 lm(I)ei.

Definition 3.7. Let I◁P be a polynomial ideal andN ⊂ Pr a P-submodule containing Ir. A finite
setB ⊂ N disjoint from Ir is called a Gröbner basis ofN relative to I, if ⟨lm(B)⟩+∑

r
i=1 lm(I)ei =

lm(N ). A finite subset {[h1], . . . , [hs]} of a P/I-submodule N̂ ⊆ (P/I)r is a Gröbner basis of
N̂ , if {h1, . . . ,hs} is a Gröbner basis of N relative to I.

Note that, if G is a Gröbner basis of I, then B is a relative Gröbner basis of N with respect
to I if and only if the set B ∪ {gei ∣ g ∈ G,1 ≤ i ≤ r} is a Gröbner basis of N because of the
assumed compatibility of the monomial orderings ≺ and ≺. With this definition, we can now analyse
relative Gröbner bases of syzygy modules. Schreyer’s construction [24] allows us to compute a
Gröbner basis of a syzygy module of a set of polynomials, if this set is a Gröbner basis of the ideal it
generates. A decisive step in Schreyer’s construction is the definition of a module monomial ordering
adapted to the given Gröbner basis. By a characteristic property of Gröbner bases, all S-polynomials
of the given set reduce to zero, which yields syzygies whose leading module monomials encode
the monomials where the cancellations defining the S-polynomials happen. We now introduce the
necessary notation to be able to adapt it to the relative case.

Construction 3.8. Let G = {g1, . . . , gs} be a Gröbner basis of the ideal I ⊴ P . We write Syz(G) =

Syz(g1, . . . , gs); recall that (p1, . . . , ps) ∈ Syz(G) if and only if ∑si=1 pigi = 0. On the module Ps,
define the Schreyer module monomial ordering ≺S by

xµei ≺S x
νej ⇐⇒ xµ lm(gi) ≺ x

ν lm(gj) ∨ (xµ lm(gi) = x
ν lm(gj) ∧ j < i). (1)

For 1 ≤ i < j ≤ s, the S-polynomial of the generators gi and gj is defined to be S(gi, gj) ∶=
lcm(lm(gi),lm(gj))

lt(gi) gi −
lcm(lm(gi),lm(gj))

lt(gj) gj . By Buchberger’s criterion, S(gi, gj) reduces to zero with
respect to G for each i, j, which entails that it has a standard representation ∑s`=1 q`g`, where the
polynomials q` ∈ P are such that lm(q`) lm(g`) ⪯ lm(S(gi, gj)) for all ` ∈ {1, . . . , s} with q` ≠ 0.
By definition of the Schreyer ordering, the leading module monomial of the resulting syzygy

Sij ∶=
lcm(lm(gi), lm(gj))

lt(gi)
ei −

lcm(lm(gi), lm(gj))

lt(gj)
ej −

s

∑
`=1

q`e` (2)

is lcm(lm(gi),lm(gj))
lt(gi) ei, and one can show that the set {Sij ∣ 1 ≤ i < j ≤ s} is a Gröbner basis of

Syz(G) with respect to the Schreyer module monomial ordering adapted to G. Below, we refer to
Sij as the S-syzygy corresponding to gi and gj .

Consider again two ideals I ⊆ J ⊴ P . Let H = {h1, . . . , hr} be a Gröbner basis of J relative
to I and let G = {g1, . . . , gs} be a Gröbner basis of I. We may as well assume both bases to be
reduced, but this is not strictly necessary. But we will always assume that NFG(H) = H , i. e. H is
given by polynomials in normal form with respect to the ideal I and the given monomial ordering.
To apply Schreyer’s construction, we need to choose an enumeration of the polynomials involved.
We choose to give precedence to the polynomials inH over the polynomials inG. This will be useful
later as a kind of elimination ordering when we look at the syzygies of H relative to I.

In the Schreyer construction of Syz(H,G) ∶= Syz(h1, . . . , hr, g1, . . . , gs) – the set H ∪G is
a Gröbner basis of J by Proposition 3.4 – we have a certain degree of freedom in that for each
S-polynomial, we may choose one of the various available standard representations with respect to
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H∪G. Specifically, every time a term belonging to a monomial in lm(I) needs to be reduced, we can
choose a reduction by an element ofG; note that Algorithm 1 implements just this kind of reduction.
This way, reductions with respect to H are only performed for terms belonging to monomials of the
order idealM∖ lm(I). This has the effect that the quotient polynomial q belonging to an element
h ∈H is built up exclusively of terms belonging to monomials not in lm(I). Divisors of monomials
inM∖ lm(I) are again not in lm(I), sinceM∖ lm(I) is an order ideal.

The canonical projection π onto the cosets induces furthermore a projection map from Syz(H,G)

to SyzP/I([h1], . . . , [hr]) which we continue to call π. Let p ∈ Pr and q ∈ Ps. Then we define

π ∶ Syz(h1, . . . , hr, g1, . . . , gs)Ð→ SyzP/I([h1], . . . , [hr]), (p,q)z→ [p], (3)

where by [p] we denote the vector obtained from p by taking cosets in each component. Of course,
we still need to prove that π has the properties that one would expect from a projection map. For
this, we shall need the definition of an A-polynomial.

Definition 3.9. With the above notations, an S-polynomial of a pair (hi, gα) ∈H ×G is called anA-
polynomial and is denoted by A(hi, gα). As in Construction 3.8, we also introduce the corresponding
notion of an A-syzygy denoted by Aiα.

To justify the notations introduced in Definition 3.9, let us note that Sij is the syzygy induced
by the S-polynomial of two generators hi, hj ∈H , whereas Aiα is the syzygy induced by annihilat-
ing the leading monomial of hi modulo lm(I). As it is well-known, the letter ”S” is an abbreviation
for "syzygy", whereas ”A” refers to "annihilator" inspired by the work of Norton and Salagean [22]
on Gröbner bases over principal ideal rings (see also [19]).

In the rest of this section, for the sake of simplicity, we will use the subindices r + 1, . . . , r + s
for the polynomials g1, . . . , gs; i. e. we define hα ∶= gα−r for α = r + 1, . . . , r + s. Thus, we will
consider the set {h1, . . . , hr+s} and we will study the syzygy module Syz(H,G) of these polyno-
mials in Pr+s. Let {e1, . . . ,er+s} be the standard basis of Pr+s. By Sij (respectively Aiα), we
mean the syzygy module element corresponding to the S-polynomial S(hi, hj) with 1 ≤ i < j ≤ r
(respectively to the A-polynomial A(hi, hj) with 1 ≤ i ≤ r and r + 1 ≤ α ≤ r + s) involving the
module elements {e1, . . . ,er+s}, see (2). However, when we write Sαβ we mean the syzygy module
element corresponding to the S-polynomial S(hα, hβ) with r + 1 ≤ α < β ≤ r + s containing merely
the module elements {er+1, . . . ,er+s}. With these notation we can state the following proposition.

Proposition 3.10. The map π defined in (3) is a P-linear surjective map. The syzygy module
SyzP/I([h1], . . . , [hr]) is generated as a P/I-module by the image of the subset

{Sij ∣ 1 ≤ i < j ≤ r} ∪ {Aiα ∣ 1 ≤ i ≤ r, r + 1 ≤ α ≤ r + s} ⊂ Syz(H,G)

under the map π.

Proof. We first show that π is well-defined. Let (p,q) ∈ Syz(H,G) with p = (p1, . . . , pr) and
q = (q1, . . . , qs). Then ∑ri=1 pihi +∑

s
α=1 qαgα = 0, so ∑ri=1 pihi = −∑

s
α=1 qαgα ∈ I , which implies

∑
r
i=1[pi][hi] = [0] modulo I . This means that [p] ∈ SyzP/I([h1], . . . , [hr]). Hence, π is well-

defined. The P-linearity of π follows from the P-linearity of the canonical projection P → P/I.
To show surjectivity, let ([p1], . . . , [pr]) ∈ SyzP/I([h1], . . . , [hr]) be an arbitrary syzygy.

Then ∑ri=1[pi][hi] = [0] and thus ∑ri=1 pihi ∈ I. A standard representation with respect to G
yields polynomials q1, . . . , qs with ∑ri=1 pihi + ∑

s
α=1 qαgα = 0. Hence (p1, . . . , pr, q1, . . . , qs) ∈

Syz(h1, . . . , hr, g1, . . . , gs) is a preimage of ([p1], . . . , [pr]) and π is surjective.
Since π is P-linear and surjective, any generating set of Syz(H,G) is mapped to a generating

set of the module SyzP/I([h1], . . . , [hr]). By Schreyer’s construction, we know that the syzygies
Sij ,Aiα,Sαβ form a generating set of Syz(H,G). The syzygies Sαβ with r + 1 ≤ α < β ≤ r + s are
mapped to 0 under π, as our special choice of a standard representation for S(hα, hβ) implies that
Sαβ has its first r components equal to 0. Hence we can omit them and our claim follows. ◻



Relative Gröbner and Involutive Bases 9

This result motivates the introduction of some special notations to reflect the two somewhat
different subsets making up the constructed generating set of Syz(H,G), in particular, as the two
subsets will be treated quite differently at many places.

Definition 3.11. LetG = {g1, . . . , gs} be a Gröbner basis of the ideal I ⊴ P and letH = {h1, . . . , hr}
be a set disjoint from I such that NFG(H) = H and H ∪G generates the ideal J ⊇ I. Keeping the
above notations, we define the set of all S-syzygies of H relative to G by

S(H,G) = {Sij ∣ 1 ≤ i < j ≤ r} (4)

and the set of all A-syzygies of H relative to G by

A(H,G) = {Aiα ∣ 1 ≤ i ≤ r, r + 1 ≤ α ≤ r + s}. (5)

Construction 3.8 can be extended to P/I-submodules of (P/I)r. Thus, we are able to show
that the generating set obtained in Proposition 3.10 is even a Gröbner basis.

Theorem 3.12. Let G = {g1, . . . , gs} be the reduced Gröbner basis of the ideal I ⊴ P and let
H = {h1, . . . , hr} be a Gröbner basis of the ideal J ⊇ I relative to I such that NFG(H) = H
and let π be the projection map of the corresponding syzygy modules defined in (3). Then the set
π(S(H,G)) ∪ π(A(H,G)) is a Gröbner basis of the syzygy module SyzP/I([h1], . . . , [hr]) for
the Schreyer ordering ≺S .

Proof. From Proposition 3.10 above, we know already that the set π(S(H,G))∪π(A(H,G)) gen-
erates SyzP/I([h1], . . . , [hr]) as a P/I-module. Thus, we must only show that for each syzygy
[p] ∈ SyzP/I([h1], . . . , [hr]) there exists a generator [q] ∈ π(S(H,G)) ∪ π(A(H,G)) such
that lm([q]) divides lm([p]) with the leading monomials taken with respect to the Schreyer
ordering ≺S . Let [p] = ([p1], . . . , [pr]). By the proof of Proposition 3.10, there exists a syzygy
S = (p1, . . . , pr, q1, . . . , qs) ∈ π

−1([p]) which implies that the polynomial g ∶= ∑ri=1 pihi lies in the
ideal I. Since G is a Gröbner basis of I, there exists a standard representation g = ∑sα=1 q

′
αgα en-

tailing that max≺{lm(q′1g1), . . . , lm(q′sgs)} ⪯ lm(g). This shows that the preimage π−1([p]) also
contains the syzygy S′ = (p1, . . . , pr, q

′
1, . . . , q

′
s) which satisfies

max≺ {lm(q′1g1), . . . , lm(q′sgs)} ⪯ max≺ {lm(p1h1), . . . , lm(prhr)} .

Assume that lm(pihi) = max≺{lm(p1h1), . . . , lm(prhr)} where i is minimal with this property.
Then lm(pi)ei is the module leading monomial of S′ with respect to ≺S . Now, two cases may
occur: If there exists j ∈ {1, . . . , r} ∖ {i} such that lm(pihi) = lm(pjhj) then lm([p]) is divisible
by lm(π(Sij)). Otherwise, there exists α ∈ {r + 1, . . . , r + s} such that lm(pihi) = lm(q′αgα). It
follows that lm([p]) is divisible by lm(π(Aiα)) and this completes the proof. ◻

4. Computation of Relative Gröbner Bases
In the previous section, we showed how to compute relative Gröbner bases using the most basic
version of Buchberger’s algorithm. In this section, we will develop “relative” criteria analogous to
Buchberger’s S-polynomial criterion for a Gröbner basis as well as Buchberger’s (first and second)
criteria for recognising unnecessary reductions. As starting point, we recall a result of Möller et al.
[21] relating the computation of Gröbner bases of polynomial ideals to Gröbner bases of syzygy
modules of sets of monomials.

Theorem 4.1 ([21, Thm 2.7]). Let G = {g1, . . . , gs} ⊂ P be a set of polynomials and B a Gröbner
basis of the submodule Syz(lm(g1), . . . , lm(gs)) ⊂ Ps. Then G is a Gröbner basis of the ideal it
generates, if and only if for all b = (b1, . . . , br) ∈ B we have ∑si=1 bigi Ð→

+
G 0.

To obtain an analogous result in the context of relative Gröbner bases, we shall need the next
proposition inspired by [22, Thm 4.6].
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Proposition 4.2. Let I◁P be a monomial ideal andH = {xµ1 , . . . , xµr} ⊂M∖I a set of standard
monomials. With xµij ∶= lcm(xµi , xµj), the syzygy module SyzP/I([x

µ1], . . . , [xµr ]) is generated
as P/I-module by

B ∶= {[
xµij

xµi
]ei − [

xµij

xµj
]ej ∣ 1 ≤ i < j ≤ r} ∪

r

⋃
i=1

[G(I ∶ xµi)]ei .

Proof. Let G = {xν1 , . . . , xνs} be the minimal generating set of I. It is clear that G (resp. H)
is a Gröbner basis for I (resp. the ideal it generates) with respect to any monomial ordering. Thus,
applying Theorem 3.12 to the setsG andH , we see that the first subset inB consists of the projection
of the S-polynomials between all pairs of elements of H and the second component comes from the
projection of the A-polynomials between all pairs in H ×G.

To be more precise for the second component, we show that

⟨π(A(H,G))⟩P/I = ⟨
r

⋃
i=1

[G(I ∶ xµi)]ei⟩
P/I

.

By definition, mxµi ∈ I for any index i and any monomial m ∈ G(I ∶ xµi). Hence there exists
an index α such that xνα ∣ mxµi . It follows that there exists a monomial u ∈ P such that mxµi =
u lcm(xµi , xνα) and the module element Aiα = lcm(xµi , xνα)/xµiei − lcm(xµi , xνα)/xναeα sat-
isfies uAiα = mei −mx

µi/xναeα. We conclude that [mei] = [u]π(Aiα) ∈ ⟨π(A(H,G))⟩P/I by
the definition of π.

Conversely, let us consider the element π(Aiα) ∈ π(A(H,G)) where Aiα is the syzygy
corresponding to the A-polynomial between xµi and xνα . Write Aiα = xθ

xµi
ei −

xθ

xνα
eα where

xθ = lcm(xµi , xνα). By the definition of π, we have π(Aiα) = [ x
θ

xµi
]ei. There may also ex-

ist xνβ ∈ G such that lm(Aiβ) divides lm(Aiα) = xθ

xµi
ei. Without loss of generality, we may

assume that Aiβ is the minimal element satisfying this property. Let xη = lcm(xµi , xνβ). Thus,
π(Aiβ) = [ x

η

xµi
]ei. We have xη/xµi ∈ I ∶ xµi . To finish the proof, it is enough to prove that xη/xµi

belongs to the minimal generating set of I ∶ xµi . Suppose, by reductio ad absurdum, that u ∣ xη/xµi

where u ∈ G(I ∶ xµi) and u ≠ xη/xµi . Thus, uxµi ∈ I and xνγ ∣ uxµi ∣ xη for some γ. This entails
that lcm(xµi , xνγ ) divides properly xη , leading to a contradiction with the choice of Aiβ . Since
π(Aiβ) divides lm(Aiα), we must have lm(Aiα) ∈ ⟨⋃

r
i=1 [G(I ∶ xµi)]ei⟩P/I . ◻

Remark 4.3. If H = {c1x
µ1 , . . . , cµx

µr} is a set of terms, then Proposition 4.2 remains essentially
true: B is a generating set for SyzP/I([x

µ1], . . . , [xµr ]) provided that in the first component of B,

[x
µij

xµi
]ei − [x

µij

xµj
]ej is replaced by [ x

µij

cixµi
]ei − [ xµij

cjx
µj ]ej .

Gröbner bases can be characterised using various properties, among them we mention, besides
Buchberger’s criterion, that a set G is a Gröbner basis, if and only if any polynomial in ⟨G⟩ has
a standard representation. Furthermore, G is a Gröbner basis, if and only if any syzygy of lm(G)

can be lifted to a syzygy of G and vice versa. We give below similar characterisations for relative
Gröbner bases as in [21, Thm 2.7].

Theorem 4.4. Let ≺ be a monomial ordering on P . Let I ⊆ J ⊴ P be polynomial ideals, let
H = {h1, . . . , hr} ⊂ J be a relative generating set of J , that is, ⟨H⟩ + I = J . Then, the following
statements are equivalent.
(1) H is a Gröbner basis of J relative to I.
(2) For all b = ([b1], . . . , [br]) ∈ SyzP/ lm(I)(lt(H)), we have ∑ri=1 bihi Ð→

∗
H,I 0.

(3) For any generating set B of SyzP/ lm(I)(lt(H)) and any b = ([b1], . . . , [br]) ∈ B, it holds
∑
r
i=1 bihi Ð→

∗
H,I 0.

(4) For all h ∈ J , there exist polynomials g ∈ I and qi ∈ ⟨M∖(lm(I) ∶ lm(hi))⟩K for 1 ≤ i ≤ r,
such that h = g +∑ri=1 qihi and lm(qihi) ⪯ lm(h) for all i with qi ≠ 0.
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Proof. (1) Ô⇒ (2). Let G be a Gröbner basis of I. Since ∑ri=1 bihi ∈ J and H ∪G is a Gröbner
basis of J , the claim follows from Proposition 3.4.

(2)Ô⇒ (3). This is obvious.
(3) Ô⇒ (4). Let h ∈ J . We first claim that there exist g ∈ I and q1, . . . , qr ∈ P such that

h = g +∑
r
i=1 qihi and in addition lm(qihi) ⪯ lm(h) for each i with qi ≠ 0. Arguing by reductio ad

absurdum, suppose that for each choice of g ∈ I and q1, . . . , qr ∈ P there exists i such that lm(qihi) ≻
lm(h). Among all such representations of h, we pick a representation h = g +∑

r
i=1 qihi such that

X ∶= max{lm(q1h1), . . . , lm(qrhr)} is minimal with respect to ≺. Without loss of generality, we
may assume that X = lm(q1h1) = ⋯ = lm(qkhk) and lm(qihi) ≺ X for each i > k. In addition,
since h −∑ri=1 qihi ∈ I, we have lm(g) ⪯ X . It follows that ∑ki=1 lt(qi) lt(hi) ∈ lt(I) and in turn
([lt(q1)], . . . , [lt(qk)], [0], . . . , [0]) ∈ SyzP/ lm(I)(lt(H)) can be written as a combination of the
elements in B. From (3) and using the fact that the operation of computing remainders on division
by a set is linear, we obtain ∑ki=1 lt(qi)hi Ð→

∗
H,I 0. Thus, there exist q̃1, . . . , q̃r ∈ P such that

∑
k
i=1 lt(qi)hi = g̃ +∑

r
i=1 q̃ihi such that lm(q̃ihi) ≺X and lm(g̃) ⪯X with g̃ ∈ I . This yields a new

representation for h of the form

g′ +
r

∑
i=1
q′ihi ∶= g +

r

∑
i=1

(qi − lt(qi))hi + g̃ +
r

∑
i=1
q̃ihi

with g′ ∈ I and max≺{lm(q′1h1), . . . , lm(q′rhr)} ≺ X . As this contradicts our assumptions, our
claim is proven. Thus, we are able to find a representation g +∑ri=1 qihi for h such that lm(qihi) ⪯
lm(h) for each i. Now, if there exists i such that lm(qihi) is reducible by G, then we can perform
this reduction and in consequence we may assume that in the representation h = g +∑

r
i=1 qihi we

have qi ∈ ⟨M∖(lm(I) ∶ lm(hi))⟩K for each i and this proves (4).
(4) Ô⇒ (1). Let xµ ∈ lm(J ) ∖ lm(I). There exists an element h ∈ J with lm(h) = xµ.

From (4), write h = g +∑rk=1 qkhk. Since h −∑rk=1 qkhk ∈ I, we may assume that lm(g) ⪯ lm(h).
From the choice of xµ, we conclude that lm(g) ≺ lm(h). Additionally, we know that for all i,
lm(qihi) ⪯ lm(h). Consequently, there exists i with lm(qihi) = lm(h) and this shows that H is a
Gröbner basis of J relative to I. ◻

As a consequence of Propositions 3.4 and 4.2 and Theorem 4.4(3), we get the next theorem.

Theorem 4.5 (Relative Buchberger criterion). Let ≺ be a monomial ordering on P . Let I ⊆ J ⊴ P

be two polynomial ideals andG = {g1, . . . , gt} a Gröbner basis of I. LetH = {h1, . . . , hr} ⊂ J with
⟨H⟩+I = J . Then,H is a Gröbner basis ofJ relative to I if and only if we have A(hi, gα)Ð→

∗
H,I 0

and S(hi, hj)Ð→
∗
H,I 0 for all indices i, j, α.

Based on this theorem, we are now able to provide the relative variant of Buchberger’s algo-
rithm to compute relative Gröbner bases, i. e. Algorithm 2. For making it more efficient, we recall
first Buchberger’s criteria which may be applied in Buchberger’s algorithm to avoid some superflu-
ous reductions in the course of Gröbner bases computation, for more details see [1, pages 222-225].

Lemma 4.6 (Buchberger’s first criterion). Let fi, fj ∈ P be two polynomials such that we have
lcm(lm(fi), lm(fj)) = lm(fi) lm(fj). Then, S(fi, fj) is reduced to zero modulo {f1, f2}.

Lemma 4.7 (Buchberger’s second criterion). Let F ⊂ P be finite and p, fi, fj ∈ P three polyno-
mials such that the followings conditions hold:

● lm(p) divides lcm(lm(fi), lm(fj)),
● S(p, fi) and S(p, fj) have standard representations with respect to F .

Then, S(fi, fj) has a standard representation with respect to F .

It is worth noting that these two criteria are applicable in the relative setting using the algorithm
described in [1, pages 232]. To apply these criteria in Algorithm 2, we must use also the relative
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Algorithm 2: Relative Buchberger
Data: A monomial ordering ≺, a Gröbner basis G = {g1, . . . , gt} of I ⊴ P , a finite set of

polynomials H = {h1, . . . , hr} ⊂ P with NFG(hi) = hi for all i
Result: A Gröbner basis of ⟨H⟩ + I relative to I
begin

T ←ÐH; P ←Ð {{hi, hj},{hi, g} ∣ 1 ≤ i < j ≤ r, g ∈ G}

while P ≠ ∅ do
Select and remove a critical pair {fi, fj} from P

Reduce S(fi, fj)Ð→
∗
T,G p

if p ≠ 0 then
P ∶= P ∪ {{p, h},{p, g} ∣ h ∈ T, g ∈ G}; T ∶= T ∪ {p}

return T

normal selection strategy. By this, we mean that when we want to select a pair from P , we pick a pair
{fi, fj} ∈ P such that lcm(lm(fi), lm(fj)) is as small as possible. In addition, if there are several
pairs sharing the same least common divisor, we select a pair {fi, fj} ∈ P such that {fi, fj}∩G ≠ ∅,
if any. The main idea to prove Buchberger’s second criterion is that using the mentioned conditions,
one is able to write the S-syzygy corresponding to the pair {f1, f2} as a combination of the S-
syzygies corresponding to the pairs {p, f1} and {p, f2}, see [1]. Applying this idea, and beside
to the above criteria, we can state the next improvement applicable to the computation of relative
Gröbner bases.

Proposition 4.8. Assume that in Algorithm 2 the pair {fi, fj} with fi, fj ∈ T is considered. If
lcm(lm(fi), lm(fj)) ∈ lm(I), then this pair is superfluous.

Proof. Let us first fix some notations. Let lm(f`) = xµ` for ` = i, j and xµij = lcm(xµi , xµj).
Assume that xνα ∶= lm(gα) ∣ xµij for some gα ∈ G. By assumption, there exist monomials xγ and
xη such that xµij = xγ lcm(xµi , xνα) and xµij = xη lcm(xµj , xνα). Thus, we can write

xµij

lt(fi)
ei −

xµij

lt(fj)
ej =

xγ (
lcm(xµi , xνα)

lt(fi)
ei −

lcm(xµi , xνα)

lt(gα)
eα) − x

η
(

lcm(xµj , xνα)

lt(fj)
ej −

lcm(xµj , xνα)

lt(gα)
eα) .

Our selection strategy ensures that at the time we choose the pair {fi, fj}, the A-polynomials
A(fi, gα) and A(fj , gα) have already relative standard representations and therefore the S-poly-
nomial S(fi, fi) has a relative standard representation, too, which implies our claim. ◻

Corollary 4.9. In Proposition 4.2, one can replace B by

B ∶= {[
xµij

xµi
]ei − [

xµij

xµj
]ej ∣ 1 ≤ i < j ≤ r ∧ xµij ∉ I} ∪

r

⋃
i=1

[G(I ∶ xµi)]ei .

5. Relative Involutive Bases
We adapt now the basic definitions from the theory of involutive bases to the situation that we work
relative to an ideal I. The basic idea is to require that the usual axioms hold only outside of I. This
yields the following extension of the definition of an involutive division which for I = 0 coincides
with the standard one. Note that “relative cones” are not necessarily cones in the usual sense, but
cones parts of which have been removed.
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Definition 5.1. Let I ⊴ P be a monomial ideal with minimal generating set G(I). An involutive
division L relative to I is a rule which assigns to any monomial xµ ∈ M∖I which is contained
in a finite set H ⊂ M∖I of monomials a subset of variables L(xµ,H), called L-multiplicative
variables of xµ ∈H , such that the following conditions are satisfied for the relative involutive cones
CL,H,I(xµ) ∶= xµ ⋅K[L(xµ,H)] ∖ I:

1. If the set H contains two monomials xµ and xν such that CL,H,I(xµ) ∩ CL,H,I(xν) ≠ ∅, then
either xµ ∈ CL,H,I(xν) or xν ∈ CL,H,I(xµ).

2. If the setH contains two monomials xµ and xν such that xµ ∈ CL,H,I(xν), then CL,H,I(xµ) ⊆
CL,H,I(xν).

3. If H1 ⊂H2 are two sets containing the monomial xµ, then CL,H2,I(x
µ) ⊆ CL,H1,I(x

µ).

Next we show that any classical involutive division induces a relative one (and thus provide
many concrete instances of relative involutive divisions). The key question here is how one treats
directions leading into I, as different plausible possibilities exist. It turns out that the one chosen
here is for many purposes the most convenient one.

Definition 5.2. Let I ⊴ P be a monomial ideal with minimal generating set G(I) and let L be an
involutive division onM. Then the following rule defines an associated relative division LI relative
to I: If a finite monomial set H ⊂M∖I is given, then for each variable xi (i ∈ {1, . . . , n}) and for
each xµ ∈H ,

xi ∈ LI(xµ,H) ⇐⇒ (xi ∈ L(x
µ,H) ∨ xix

µ
∈ I) . (6)

Proposition 5.3. If L is an involutive division onM and I ⊴ P , then the rule LI defined by (6) is
an involutive division relative to I.

Proof. For all monomials xµ ∈ H , it is clear by definition that CL,H,I(xµ) = CL,H(xµ) ∖ I. Now,
if xµ and xν are elements of H such that CL,H,I(xµ) ∩ CL,H,I(xν) ≠ ∅, then also the classical
involutive cones CL,H(xµ) and CL,H(xν) intersect nontrivially, implying, without loss of generality,
xµ ∈ CL,H(xν). But since xµ ∉ I, this implies xµ ∈ CL,H,I(xν), proving that the first defining
property of relative involutive divisions is satisfied by the ruleLI . In the same situation, the inclusion
CL,H(xµ) ⊆ CL,H(xν) must hold for the classical involutive cones, which immediately implies
the same inclusion for the corresponding LI-cones. If, finally, H1 ⊂ H2 are two monomial sets
disjoint from I and if xµ ∈H1, then we have the inclusion CL,H2(x

µ) ⊆ CL,H1(x
µ) for the classical

involutive cones, which again immediately implies the same inclusion for the LI-cones. ◻

Now we can define relative involutive bases. As in the classical case and as for relative Gröbner
bases, we begin by considering the monomial case, before we proceed to general polynomial ideals.

Definition 5.4. Let I ⊴ P be a monomial ideal and let L be an involutive division relative to I. Let
H ⊂M∖I be a finite monomial set disjoint from I and set J ∶= ⟨H⟩ + I. We call H a weak L-
involutive basis of J relative to I, if the K-spans of the sets ⋃xµ∈H CL,I,H(xµ) and J ∖I coincide.
H is called (strong) involutive basis of J relative to I, if it is a weak involutive basis of J relative
to I and the relative involutive cones CL,H,I(xµ) for xµ ∈H are pairwise disjoint.

Example 5.5. Let P = K[x1, x2] be the polynomial ring in two variables, let the monomial ideal
I be minimally generated by the set G(I) = {x32, x

2
1x

2
2, x

3
1} and consider H = {x21x2, x2, x1}. We

analyse this constellation of monomial sets first by using the relative involutive division induced by
the Pommaret division and the ideal I and then by using the relative involutive division induced by
the Janet division and the ideal I.

1. For the Pommaret division PI relative to the ideal I, we find that PI(x21x2,H) = {x1, x2}, as
cls(x21x2) = 1 and x2(x21x2) = x

2
1x

2
2 ∈ I. Furthermore, PI(x2,H) = {x1, x2} as cls(x2) = 2

and PI(x1,H) = {x1} as cls(x1) = 1 and x2(x1) = x1x2 ∉ I. One can now easily see that H
is a weak Pommaret basis of J = ⟨H⟩+I relative to I. But it is not a strong relative Pommaret
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basis, because CP,H,I(x21x2) ⊂ CP,H,I(x2). But of course an autoreduction yields the strong
relative Pommaret basis H ∖ {x21x2} = {x1, x2}.

2. For the Janet division JI relative to I, we find that JI(x21x2,H) = {x1, x2} and JI(x2,H) =

{x2} as both monomials contain x2 linearly and JI(x1,H) = {x1}. Since the monomial x1x2
does not lie in any of the three relative cones, H is not a weak Janet basis of J relative to I.
Nevertheless, one can easily see that H ∖ {x21x2} is a strong Janet basis of J relative to I.

Definition 5.6. Let I ⊴ P be a polynomial ideal,G a Gröbner basis of I and L an involutive division
relative to I. Let H ⊂ P be a finite set satisfying NFG(H) = H and set J ∶= ⟨H⟩ + I. We call H a
weak L-involutive basis of J relative to I, if lm(H) is a weak involutive basis of lm(J ) relative to
lm(I). H is called a (strong) L-involutive basis of J relative to I, if lm(H) is a strong involutive
basis of lm(J ) relative to lm(I) and the mapping h↦ lm(h) is a bijection from H to lm(H).

Via a relative involutive polynomial division, any strong relative involutive basis of an ideal
J ⊇ I induces a finite direct sum decomposition of J /I as a K-linear space provided one uses the
right definition of relative involutive cones in the polynomial case. To make this remark precise, we
introduce first Algorithm 3 for the division and then define relative involutive cones using normal
forms with respect to G.

Algorithm 3: Relative Involutive Division
Data: Ideal I ⊴ P; Gröbner basis G of I; set of polynomials H = {h1, . . . , hm} ⊂ P with

NFG(H) =H; involutive division L relative to I; polynomial f ∈ P

Result: Polynomial r ∈ P with supp(r) ⊆M∖ (lm(I) ∪ CL,lm(H),lm(I)(lm(H))),
polynomials q1, . . . , qm ∈ P with f − r −∑mk=1 qkhk ∈ I and
qk ∈ K[L(lm(hk), lm(H))]

begin
f̃ ←Ð f ; r ←Ð 0

for k = 1, . . . ,m do
qk ←Ð 0

while f̃ ≠ 0 do
if lm(f̃) ∈ ⟨lm(G)⟩ then

Choose g ∈ G with lm(g)∣ lm(f̃)

f̃ ←Ð f̃ − lt(f̃)
lt(g) g

else if lm(f̃) ∈ CL,lm(H),lm(I)(lm(H)) then
Choose index k such that lm(f̃) ∈ CL,lm(H),lm(I)(lm(hk))

qk ←Ð qk +
lt(f̃)
lt(hk) ; f̃ ←Ð f̃ − lt(f̃)

lt(hk)hk
else

r ←Ð r + lt(f̃); f̃ ←Ð f̃ − lt(f̃)

return (r, q1, . . . , qm)

Definition 5.7. Let I ⊆ J ⊴ P be two polynomial ideals,G a Gröbner basis of I and L an involutive
division relative to lm(I). Let H ⊂ J ∖I be a finite set satisfying NFG(H) = H , whose elements
have pairwise distinct leading monomials. For h ∈ H define its L-involutive cone relative to I to be
the following K-vector space:

CL,lm(H),lm(I)(h) ∶= ⟨NFG(xρh) ∣ xρ lm(h) ∈ CL,lm(H),lm(I)(lm(h))⟩K . (7)
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Theorem 5.8. Let I ⊆ J ⊴ P be polynomial ideals, L an involutive division relative to I and
H ⊂ J ∖I a strong L-involutive basis of J relative to I. Then we have the following finite direct
sum decomposition of the ideal J as a K-vector space

J = (⊕
h∈H
CL,lm(H),lm(I)(h))⊕ I . (8)

Proof. Let us refer to the first summand in (8) as A. We show first that A is indeed a direct
sum. For this it suffices to show that for any two distinct basis elements h1, h2 ∈ H and any
polynomials f1 ∈ CL,lm(H),lm(I)(h1), f2 ∈ CL,lm(H),lm(I)(h2) we have lm(f1) ≠ lm(f2). In-
deed, if h ∈ H is any basis element, then for each f ∈ CL,lm(H),lm(I)(h) there exists a poly-
nomial p ∈ K[L(lm(h), lm(H))] with supp(p) ⊆ 1

lm(h)CL,lm(H),lm(I)(lm(h)) such that f =

NFG(ph). But since the leading monomial lm(ph) = lm(p) lm(h) ∉ lm(I), we have lm(f) =

lm(ph) ∈ CL,lm(H),lm(I)(lm(h)). These relative monomial L-cones are pairwise disjoint when h
varies through H , because H is a strong relative L-involutive basis. This proves that A is a direct
sum. This argument also entails that lm(A) ∩ lm(I) = ∅, proving that A ∩ I = {0}.

Now we show that A + I = J . Let f ∈ J ∖{0}. Since H is a strong L-involutive basis of J
relative to I, Algorithm 3 applied to f yields the remainder r = 0 and we can write f = g+∑h∈H qhh
with g ∈ I and supp(qh) ⊆

1
lm(h)CL,lm(H),lm(I)(lm(h)) for all h. Taking normal forms modulo I

via a Gröbner basis, we get NFI(f) = ∑h∈H NFI(qhh), and consequently f = g̃+∑h∈H NFI(qhh)
for some g̃ ∈ I. This finishes the proof. ◻

For the remainder of this section, let us analyse relative syzygy modules SyzP/I(H) where H
is a strong L-involutive basis of ⟨H⟩+I relative to I for some involutive division L relative to I. The
goal is to find relative involutive bases also for these syzygy modules. Since all relative involutive
bases are a fortiori also relative Gröbner bases, we can build on the work done in previous sections.
We need to describe carefully how the combinatorial structure of H carries over to the syzygy mod-
ule. The distinction of S- and A-polynomials as building blocks of the syzygy modules will be the
key for this. Let G be a Gröbner basis of I. As in Proposition 3.10 and Theorem 3.12, we impose an
ordering on H ∪G where the elements of H get smaller indices than those of G. Additionally, we
impose an L-ordering on the elements of H , which means that if for some h1, h2 ∈ H there exists
a non-multiplicative variable xi ∉ L(lm(h1), lm(H)) such that xi lm(h1) ∈ CL,lm(H),I(lm(h2)),
then h1 precedes h2 in the L-ordering. The fact that a linear ordering of H can be achieved which is
also an L-ordering follows from the acyclicity of the L-graph of H . This can be shown for relative
involutive divisions induced by classical continuous divisions completely analogously to the case
of classical involutive bases. For further details we refer to [26, Lemma 5.4.5] and the references
therein. As a first step, we now analyse the S-polynomials S(H,G).

Proposition 5.9. Let I ⊆ J ⊴ P be polynomial ideals, G a Gröbner basis of I, LI an involutive di-
vision relative to I induced by a continuous involutive division L on M and H = {h1, . . . , hr}
a strong L-involutive basis of J relative to I ordered according to an LI-ordering. Then for
each S-polynomial Sij ∈ S(H,G) satisfying lcm(lm(hi), lm(hj)) ∉ lm(I), we have lm(Sij) ∈

⟨{x1, . . . , xn} ∖LI(lm(h), lm(H))⟩ei.

Proof. Note that, by definition of S-polynomials, 1 ≤ i < j ≤ r. Let us write lm(hi) = xµi ,
lm(hj) = xµj , and lcm(lm(hi), lm(hj)) = xµij . Again by definition of S-polynomials and by
the proof of Theorem 3.12, we know that lm(Sij) = xµij

xµi
ei. We have to show that the monomial

xµij

xµi
∉ K[LI(xµi , lm(H))]. Assume this was the case. Since theLI-cones CLI ,lm(H),lm(I)(lm(h))

for the generators h ∈ H disjointly decompose lm(J ) ∖ lm(I) by Theorem 5.8, it is then impos-
sible that xµij

xµj
∈ K[LI(xµj , lm(H))], too. Thus there exists a non-multiplicative variable xa ∉

LI(xµj , lm(H)) such that xa∣x
µij

xµj
. lm(H) contains then a unique leading monomial xµka = lm(hka)
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such that xaxµj ∈ CLI ,lm(H),lm(I)(x
µka ). By the defining property of LI-orderings, j < ka. Now,

if xµij

xax
µj ∈ K[LI(xµka , lm(H))] were true, then xµij ∈ CLI ,lm(H),lm(I)(x

µka ), which entails
hi = hka , which is not possible since i < j < ka. So there must necessarily exist a non-multiplicative
variable xb ∉ LI(xµka , lm(H)) such that xb∣ x

µij

xax
µj . An iteration of this argument yields an infinite

sequence of monomials xµka , xµkb , xµkc , . . . in lm(H) belonging to basis elements hka , hkb , hkc , . . .
with indices strictly monotonically increasing, which is not possible. Consequently, the assumption
xµij

xµi
∈ K[LI(xµi , lm(H))] was false and there must necessarily exist a non-multiplicative variable

for xµi dividing the polynomial part of the leading module monomial of the S-polynomial Sij . ◻

Proposition 5.9 helps to identify among the set of S-polynomials S(H,G) an irredundant
subset SLI(H,G) of S-polynomials induced by non-multiplicative prolongations.

Lemma 5.10. In the situation of Proposition 5.9, for each basis element hi ∈ H and for each non-
multiplicative variable xk ∉ LI(lm(hi), lm(H)), there exists an S-polynomial Sij ∈ S(H,G) such
that lm(Sij) = xkei.

Proof. There is a unique basis element hj ∈ H such that i < j and such that xk lm(hi) is in the LI-
cone CLI ,lm(H),lm(I)(lm(hj)). Note that, trivially, xk lm(hi) ∣ lcm(lm(hi), lm(hj)). But since
lm(hi) ≠ lm(hj), it follows that xk lm(hi) = lcm(lm(hi), lm(hj)). This induces, by Construction
3.8, an S-polynomial Sij with the desired properties. ◻

Definition 5.11. In the situation of Proposition 5.9 and Lemma 5.11, denote by SLI(H,G) the set
of all S-polynomials induced by non-multiplicative prolongations of elements from H .

Having analysed the part of the syzygy module induced by the S-polynomials, we now turn
to the A-polynomials. Since our goal is to obtain, in each module component of the relative syzygy
module SyzP/I(H), a relative involutive basis of the ideal in P/I associated to this module com-
ponent, we need an additional structure for the Gröbner basis G of I. More concretely, we want to
achieve that the leading monomials of the A-polynomials Siα associated to the i-th module com-
ponent of SyzP/I(H) form part of an involutive basis of the leading ideal of the ideal associated
to this i-th module component. To achieve this, a natural assumption on G is for it to be a (strong)
L-involutive basis of I, where L is the continuous involutive division on M inducing the relative
involutive division LI .

Definition 5.12. Let I ⊴ P be a polynomial ideal and LI an involutive division relative to lm(I)

induced by a continuous involutive division L onM. We say that LI is of Schreyer type if, whenever
H is a strong LI-involutive basis of ⟨H⟩ + I relative to I and G is a strong L-involutive basis of I,
we have that for all xµ ∈ lm(H) the monomial set

B = ({
lcm(xν , xµ)

xµ
∣ xν ∈ lm(G)} ∖ lm(I)) ∪ ({x1, . . . , xn} ∖LI(xµ, lm(H))) (9)

is an Llm(I)-involutive basis of the ideal ⟨B⟩ + lm(I) relative to lm(I).

Theorem 5.13. Let I ⊴ P be a polynomial ideal and LI an involutive division relative to lm(I)

of Schreyer type. Furthermore, let G be a strong L-involutive basis of I, where L is the continuous
involutive division onM inducing LI , and H a strong LI-involutive basis of ⟨H,I⟩ relative to I.
Then, the set π(A(H,G)) ∪ π(SLI(H,G)), where π is defined as in (3), is an LI-involutive basis
of the relative syzygy module SyzP/I(H).

Proof. By Theorem 3.12, the set A(H,G) ∪ S(H,G) is mapped by π to a Gröbner basis of the
relative syzygy module SyzP/I(H). A closer inspection of the proof of Theorem 3.12 shows that
in fact the subset of all A-polynomials and S-polynomials with a leading module monomial whose
polynomial part does not belong to lm(I) suffices. Then, by Proposition 5.9, among the remain-
ing S-polynomials, the subset SLI(H,G) suffices. Among the remaining A-polynomials Siα, note
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that, if xµ is the leading monomial of the basis element hi ∈ H , then all monomials from the set
{
lcm(xν ,xµ)

xµ
∣ xν ∈ lm(G)} ∖ lm(I) appear as polynomial part of lm(Siα) for some index α. And,

since for all i, the minimal generators of the quotient ideal lm(I) ∶ xµ are included in this set, col-
lecting the correspondingA-polynomials and the S-polynomials from SLI(H,G), we get a Gröbner
basis of the relative syzygy module by projection via π. Since LI is of relative Schreyer type, it is
even a relative involutive basis. ◻

The notion of quasi-stability is well-behaved with respect to standard ideal operations such
as sum, intersection, and quotient of given ideals, see [26, Lemma 5.3.5]. Thus, one expects that
the Pommaret division P induces a relative involutive division of Schreyer type with respect to a
quasi-stable ideal I .

Proposition 5.14. Let I ⊴ P be a quasi-stable polynomial ideal and P the Pommaret division on
M. Then the relative involutive division Plm(I) induced by P is of Schreyer type.

Proof. Let G be a strong Pommaret basis of I and H a strong PI-basis of the ideal J ∶= ⟨H⟩ + I

relative to I. Let xµ ∈ lm(H) be the leading monomial of a generator hi ∈ H and analyse the
monomial set A ∶= {

lcm(xν ,xµ)
xµ

∣ xν ∈ lm(G)}. Since A contains the minimal generators of the
colon ideal lm(I) ∶ xµ, it is a monomial generating set of it.

We now prove thatA is an involutive set for the Pommaret division, i. e., it is a Pommaret basis
of its P-span. Let xρ ∈ ⟨A⟩ be any monomial in the ideal generated by A. Then xµxρ ∈ lm(I), so
that there exists xν ∈ lm(G) with xµxρ ∈ CP (xν). From this it follows that lcm(xν , xµ) ∣ xµxρ and

xµxρ

lcm(xν ,xµ) ∣ x
µxρ

xν
∈ K[P (xν)]. Note that cls( lcm(xν ,xµ)

xµ
) ≥ cls(xν). In other words, every variable

that is Pommaret multiplicative for xν is also Pommaret multiplicative for lcm(xν ,xµ)
xµ

. Hence, xρ ∈
CP (

lcm(xν ,xµ)
xµ

), proving the involutivity of the set A with respect to the Pommaret division.
We now turn to an analysis of the set V ∶= {x1, . . . , xn} ∖ Plm(I)(xµ). It contains exactly

those variables xj with index j ≥ cls(xµ) for which additionally xjx
µ ∉ lm(I). Let us take a

closer look at the variables xj for which xjxµ ∈ lm(I). For such a variable, there necessarily exists
a leading monomial xν ∈ lm(G) such that xjxµ ∈ CP (xν). Since xµ is an element of the order
ideal M∖ lm(I), it follows immediately that xjxµ = lcm(xµ, xν), and so, xj =

lcm(xµ,xν)
xµ

∈ V .
Consequently, ⟨A,V ⟩ = ⟨A⟩+ ⟨{x1, . . . , xn}∖P (xµ)⟩, and since both A and {x1, . . . , xn}∖P (xµ)
are (weak) Pommaret bases of the monomial ideals they generate and the Pommaret division is
global, by applying [26, Rem. 3.1.13], we have that A ∪ V , which is equal to A ∪ ({x1, . . . , xn} ∖
P (xµ)), is a weak Pommaret basis of ⟨A,V ⟩.

Finally, by the equivalence (6) in Definition 5.2, the set of multiplicative variables Plm(I)(xγ)
for any xγ ∉ lm(I) is a superset of P (xγ), the set of Pommaret multiplicative variables. This proves
that (A ∪ V ) ∖ lm(I) is a weak Plm(I)-involutive basis of ⟨(A ∪ V ) ∖ lm(I), lm(I)⟩ relative to
lm(I). Since obviously V ∩ lm(I) = ∅, we have proved that Plm(I) is of Schreyer type. ◻

The natural question is now whether the Janet division relative to a monomial ideal I is also
of Schreyer type. It turns out that it is not; if one takes the minimal Janet basis for I and the minimal
relative Janet basis of J ⊃ I (for a definition, see Section 6), one cannot expect to obtain relative
Janet bases when forming sets B defined as in (9). Here is a concrete counterexample.

Example 5.15. Let the monomial ideal I ⊴ P = K[x, y, z] be minimally generated by G(I) =

{x2y2z}. Since I is a principal ideal, G(I) is also the minimal Janet basis of I. Let J = ⟨x, y⟩;
clearly, J ⊃ I. Moreover, {x, y} is the minimal relative Janet basis of J with respect to I. For y, ev-
ery variable is JI-multiplicative. For the generator x, only the variable y is non-multiplicative. Now,
if one forms the setB as defined in Equation 9 for the generator x, one obtainsB = {y, xy2z}, whose
first element is induced by the non-multiplicative variable, the second element being lcm(x2y2z,x)

x
.

This set is autoreduced in the classical sense, so no subset of it is a basis of J relative to I in
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any sense – involutive or not. Furthermore, the variable z is JI-non-multiplicative for y, and so the
monomial yz is not contained in the relative Janet span of B. Hence, we need to perform an invo-
lutive completion on the set B to obtain a relative Janet basis. This example proves that the relative
Janet division JI is not of Schreyer type.

In Example 5.15, an important aspect is that we chose minimal Janet bases as generating sets.
In a sense that will be made more precise in the following discussion, the minimal bases used in
Example 5.15 are not enough adapted to one another. But one can find supersets of both sets which,
joined together, form a Janet basis of the larger ideal J in the classical sense; moreover the sets B
constructed as in (9) are then always relative Janet bases.

Lemma 5.16. Let I ⊴ P be a monomial ideal generated by a set G ⊂ M and xω = lcm(G) the
least common multiple of all generators. Then I possesses a Janet basis H ⊂ I such that all basis
elements xµ ∈ H are divisors of xω and such that for all xµ, xν ∈ H we have lcm(xµ, xν) ∈ H , i.e.,
H is closed under the operation of least common multiple.

Proof. The set Z = {xµ ∈ I ∶ xµ ∣ xω} is a finite Janet basis of I (see for instance [13, Prop. 4.5]).
Since G ⊆ Z, Z can be regarded as a completion of G. ◻

Remark 5.17. For a generating set G of I, there may in some cases exist Janet bases of I closed
under least common multiples and containing G which are smaller than the set Z introduced in the
proof of Lemma 5.16. They can be constructed via a completion algorithm which alternates between
the addition of non-multiplicative prolongations and the addition of new least common multiples. A
termination proof of such a procedure can be obtained by noting that the sets constructed by these
additions always remain subsets of the completion Z.

Proposition 5.18. Let I ⊂ J ⊴ P be two polynomial ideals and F a monomial Janet basis of
lm(J ) such that G(lm(J )) ∪G(lm(I)) ⊆ F and F is closed under least common multiples. Then
J possesses a strong Jlm(I)-involutive basis H relative to I such that lm(H) = F ∖ I. More-
over, if H is ordered according to a JI-ordering, then for any i ∈ {1, . . . , ∣H ∣}, the ith component
lmi(SyzP/I(H)) of the module of leading monomials of the relative syzygy module of H has the
set Bi = { xµ

lm(hi) ∶ x
µ ∈ F ∧ lm(hi) ∣ xµ ∧ lm(hi) ≠ x

µ} as a Jlm(I)-involutive basis.

Proof. The assumption that F is a Janet basis of lm(J ) implies trivially that the set H̃ ∶= F ∖ I

is a Jlm(I)-involutive basis of lm(J ) relative to lm(I). For each xµ ∈ H̃ choose a monic poly-
nomial hµ ∈ J with lm(h) = xν ; then H ∶= {NFI(hµ) ∣ xµ ∈ H̃} is a strong Janet basis of J
relative to I. For any index i ∈ {1, . . . , ∣H ∣}, the monomial ideal lmi(SyzP/I(H)) is generated
by G(I ∶ lm(hi)) together with the non-multiplicative variables xk ∉ JI(lm(hi), lm(H)). The set
G(I ∶ lm(hi)) = {

lcm(xµ,lm(hi))
lm(hi) ∣ xµ ∈ G(I)} is contained in Bi, since F is closed under least

common multiples. Moreover, for each non-multiplicative variable xk ∉ JI(lm(hi), lm(H)), the
prolongation xk lm(hi) is in the involutive cone of some other leading monomial lm(hj) and hence
xk lm(hi) = lcm(lm(hi), lm(hj)). This implies that xk ∈ Bi. Thus, the set Bi is a basis of the ideal
lmi(SyzP/I(H)).

We still need to show that Bi is a JI-involutive basis. For this it suffices to show that Bi is a
Janet basis of ⟨Bi⟩ in the classical sense. By the homotheticity of the Janet division [28, p.265], we
have for each xν ∈ Bi the equality J(xν ,Bi) = J(lm(hi)x

ν , lm(hi)Bi). Since lm(hi)Bi ⊆ F , Ax-
iom (3) of the definition of involutive divisions implies J(xν lm(hi), F ) ⊆ J(lm(hi)x

ν , lm(hi)Bi).
We claim that this inclusion is in fact an equality. Indeed, let xk ∉ J(xν lm(hi), F ) be any non-
multiplicative variable of xα ∶= xν lm(hi) ∈ F . Then there exists some xρ ∈ F with ρk > αk.
But then also xβ ∶= lcm(xρ, xα) ∈ F , and obviously, xβ ∈ Bi lm(hi). This implies that xk ∉

J(lm(hi)x
ν , lm(hi)Bi), because also xβ causes xk to be non-multiplicative. Thus, we have shown
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that for each xν ∈ Bi, J(xν ,Bi) = J(xν lm(hi), F ). But it is easy to see that the Janet cones of
Bi lm(hi) with respect to F yield the whole ideal J ∩⟨lm(hi)⟩. This finishes the proof. ◻

Example 5.19. Let us take up again Example 5.15. An lcm-closed basis of J = ⟨x, y, x2y2z⟩ is
given by F = {x, y, x2y2z, xy, xz, xyz, y2z, xy2z, yz}. If we order the eight relative generators as
H = {x, y, xy, xz, yz, xyz, y2z, xy2z} (this is indeed a JI-ordering), we get the following relative
Janet bases Bi for the ideals lmi(SyzP/I(H)), where 1 ≤ i ≤ 8:

B1 = {y, z, yz, y2z, xy2z}, B2 = {x,xz, yz, xyz, z, x2yz}, B3 = {z, yz, xyz},

B4 = {y, y2, xy2}, B5 = {x, y, xy, x2y}, B6 = {y, xy},

B7 = {x,x2}, B8 = {x}.

6. Computation of Relative Involutive Bases
If one wants to compute a relative involutive basis for an ideal J ⊇ I by going over to the respective
leading ideals, one sees that a necessary condition is that lm(J ) has a finite involutive basis relative
to lm(I). If one chooses a noetherian involutive division L, every monomial ideal Q ⊴ P has a
finite strong L-involutive basis. Thus, a natural choice of a relative involutive division for which one
can expect to be able to obtain strong relative involutive bases is a relative division of the form LI ,
where I ⊴ P is a monomial ideal and L is a classical noetherian involutive division.

Lemma 6.1. If L is a noetherian involutive division, I ⊴ P a monomial ideal, and LI the involutive
division induced by L relative to I, then every monomial ideal J ⊇ I possesses a strong LI-
involutive basis relative to I.

Proof. There exists a strong monomial L-involutive basis G ⊂ J of J . The L-involutive span of the
setG∖I is a superset of J ∖I, since the L-involutive span ofG is a superset of J and by deletion of
elements from G the remaining elements cannot lose multiplicative variables. Going over to LI , the
elements of G∖I may be assigned additional multiplicative variables, but no variable multiplicative
with respect to L can become non-multiplicative. Consequently, G ∖ I is a weak involutive basis of
J relative to I. Performing an LI-involutive autoreduction, we arrive at s strong involutive basis
H ⊆ G ∖ I of J relative to I. ◻

Next to the question of existence of a finite involutive basis, there is also the question whether
there exists an algorithmic procedure to compute such a finite involutive basis in a finite number
of steps. This is known to be true for classical involutive divisions that are constructive. We will
not go into the details of this technical definition here, but rather recall a very important algorithmic
property that constructive involutive divisions have (see the above cited literature on involutive bases
for more details and proofs).

Definition 6.2. Let H ⊂M be a finite monomial set, L be any involutive division (possibly relative
to some monomial ideal I) and xµ a monomial in H (in the relative case we assume H ∩ I = ∅).
For any variable xi ∉ L(xµ,H), the monomial xixµ is called a non-multiplicative prolongation of
xµ with respect to the division L and the set H .

Theorem 6.3. Let G ⊂M be a finite monomial set and L a constructive involutive division. Then G
is a weak involutive basis of ⟨G⟩, if and only if all non-multiplicative prolongations of all elements
of G possess an L-involutive divisor in G. Moreover, given any finite monomial set G ⊂ M, a
weak L-involutive basis G ⊇ G of ⟨G⟩ can be computed in a finite number of steps by adding to G
non-multiplicative prolongations which do not possess involutive divisors.
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Now consider a monomial ideal I ⊴ P and a relative involutive division LI induced by a
constructive noetherian division L. For obtaining an algorithm for the LI-involutive completion of
a monomial set H ⊂ (M∖I), we want to use a monomial completion algorithm for L. For this, we
need a relative version of local involution.

Proposition 6.4. Let I ⊴ P be a monomial ideal andH ⊂ (M∖I) a finite set of monomials disjoint
from I. Furthermore, let L be a noetherian constructive involutive division and LI the relative
involutive division induced byL and I. ThenH is a weakLI-involutive basis ofJ ∶= ⟨H⟩+I relative
to I, if and only if for all xµ ∈H and all xk ∉ LI(xµ,H) the non-multiplicative prolongation xkxµ

possesses an LI-involutive divisor in H . Moreover, this criterion of local involution translates into
an algorithm which computes for any such set H a superset H ⊆ H ⊂ (M∖I) such that H is a
weak LI-involutive basis of J relative to I.

Proof. Let H be such a finite set and set J ∶= ⟨H⟩ + I. Consider a monomial xν ∈ J ∖I. By
definition of LI , xν ∈ CLI(H) if and only if xν ∈ CL(H). This means that local involution of
H with respect to LI implies that for all xµ ∈ H and all xk ∉ LI(xµ,H), the non-multiplicative
prolongation xkxµ is an element of CL(H). Let now xν ∈ J ∖I be any monomial not contained in
CL(H). If, whenever xµ ∈ H is a divisor of xν and xk ∉ L(xµ,H) is a non-multiplicative variable,
the non-multiplicative prolongation xkxµ is contained in CL(H), then one can construct – just as
in the proof of [26, Prop. 4.1.4] – an infinite sequence of elements of H consisting of divisors of
xν satisfying certain division properties, contradicting the assumption that L is continuous. Hence
we can conclude that xν ∈ CL(H), and so, a fortiori, also xν ∈ CLI(H). In other words, H is a
weak LI-involutive basis of J relative to I. But since xν ∉ I and M∖I is an order ideal, the
necessary containments of non-multiplicative prolongations of divisors of xν are indeed given under
our assumptions.

To see that this relative local involution criterion translates to a completion algorithm, note
that H is not locally involutive relative to I, if and only if there is a classical L-non-multiplicative
prolongation which is contained in J ∖I but not in CL(H). Now, the existence of such an algorithm
follows from the fact that in the classical monomial involutive completion algorithm, we are free
to choose a selection strategy for the analysis of non-multiplicative prolongations, and so, we may
give preference to those non-multiplicative prolongations which are not contained in I. In other
words, if we run the classical involutive monomial completion algorithm on the set H with this
special selection strategy for the non-multiplicative prolongations, then a certain intermediate step
will yield a weak involutive basis of J relative to I. And until this stage, no elements of I will have
been added to the prospective involutive basis in the course of the algorithm at all. ◻

Proceeding to the more general case of two polynomial ideals I ⊆ J ⊴ P , an involutive
completion algorithm becomes more complex, since one also has to consider the A-polynomials.
But note that if the input set H which generates J relative to I is already a Gröbner basis of J
relative to I, then all A-polynomials reduce to zero, and an involutive completion procedure is
now again largely equivalent to the combinatorial task of monomial relative involutive completion.
To overcome the difficulties posed by inputs which are not relative Gröbner bases, it is useful to
keep in mind that we are only interested in a combinatorial decomposition of the part of J that is
disjoint from I and do not care about any decomposition of I. This suggests to treat S-polynomials
– in this context represented by non-multiplicative prolongations – differently than A-polynomials.
Concretely, for the non-multiplicative prolongations, we use relative involutive reductions and forA-
polynomials the usual relative reductions. The candidate set for an involutive basis will then only be
enlarged by normal forms of A-polynomials, if they introduce a completely new leading monomial.
Hence, in a suitable terminating completion algorithm, A-polynomials will cease to contribute new
elements to the candidate set after a finite number of steps, and the algorithm will only add non-
multiplicative prolongations to the candidate set from that point on. These considerations lead to
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Algorithm 4 which is adapted from [26, Algo. 4.5] which in turn is a slight reformulation of the
algorithm originally introduced by Gerdt and Blinkov [13]. The two used reduction algorithms are
identical with the division Algorithms 1 and 3 but return only the remainder.

Algorithm 4: Relative Involutive Basis
Data: Gröbner basis G of I ∶= ⟨G⟩ ⊴ P , finite set F ⊂ P with F ∩ I = ∅, NFG(F ) = F ,

constructive noetherian involutive division L and its induced relative division LI .
Result: LI-involutive basis of J ∶= ⟨F ⟩ + I relative to I
begin

H ←Ð InvolutiveHeadAutoreduction(F,LI)

A←Ð {xαh ∣ h ∈H, xα ∈ G(lm(I) ∶ lm(h))}

S ←Ð {xh ∣ h ∈H, x ∉ LI(lm(h), lm(H))}

while A ∪ S ≠ ∅ do
if A ≠ ∅ then

choose p ∈ A with lm(p) minimal in lm(A); A←Ð A ∖ {p}

p←Ð RelativeReduction(p,H,G)

else
choose p ∈ S with lm(p) minimal in lm(S); S ←Ð S ∖ {p}

p←Ð RelativeInvolutiveReduction(p,H,G,LI)

if p ≠ 0 then
H ←Ð InvolutiveHeadAutoreduction(H ∪ {p}, LI)

A←Ð {xαh ∣ h ∈H, xα ∈ G(lm(I) ∶ lm(h))}

S ←Ð {xh ∣ h ∈H, x ∉ LI(lm(h), lm(H))}

return H

Theorem 6.5. Algorithm 4 is correct and terminates.

Proof. Introduce the notation H0 ∶= F and let Hk denote the set H after the kth time iteration of
the while loop with p ≠ 0. The set Hk+1 is thus constructed from Hk by first adding a polynomial
and then performing an involutive head autoreduction which implies that ⟨lm(Hk)⟩ ⊆ ⟨lm(Hk+1)⟩.
Since the polynomial ring P is noetherian, there exists an index ` such that ⟨lm(Hk)⟩ = ⟨lm(H`)⟩

for all k ≥ `. WheneverHk+1 arises fromHk via the addition of the remainder r of anA-polynomial,
lm(r) does not lie in ⟨lm(Hk), lm(I)⟩ and hence ⟨lm(Hk)⟩ ⊊ ⟨lm(Hk+1)⟩. After the `th time
the while loop has produced a further generator, therefore only remainders stemming from non-
multiplicative prolongations are added and these remainders do not enlarge the leading ideal.

Let p ∈ S be the non-multiplicative prolongation that is checked for the construction of Hk+1
with k ≥ ` and let r ≠ 0 be its remainder after the relative involutive reduction. If lm(r) ≠ lm(p),
then lm(r) ≺ lm(p). Since lm(r) is not LI-involutively reducible by the current set lm(Hk) of
leading monomials and also lm(r) ∈ lm(Hk) = lm(H`), we see with an argument like in the
proof of Proposition 6.4 that there must exist a generator h ∈ Hk and a non-multiplicative variable
xi ∉ LI(lm(h), lm(Hk)) such that xi lm(h) ∣ lm(r) and xi lm(h) ∉ CLI(lm(Hk)). Hence xih
cannot reduce to zero in a relative involutive reduction with respect toHk and I. But this contradicts
the normal selection strategy used in Algorithm 4: the non-multiplicative prolongation xih must
have already been treated at this stage, since lm(xih) ≺ lm(p). Hence, lm(p) = lm(r). This means
that after the `th time the while loop has produced a new generator, the sets Hk are modified in such



22 Amir Hashemi, Matthias Orth and Werner M. Seiler

a way that the effect on the corresponding sets lm(Hk) is a monomial involutive completion with
intercalated involutive autoreductions – a process which terminates, see [26, Rem. 4.2.2]. Hence,
Algorithm 4 terminates on all inputs and we call the output set H .

We still have to prove the correctness of Algorithm 4. When the set H is returned, the sets S
and A must be empty. Since S is empty, the set lm(H) is locally LI-involutive and LI-involutively
autoreduced. Hence, it is a strong LI-involutive basis of ⟨lm(H)⟩+ lm(I) relative to lm(I). At this
point, however, we have not yet proven that ⟨lm(H)⟩ + lm(I) = lm(J ). To this end, enumerate the
setsH and lm(H) according to an LI-ordering on lm(H). The monomial set lm(H) ⊂M∖ lm(I)

constitutes a Gröbner basis of ⟨lm(H)⟩ + lm(I) relative to lm(I). By Theorem 3.12, the sets
S(lm(H),G(lm(I))) and A(lm(H),G(lm(I))) of S-syzygies and A-syzygies induce a Gröbner
basis of the relative syzygy module SyzP/ lm(I)(lm(H)) via the projection mapping π defined in (3).
Applying Proposition 5.9 and Lemma 5.10 to lm(I) ⊆ ⟨lm(H)⟩+ lm(I), we see that by comparing
module leading monomials, we can replace the set S(lm(H),G(lm(I))) of all S-polynomials by
the smaller set SLI(lm(H),G(lm(I))) introduced in Definition 5.11. Let b ∈ (P/ lm(I))∣ lm(H)∣

be a vector with entries bi. If b ∈ SLI(lm(H),G(lm(I))), then the fact that S = ∅ at the end of
Algorithm 4 implies that ∑∣ lm(H)∣i=1 bi ⋅ hi Ð→

∗
H,I 0. If b ∈ A(lm(H),G(lm(I))), then it follows

analgously from A = ∅ at the end of Algorithm 4 that ∑∣ lm(H)∣i=1 bi ⋅ hi Ð→
∗
H,I 0. By Theorem 4.4,

H is thus a Gröbner basis of ⟨H⟩+ I = ⟨F ⟩+ I = J relative to I. Together with the involutive head
reducedness of H and the involutivity of lm(H), this implies that H is a strong LI-involutive basis
of J relative to I, finishing the proof of correctness of Algorithm 4. ◻

Example 6.6. LetP =K[x1, x2, x3] be a polynomial ring in three variables endowed with the degree
reverse lexicographical ordering ≺ with x3 ≺ x2 ≺ x1. Let I = ⟨g⟩ = ⟨x1x2 + x

2
2⟩ be a principal ideal

generated by the Gröbner basis {g} and consider F̃ = {x21x2 − x
3
2 + x

3
3, x1x

2
2 − x

3
1 + x1x2x3} ⊂ P .

The elements of F̃ are not yet in normal form with respect to I. Applying a normal form algorithm,
we get the set F = {x33, −x

3
2 − x

3
1 − x

2
2x3} with ⟨F ⟩ + I = ⟨F̃ ⟩ + I.

The data F , {g}, ≺ together with the Janet division Jlm(I) relative to lm(I) form a valid input
for Algorithm 4. For the Janet division every monomial set is Janet autoreduced. This property carries
over to the relative Janet division Jlm(I) and hence we can ignore the involutive head autoreductions
in Algorithm 4. At first, setH = {h1, h2} with h1 = x33 and h2 = −x32−x

3
1−x

2
2x3. TheA-polynomial

with minimal leading term is x2 ⋅ x33. It can be ignored, because lcm(lm(g), lm(x33)) = lm(g) ⋅
lm(x33). At this stage, only the A-polynomial x2 ⋅(−x32 −x

3
1 −x

2
2x3) is left to check. Its normal form

with respect to I is −x32x3, and this polynomial is reduced with respect to H ∪ {g}. So it is added to
H: h3 ∶= −x32x3. This yields the new A-polynomial x1 ⋅ (h3). Its normal form with respect to I is
x42x3 and this is a multiple of h3, so it reduces to zero.

This is the first time that no A-polynomials are left to check (A = ∅), so we turn to the Jlm(I)-
nonmultiplicative prolongations. The variables x1 and x2 are multiplicative for all elements of
lm(H), only x3 is nonmultiplicative for lm(h2) and lm(h3). Our selection strategy is to choose the
≺-minimal prolongation. This is x3 ⋅h3, which is already involutively reduced and immediately yields
the new element h4 ∶= −x32x

2
3. Its A-polynomial, x1 ⋅ h4, has the normal form x42x

2
3 with respect to

I, which is again just a multiple of h4 and thereby reduces to zero. Again, A = ∅, so we are asked to
consider nonmultiplicative prolongations. The multiplicative variables of lm(h1), lm(h2), lm(h3)
are not altered by the addition of lm(h4). This entails that we do not need to check x3 ⋅ h3 again
at this time. x3 is the only nonmultiplicative variable of lm(h4). This is also the ≺-minimal prolon-
gation, so we check x3 ⋅ h4. It reduces to zero involutively via h1. There is only the prolongation
x3 ⋅ (h2) = −x32x3 − x

3
1x3 − x

2
2x

2
3 left to check. It reduces involutively to h5 ∶= −x31x3 − x

2
2x

2
3

with lm(h5) = x31x3. The A-polynomial of h5 is x2 ⋅ h5 and its normal form with respect to I is
x42x3 − x

3
2x

2
3. This reduces to zero via h3 and h4.
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We are again asked to consider nonmultiplicative prolongations and since the multiplicative
variables of lm(h1), . . . , lm(h4) are not altered by the addition of lm(h5), only the prolongation
x3⋅h5 remains to be checked. (Note that x2 ∈ Jlm(I)(lm(h5), lm(H)), because x2 lm(h5) ∈ lm(I).)
x3 ⋅h5 = −x

3
1x

2
3−x

2
2x

3
3 reduces to h6 ∶= −x31x

2
3 involutively via h1. TheA-polynomial of h6 is x2 ⋅h6

and its normal form with respect to I is x42x
2
3, which reduces to zero via h3. So we are again asked

to consider nonmultiplicative prolongations, and this time no non-zero involutive remainders are
computed. Therefore Algorithm 4 returns the strong relative Jlm(I)-involutive basisH = {x33, −x

3
2−

x31 − x
2
2x3, −x

3
2x3, −x

3
2x

2
3, −x

3
1x3 − x

2
2x

2
3, −x

3
1x

2
3}.

From the theory of involutive bases in P , it is known that for a given constructive noetherian
division L every monomial ideal I ⊴ P possesses a unique minimal L-involutive basis. The proof of
this fact is algorithmic in the sense that one can show that the monomial completion algorithm using
the addition of non-multiplicative prolongations, applied to the minimal generating set G(I), always
terminates with this unique minimal basis. This fact, in its turn, is proven by showing that each of the
prolongations added during the course of the completion algorithm must necessarily be contained in
every L-involutive basis of I. In view of Proposition 6.4, which shows that the monomial completion
procedure can be adapted to the relative situation, this motivates the following definition, which
generalises [14, Def. 4.2] to the relative case.

Definition 6.7. Let I ⊂ J ⊴ P be two ideals and L a constructive noetherian involutive division on
P . If I and J are monomial ideals and if H ⊆ J ∖I is an LI-involutive basis of J relative to I,
then we say thatH is a minimal relative LI-involutive basis, ifH ⊆ H̃ for all LI-involutive bases H̃
of J relative to I. More generally, we say that a subset H ⊂ J ∖I is a minimal involutive basis of
J relative to I, if H is a strong Llm(I)-involutive basis of J relative to I and lm(H) is a minimal
Llm(I)-involutive basis of lm(J ) relative to lm(I).

Proposition 6.8. Let I ⊂ J ⊴ P be two ideals and L a constructive noetherian involutive division
on P . Then there exists a unique Llm(I)-involutively autoreduced minimal Llm(I)-involutive basis
of J relative to I.

Proof. The general case, for polynomial ideals, follows immediately from the monomial case. The
monomial case can be proven by a straightforward adaption of the proofs for L-involutive bases. We
sketch here only the main argument which implies that the relevant proofs can be adapted to the rel-
ative case. A key point in the classical monomial completion algorithm is the selection strategy for
non-multiplicative prolongations, which says that exactly those prolongations which do not possess
a strict (non-involutive) divisor among the set of eligible prolongations are valid choices for the next
element to be added. By Proposition 6.4, for monomial ideals I and J , a relative LI-involutive basis
of J can be found by applying the L-involutive completion algorithm to G(J )∖I, choosing prolon-
gations which do not lie in I as long as possible. Now, if there exists any eligible non-multiplicative
prolongation which does not lie in I, then there obviously also exists a prolongation which does
not lie in I and which possesses no strict (non-involutive) divisor among all eligible prolongations.
This means the selection strategy can be adapted to the relative case, and the proof of existence and
uniqueness of minimal relative LI-involutive bases is thereby reduced to the respective results for
L-involutive bases. ◻

Algorithm 5 combines the ideas behind Algorithm 4 with the classical TQ algorithm for the
construction of minimal involutive bases introduced by Gerdt and Blinkov [14] following the for-
mulation given in [26, Algorithm 4.6]. We omit an explicit proof of its termination and correctness,
as it is obvious from the corresponding proofs for the two underlying algorithms.
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Algorithm 5: Minimal Relative Involutive Basis
Data: Gröbner basis G of I ∶= ⟨G⟩ ⊴ P , finite set F ⊂ P with F ∩ I = ∅, NFG(F ) = F ,

constructive noetherian involutive division L and its induced relative division LI .
Also, lm(F ) is LI-involutively autoreduced.

Result: Minimal LI-involutive basis of J ∶= ⟨F ⟩ + I relative to I
begin

H ←Ð ∅; Q←Ð F

A←Ð {xαh ∣ h ∈H ∪Q, xα ∈ G(lm(I) ∶ lm(h))}

while A ∪Q ≠ ∅ do
if A ≠ ∅ then

choose p ∈ A with minimal lm(p) in A; A←Ð A ∖ {p}

p←Ð RelativeReduction(p,H ∪Q,G)

if p ≠ 0 then
Q←Ð Q ∪ {p}; A←Ð A ∪ {xαp ∣ xα ∈ G(lm(I) ∶ lm(p))}

else
choose q ∈ Q with lm(q) minimal in lm(Q); Q←Ð Q ∖ {q}

q ←Ð RelativeInvolutiveReduction(q,H,G,LI)
if q ≠ 0 then

H ′ ←Ð {h ∈H ∣ lm q ≺ lmh}; H ←Ð (H ∪ {q}) ∖H ′

Q←Ð Q ∪H ′ ∪ {xh ∣ h ∈H, x ∉ LI(lmh, lmH)}

A←Ð {xαh ∣ h ∈H ∪Q, xα ∈ G(lm(I) ∶ lm(h))}

return H

7. Relative Quasi-stable Position
It is well-known that Pommaret bases exist only in generic coordinates, more precisely, for ideals
in quasi-stable position – see [25, 26]. In [17] a first algorithm for the deterministic construction of
such coordinates was developed in the context of differential equations and in [16] it was extended to
polynomial ideals. It was based on a comparison of the Janet and Pommaret multiplicative variables
of the given basis. Later, an alternative approach to various kinds of stable position based on their
combinatorial characterisations was presented in [15]. We will now extend some of these results to
the relative setting.

Definition 7.1. Let I ⊆ J ⊴ P be two monomial ideals. We say that J is quasi-stable relative to I,
if for all monomials xµ ∈ J ∖I and for all indices i with cls(xµ) < i ≤ n there exists an exponent
s ≥ 0 such that either xsix

µ ∈ I or xsix
µ/xcls(xµ) ∈ J .

Remark 7.2. Similar to [27, Lemma 3.4], one can show that it suffices to consider in Definition 7.1
the monomials in G(J ) ∖ I. Quasi-stability relative to I = {0} corresponds to the classical notion
of quasi-stability. For J ⊃ I to be quasi-stable relative to I, neither I nor J need to be quasi-
stable in the classical sense. As as simple example, consider in the ring P = K[x1, x2] the ideals
I = ⟨x21x2, x1x

2
2⟩ and J = ⟨x1x2⟩. One sees readily that J is quasi-stable relative to I, however,

neither J nor I contains a monomial of class 2, so both ideals are not quasi-stable.

However, we have the following result which is immediately implied by the definitions.

Lemma 7.3. Let I ⊂ J ⊴ P be two monomial ideals. If J is quasi-stable, then J is quasi-stable
relative to I. If I is quasi-stable and J is quasi-stable relative to I, then J is quasi-stable.
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Proposition 7.4. Let I ⊆ J ⊴ P be two monomial ideals. Then J is quasi-stable relative to I, if
and only if J possesses a finite Pommaret basis relative to I.

Proof. Suppose that J is quasi-stable relative to I. Consider the set

H ∶= {xρ ⋅ xµ ∣ xµ ∈ G(J ) ∖ I ∧ xρ ∈ K[xcls(xµ)+1, . . . , xn] ∧
xρ ⋅ xµ

xcls(xµ)
∉ J }. (10)

By Definition 7.1, it is not difficult to see that H is finite. Thus, it suffices to show that H is a weak
Pommaret basis for J relative to I. Consider a monomial xλ ∈ J ∖I. We decompose it as xλ =

xρxσxµ where xµ ∈ G(J ) ∖ I is a minimal generator, xσ contains only multiplicative variables for
xµ with respect to the relative Pommaret division and xρ only non-multiplicative ones. If xρxµ ∈H ,
then we are done, as cls(xµ) = cls(xρxµ) and xσ contains only multiplicative variables for xρxµ.
If xρxµ ∉ H , then we choose among all monomials xλ ∈ J ∖I with this property one having the
same class and the smallest degree in xcls(xµ). Without loss of generality, assume that our given xλ

is such an element. Therefore, from the definition of H , we conclude that u ∶= xρ ⋅ xµ/xcls(xµ) ∈ J .
Now, two cases may occur. If u ∈ I, then xλ ∈ I in contradiction to our assumptions. Otherwise, we
have u ∈ J ∖I and the degree of u in xcls(xµ) is less than that of xλ. By our minimality assumption,
there exists v ∈ H which involutively divides u for the Pommaret division relative to I. Thus v also
involutively divides xλ for this division, as xcls(xµ)xσ contains only multiplicative variables for v.

Conversely, suppose that J has a finite Pommaret basis H relative to I. Arguing by reductio
ad absurdum, suppose there exists a monomial xµ ∈ J ∖I with cls(xµ) < n and j > cls(xµ) such
that xsjx

µ ∉ I and xsjx
µ/xcls(xµ) ∉ J for all s ∈ N. Consider the set {xsjx

µ ∣ s ∈ N} ⊂ J ∖I. Since
it is infinite and H is a finite Pommaret basis of J relative to I, there exists a generator xν ∈ H
involutively dividing infinitely many of its elements for the Pommaret division relative to I. Let us
pick one of these elements, say xs0j x

µ. By the mentioned property, xj must be multiplicative for xν

and hence cls(xν) > cls(xµ). But then xν must divide xs0j x
µ/xcls(xµ), leading to a contradiction. ◻

Corollary 7.5. Let I ⊂ J ⊴ P be two monomial ideals. J is quasi-stable relative to I, if and only
if the monomial set

P (I,J ) ∶= {xµ ∈ J ∖I ∣
xµ

xcls(xµ)
∉ J }

is finite. In this case, P (I,J ) is the unique minimal monomial Pommaret basis of J relative to I.

Proof. Suppose that J is quasi-stable relative to I. One sees easily that the set H defined in (10) is
equal to P (I,J ) and thus it was already shown in the proof of Proposition 7.4, that (10) is a finite
weak Pommaret basis of J relative to I. There only remains to show that it is in fact a strong basis.
Assume that there exist two generators xλ, xµ ∈ P (I,J ) such that xλ ≠ xµ and xλ = xσxµ where
xσ contains only multiplicative variables for xµ for the relative Pommaret division. It follows that
cls(xλ) < cls(xµ) and in turn xλ/xcls(xλ) ∈ J , leading to a contradiction.

Conversely, suppose that P (I,J ) is finite. Assume that for some monomial xµ ∈ J ∖I, for
some index i > cls(xµ) and for each exponent s we have xsix

µ/xcls(xµ) ∉ J so that J is not quasi-
stable for I. Note that xsix

µ and xµ have the same class. Thus, by definition of P (I,J ), for each s
the monomial xsix

µ/xcls(xµ) must lie in P (I,J ) contradicting its finiteness. ◻

In the sequel, we use the degree reverse lexicographical ordering ≺ with x1 ≺ ⋯ ≺ xn. The
notion of ideals in quasi-stable position can be defined in the relative setting as follows.

Definition 7.6. Let I ⊂ J ⊴ P be two polynomial ideals. We say that J is in quasi-stable position
relative to I, if lm(J ) is quasi-stable relative to lm(I).

As a consequence of [26, Theorem 4.3.15] and Lemma 7.3, we get the next result.
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Proposition 7.7. Let I ⊂ J ⊴ P be two homogeneous polynomial ideals. If K is an infinite field,
then a generic linear change of variables transforms J into quasi-stable position relative to I.

Thus, given homogeneous ideals I ⊂ J ⊴ P , J need not be in quasi-stable position relative
to I, but after a sufficiently general linear change of variables Φ ∶ P → P , the ideal Φ(J ) ⊴ P

will be in quasi-stable position relative to Φ(I). Under the assumption that the coefficient field K
is large enough, [15, Alg. 2] describes a deterministic algorithm returning for a given homogeneous
ideal a sparse linear change of variables such that the transformed ideal is in quasi-stable position.
In our situation where two homogeneous ideals I ⊆ J ⊴ P are given, we look for a linear change
of variables Φ such that Φ(J ) is in quasi-stable position relative to Φ(I).2 For this, we extend the
approach of [15] to the relative case. The following definition of an ordering on ordered tuples of
leading monomials is identical to the one used in [15].

Definition 7.8. Let F ⊂ P be a finite set of polynomials with lm(F ) = {t1, . . . , t`} such that
t1 ≻revlex ⋯ ≻revlex t` where ≻revlex refers to the pure reverse lexicographic ordering with x1 ≺

⋯ ≺ xn. Then we denote the ordered tuple of these leading monomials by L (F ) = (t1, . . . , t`). If
F, F̃ ⊂ P are two finite sets of polynomials with L (F ) = (t1, . . . , t`) and L (F̃ ) = (t̃1, . . . , t̃˜̀), then
we define an ordering on the corresponding tuples of monomials by

L(F ) ≺L L(F̃ ) ⇐⇒ {
∃ j ≤ min (`, ˜̀) ∀ i < j ∶ ti = t̃i ∧ tj ≺revlex t̃j or
∀ j ≤ min (`, ˜̀) ∶ tj = t̃j ∧ ` < ˜̀.

The definition of quasi-stability relative to a monomial ideal leads immediately to a simple test
realised in Algorithm 6. As we are not concerned with efficiency questions here, the test returns in
the negative case simply the first obstruction detected.

Algorithm 6: Relative Quasi-Stable Test
Data: A monomial ideal I and the minimal generating B of the monomial ideal J .
Result: True if J is quasi-stable relative to I and false otherwise.
begin

for xµ ∈ B do
for i from cls(xµ) + 1 to n do

if for each s we have xsix
µ ∉ I and xsix

µ/xcls(xµ) ∉ J then
return (false, xi, xcls(xµ))

return true

Based on this test, it is straightforward to design a relative version of the algorithm in [15].
Algorithm 7 is based on the repeated determination of reduced Gröbner bases for our chosen ordering
≺ realised in the function ReducedGrobnerBasis(F ). A key point is the inner while loop ensuring
that in each iteration of the outer loop some progress is made – see the discussion in [15].

Theorem 7.9. Algorithm 7 is correct and terminates in finitely many steps for a sufficiently large
field K.

Proof. The main issue with this algorithm is its termination. Indeed, it is easy to see that upon
termination the output satisfies the specification. Let J be an ideal which is not in quasi-stable
position relative to I, i. e. there exists a monomial xµ ∈ J with xsix

µ/xcls(xµ) ∉ J for some index
i > cls(xµ) and for all exponents s and Algorithm 6 will return xi and xcls(xµ). If we perform

2It should be noted that, by Lemma 7.3, it follows that this change may be sparser than the change that we need to transform
J into quasi-stable position.
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Algorithm 7: Relative Quasi-Stable Position
Data: A homogeneous Gröbner basis G of I ∶= ⟨G⟩ ⊴ P , finite set of homogeneous

polynomials F ⊂ P with ⟨F ⟩ + I = J and the monomial ordering ≺.
Result: A linear change Φ such that Φ(J ) is in quasi-stable position relative to Φ(I).
begin

Φ←Ð The identity linear change
K ←Ð ReducedGrobnerBasis(G)

H ←Ð ReducedGrobnerBasis(F )

A←Ð RelativeQuasiStableTest(⟨lm(K)⟩, lm(H))

while A ≠ true do
φ←Ð (A[3]↦ A[3] +A[2]); Φ←Ð φ ○Φ

K̃ ←Ð ReducedGrobnerBasis(φ(K))

H̃ ←Ð ReducedGrobnerBasis(φ(H))

while L(H) ⪰L L(H̃) do
φ←Ð (A[3]↦ A[3] +A[2]); Φ←Ð φ ○Φ

K̃ ←Ð ReducedGrobnerBasis(φ(K̃))

H̃ ←Ð ReducedGrobnerBasis(φ(H̃))

G←Ð K̃

H ←Ð H̃

A←Ð RelativeQuasiStableTest(⟨lm(K)⟩, lm(H))

return Φ

now a linear change of coordinates φ mapping xcls(xµ) ↦ xcls(xµ) + axi with a positive integer a
and keeping all other variables unchanged, then, by [15, Prop. 6.9], L(H) ≺L L(H̃) where H is
a Gröbner basis of J and H̃ is a Gröbner basis of φ(J ). Finally, [15, Thm. 6.11] guarantees the
termination of the algorithm in any characteristic for a sufficiently large field K. ◻

Example 7.10. For a better understanding of Algorithm 7, we illustrate its steps with a concrete ex-
ample. LetP = K[x1, x2, x3] and consider I = ⟨x1x2+x

2
2⟩ and J = ⟨x1x3, x1x2+x

2
2⟩. One sees that

J is not in quasi-stable position relative to I. SetG = {x1x2+x
2
2} andH = {x1x3, x1x2+x

2
2}. Since

x22x1x3 ∈ ⟨lm(G)⟩ and xs3x3 ∉ ⟨lm(H)⟩ for any s, the algorithm RelativeQuasiStableTest re-
turns (false, x3, x1). Now, by performing the linear change φ ∶= x1 ↦ x1 + x3 on I and J , we get
G̃ = {x1x2 + x

2
2 + x2x3} and H̃ = {x1x2 + x

2
2 + x2x3, x1x3 + x

2
3, x1x

2
2 + x

3
2}. Therefore, we have

L(H) = (x1x3, x
2
2) ≺L L(H̃) = (x23, x3x2, x

3
2). It can be seen that φ(J ) is in quasi-stable position

relative to φ(I) and the algorithm terminates.

As mentioned above, an alternative way to obtain quasi-stable position consists of comparing
the Janet and the Pommaret multiplicative variables. We present a relative version of this approach.
It is based on the following result (see [25, Prop. 4.3.6, Thm. 4.3.12] for more information).

Lemma 7.11. Let J ⊴ P be a monomial ideal and B a Janet basis for J which is involutively
autoreduced with respect to the Pommaret division. Then, J is quasi-stable, if and only if for each
monomial xµ ∈ B the sets of Janet respectively Pommaret multiplicative variables coincide.

In the next lemma, we give a variant of this lemma in relative setting.

Lemma 7.12. Let I ⊂ J ⊴ P be two monomial ideals and B ⊂ J ∖I a set of monomials Pommaret
autoreduced relative to I such that ⟨B⟩ + I = J . Then, the following statements hold:
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(1) For any monomial xµ ∈ B, any Pommaret multiplicative variable relative to I is also Janet
multiplicative relative to I.

(2) If for all monomials in B the sets of Janet and Pommaret multiplicative variables relative to I
coincide, then J is quasi-stable relative to I.

(3) Let J be quasi-stable relative to I and B a Janet basis for J relative to I. Assume that for
the monomial xµ ∈ B the variable xi is Janet multiplicative relative to I and xsix

µ ∉ I for any
exponent s. Then, xi is also Pommaret multiplicative relative to I for xµ.

Proof. (1) Assume that xi is Pommaret multiplicative relative to I for xµ. Then two cases may
arise. If xixµ ∈ I, then, by definition, it is Janet multiplicative relative to I as well and we are done.
Otherwise, xi is Pommaret multiplicative for xµ. It is easy to see that B is Pommaret autoreduced.
Then, by [12, Prop. 3.10], it follows that xi is Janet multiplicative with respect to B and this proves
the claim.

(2) Suppose that J is not quasi-stable relative to I. Then there exists a monomial xµ ∈ J ∖I

and an index cls(xµ) < i ≤ n such that for each s ≥ 0 we have xsix
µ ∉ I and xsix

µ/xcls(xµ) ∉ J .
If xi is Janet multiplicative for xµ, then by assumption it is also Pommaret multiplicative for xµ,
contradicting cls(xµ) < i. Otherwise, there exists a monomial xν ∈ B such that xi is Janet multi-
plicative for xν , µi+1 = νi+1, . . . , µn = νn and µi < νi where µ = (µ1, . . . , µn) and ν = (ν1, . . . , νn).
If cls(xν) < i then xi is Pommaret non-multiplicative and in turn it is Janet non-multiplicative which
leads to a contradiction. Otherwise, cls(xν) = i and it follows that xsix

µ/xcls(xµ) ∈ J for some s
which leads again to a contradiction,

(3) Arguing by reductio ad absurdum, suppose that xi is not Pommaret multiplicative rela-
tive to I for xµ. Since xsix

µ ∉ I for each s then xi is Janet but not Pommaret multiplicative for
xµ and it follows that cls(xµ) < i. From assumption, there exists s such that xsix

µ/xcls(xµ) ∈ J .
On the other hand, B is a Janet basis for J relative to I. Thus, there exists xν ∈ B such that
xν divides xsix

µ/xcls(xµ) using Janet division relative to I. Since xsix
µ ∉ I we conclude that

xsix
µ/xcls(xµ) ∉ I and in turn xν divides xsix

µ/xcls(xµ) using the ordinary Janet division. It yields
that µi+1 = νi+1, . . . , µn = νn and µi < νi where µ = (µ1, . . . , µn) and ν = (ν1, . . . , νn). We obtain
a contradiction with the fact that xi is Janet multiplicative for xµ, proving the claim. ◻

Remark 7.13. The converse of the second item in Lemma 7.12 does not hold in general. For example,
in the ring P = K[x1, x2, x3], let I = ⟨x32, x

3
3⟩ and J = ⟨x1x3, x

3
2, x

3
3⟩. One easily sees that J is

quasi-stable relative to I and that for x1x3 – the only generator of J not in I – all variables are
Janet multiplicative relative to I, whereas only x1 is also Pommaret multiplicative relative to I.

Algorithm 8 uses this lemma to compare the Pommaret and the Janet multiplicative variables
relative to I for a set which is a Pommaret autoreduced Janet basis relative to I.

Algorithm 8: Relative Janet-Pommaret Test
Data: A monomial ideal I and a monomial set B which is a Janet basis for the monomial

ideal J relative to the monomial ideal I and Pommaret autoreduced relative to I.
Result: True if for each xµ ∈ B and each xi, we have either xsix

µ ∈ I for some s or xi is
Janet and Pommaret multiplicative relative to I and false otherwise.

begin
for xµ ∈ B do

for i from cls(xµ) + 1 to n do
if for each s we have xsix

µ ∉ I and xi is Janet multiplicative for xµ then
return (false, xi, xcls(xµ))

return true



Relative Gröbner and Involutive Bases 29

Algorithm 9 follows a similar strategy as Algorithm 7: with the help of Algorithm 8 it con-
structs deterministically a linear change of coordinates such that J is in quasi-stable position relative
to I. However, instead of reduced Gröbner bases is uses Janet bases relative to I. More precisely,
the function RelativeJanetBasis(G,F ) computes a Janet basis for ⟨F ⟩ relative to ⟨G⟩ which is
Pommaret autoreduced relative to ⟨G⟩. While classically a Pommaret autoreduced Janet basis of an
ideal in quasi-stable position is automatically also a Pommaret basis, the situation is slightly more
complicated in the relative case and we need the following additional construction.

Definition 7.14. Let I ⊂ J ⊴ P be two monomial ideals and B ⊂ J ∖I a set of monomials with
⟨B⟩ + I = J . Then Pommaret completion of B relative to I, denoted by PommComp(I,B), is the
set of all monomials xj1i1⋯x

jk
ik
xµ ∉ I such that xµ ∈ B and for each ` we have i` > cls(xµ) and

xs`i` x
µ ∈ I for some s`.

Corollary 7.15. Let I ⊂ J ⊴ P be two monomial ideals and B a Janet basis for J relative to
I which is Pommaret autoreduced relative to I. Assume that for each monomial xµ ∈ B and each
variable xi we have either xsix

µ ∈ I for some exponent s or xi is Janet multiplicative relative to I, if
and only if it is also Pommaret multiplicative relative to I. Then B ∪PommComp(I,B) is a finite
weak Pommaret basis for J relative to I.

Algorithm 9: Relative Pommaret Basis
Data: A homogeneous Gröbner basis G of I ∶= ⟨G⟩ ⊴ P , finite set of homogeneous

polynomials F ⊂ P with F ∩ I = ∅, NFG(F ) = F and ⟨F ⟩ + I = J and the
monomial ordering ≺.

Result: A linear change Φ such that Φ(J ) has a finite Pommaret basis relative to Φ(I)

and such a basis.
begin

Φ←Ð The identity linear change
K ←Ð G

H ←Ð RelativeJanetBasis(K,F )

A←Ð RelativeJanetPommaretTest(⟨lm(K)⟩, lm(H))

while A ≠ true do
φ←Ð (A[3]↦ A[3] +A[2]); Φ←Ð φ ○Φ

K̃ ←Ð ReducedGrobnerBasis(φ(K))

H̃ ←Ð RelativeJanetBasis(K̃, φ(H))

Ã←Ð RelativeJanetPommaretTest(⟨lm(K̃)⟩, lm(H̃))

while A ≠ Ã do
φ←Ð (A[3]↦ A[3] +A[2]); Φ←Ð φ ○Φ

K̃ ←Ð ReducedGrobnerBasis(φ(K̃))

H̃ ←Ð RelativeJanetBasis(K̃, φ(H̃))

Ã←Ð RelativeJanetPommaretTest(⟨lm(K̃)⟩, lm(H̃))

G←Ð K̃

H ←Ð H̃

A←Ð Ã

return (Φ,H ∪PommComp(I,B)(⟨K⟩,H))

Theorem 7.16. Algorithm 9 is correct and terminates in finitely many steps.
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Proof. Assume that we are given a finite generating set F of J (that is ⟨F ⟩ + I = J ) and a
Gröbner basis G of ideal I. If the algorithm RelativeJanetPommaretTest finds an obstruc-
tion (xi, xcls(xµ)) for a monomial xµ ∈ lm(F ), then we claim that it remains also an obstruction
for some monomial in lm(F ) ∪ lm(G). We know that xsix

µ ∉ lm(I) for each s and xi is Janet
but not Pommaret multiplicative for xµ ∈ lm(F ). Suppose that xi is not Janet multiplicative for
xµ ∈ lm(F ) ∪ lm(G), but Janet multiplicative for some xν ∈ lm(G). Two case may occur. If
cls(xν) < cls(xµ), then xi is not Pommaret multiplicative for xν and therefore (xi, xcls(xµ)) re-
mains an obstruction for xν ∈ lm(F ) ∪ lm(G). Otherwise, we must have cls(xν) = i and it follows
that xsix

µ ∈ lm(I) for some s and this leads to a contradiction, proving the claim. Thus, based
on Corollary 7.15 and the correctness and termination of the algorithm similar to Algorithm 9 in
the classical setting (see [26, Theorem 4.3.12]), the correctness and termination of Algorithm 9 is
guaranteed. Finally, we note that, PommComp(I,B)(⟨K⟩,H) is a finite set. ◻

Example 7.17. To illustrate the steps of Algorithm 9, let us consider again the ideals given in
Example 7.10. We know that G = {x1x2 + x

2
2} is the reduced Gröbner basis for I and H =

{x1x3} is the Janet basis for J relative to I which is Pommaret autoreduced relative to I. Since
x22x1x3 ∈ ⟨lm(G)⟩, Algorithm RelativeJanetPommaretTest returns (false, x3, x1). By per-
forming the linear change φ ∶= x1 ↦ x1 + x3 on I and J , we get G̃ = {x1x2 + x

2
2 + x2x3} and H̃ =

{x1x3+x
2
3, x1x

2
2+x

3
2}. One sees that {x1, x2, x3} is the set of the Janet multiplicative variables for

x23 and x32 relative to ⟨x2x3⟩. Since x3x32 ∈ lm(φ(I)), Algorithm RelativeJanetPommaretTest

returns true and in turn H̃ is the weak Pommaret basis for φ(J ) relative to φ(I).

Example 7.18. Consider in the polynomial ring P = K[x1, x2, x3] the monomial ideals I = ⟨x32, x
3
3⟩

and J = ⟨x1x3, x
3
2, x

3
3⟩. Since Algorithm RelativeJanetPommaretTest returns true, the set

{x1x3, x1x2x3, x1x
2
2x3, x1x

2
3, x1x2x

2
3, x1x

2
2x

2
3} is a weak Pommaret basis of J relative to I.

8. Conclusion
In this paper, we introduced the notions of relative Gröbner bases as well as relative involutive bases.
In addition, we established a relative Schreyer Theorem. We developed the required concepts and
tools to present algorithms for the constructions of these bases. In particular, we introduced the no-
tion of relative quasi-stable position and applied it to describe an algorithm to compute finite relative
Pommaret bases. In future works, we will investigate the applications of the concepts introduced
in this paper. Specially, since involutive bases provide effective tools to compute many homolog-
ical invariants of an ideal like the Castelnuovo-Mumford regularity, a natural question consists of
designing similar tools in the relative case.
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