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Abstract

We present an effective method to compute the resolution regularity (vector) of bi-homogeneous

ideals. For this purpose, we first introduce the new notion of an x-Pommaret basis and describe

an algorithm to compute a linear change of coordinates for a given bi-homogeneous ideal such

that the new ideal obtained after performing this change possesses a finite x-Pommaret basis.

Then, we show that the x-component of the bi-graded regularity of a bi-homogeneous ideal is

equal to the x-degree of its x-Pommaret basis (after performing the mentioned linear change of

variables). Finally, we introduce the new notion of an ideal in x-quasi stable position and show

that a bi-homogeneous ideal has a finite x-Pommaret basis iff it is in x-quasi stable position.

Keywords: Polynomial ideals, Gröbner bases, Involutive divisions, Janet bases, Pommaret

bases, Quasi stable position, Castelnuovo-Mumford regularity, Resolution regularity.

1. Introduction

The Castelnuovo-Mumford regularity of a homogeneous ideal or a graded module is a fun-

damental invariant in commutative algebra and algebraic geometry which, roughly speaking,

measures the computational complexity of the ideal or module. Since its introduction by Mum-

ford (Mumford, 2005), it has been studied by many authors including Goto and Eisenbud (Goto

and Eisenbud, 1984), Bayer and Stillman (Bayer and Stillman, 1987) and Bayer and Mumford

(Bayer and Mumford, 1993). Two different (and inequivalent) approaches have been proposed

for an extension to multi-graded ideals and modules. Maclagan and Smith (Maclagan and Smith,

2004) defined a multi-graded Castelnuovo-Mumford regularity via the vanishing of multi-graded

Email addresses: n.aramideh12@gmail.com (Nasibeh Aramideh), Amir.Hashemi@cc.iut.ac.ir (Amir

Hashemi), Seiler@mathematik.uni-kassel.de (Werner M. Seiler)

URL: http://amirhashemi.iut.ac.ir (Amir Hashemi),

http://www.mathematik.uni-kassel.de/∼seiler/ (Werner M. Seiler)

Preprint submitted. November 17, 2019



pieces of local cohomology modules (see (Hoffman and Wang, 2004) for the special case of bi-

graded modules). We will use in this work the regularity defined for a bi-homogeneous ideal by

Aramova et al. (Aramova et al., 2000) via the bi-degrees in a bi-graded minimal free resolution

of the ideal. Following Hà (Hà, 2007), we will speak of the resolution regularity (vector). Hà

(Hà, 2007) also investigated the relationship between these two approaches.

Aramova et al. (Aramova et al., 2000) also defined the concept of a bi-generic initial ideal

for a bi-homogeneous ideal and introduced bi-stable monomial ideals. They showed that the

bi-generic initial ideal of a bi-homogeneous ideal is always bi-stable and that the resolution

regularity of a bi-stable ideal can be immediately read off from the minimal generators of its bi-

generic initial ideal. This represents natural extensions of analogous results in the simply graded

case.

For simplicity, we will consider here the resolution regularity only for bi-homogeneous ide-

als, as the generalisation of our results to multi-graded modules is straightforward. Thus we

assume that P = K[x1, . . . , xn, y1, . . . , ym] is a polynomial ring in m + n variables over an infinite

field K and we consider the grading on P given by deg(xi) = (1, 0) and deg(y j) = (0, 1) for all

i and j. An ideal is called bi-homogeneous, if it can be generated by homogeneous polynomi-

als with respect to this grading. For a given bi-homogeneous ideal, the resolution regularity is

the integer pair (p, q) such that the i-th syzygy module in a minimal bi-graded free resolution is

generated by elements whose x-degree (resp. y-degree) is at most p + i (resp. q + i) for all i.

One of our main techniques will be involutive bases. As a special form of (non-reduced)

Gröbner bases, involutive bases have interesting combinatorial properties and are a valuable tool

in a wide range of applications in commutative algebra and algebraic geometry. They combine

ideas of the Janet-Riquier theory of partial differential equations with the theory of Gröbner

bases. Gerdt and Blinkov (Gerdt and Blinkov, 1998) developed the general theory of involutive

bases; Zharkov and Blinkov (Zharkov and Blinkov, 1996) introduced already earlier the special

case of Pommaret bases (see also (Janet, 1924, pages 30–31)). It is well-known that Pommaret

bases do not always exist, but the existence of finite Pommaret basis for a given ideal can always

be achieved by means of a suitable linear change of variables. In a constructive fashion, one can

say that an ideal has a finite Pommaret basis, if and only if it is in quasi stable position. For a

general survey on involutive bases with special emphasis on Pommaret bases see e. g. (Seiler,

2009a,b, 2010).

In this paper, we will consider the problem of computing the resolution regularity of a bi-

homogeneous ideal. We first introduce the new notion of an x-Pommaret basis for a given

bi-homogeneous ideal and propose an algorithm to compute a linear change of the x-variables

such that the ideal obtained after performing this change possesses a finite x-Pommaret basis.

In particular, we will show that the first component of the resolution regularity of a given bi-

homogeneous ideal is equal to the x-degree of the x-Pommaret basis of the ideal (after performing

the computed linear change of variables). Note that the second component of the resolution reg-

ularity of an ideal may be similarly obtained by computing its (analogously defined) y-Pommaret

basis. In analogy to the theory of Pommaret bases, we introduce the new notions of bi-Pommaret

bases and ideals in x-quasi stable and bi-stable positions and show that a bi-homogeneous ideal

has a finite x-Pommaret basis, if and only if it is in x-quasi stable position. In addition, we show

that a monomial ideal is bi-stable, if and only if its minimal basis is a bi-Pommaret basis. All

the algorithms presented in this paper have been implemented in Maple and their application is

illustrated by some worked-out examples

This work is organised as follows. In the next section, we will review the basic definitions

and notations that we will use throughout. In Section 3, we will introduce the new notion of an x-
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Pommaret division and show that it is an involutive division which is non-Noetherian, continuous

and constructive. Section 4 is devoted to the description of an algorithm to compute a linear

change of variables to transform a given bi-homogeneous ideal into an ideal possessing a finite

x-Pommaret basis. In Section 5, after defining the notions of bi-Pommaret bases and ideals in

bi-stable position, we will study the properties of the ideals in bi-stable position by establishing

its connection to the existence of finite bi-Pommaret bases. In the last section, we will investigate

the computation of the resolution regularity of a bi-homogeneous ideal.

2. Preliminaries

We assume throughout that K is an infinite field and R = K[x1, . . . , xn] is the polynomial

ring in n variables x1, . . . , xn. Let M be the monoid of all terms xα = x
α1

1
. . . x

αn
n with an exponent

vector α ∈ Nn. We denote by deg j(xα) = α j the x j-degree of such a term. We will always use the

degree reverse lexicographic term ordering with xn ≺ · · · ≺ x1. For a non-zero polynomial f ∈ R,

the leading term LT( f ) of f is the greatest term occurring in f . The leading coefficient of f is

denoted by LC( f ) and the leading monomial of f by LM( f ) = LC( f )LT( f ). The leading ideal

of I is given by LT(I) = 〈LT( f ) | 0 , f ∈ I〉. For a finite set F = { f1, . . . , fk} of polynomials,

LT(F) =
{

LT( f1), . . . ,LT( fk)
}

. A finite set G = {g1, . . . , gt} of non-zero polynomials is called a

Gröbner basis of I, if G ⊂ I and LT(I) = 〈LT(g1), . . . ,LT(gt)〉. We refer e. g. to (Cox et al.,

2015) for more details on Gröbner bases.

We briefly recall some basic facts from the theory of involutive bases of polynomial ideals.

We refer to (Gerdt and Blinkov, 1998; Gerdt, 2005; Seiler, 2010) for a general discussion of this

theory.

Definition 1. An involutive division L is defined on M by assigning to any finite set U ⊂ M
and to any term u ∈ U a set of multiplicative variables ML(u,U) ⊆ {x1, . . . , xn} such that the

following conditions are satisfied:

• if there exist u, v ∈ U such that uL(u,U) ∩ vL(v,U) , ∅, then either v ∈ uL(u,U) or

u ∈ vL(v,U),

• if v ∈ U and v ∈ uL(u,U), then L(v,U) ⊆ L(u,U),

• if V ⊂ U then L(u,U) ⊆ L(u,V) for all u ∈ V,

where L(u,U) denotes the set of all terms containing only the variables in ML(u,U). The set

{x1, . . . , xn} \ ML(u,U), denoted by NML(u,U), is called the set of non-multiplicative variables.

If v ∈ uL(u,U), then u is called anL-involutive divisor of v and this property is denoted by u |L v.

For most purposes, the following two involutive divisions are the most important ones and

they are the only ones used in this work. Note an important difference in their definitions: the

Pommaret division is global meaning that the assignment of multiplicative variables to a term u

is independent of the choice of a “container” set U ⊂M containing u.

Definition 2. Let U ⊂M be a finite set of terms. For each sequence d1, . . . , di of positive integers

of length i < n, we introduce the subset

[d1, . . . , di] = {v ∈ U | deg j(v) = d j, 1 ≤ j ≤ i} ⊆ U .

The Janet division J assigns multiplicative variables to each term u ∈ U as follows: the variable

x1 is Janet multiplicative for u, if u is of maximal x1-degree in the full set U. For i > 1, the

variable xi is Janet multiplicative for u, if u is of maximal xi-degree in the subset [d1, . . . , di−1].
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Definition 3. The class of a term u = xα ∈M, denoted by cls(xα), is the greatest integer 1 ≤ i ≤ n

such that αi > 0. The Pommaret division, denoted by P, assigns to u the multiplicative variables

xi, . . . , xn where i = cls(u). By convention, if u = 1 then we set cls(u) = 1.

We can now define the notion of an involutive basis first for monomial ideals and then extend

it to polynomial ideals using the natural reduction relation induced by an involutive division.

Definition 4. Let U ⊂ M be a finite set and L an involutive division. Let u ∈ U be an arbitrary

element. The involutive cone CL(u,U) of u for L is

CL(u,U) = {uv | v ∈ L(u,U)} ⊆ uM .

The involutive span of the set U is the union CL(U) = ∪u∈UCL(u,U) of all involutive cones.

Obviously, it is generally only a subset of the monoid C(U) = ∪u∈UuM generated by U in M.

The set U is an involutive basis of the monomial ideal generated by it, if CL(U) = C(U) and all

involutive cones are disjoint (in other words, if for every term v ∈ C(U) there exists exactly one

generator u ∈ U such that v ∈ CL(u,U)).

Definition 5. Let F ⊂ R be a finite set of polynomials and L an involutive division. F is called

L-autoreduced, if no polynomial h ∈ F contains a term xα such that LT( f ) |L xα for some

f ∈ F \ {h}. An L-autoreduced set H is an involutive basis of the ideal 〈H〉 ⊂ R for L, if the

leading terms LT(H) form an involutive basis of the leading ideal LT(〈H〉) for L.

It follows immediately from this definition that any involutive basis of an ideal I ⊂ R is

trivially also a (generally non-reduced) Gröbner basis. However, an involutive basis always

induces a combinatorial decomposition of the form

I =
⊕

h∈H

K[ML,LT(H)(LT(h))] · h (1)

which in turn implies that any polynomial f ∈ I has a unique involutive standard representation

whereas in the theory of Gröbner bases standard representations are very rarely unique.

It is rather straightforward to prove that every ideal I ⊂ R possesses a Janet basis (see e.g.,

(Gerdt and Blinkov, 1998)). By contrast, one can easily produce examples of (even monomial)

ideals for which no finite Pommaret basis exists. More precisely, the ideal I has a Pommaret

basis, if and only if LT(I) is quasi stable in the sense defined below – see (Seiler, 2009b, Propo-

sition 4.4) for more details.

Definition 6. A monomial ideal J ⊂ R is quasi stable, if for any term m ∈ J and any integers

i, j, s with 1 ≤ j < i ≤ n and s > 0 such that xs
i
| m there exists an integer t ≥ 0 such that

xt
j
m/xs

i
∈ J . A polynomial ideal I ⊂ R is in quasi stable position, if LT(I) is quasi stable.

Example 7. The ideal J = 〈x2
1
, x1x2, x

2
2
, x1x3, x2x3, x

3
3
〉 is quasi stable.

In contrast to Gröbner bases, Pommaret bases reflect many important properties of the ideal

they generate, in particular homological properties related to the minimal free resolution of the

ideal (see (Seiler, 2010, Chapter 5)). For our purposes, the most relevant result is that the

Castelnuovo-Mumford regularity can easily be read off from a Pommaret basis.
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Definition 8. A homogeneous ideal I ⊂ R is m-regular, if its minimal graded free resolution

0 −→
⊕

j

R(−er j) −→ · · · −→
⊕

j

R(−e1 j) −→
⊕

j

R(−e0 j) −→ I −→ 0

satisfies ei j − i ≤ m for all i, j. The Castelnuovo-Mumford regularity of I, denoted by reg(I), is

the smallest m such that I is m-regular.

It is worth noting that reg(I) is equal to the maximum degree of the elements in the re-

duced Gröbner basis of I with respect to the reverse lexicographic ordering when working with

generic coordinates, see (Bayer and Stillman, 1987). For more details on this invariant, we refer

to (Mumford, 2005; Goto and Eisenbud, 1984). If an ideal I possesses a Pommaret basis H,

then reg(I) equals the maximal degree of an element of H, (Seiler, 2009b, Theorem 9.2). The

main goal of this work is to derive a similar characterisation of the resolution regularity of a

bi-homogeneous ideal the definition of which we now recall following (Aramova et al., 2000;

Hà, 2007).

Let P = K[x1, . . . , xn, y1, . . . , ym] be a polynomial ring in n + m variables. We denote again

by M the set of all terms in P. In the sequel, we write a term x
α1

1
. . . x

αn
n y
β1

1
. . . y

βm

m briefly as

xαyβ where α ∈ Nn and β ∈ Nm. We consider the grading defined by deg(xi) = (1, 0) and

deg(yi) = (0, 1). A given polynomial f ∈ P is called bi-homogeneous of bi-degree (a, b) if

for each term xαyβ appearing in f we have deg(xα) = a and deg(yβ) = b. An ideal I is bi-

homogeneous, if it can be generated by bi-homogeneous polynomials.

Definition 9. The resolution regularity of a bi-homogeneous ideal I ⊂ P is the pair (p, q) ∈ N2,

if its minimal bi-graded free resolution

0 −→
⊕

j

P(−rt j,−st j) −→ · · · −→
⊕

j

P(−r1 j,−s1 j) −→
⊕

j

P(−r0 j,−s0 j) −→ I −→ 0

satisfies ri j − i ≤ p, si j − i ≤ q for all i, j and both p and q are minimal with this property.

3. The x-Pommaret Division and its Properties

We now introduce a new involutive division, called x-Pommaret division, and show that it is

algorithmically a good division. If u = xαyβ is a term in M, then xα is called the x-part of u and

is denoted by ux. If U is a finite set of terms, we write Ux = {ux | u ∈ U}. Analogous notations

are used for the y-part.

Definition 10. Let U ⊂ M be a finite set. The x-Pommaret division Px assigns multiplicative

variables as follows: A given variable is x-Pommaret multiplicative for a term u = xαyβ ∈ U, if

it is either Pommaret multiplicative for xα ∈ K[x1, . . . , xn] or Janet multiplicative for yβ ∈ Uy ⊂

K[y1, . . . , ym].

Example 11. Consider U = {x2
1
y2

1
y2

2
, x2

1
x2y2

1
, x1y3

2
} ⊂ K[x1, x2, y1, y2]. The following table illus-

trates the multiplicative variables of the elements of U for different involutive divisions.

term Pommaret (ux ∈ Ux) Janet (uy ∈ Uy) x-Pommaret

x2
1
y2

1
y2

2
{x1, x2} {y1, y2} {x1, x2, y1, y2}

x2
1
x2y2

1
{x2} {y1} {x2, y1}

x1y3
2

{x1, x2} {y2} {x1, x2, y2}
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If u is a term and U is a finite set of terms then, in what follows, by Px(u,U), we mean the set

of all terms containing only the multiplicative variables of u ∈ U with respect to the x-Pommaret

division. Similar notations are also defined for all kind of involutive divisions. For a particular

division like the Pommaret division which is global, the container set U is omitted and the set of

all multiplicative terms is denoted by P(u).

Proposition 12. The x-Pommaret division is an involutive division.

Proof. We must prove that the three conditions contained in Definition 1 are satisfied. For the

first condition, suppose that CPx
(u,U) ∩ CPx

(v,U) , ∅ for two terms u , v ∈ U and that w lies

in this intersection. Let us assume that u = x
a1

1
· · · x

ak

k
y

b1

1
· · · y

bm
m and v = x

r1

1
· · · x

rl

l
y

s1

1
· · · y

sm
m with

ak, rl > 0. If now w = x
α1

1
· · · x

αn
n y
β1

1
· · · y

βm

m , then there must exist two terms s ∈ Px(u,U) and

t ∈ Px(v,U) such that we can write w = s · u and w = t · v. Hence,

wx = sx · (x
a1

1
· · · x

ak

k
) = tx · (x

r1

1
· · · x

rl

l
) sx ∈ P(ux), tx ∈ P(vx)

wy = sy · (y
b1

1
· · · ybm

m ) = ty · (y
s1

1
· · · ysm

m ) sy ∈ J(uy,Uy), ty ∈ J(vy,Uy)

First, we consider the y-parts and show that uy = vy. We claim first that b1 = s1. If the degree

in y1 of sy is zero, then trivially b1 ≥ s1. Otherwise, y1 is Janet-multiplicative for uy which

requires by the definition of the Janet division that b1 ≥ s1. Swapping the roles of u and v, we

can show analogously that also s1 ≥ b1 which entails the assertion. We proceed now to y2. By

the considerations above, we know that uy, vy ∈ [b1] which allows us to repeat the same argument

for y2. Continuing this way, we eventually find uy = vy.

Now, we discuss the x-parts. Without loss of generality, assume that k ≤ l. By the definition

of the Pommaret division, we then have αi = ai = ri for all i < k. If ak ≤ rk, then vx ∈ CP(ux).

If rk < ak, then we must distinguish two cases. If k = l, then ux ∈ CP(vx). Otherwise, we have

rk < ak ≤ αk and thus xk is Pommaret-multiplicative for vx which contradicts the assumption

k < l. Hence, either v ∈ CPx
(u,U) or u ∈ CPx

(v,U) which shows that the first condition holds.

Concerning the second condition in Definition 1, assume that there are u, v ∈ U with v ∈

CPx
(u,U). Then vx ∈ CP(ux) implying that MP(vx) ⊆ MP(ux) and vy ∈ CJ(uy,Uy) which is only

possible if vy = uy. By the definition of x-Pommaret division, thus MPx
(v,U) ⊆ MPx

(u,U).

To prove the third condition, take a subset V ⊆ U and a term u ∈ V in it. It follows from the

definitions of the Janet and Pommaret division, resp., that P(ux,Ux) = P(ux,Vx) and J(uy,Uy) ⊆

J(uy,Vy) which together implies that Px(u,U) ⊆ Px(u,V).

The usual algorithms for computing an involutive basis require that the division is contin-

uous and constructive. After briefly recalling the corresponding definitions, we show that the

x-Pommaret division has both properties.

Definition 13. Let L be an involutive division and U ⊂ M a finite set of terms. Let also

(u1, . . . , uk) be a finite sequence of elements of U such that

(∀i < k)(∃zi ∈ NML(ui,U))[ui+1 |L,U ui · zi]. (2)

Then L is continuous, if for any such sequence we have ui , u j for all i , j.

Lemma 14. Let (v1, . . . , vs) be a sequence of terms in M. If vi |P vi−1 for 2 ≤ i ≤ s − 1

and vs |P vs−1 · z where z is not Pommaret-multiplicative for vs−1, then z is also not Pommaret-

multiplicative for v1 and we have vs |P v1 · z.
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Proof. According to our assumption vi |P vi−1 for 2 ≤ i ≤ s − 1 and by the definition of the

Pommaret division, we must have vi−1 ∈ viP(vi). So, by the second condition in Definition 1

of an involutive division, we have MP(vi−1) ⊆ MP(vi) for 2 ≤ i ≤ s − 1. Thus we deduce that

MP(v1) ⊆ MP(vs−1) which shows the first claim. From the inclusion MP(vi−1) ⊆ MP(vi) for

2 ≤ i ≤ s−1, it follows again that vs−1 |P v1. On the other hand, from the assumption vs |P vs−1 · z

where z is not Pommaret-multiplicative for vs−1, we conclude that MP(vs−1) ⊆ MP(vs) and these

arguments prove that vs |P v1 · z.

Lemma 15. Let (v1, . . . , vs) be a sequence of terms in M. If vi |P vi−1 for 3 ≤ i ≤ s and v2 |P v1 · z

where z is not Pommaret-multiplicative for v1, then vs |P v1 · z.

Proof. The properties of the Pommaret division imply that vs |P v2 and P(v2) ⊆ P(vs). Thus

v2 = tvs for a term t ∈ P(vs). As v2 |P v1 · z, we must have v1 · z = uv2 for a term u ∈ P(v2). So

v1 · z = utvs and ut ∈ P(vs). Thus vs |P v1 · z.

Proposition 16. The x-Pommaret division is continuous.

Proof. Let U ⊂ M be a finite set of terms and (u1, . . . , uk) a finite sequence of elements in U

satisfying condition (2) for Px. For a reductio ad absurdum suppose that there are i , j such

that ui = u j. Without loss of generality, we may assume that i = 1 and j = k. We first exclude

two trivial cases. If all non-multiplicative variables in condition (2) belong to the set {x1, . . . , xn},

then the induced sequence (u1x, . . . , uk x) of elements in Ux satisfies

(∀i < k)(∃zi ∈ NMP(ui x))[ui+1x |P ui x · zi].

Furthermore, by assumption u1x = uk x which contradicts the continuity of the Pommaret division.

If all non-multiplicative variables in condition (2) belong to the set {y1, . . . , ym}, then by repeating

the same argument as in the first case, we obtain a contradiction with the continuity of the Janet

division.

Now consider the case that some of the non-multiplicative variables in the condition (2)

belong to the set {x1, . . . , xn} and some of them belong to {y1, . . . , ym}. By assumption, u1x = uk x.

Suppose that (ui1 , . . . , uik ) is the largest subsequence such that {i1, . . . , ik} ⊆ {1, . . . , k} and there

exists a Pommaret non-multiplicative variable zi j−1
for (ui j−1

)
x

with (ui j
)

x
|P (ui j−1

)
x
· zi j−1

.

Let us first assume that ik = k. If i1 = 1, then we obtain again a contradiction as above

by considering the sequence (u1x, (ui2 )x, . . . , (uik−1
)x, uk x). If i1 , 1, then (ui2 )x |P (ui1 )x · zi1

where zi1 ∈ NMP((ui1 )x). Since (ui1 )x |P u1x, by Lemma 14, we have (ui2 )x |P u1x · zi1 and

zi1 ∈ NMP(u1x). Thus we may replace ui1 by u1 and the sequence (u1x, (ui2 )x, . . . , (uik−1
)x, uk x)

leads again to a contradiction.

If ik , k, we again suppose first that i1 = 1. We know that uk x |P (uik )x. According to

our assumption, (uik )x |P (uik−1
)x · zik−1

with zik−1
∈ NMP((uik−1

)x). By Lemma 15, we find uk x |P
(uik−1

)x · zik−1
and thus may replace uik by uk. Then the sequence ((ui1 )x, . . . , (uik−1

)x, uk x) provides

us again with a contradiction. If i1 , 1, then using Lemmas 14 and 15, we may replace ui1 by

u1 and uik by uk, respectively, and the sequence (u1x, (ui2 )x, . . . , (uik−1
)x, uk x) yields the desired

contradiction.

Definition 17. A continuous involutive division L is constructive, if it satisfies the following

property. Let U ⊂M be a finite set and assume that u ∈ U and z ∈ NML(u,U) are such that

1. u · z < CL(U) and
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2. for each term v ∈ U and z̃ ∈ NML(v,U) such that v · z̃ | u · z and v · z̃ , u · z we have that

v · z̃ ∈ CL(U).

Then there cannot exist a term w ∈ CL(U) such that u · z ∈ CL(w,U ∪ {w})

Proposition 18. The x-Pommaret division is constructive.

Proof. In the setting of Definition 17 above, we consider first the case that z ∈ {x1, . . . , xn}. By

assumption, u · z has no x-Pommaret divisor in U implying that z ∈ NMP(ux) and ux · z < CP(Ux).

By definition, for any term w ∈ CPx
(U) there exists a term v ∈ U such that w ∈ CPx

(v,U). Since

the Pommaret division is global, CP(wx) ⊆ CP(vx) and consequently adding wx to Ux does not

change the involutive span CP(Ux). Thus, if ux · z < CP(Ux), then ux · z < CP(Ux ∪ {wx}) and

u · z < CPx
(w,U ∪ {w}).

Now assume that z ∈ {y1, . . . , ym}. We follow the idea of the proof of (Gerdt and Blinkov,

1998, Proposition 4.13). From the assumption, we know that u · z = (u1 · v) · w1 where u1 ∈ U,

u1v ∈ CPx
(U) and w1 ∈ Px(u1v,U ∪ {u1v}). Let us consider the term ordering ≺lex with xn ≺lex

· · · ≺lex x1 ≺lex ym ≺lex · · · ≺lex y1. Since z is Janet non-multiplicative for u, we have u ≺lex u1.

We claim that w1 contains a variable in {y1, . . . , ym}. Otherwise – since the Pommaret division

is global – u · z ∈ CPx
(U) which contradicts our assumption and we may assume that yi1 divides

w1. Choose yi1 ∈ NMPx
(u1,U). Therefore, using the fact that u1 · yi1 divides properly u · z and

assumption (2) in Definition 17, we can write

u · z = (u1 · yi1 )
vw1

yi1

= (u2w2)
vw1

yi1

where u2 ∈ U, u2w2 ∈ CPx
(U). It follows that u ≺lex u1 ≺lex u2. If vw1/yi1 contains a Janet

non-multiplicative variable for u2, then we can continue this process leading to the chain u ≺lex

u1 ≺lex u2 ≺lex · · · which must be finite by the continuity of Px (note that all ui divide u · z).

This implies that there exists uℓ ∈ U so that u · z ∈ CPx
(uℓ,U) what contradicts our assumption

u · z < CL(U).

Remark 19. It follows trivially from the fact that the Pommaret division is not Noetherian that

the x-Pommaret division cannot be Noetherian either.

4. Computation of x-Pommaret Bases

Above it was shown that the x-Pommaret division is continuous and constructive. Thus

in principle the usual completion algorithms (see e.g., (Seiler, 2010, Algorithm 4.1)) can be

applied for the construction of an x-Pommaret basis. However, as the x-Pommaret division

is not Noetherian, termination is a non-trivial question. We will now show that – as for the

Pommaret division – any ideal possesses a finite x-Pommaret basis after a linear coordinate

transformation and we will describe a concrete algorithm for the simultaneous construction of

such a transformation and the corresponding basis following the ideas developed in (Hashemi

et al., 2018).

Suppose that I = 〈 f1, . . . , fk〉 is an ideal generated by the bi-homogeneous polynomials

f1, . . . , fk in P = K[y1, . . . , ym, x1, . . . , xn] (due to some computational issues, we swap here the

order of the x- and the y-variables). Furthermore, let ≺ be the degree reverse lexicographic term

ordering with xn ≺ · · · ≺ x1 ≺ ym ≺ · · · ≺ y1. We first compute a minimal Janet basis H for I

with respect to this ordering using Gerdt’s algorithm (Gerdt, 2005). We then apply the algorithm
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TEST to check whether LT( f )x has the same Janet and Pommaret multiplicative variables for

every polynomial f ∈ H. If this is the case, we may conclude that H is already an x-Pommaret

basis for I. Otherwise, we apply an elementary coordinate transformation as in the proof of

(Seiler, 2009b, Theorem 2.13) on H and repeat this process, until we find an x-Pommaret basis

for I. Since we can always reach in this way a finite Pommaret basis for I after a finite number

of linear changes, the same holds for the x-Pommaret division (alternatively, one can prove this

explicitly by adapting the corresponding proofs in (Hashemi et al., 2018)).

The mentioned procedure to compute Pommaret bases uses the following result (Gerdt and

Blinkov, 1998, Proposition 3.10): If a finite set U ⊂ K[x1, . . . , xn] of terms is Pommaret autore-

duced, then for any u ∈ U we have MP(u,U) ⊆ MJ(u,U). We now provide an extension of this

result to the x-Pommaret division.

Proposition 20. Suppose that U ⊂ M is a finite set of terms which is autoreduced for the x-

Pommaret division. Then for any term u ∈ U we have MPx
(u,U) ⊆ MJ(u,U). Moreover, an ideal

I possesses a finite x-Pommaret basis, if and only if for any polynomial f in a minimal Janet

basis H of I we have MPx
(LT( f ),LT(H)) = MJ(LT( f ),LT(H)).

Proof. The assertions are immediate from (Gerdt and Blinkov, 1998, Proposition 3.10) and

(Gerdt, 2000, Theorem 1) (see also (Seiler, 2009b, Theorem 2.13)), respectively.

These considerations lead to Algorithm 1 for the effective construction of an x-Pommaret

basis. It is not necessary to perform in it an explicit x-Pommaret autoreduction. Indeed, the

output of Gerdt’s algorithm is a minimal Janet basis and any minimal Janet basis is automatically

x-Pommaret autoreduced. In the sequel, if A is a list, then we denote by A[i] its i-th element.

Algorithm 1 x-PommaretBasis

Require: A finite set F ⊂ P of bi-homogeneous polynomials

Ensure: An x-Pommaret basis H for the ideal I = 〈F〉

H := GERDT(F, J,≺)

chen := ∅

A := TEST(H,≺)

while A , true do

H := Replace A[3] by A[3] + cA[2] in H where c ∈ K is random

K :=GERDT(H, J,≺)

B := TEST(K,≺)

if B , A then

chen := chen ∪ {A[3] = A[3] + cA[2]}

H := K

A := B

end if

end while

return (H, chen)

The subalgorithm TEST checks whether or not any term in LT(F) has the same Janet and

Pommaret multiplicative variables.
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Algorithm 2 TEST

Require: A finite set F ⊂ P of bi-homogeneous polynomials

Ensure: True if for each f ∈ F the x-part of the leading term of f has the same Pommaret and

Janet multiplicative variables; and (false, xi, x j) otherwise where xi, x j are two variables

for f ∈ F do

M := MJ,≺(LT( f ),LT(F)) \ {y1, . . . , ym}

N := MP,≺(LT( f ),LT(F)) \ {y1, . . . , ym}

if N , M then

V := M \ N

return (false,V[1], xcls(LT( f )x))

end if

end for

return (true)

Theorem 21. The algorithm x-PommaretBasis terminates in finitely many steps and is correct.

Proof. If an ideal possesses a finite Pommaret basis with respect to the mentioned ordering of

the variables, then that basis is also an x-Pommaret basis for the ideal. On the other hand, Seiler

(Seiler, 2009b, Remark 9.11) proved that after a finite number of coordinate transformations

on the variables y1, . . . , ym, x1, . . . , xn (including changes of the form used in x-PommaretBasis

algorithm) one always can obtain a finite Pommaret basis for I. Note that an x-Pommaret basis

may be obtained already in the middle of the Pommaret basis computation when we restrict the

coordinate transformations to the variables x1, . . . , xn and this completes the proof of termination.

The correctness of the algorithm is a consequence of Proposition 20.

Example 22. Consider the set F = {x1y1 + x2y2, x
2
1
y1 + x1x2y2,−3x1x2y1 + x2

2
y2, x

2
1
x2y1 + 4x3

2
y2}

and the variable ordering x2 ≺drl x1 ≺drl y2 ≺drl y1. According to the structure of the algorithm

x-PommaretBasis1, we must first compute a Janet basis for I = 〈F〉 with respect to ≺. Gerdt’s

algorithm yields the Janet basis {4x2
2
y2, x1y1 + x2y2}. For the term 4x2

2
y2 the set of Janet multi-

plicative variables is {x1, x2, y2}, whereas only x2 is Pommaret multiplicative. Consequently, we

perform the coordinate transformation x2 = x2 − 2x1. Now the output of the algorithm will be

as H = {16x2
1
y2 − 16x1x2y2 + 4x2

2
y2, x1y1 − 2x1y2 + x2y2}. We can see easily that H is only an

x-Pommaret basis and not a Pommaret basis for I (see Example 27 below).

A question naturally arising here is whether or not one can define a bi-Janet division and use

a bi-Janet basis in the algorithm x-PommaretBasis instead of the usual Janet basis. Below, we

define such a division and show that it is not helpful for the construction of x-Pommaret bases.

Definition 23. Let U ⊂ M be a finite set of terms in P. A given variable is called bi-Janet

multiplicative for u = xαyβ ∈ U, if it is Janet multiplicative for either xα ∈ Ux ⊂ K[x1, . . . , xn] or

yβ ∈ Uy ⊂ K[y1, . . . , ym].

Example 24. Consider the set F = {x1y1y2, y
2
1
y2} ⊂ K[x1, y1, y2] with the variable order-

ing x1 ≺drl y1 ≺drl y2. By applying Gerdt’s algorithm, we compute a bi-Janet basis H =

{x1y1y2, y
2
1
y2, x1y2

1
y2} for 〈F 〉 with respect to ≺. Considering the term v = y2

1
y2, we observe

that the set of the Pommaret multiplicative variables for vx = 1 is {x1} however the Janet one is

the empty set. Hence we note that there is no analogue for the crucial Proposition 20.

1The Maple code of our implementations are available at http://amirhashemi.iut.ac.ir/softwares
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We now extend the notion of quasi stability to the bigraded case and show that for a bi-

homogeneous ideal having a finite x-Pommaret basis is equivalent to being in x-quasi stable

position generalising (Seiler, 2009b, Proposition 4.4).

Definition 25. A monomial ideal J ⊂ P is called x-quasi stable, if for every term xαyβ ∈ J and

all integers i, j, s with 1 ≤ j < i ≤ n, s > 0 and xs
i
| xαyβ there exists an integer t ≥ 0 such that

xt
j
xαyβ/xs

i
∈ J . A bi-homogeneous ideal I ⊂ P is in x-quasi stable position if LT(I) is x-quasi

stable.

Proposition 26. A monomial ideal J is x-quasi stable, if and only if it possesses a finite x-

Pommaret basis.

Proof. Let us assume that J is x-quasi stable and that H is a minimal Janet basis of J . We will

prove that this Janet basis is simultaneously an x-Pommaret basis for J . For this purpose, it is

sufficient to show that for any u ∈ H we have MP(ux) = MJ(ux,LT(H)x). Since H is a minimal

Janet basis of J , we have MP(ux) ⊆ MJ(ux,LT(H)x) for any u ∈ H. Suppose there exists a term

v = y
β1

1
· · · y

βm

m x
α1

1
· · · x

αk

k
∈ H with cls(vx) = k such that xl ∈ MJ(vx,LT(H)x) but xl < MP(vx),

i. e. l < k. Since J is x-quasi stable, there exists α such that w = v · xα
l
/x
αk

k
belongs to J . Now,

there is a term s ∈ H with w = sr where r contains only Janet multiplicative variables of s ∈ H.

It follows that r must contain xl and this contradicts the fact that xl belongs to MJ(vx). Thus

MJ(ux,LT(H)x) ⊆ MP(ux) for all u ∈ H and we are done.

Conversely, let H be a finite x-Pommaret basis for J and u ∈ J with cls(ux) = k. Then for

1 ≤ i < k, xi is a non-multiplicative variable for ux with respect to Pommaret division. Suppose

that t is the maximum power of xi among the elements of H. As H is an x-Pommaret basis

of J it must contain a term v such that vx |P ux · xt+1
i

. This implies that there exists a term

A ∈ P(vx) such that ux · xt+1
i
= vx · A. Thus, A must contain xi and cls(vx) = i. Therefore, we

have degk(A) = degk(ux). It follows that u · xt+1
i
/x
αk

k
belongs to J . Based on this argument, one

observes that J is x-quasi stable and this ends the proof.

Example 27. In Example 22 we saw that the transformation x2 = x2−2x1 yields the x-Pommaret

basis H = {16x2
1
y2−16x1x2y2+4x2

2
y2, x1y1−2x1y2+ x2y2}. By Definition 25, the ideal 〈LT(H)〉 is

x-quasi stable and it possesses a finite x-Pommaret basis. However it is not quasi stable because

y1 | x1y1 but no pure power of x1 belongs to 〈LT(H)〉. Indeed, after performing the changes

x2 = x2 + 4x1, x1 = x1 + 5y2, x2 = x2 − 4x1 and y2 = y2 − 4y1 we get the following Pommaret

basis
{

−
1024

15
x2

1y1y2 +
256

15
x2

1y2
2 +

64

75
x3

1y1 +
256

15
x1x2y1y2 −

64

15
x1x2y2

2 −

32

75
x2

1x2y1 +
64

75
x2

1x2y2 +
4

75
x1x2

2y1 −
16

75
x1x2

2y2,

−
256

9
y1y2

2 +
64

9
y3

2 +
4352

45
x1y1y2 −

1024

45
x1y2

2 −
256

225
x2

1y1 −
128

45
x2y1y2 +

32

45
x2y2

2 +
128

225
x1x2y1 −

256

225
x1x2y2 −

16

225
x2

2y1 +
4

225
x2

2y2,

x1y1 − 4x2y1 + x2y2 + 300y2
1 − 155y1y2 + 20y2

2

}

for the ideal I.
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5. Bi-Quasi Stable Ideals

We discuss now another generalisation of quasi stable ideal and provide then an algorithm to

transform any bi-homogeneous ideal into the corresponding generic position. Furthermore, we

introduce the notion of a bi-Pommaret basis and relate it with bi-quasi stable ideals.

Definition 28. A monomial ideal J ∈ P is bi-quasi stable, if for every term xαyβ ∈ J the

following two conditions are satisfied.

1. for all integers i, j, s with 1 ≤ j < i ≤ n, s > 0 and xs
i
| xαyβ there exists an integer t ≥ 0

such that xt
j
xαyβ/xs

i
∈ J ,

2. for all integers i, j, s with 1 ≤ j < i ≤ m, s > 0 and ys
i
| xαyβ there exists an integer t ≥ 0

such that yt
j
xαyβ/ys

i
∈ J .

An ideal I is in bi-quasi stable position, if LT(I) is bi-quasi stable.

Example 29. Let J = 〈x2
1
y2

1
, x2

1
y1y2, x

2
1
y2

2
, x2

1
y1y3, x1x2y2

1
, x1x2y1y2, x1x2y2

2
, x1x2y1y3, x

2
2
y2

1
〉 be an

ideal in K[x1, x2, y1, y2, y3]. One can check easily that J is bi-quasi stable.

Based on Definition 28, there exists a simple algorithm verifying whether or not a given

monomial ideal is bi-quasi stable.

Algorithm 3 BQS-TEST

Require: A minimal basis G of the monomial ideal J ⊂ P

Ensure: Answer to the question: “Is J bi-quasi stable?”

q := max{deg(ux), deg(uy) | u ∈ G}

for xαyβ ∈ G with cls(xα) = k and cls(yβ) = ℓ do

for i from 1 to k − 1 do

if x
q

i
xαyβ/x

αk

k
< J then

return( f alse, xk, xi)

end if

end for

for i from 1 to ℓ − 1 do

if y
q

i
xαyβ/y

βk

ℓ
< J then

return( f alse, yℓ, yi)

end if

end for

end for

return (true)

Theorem 30. The algorithm BQS-TEST terminates in finitely many steps and is correct.

Proof. The termination of the algorithm is trivial. Its correctness is a straight-forward generali-

sation of the corresponding result for quasi stable ideals – see (Seiler, 2012, Lemma 3.4).

A method to transform deterministically any ideal into quasi stable position was proposed in

(Hashemi et al., 2018), see also (Seiler, 2009b, Remark 9.11). Algorithm 4 adapts this method to

the bigraded case. Since transforming a given ideal into bi-quasi stable position is simply a step

towards transforming the ideal into quasi stable position, its termination and correctness follow

directly from the results in (Hashemi et al., 2018).
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Algorithm 4 BQS-Transform

Require: A bi-homogeneous polynomial ideal I = 〈F〉 ⊂ P

Ensure: A linear change Ψ s.t. Ψ(I) is in bi-quasi stable position

Ψ := ∅

G :=GröbnerBasis(F,≺)

A :=BQS-TEST(LT(G))

while A , true do

G := Replace A[2] by A[2] + cA[3] in G where c ∈ K is a random element

H :=GröbnerBasis(G,≺)

B :=BQS-TEST(H)

if B , A then

Ψ := Ψ ∪ {A[2] = A[2] + cA[3]}

G := H

A := B

end if

end while

return (Ψ)

Theorem 31. The algorithm BQS-Transform terminates in finitely many steps and is correct.

Example 32. Consider the ideal I = 〈x1y1 + x2y2, x
2
1
y1 + x1x2y2,−3x1x2y1 + x2

2
y2, x

2
1
x2y1 +

4x3
2
y2〉 and the variable ordering x2 ≺drl x1 ≺drl y2 ≺drl y1. According to the algorithm BQS-

Transform, we compute first the Gröbner basis G = {x1y1 + x2y2, x
2
2
y2} for I. Since

xt
1
x2

2
y2

x2
2

<

〈LT(G)〉 for any t, we perform the coordinate transformation Ψ1 : (x2 = x2 + 2x1) on G which

yields the set F1 = {4x2
1
y2 + 4x1x2y2 + x2

2
y2, x1y1 + 2x1y2 + x2y2}. The Gröbner basis of the ideal

generated by F1 is G1 = {x
2
2
y2

1
y2, 4x1x2y2

2
− x2

2
y1y2+2x2

2
y2

2
, 4x2

1
y2+4x1x2y2+ x2

2
y2, x1y1+2x1y2+

x2y2}. However, LT(Ψ1(I)) is still not bi-quasi stable as
y2

1
x2

2
y2

1
y2

y2

< 〈LT(G1)〉. Thus we perform

a second coordinate transformation of the form Ψ2 : (y2 = y2 − y1). One can easily check that

LT(Ψ2(Ψ1(I))) is bi-quasi stable.

We now recall the definition of bi-stable ideals from (Aramova et al., 2000, Definition 1.1).

Furthermore, after defining bi-Pommaret bases, we show that a monomial ideal is bi-stable, if

and only if its minimal basis is a bi-Pommaret basis.

Remark 33. Throughout this section, if u is a term in M, then we write clsx(u) = max{i |

degi(ux) > 0} and mx(u) = min{i | degi(ux) > 0}. The notations clsy(u) and my(u) are defined

analogously.

Definition 34. Let I ⊂ P be a bi-homogeneous ideal. A finite generating set H ⊂ I is a

bi-Pommaret basis of I, if for any f ∈ I there exists g ∈ H such that LT(g) | LT( f ) and

t ∈ K[xclsx(LT(g)), . . . , xn, yclsy(LT(g)), . . . , ym] where t = LT( f )/LT(g).

Definition 35. Let J ⊂ P be a monomial ideal. J is called bi-stable, if for any term u ∈ J the

following two conditions hold:

1. for every i < clsx(u) one has xi · u/xclsx(u) ∈ J ,
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2. for every j < clsy(u) one has y j · u/yclsy(u) ∈ J .

Proposition 36. Let J be a monomial ideal in P. Then J is bi-stable, if and only if its minimal

basis H is a bi-Pommaret basis.

Proof. Let us assume that J is bi-stable. We then have to show that H is a bi-Pommaret basis

for J . We know that for any term v ∈ J there exists a decomposition of the form

v = uw, clsx(u) ≤ mx(w), clsy(u) ≤ my(w) (3)

where u ∈ H, see (Aramova et al., 2000, Lemma 2.1). It follows that H is a bi-Pommaret basis

for J . For the converse, assume that the minimal basis H is a bi-Pommaret basis for J . Thus

every term in J has a decomposition of the form (3). Let v ∈ J be a term and i < clsx(v). As

xi · v ∈ J , there exists a term u ∈ H so that xi · v = zu with clsx(u) ≤ mx(z) and clsy(u) ≤ my(z).

Thus clsx(xi · v) = clsx(v). Since u ∈ H cannot be a multiple of v (because H is minimal), z , 1

and xclsx(v) | z. Setting z = z′ · xclsx(v), we have xi · v = uz′.xclsx(v). Therefore xi·v

xclsx (v)
= z′ · u ∈ J and

so the first condition of Definition 35 holds. Similarly, we can prove the second condition and

we are done.

The following example shows that the bi-Pommaret division is not involutive.

Example 37. Let U1 = {x
2
1
y2

1
y2

2
, x2

1
x2y2

1
} be a subset of K[y1, y2, x1, x2]. Then x2

1
y2

1
y2

2
·x2 = x2

1
x2y2

1
·

y2
2

where {x1, x2, y2} and {x2, y1, y2} are the sets of the bi-Pommaret multiplicative variables of

x2
1
y2

1
y2

2
and x2

1
x2y2

1
, respectively. However x2

1
y2

1
y2

2
∤ x2

1
x2y2

1
and x2

1
x2y2

1
∤ x2

1
y2

1
y2

2
.

We conclude this section with an example which shows that the method described in (Seiler,

2009b) for computing Pommaret bases cannot be applied to compute bi-Pommaret bases.

Example 38. Let F = {y1x1x2, x
2
1
x2, y1y2x2} ⊂ K[y1, y2, x1, x2] be a finite set and x2 ≺drl x1 ≺drl

y2 ≺drl y1. First we compute a Janet basis for J = 〈F 〉 with respect to ≺. By applying Gerdt’s

algorithm, one finds that F is already a Janet basis for J . We consider u = x2
1
x2 and observe

that the set of Janet multiplicative variables for ux is {x1, x2}, however, only x2 is also Pommaret

multiplicative. We perform a coordinate transformation of the form x2 = x2 + 5x1 and find that

the set H = {5x3
1
+x2

1
x2, 5y1x2

1
+y1x1x2, 5y1y2x1+y1y2x2} is a Janet basis for 〈H〉 with respect to ≺.

Now we consider the polynomial f = 5y1x2
1
+y1x1x2 and we observe that the set of the Pommaret

multiplicative variables for LT( f )y = y1 is {y1, y2}, however, only y1 is also Janet multiplicative.

Therefore LT( f )y possesses more Pommaret than Janet multiplicative variables and one cannot

apply the method of (Seiler, 2009b).

6. Computing the Resolution Regularity

Recall that the resolution regularity of a bi-homogeneous ideal is a pair of integers. In this

section, we focus on computing only the first component, which we call the x-regularity of the

ideal. We show how one can apply the theory of x-Pommaret bases to compute the x-regularity

of a bi-homogeneous ideal. For this, we show first that the x-Pommaret division is of Schreyer

type. For a given integer s, let us consider Ps as an P-module and represent each of its element

by an s-tuple f = ( f1, . . . , fs) with fi ∈ P. Denoting the standard basis of Ps as {e1, . . . , es}, we

can write f = f1e1 + · · · + fses. A (module) term is a vector of the form t = tei with t ∈ M and

1 ≤ i ≤ s.
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Definition 39. Let I ⊂ P be a bi-homogeneous ideal. The x-regularity of I, denoted by regx(I),

is the least integer q such that its i-th bi-graded syzygy module is generated by the elements of

x-degree (degree with respect to the variables xi which is denoted by degx) less than or equal to

q + i.

The Castelnuovo-Mumford regularity of an ideal generated by a Pommaret basis H is equal

to the maximal degree of an element of H (Seiler, 2009b, Theorem 9.2). On the other hand, by

the definition of the x-regularity, one sees that performing a linear change of the x-coordinates

only on a given bi-homogeneous ideal does not change its x-regularity. Therefore, one could

hope that to determine the x-regularity of a bi-homogeneous ideal, one might compute first a

Pommaret basis for the ideal and then take the maximal x-degree of the basis as the x-regularity

of ideal. The next example shows that this is not true in general.

Example 40. Let F = {x1y1y2, y
2
1
y2, x1x2y2, x1x2

2
, x3

2
} ⊂ K[x1, x2, y1, y2] be a finite set of terms

and x2 ≺drl x1 ≺drl y2 ≺drl y1. After performing the changes of coordinates x2 = x2 + 2y1 and

x2 = x2 + 2y2 on F, we obtain the Pommaret basis H = { 1
48

x4
2
y2 +

1
6

x3
2
y2

2
+

1
2

x2
2
y3

2
+

2
3

x2y4
2
+

1
3
y5

2
, 1

3
x1y4

2
+

1
24

x1x3
2
y2,−

1
8

x3
2
y2−

3
4

x2
2
y2

2
− 3

2
x2y3

2
−y4

2
− 3

4
y2y1x2

2
−3x2y1y2

2
−3y1y3

2
,−x1y1y2

2
,−x1y3

2
+

1
4
y2x1x2

2
, x3

2
+ 6x2

2
y1 + 6x2

2
y2 + 12x2y2

1
+ 24x2y1y2 + 12x2y2

2
+ 8y3

1
+ 24y2

1
y2 + 24y1y2

2
+ 8y3

2
, y2

1
y2,

x1x2
2
+ 4x1x2y1 + 4x1x2y2 + 4x1y2

1
+ 8x1y1y2 + 4x1y2

2
, x1x2y2 + 2x1y1y2 + 2x1y2

2
,− 1

2
y2x1x2 − x1y2

2
}

for the transformed ideal. One observes that the maximal x-degree of the elements of H is 4. On

the other hand, performing the linear change y2 = y2 + 5y1 and x2 = x2 − 2x1 on F, we obtain

the Gröbner basis G = {5x3
2
y2

1
+ x3

2
y1y2, 10x1x2

2
y1 + 2x1x2

2
y2 − 5x3

2
y1 − x3

2
y2, 5y3

1
+ y2

1
y2, 5x1y2

1
+

x1y1y2, 10x2
1
y1+2x2

1
y2−5x1x2y1−x1x2y2, 4x3

1
−3x1x2

2
+x3

2
, 4x2

1
x2−4x1x2

2
+x3

2
} for the transformed

ideal. We notice that 〈LT(G)〉 is bi-stable and hence the x-regularity of 〈F〉 is the maximal x-

degree of the elements of G which is equal to 3, see (Aramova et al., 2000, Theorem 2.2).

As usual, a total ordering < on Ps is called a module term ordering, if for any r ∈ M and for

any two module terms t, s ∈Ms the following two conditions hold: (i) t ≤ rt and (ii) if s < t then

rs < rt. This allows for a natural extension of the notions of leading term, leading monomial

and leading coefficient to an element f of Ps and we denote them by LT<(f), LM<(f) and LC<(f)

respectively.

Example 41 (Schreyer ordering). Suppose that F = { f1, . . . , fs} ⊂ P and ≺ is a term ordering

on P. We recall that the Schreyer module term ordering <F with respect to F on Ps is defined

as follows: let r = rei and t = te j be two module terms in Ms; we write r <S t if either

LT≺(r fi) ≺ LT≺(t f j) or LT≺(r fi) = LT≺(t f j) and j < i.

The following definitions are taken from (Seiler, 2009b). Let H be a finite subset of Ps, <

a module term ordering on Ms and L an involutive division on P. We divide H into s disjoint

subsets Hi = {h ∈ H | LM<(h) = tei, t ∈ M}. This partitioning leads to s sets Bi = {t ∈ M |

tei ∈ LM<(Hi)}. Now we assign to each h ∈ Hi the multiplicative variables ML,H,<(h) = {xi ∈

ML,Bi
(t) | LM<(h) = tei}.

Definition 42. An involutive division L is of Schreyer type, if for any monomial L-involutive set

H ⊂ M and for any term h ∈ H the set of non-multiplicative variables NML,H(h) ⊂ M is again

L-involutive.

Lemma 43. The x-Pommaret division is of Schreyer type.
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Proof. Let H ⊂M be a monomial x-Pommaret basis and h an arbitrary element of H. According

to the definition of the x-Pommaret division, the set of non-multiplicative variables of h is of the

form {yi1 , . . . , yiℓ , x1, . . . , xk} for some i1, . . . , iℓ, k. Using the fact that both the Pommaret and the

Janet division are of Schreyer type (Seiler, 2009b, Lemma 5.9), one can show easily that this set

is x-Pommaret involutive.

Let H = {h1, . . . ,hr} be an x-Pommaret basis of the submodule M ⊆ Ps. Then, we know

that for each hα ∈ H and each non-multiplicative variable, say xk, we can write xkhα as
∑r

i=1 pihi

using an involutive normal form algorithm. The corresponding syzygy is written as S α,[k],[] =

xkeα −
∑r

i=1 piei. If we consider a non-multiplicative variable yℓ, then the corresponding syzygy

is denoted by S α,[],[ℓ]. The set of all such syzygies is denoted by HS yz. Using Lemma 43 and

similar to (Seiler, 2009b, Theorem 5.10), we can show that HS yz is an x-Pommaret basis for the

syzygy module of h1, . . . ,hr for the Schreyer ordering. We note that if we start with a set of bi-

homogeneous elements, then the syzygy modules are all bi-graded. Based on these observations,

we claim that for a given x-Pommaret basis H we can write a minimal bi-graded free resolution

of length m + n of the form:

0 −→ Prm+n −→ · · · −→ Pr1 −→ Pr0 −→ 〈H〉 −→ 0 . (4)

Remark 44. Let F = {f1, . . . , ft} ⊂ P
s be a set of bi-graded elements. Thus the syzygy module

S yz(F) may be considered as a bi-graded submodule of Pt where the grading on the module Pt

is defined as degx(xαyβei) = |α| + degx(fi). Furthermore, degx(F) = max{degx(f1), . . . , degx(ft)}.

Analogous notation degy is defined for an element in Pt as well.

Theorem 45. Let I be a bi-homogeneous ideal and Ψ a linear change of coordinates such that

Ψ(I) has a finite x-Pommaret basis H. Then regx(I) = degx(H).

Proof. The proof is inspired by (Seiler, 2009b, Theorem 9.2). First we note that the x-regularity

of a bi-homogeneous ideal is stable under any linear change of the x-coordinates. This shows that

regx(I) = regx(〈H〉). Therefore, without loss of generality, we may assume that I has a finite

x-Pommaret basis H = {h1, . . . , ht} and q = degx(H). We show that regx(I) = q. From the above

observation, we know that the i-th syzygy module of the resolution (4) induced by the basis H

is generated by elements of x-degree at most q + i. Thus by Definition 39, we have regx(I) ≤ q.

Hence it remains to show that regx(I) = q. Let hγ be an element of H with degx(hγ) = q so

that clsx(hγ) = max{clsx(hα) | hα ∈ H, degx(hα) = q}. If clsx(hγ) = 1, then it is of the form

LT(hγ) = x
q

1
y
γ1

1
· · · y

γm

m . As the x-Pommaret basis H is minimal, the leading term of any other

generator hα with clsx(hα) = 1 cannot divide LT(hγ). Thus hγ cannot be eliminated from H.

Hence we have regx(I) = q. Now, assume that clsx(hγ) = 1 + i for some i > 0 and the rest of the

proof is essentially the same as (Seiler, 2009b, Theorem 9.2).

Example 46. Let F = {x1x2y1, x1x3y2, x1x2x3y2, x2x3y1y2, x1x3y1} be a subset of the polynomial

ring P = K[x1, x2, y1, y2], I = 〈F〉 and x2 ≺drl x1 ≺drl y2 ≺drl y1. By applying the algorithm

x-PommaretBasis, we obtain after the change of coordinates x3 = x3 − x1 and x3 = x3 − x2 on F

the x-Pommaret basis H = {x1x2y1,−x2
1
y2 − x1x2y2 + x1x3y2,−x2

1
y1 − x1x2y1 + x1x3y1,−x2

2
y1y2 +

x2x3y1y2, x1x2y1y2,−x2
1
y1y2− x1x2y1y2+ x1x3y1y2} for the transformed ideal. We have degx(H) =

2 and thus regx(I) = 2. In addition, by applying Buchberger’s algorithm after performing the

linear changes x3 = x3 + x2, y2 = y2 + 4y1, x2 = x2 − 4x1 and x3 = x3 + 5x2 on F, we obtain the

Gröbner basis G = {16x1x3y2
1
+4x1x3y1y2+120x2

2
y2

1
+30x2

2
y1y2+20x2x3y2

1
+5x2x3y1y2, 20x2

1
y1+

x1x3y1, 4x2
1
y2−6x1x2y2−x1x3y2, 5x1x2y1+x1x3y1} for the transformed ideal. We can check easily

that 〈LT(G)〉 is bi-stable. Therefore we have regx(I) = max({degx(LT(u)) | u ∈ G}) = 2.
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