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Summary. We discuss the use of the formal theory of differential equations in the
numerical analysis of general systems of partial differential equations. This theory
provides us with a very powerful and natural framework for generalising many ideas
from differential algebraic equations to partial differential equations. We study in
particular the existence and uniqueness of (formal) solutions, the method of an
underlying system, various index concepts and the effect of semi-discretisations.
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1 Introduction

The majority of the literature on differential equations is concerned with nor-
mal systems or systems in Cauchy–Kovalevskaya form. But many important
systems arising in applications are not of this form. As examples we mention
Maxwell’s equations of electrodynamics, the incompressible Navier–Stokes
equations of fluid dynamics, the Yang–Mills equations describing fundamen-
tal particle interactions or Einstein’s equations of general relativity.

For ordinary differential equations, the importance of non-normal systems
has been recognised for about twenty years; one usually speaks of differential
algebraic equations. Introductions into their theory can be found e. g. in [2, 8].
Recently, the extension to partial differential systems has found some interest,
see e. g. [5, 15]. However, this is non-trivial, as new phenomena appear.

About a century ago the first methods for the analysis of general partial
differential systems were designed; by now, a number of different approaches
exist. Some of them have already been applied in a numerical context [14,
16, 20, 25]. We use the formal theory [17, 23] with its central notion of
an involutive system. In contrast to our earlier works [9, 22, 24], we take a
more algebraic point of view closely related to the theory of involutive bases
[3, 6]. For simplicity, we concentrate on linear systems, although many results
remain valid in the non-linear case.
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2 Involutive Systems

We consider differential equations in n independent variables x = (x1, . . . , xn)
and m dependent variables u(x) =

(
u1(x), . . . , um(x)

)
, using a multi index

notation for the derivatives: pα,µ = ∂|µ|uα/∂xµ = ∂|µ|uα/∂xµ1 · · · ∂xµn for
each multi index µ = [µ1, . . . , µn] ∈ Nn

0 . The dependent variable uα is identi-
fied with the derivative pα,[0,...,0]. We fix the following ranking ≺ on the set of
all derivatives: pα,µ ≺ pβ,ν if |µ| < |ν| or if |µ| = |ν| and the rightmost non-
vanishing entry in ν−µ is negative; if µ = ν, we set pα,µ ≺ pβ,ν , if α < β. The
class of a derivative is the leftmost non-vanishing entry of its multi index:
cls (pα,µ) := min{i | µi > 0} and cls (uα) := n. The order of pα,µ is the length
of its multi index |µ| =

∑
µi. The ranking defined above respects classes: if

the derivatives pα,µ, pβ,ν are of the same order but cls (pα,µ) < cls (pβ,ν),
then pα,µ ≺ pβ,ν . The independent variables xi with i ≤ cls (pα,µ) are called
multiplicative for pα,µ, the remaining ones non-multiplicative.

We consider a linear (homogeneous) differential system Φ(x,p) = 0 where
each of the p component functions Φτ has the form

Φτ (x,p) =
m∑

α=1

∑
0≤|µ|≤q

aταµ(x)pα,µ = 0 . (1)

The leader of an equation is the highest occurring derivative with respect
to the ranking ≺. Concepts like class and (non-)multiplicative variables are
transfered to equations by defining them in terms of their leaders. We denote
by β

(k)
j the number of equations of order j and class k contained in the system.

Equations obtained by differentiating with respect to a (non-)multiplicative
variable are called (non-)multiplicative prolongations.

We introduce involutive systems via a normal form and its properties.
For simplicity, we present it only for a first order system. This poses no
real restriction, as every system can be transformed into an equivalent first
order one. We may thus write down (after some algebraic manipulations and,
possibly, coordinate transformations) each system in its Cartan normal form:

pα,n − φα,n(x,u, pγ,j , pδ,n) = 0 ,

{
1≤α≤β

(n)
1 ,

1≤j<n , β
(n)
1 <δ≤m ,

(2a)

pα,n−1 − φα,n−1(x,u, pγ,j , pδ,n−1) = 0 ,

{
1≤α≤β

(n−1)
1 ,

1≤j<n−1 , β
(n−1)
1 <δ≤m ,

(2b)

...

pα,1 − φα,1(x,u, pδ,1) = 0 ,

{
1≤α≤β

(1)
1 ,

β
(1)
1 <δ≤m ,

(2c)

uα − φα(x, uβ) = 0 ,

{
1≤α≤β

(n)
0 ≤m; ,

β
(n)
0 <β≤m .

(2d)



Numerical Analysis of Overdetermined Linear Systems 3

Here, the functions φα,k and φα are linear in the dependent variables and
derivatives. The system is in a triangular form where the subsystem in the
first line comprises all equations of class n, the one in the second line all of
class n − 1 and so on. The derivatives on the right hand side have always a
class lower than or equal to the one on the left hand side. The subsystem in
the last line collects all algebraic constraints; their number is denoted by β

(n)
0 .

For an involutive system, we must have 0 ≤ β
(n)
0 ≤ β

(1)
1 ≤ · · · ≤ β

(n)
1 ≤ m,

so that the subsystems may be empty below a certain class.
We deal with a normal system or a system in Cauchy–Kovalevskaya form,

if all equations are of class n, i. e. if β
(n)
1 = m and and all other β

(k)
j vanish.

An existence and uniqueness theory (in the real analytic category) for such
systems is provided by the famous Cauchy–Kovalevskaya theorem [21]. More
generally, the system is underdetermined, if and only if β

(n)
1 < m. If the

system is not underdetermined, then the subsystem (2a) is always normal.
In the sequel we will exclusively study such systems.

These purely structural aspects of the normal form (2) do not yet capture
that our differential system is involutive; they only express that we have
chosen a local representation in triangular form.1 Any differential system
can be brought into such a form. The important point about the Cartan
normal form is that involution implies certain relations between prolonged
equations. First of all, we require that any non-multiplicative prolongation
can be written as a linear combination of multiplicative ones. Thus, if Dk

denotes the total differentiation with respect to xk, then functions Aβij(x),
Bβi(x), and Cβ(x) must exist such that whenever 1 ≤ ` < k ≤ n

Dk(pα,` − φα,`) =
k∑

i=1

β
(i)
1∑

β=1

{
i∑

j=1

AβijDj(pβ,i − φβ,i) + Bβi(pβ,i − φβ,i)

}

+
β

(n)
0∑

β=1

Cβ(uβ − φβ) .

(3)

Furthermore, no prolongation of the algebraic equations in (2d) may lead
to a new equation. This implies the existence of functions C̄β(x) such that

∂φα

∂xk
− φα,k +

m∑
β=β

(n)
0 +1

∂φα

∂uβ
φβ,k =

β
(n)
0∑

β=1

C̄β (uβ − φβ) . (4)

We cannot go into details here, but this second set of conditions has
a geometric interpretation and is only partially present in purely algebraic
approaches like involutive bases. We will see in Sect. 5 that this geometric
1 In a more algebraic terminology one may say that the equations are head au-

toreduced.
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ingredient is crucial for obtaining correct index values. Involution is that it
comprises formal integrability : an involutive system is always consistent and
possesses at least formal power series solutions. They can be computed order
by order in a straightforward manner via the Cartan normal form.

The analysis of the compatibility conditions will later play an important
role. They define (differential) relations between the equations in (2) and cor-
respond to syzygies in commutative algebra. We introduce for each equation
in our system (2) an inhomogeneity ε(x) on the right hand side. The relations
(3) and (4) imply that the inhomogeneous system possesses solutions, if and
only if the functions ε satisfy the homogeneous linear system

∂εα,`

∂xk
−

k∑
i=1

β
(i)
1∑

β=1

{
i∑

j=1

Aβij
∂εβ,i

∂xj
+ Bβiεβ,i

}
−

β
(n)
0∑

β=1

Cβεβ = 0 , (5a)

∂εα

∂xk
− εα,k +

m∑
β=β

(n)
0 +1

∂φα

∂uβ
εβ,k −

β
(n)
0∑

β=1

C̄βεβ = 0 . (5b)

Example 1. In vacuum, Maxwell’s equations of electrodynamics are

Et = curlB , Bt = −curlE , (6a)
0 = div E , 0 = div B . (6b)

We have six dependent variables (E1, E2, E3, B1, B2, B3), the components of
the electric and magnetic field, and four independent variables (x, y, z, t). The
system is almost in Cartan normal form; only the Gauß laws (6b) have not
been solved for their leaders. (6a) corresponds to (2a); (6b) to (2b). Thus we
find β

(4)
0 = β

(1)
1 = β

(2)
1 = 0, β

(3)
1 = 2 and β

(4)
1 = 6.

The relations (3) follow from adding the (non-multiplicative) t-prolon-
gation of (6b) to the (multiplicative) divergence of (6a). Due to the identity
div ◦ curl = 0, they are satisfied and Maxwell’s equations are involutive.
Introducing inhomogeneities je, jm, ρe, ρm, we get as compatibility equations
the familiar continuity equations relating charge density and current

(ρe)t + div je = 0 , (ρm)t + div jm = 0 . (7)

Example 2. Involution is more than the absence of integrability conditions.
Consider the following system for two unknown functions v(x, t), w(x, t):

vt = wx , wt = 0 , vx = 0 . (8)

It arises, if we transform the second order system utt = uxx = 0 to a first
order one. Obviously, no integrability conditions are hidden in this simple
system. Thus it is formally integrable, but it is not involutive. Differentiating
the last equation with respect to the non-multiplicative variable t yields (after
a simplification) a new second order equation: wxx = 0. Such an equation is
called obstruction to involution; we will see later why it is rather important.
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3 Existence and Uniqueness of Solutions

An important notion in the theory of differential algebraic equation is that
of an underlying equation. It refers to an unconstrained ordinary differential
system such that any solution of the given system is also a solution of it. We
may straightforwardly extend this notion to partial differential equations.

Definition 1. An underlying system of a given differential system is any
normal system that is solved by any solution of the original system.

An underlying system exists, if and only if the given system is not under-
determined. It is of course not unique. For an involutive system in Cartan
normal form (2), an underlying system is given by the subsystem (2a). Thus
an underlying system for Maxwell’s equations is (6a). Although (8) is not
involutive, the first two equations form an underlying system.

The generalisation of the Cauchy–Kovalevskaya theorem from normal to
arbitrary involutive systems is provided by the Cartan–Kähler theorem. It
guarantees the existence of a unique analytic solution for the system (2)
provided the functions φα,k and the initial data are analytic. For a proof and
for more information on the choice of the initial conditions we refer to [23].

In order to sketch some of the basic ideas behind the proof of the Cartan–
Kähler theorem and to demonstrate how they may be used to prove the
existence and uniqueness of more general solutions than only analytic ones,
we consider a special class of linear systems.

Definition 2. An involutive differential system with Cartan normal form (2)
is weakly overdetermined, if β

(n)
1 = m, β

(n−1)
1 > 0 and β

(k)
1 = 0 else.

In the sequel, we are only interested in equations that can be interpreted
in some sense as evolution equations, as we concentrate on initial value prob-
lems. We slightly change our notation and denote the independent variables
by (x1, . . . , xn, t), i. e. we have n + 1 variables and write xn+1 as t. We study
linear systems with smooth coefficients of the following form:

ut =
n∑

i=1

Ai(x, t)uxi + B(x, t)u , (9a)

0 =
n∑

i=1

Ci(x, t)uxi + D(x, t)u . (9b)

Here u is again the m-dimensional vector of dependent variables. The square
matrices Ai(x, t) and B(x, t) have m rows and columns; the rectangular ma-
trices Ci(x, t) and D(x, t) have r rows and m columns. The system is weakly
overdetermined, if for at least one i we have rankCi(x, t) = r; without loss
of generality, we may assume that this is the case for Cn.

A straightforward computation shows that (9) is involutive, if and only if
r × r matrices Hi(x, t), K(x, t) exist such that for all values 1 ≤ i, j ≤ n
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HiCj + HjCi = CiAj + CjAi , (10a)

HiD + KCi +
n∑

k=1

HkCi,xk
= CiB + DAi +

n∑
k=1

CkAi,xk
+ Ci,t , (10b)

KD +
n∑

k=1

HkDxk
= DB +

n∑
k=1

CkBxk
+ Dt . (10c)

Because of our assumption on rank Cn, it is not difficult to see that if
such matrices Hi, K exist, they are uniquely determined by (10). We derive
the compatibility conditions of the linear system (9) under the assumption
that it is involutive. We add on the right hand side of (9a) a “perturbation” δ
and on the right hand side of (9b) a “perturbation” −ε. The inhomogeneous
system admits (at least formal) solutions, if and only if these functions satisfy
the compatibility conditions

εt −
n∑

i=1

Hiεxi
−Kε =

n∑
i=1

Ciδxi
+ Dδ . (11)

Recall that the system (9a) is hyperbolic in t-direction, if for any vector
ξ ∈ Rn the matrix Aξ(x, t) :=

∑
ξiAi(x, t) has at every point (x, t) only

real eigenvalues and an eigenbasis. It is strongly hyperbolic, if there exists for
any Aξ(x, t) a symmetric, positive definite matrix Pξ(x, t), a symmetriser,
depending smoothly on ξ, x and t such that PξAξ − At

ξPξ = 0. The system
(9b) is elliptic, if the matrix Cξ(x, t) :=

∑
ξiCi(x, t) defines for any vector

0 6= ξ ∈ Rn a surjective mapping.

Example 3. Maxwell’s equations are weakly overdetermined. Their evolu-
tion part (6a), corresponding to (9a), forms a symmetric hyperbolic system,
whereas the constraints (6b), corresponding to (9b), are elliptic. The com-
patibility conditions (11) are given by (7) with ε = (ρe, ρm) and δ = (je, jm).

A classical result in the theory of hyperbolic systems [12] states that the
smooth, strongly hyperbolic system

ut =
n∑

i=1

Ai(x, t)uxi
+ B(x, t)u + F(x, t) (12)

possesses for periodic boundary conditions and smooth initial conditions
u(x, 0) = f(x) a unique smooth solution. Furthermore, at any time t ∈ [0, T ]
this solution can be estimated in the weighted Sobolev norm ‖ · ‖P,Hp (the
weight depends on the symmetriser Pξ, see [12] for details) with p ≥ 0 by

‖u(·, t)‖P,Hp ≤ Kp

[
‖f‖P,Hp +

∫ t

0

‖F(·, τ)‖P,Hp dτ
]
. (13)

We exploit this to obtain an existence and uniqueness theorem for smooth
solutions of (9). If the subsystem (9a) is strongly hyperbolic, then the cited
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theorem ensures that it has a unique smooth solution for arbitrary smooth
initial conditions. Let us assume that the initial data f(x) has been chosen
such that they satisfy the constraints (9b) for t = 0. The question is whether
our solution of (9a) satisfies the constraints also for t > 0.

The answer to this question lies in the compatibility condition (11). En-
tering our solution into (9b) yields residuals ε(x, t). As we are dealing with
an exact solution of (9a), the residuals ε satisfy (11) with δ ≡ 0 so that the
system becomes homogeneous. Furthermore, the choice of our initial data
implies ε(x, 0) = 0, hence ε ≡ 0 is obviously a smooth solution. We are done,
if we can show that it is the only one.

Thus we need a uniqueness result for (11). If the matrices Hi, K were
analytic, we could apply Holmgren’s theorem [21]. However, our coefficients
are only smooth. Some linear algebra shows that, provided the constraints
(9b) are elliptic, the compatibility system (11), viewed as system for ε only,
inherits the strong hyperbolicity of the underlying system (9a) with a sym-
metriser Qξ determined by Q−1

ξ = CξP
−1
ξ Ct

ξ [24]. Thus we may again apply
the above cited theorem to prove the needed uniqueness.

These considerations lead to a simple approach to the numerical integra-
tion of the overdetermined system (9): we consider the equations (9b) only
as constraints on the initial data and otherwise ignore them, i. e. we simply
solve numerically the initial value problem for (9a) with initial data satisfying
(9b). This integration is a standard problem in numerical analysis.

We must expect a drift off the constraints, i. e. the numerical solution
ceases to satisfy the constraints (9b). Some discussions of this problem for
Maxwell’s equations are contained in [11]. For a numerical solution the residu-
als δ do not vanish but lead to a “forcing term” in the compatibility condition
(11). Thus the residuals ε do not vanish either. Their growth depends on the
properties of (11). In the particular case of a strongly hyperbolic system with
elliptic constraints we may estimate the size of the drift via (13):

‖ε(·, t)‖Q,Hp ≤ Kp

∫ t

0

∥∥∥ n∑
i=1

Ciδxi(·, τ) + Dδ(·, τ)
∥∥∥

Q,Hp
dτ (14)

This estimate depends not only on the residuals δ but also on their spatial
derivatives. While any reasonable numerical method controls the size of δ, it
is difficult to control the size of the derivatives.

Example 4. In the case of Maxwell’s equations, the estimate (13) depends only
on the divergence of δ and not on δ itself. Thus a good numerical method for
them should be constructed such that this divergence vanishes.

4 Completion to Involution

If a given system is not involutive, one should complete it to an equivalent
involutive one. “Equivalent” means here that both systems possess the same
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(formal) solution space. In the case of a linear system with constant coeffi-
cients, the completion is in fact equivalent to the determination of a Gröbner
basis for the corresponding polynomial module. We present now a comple-
tion algorithm for linear systems that combines algebraic and geometric ideas.
More details on the algorithm can be found in [10]; an implementation in the
computer algebra system MuPAD is briefly described in [1].

In order to formulate our algorithm, we need some further notations. We
suppress the zero in (1) and call the remaining left hand side a row. The ba-
sic idea is to restrict computations as much as possible to non-multiplicative
prolongations; multiplicative prolongations are only used for determining a
triangular form of the system. In order to indicate which multiplicative pro-
longations are present, we introduce a global level λ, initialised to zero and
denoting the number of the current iteration, and assign to each row one or
two non-negative integers, its initial level and its phantom level. The set of
such indexed rows is the skeleton Sλ of the system and we reproduce the full
system S̄λ by replacing each indexed row by a set of multiplicative prolonga-
tions determined by its indices. For a single indexed row f(k) these are{

Dµf | 0 ≤ |µ| ≤ (λ− k); ∀i > cls (f) : µi = 0
}

(15)

and for a double indexed row f(k,l){
Dµf | (λ− l) < |µ| ≤ (λ− k); ∀i > cls (f) : µi = 0

}
. (16)

Without loss of generality, we assume that the given system of order q
is already in triangular form. We turn it into the skeleton S0 by setting the
initial level of each row to 0. Furthermore, the numbers eSλ,i count how many
rows of order i are present in the system S̄λ. Since S0 = S̄0, the starting
values eS0,i are obtained at once. Finally, we initialise the counter r := 0.
Each iteration step with Sλ being the current skeleton proceeds as follows.

Prolongation. The global level λ is increased by one. This automatically
adds all new multiplicative prolongations to the system S̄λ defined by the
skeleton Sλ. Concerning the non-multiplicative prolongations, only those
single indexed rows f(k) with k = λ − 1 (these are have been created in
the last iteration) are computed and become part of the new skeleton
with initial level λ. These changes necessitate to recompute the numbers
eSλ,i: for each row in Sλ−1 they are modified as follows:
– If f(k) is a single indexed row of order t with k = λ− 1, prolongations

in the direction of all independent variables are computed, so eSλ,t+1 =
eSλ,t+1 + n.

– If the initial level of f(k) with order t and class j is less than λ,
(
(λ−k)+j

j−1

)
new rows of order t + (λ− k) + 1 enter the system.

– If f(k,l) is a double indexed row of order t and class j, there are
(
(λ−k)+j

j−1

)
new rows of order t+(λ−k)+1 and

(
(λ−l)+j

j−1

)
rows of order t+(λ−l)+1

are removed.
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Triangulation. Next, the skeleton Sλ is algebraically transformed such that
S̄λ is in triangular form, i. e. all rows possess different leaders. Starting
with the row with the highest ranked leader, one searches through the
rows of the skeleton and the allowed multiplicative prolongations for a
row with the same leader. If this is the case, reductions are carried out
until none are possible. Then the process is repeated with the next leader.
One slight subtlety has to be watched: if a row is reduced which has
already produced multiplicative prolongations, removing it would mean
to lose all these rows. This is the whole reason behind the introduction of
double indexed rows: by adding a phantom level l = λ to f(k), we ensure
that in future iterations new prolongations are still taken into account
and prolongations becoming reducible are removed.
The changes of the eSλ,i are trivial: If a row is reduced, the corresponding
value is decreased by 1 and, if the reduction has not yielded zero, the value
at the appropriate order is increased by 1.

Involution Analysis. We now check whether we have reached an involutive
system. Two conditions must be fulfilled for this:
– No single indexed rows of order q + r + 1 may exist in Sλ.
– The values of eSλ−1,i and eSλ,i coincide for 1 ≤ i ≤ q + r.
If the first condition is violated, we set r := r + 1 and proceed with the
next iteration. Otherwise, the new value for r is q′ − q, where q′ is the
highest order at which a row occurs in Sλ. If the second condition was
not satisfied, we continue with the next iteration. Otherwise, we have
finished.

Note that the last iteration only serves to check the involution of the system
obtained in the last but one step. Obviously, nothing “new” can happen here,
since otherwise our termination conditions would not hold.

Given the triangulised skeleton Sλ at the end of each iteration step, one
easily determines the numbers β

(i)
q+r of the highest order part of the Cartan

normal form of the corresponding system. A single indexed row f(k) of order
t and class c contributes to them, if and only if λ−k+t ≥ q+r and 1 ≤ i ≤ c;
for a double indexed row with phantom level l, it is additionally required that
λ− l + t < q + r. The contribution is then given by B(c− i + 1, q + r− t, 1),
where B(n, c, q) =

(
n−c+q−1

q−1

)
denotes the number of multi indices of length

n, order q and class c.

Example 5. For the system (8) our algorithm needs only two iterations. In the
first one the equation wxx = 0 is added to the skeleton, as it cannot be reduced
by a multiplicative prolongation. After the second iteration the algorithm
stops with r = 1 as the final system contains a second order equation.

Our algorithm also works for quasi-linear systems provided they remain
quasi-linear during the completion. The application to fully non-linear sys-
tems leads to a number of serious issues which we cannot discuss here.



10 Marcus Hausdorf and Werner M. Seiler

Example 6. In order to demonstrate an important difference between our
combined algebraic-geometric completion algorithm and purely algebraic
methods like involutive bases we analyse the planar pendulum. The depen-
dent variables are the positions (x, y), the velocities (u, v) and a Lagrange
multiplier λ. We set all parameters like mass or length to 1. This yields the
equations of motion:

ẋ = u , ẏ = v , u̇ = −xλ , v̇ = −yλ− 1 , 0 = x2 + y2 + 1 . (17)

Our algorithm needs four iterations. The first two produce the new equations
0 = xu + yv and 0 = u2 + v2 − y − λ. In the third step, we find no algebraic
constraint, but an equation for λ̇ enters the system. Finally, in the fourth
step nothing further happens, so we have arrived at an involutive system.

A purely algebraic approach would need one iteration less. It would not
determine an equation for the derivative λ̇, as the system contains already an
algebraic equation for λ. The next section shows that this additional iteration
of geometric origin is important for obtaining the correct index values.

5 Indices for Differential Equations

Indices play an important role for differential algebraic equations. They serve
as indicators for the difficulties one has to expect in the numerical integration
of the given system: the higher the index, the more problems arise. Typical
problems are that classical methods exhibit suddenly a lower order of con-
vergence or the already mentioned drift off the constraint manifold.

The literature abounds with definitions of indices; a partial survey may
be found in [4]. A recent trend is their extension to partial differential equa-
tions. One often speaks of partial differential algebraic equations, but this
terminology is misleading, as in many cases (like Maxwell’s equations) such
systems do not contain any algebraic equations: the non-normality is due to
the presence of equations of lower class and not of lower order.

We distinguish two classes of indices. Differentiation indices count the
number of prolongations needed until the system possesses certain properties.
In the case of “the” differentiation index, the property is that an underlying
system has been found. Perturbation indices are based on estimates on the
difference of solutions of the original system and of a perturbation of it.

Two differentiation indices follow naturally from our completion algo-
rithm. Recall that it produces a sequence of linear systems in triangular
form2 S̄0 −→ S̄1 −→ · · · −→ S̄λf

.

Definition 3. The determinacy index νD of a differential system in n inde-
pendent and m dependent variables is the first λ such that we have β

(n)
q+r = m

for the system S̄λ and the corresponding value of the counter r. The involu-
tion index νI is the first λ for which S̄λ is involutive and thus λf − 1.
2 The systems are taken at the end of each iteration step.
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The determinacy index corresponds to “the” differentiation index. Its
name reflects that S̄λ is not an underdetermined system. νD has no finite
value for an underdetermined system, as then β

(n)
q+r < m for any value of λ.

In contrast to the involution index, the determinacy index cannot be used as
a basis of an existence theory for solutions, as it is does not require the full
completion. Thus it is well possible that the system is in fact inconsistent.
The involution index is equivalent to the strangeness index [13]; one also
obtains the same result with the geometric approaches presented in [18, 19].

Example 7. It follows from Ex. 6 that both the determinacy and the invo-
lution index of the pendulum are νI = νD = 3, as an underlying system is
obtained only after an equation for λ̇ is present. A purely algebraic comple-
tion would yield too low values for the indices.

In system (8), we find different values for νI and νD. The determinacy
index is obviously 0, as the first two equations form already an underlying
system. But λf = 2 and hence νI = 1.

The perturbation index was introduced by Hairer et al. [7] for differential
algebraic equations and extended to partial differential equations by Camp-
bell and Marszalek [5]. We assume that the system lives on a compact domain
Ω ⊂ Rn and choose a norm ‖ · ‖ on some function space F over Ω which
is usually either the maximum norm ‖ · ‖L∞ or the uniform norm ‖ · ‖L1 . In
addition, we define on F for each integer k > 0 a kind of Sobolev norm

‖f‖k =
∑

0≤|µ|≤k

∥∥∥∂|µ|f
∂xµ

∥∥∥ , (18)

i. e. we sum the norms of f and its partial derivatives up to order k. Of course,
the function space F must be such that these norms make sense on it.

Partial differential equations are usually accompanied by initial or bound-
ary conditions. In order to accommodate for this, we take the following simple
approach. Let Ω′ ⊆ ∂Ω be a subdomain of the boundary of Ω and introduce
on the restriction F ′ of F to Ω′ similar norms denoted by ‖ · ‖′k. The con-
ditions are assumed to be of the form Ψ(x,p)

∣∣
Ω′

= 0. This comprises most
kinds of initial or boundary conditions in applications. The highest derivative
in Ψ determines the order ` of the conditions.

We consider again a linear partial differential system with p equations (1).
We do not require that p = m or that the Jacobian ∂Φ/∂p has any special
properties. Assume that we are given a smooth solution u(x) defined on the
whole domain Ω and satisfying our initial or boundary conditions on Ω′. We
compare it with solutions of the perturbed equation Φ(x,p) = δ(x) with a
smooth right hand side δ.

Definition 4. Let u(x) be a smooth solution satisfying some initial or bound-
ary conditions of order ` on Ω′. The system has perturbation index νP along
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this solution, if νP is the smallest integer such that for any solution ũ(x) of
the perturbed equation at every point x ∈ Ω the estimate

|u(x)− ũ(x)| ≤ C
(
‖f − f̃‖′` + ‖δ‖νP−1

)
(19)

holds, whenever the right hand side is sufficiently small. Here f and f̃ rep-
resent the restrictions of the solutions u and ũ, respectively, to Ω′. The
constant C may depend only on the domains Ω, Ω′ and on the function Φ.

In the case of initial value problems for differential algebraic equations
this definition coincides with the one given by Hairer et al. The term ‖f− f̃‖′k
takes there the simple form |u(x0) − ũ(x0)| where Ω′ = {x0}. For partial
differential systems our definition is almost identical with the one given by
Campbell and Marszalek; the only difference is that we do not include the
order ` of the initial or boundary conditions in the index.

Whereas it is not so clear why differentiation indices should indicate the
difficulty of the numerical integration of the system, this is rather obvious
for the perturbation index. If we take for ũ(x) an approximate solution, we
may interpret δ(x) as the residual obtained by entering it into the system.
The estimate (19) tells us that for an equation with νP > 1 it does not suffice
to keep this residual as small as possible, since also some of its derivatives
enter it. Strictly speaking, this implies that the considered initial or boundary
value problem is ill-posed in the sense of Hadamard!

Obviously, it is much harder to obtain estimates of the form (19) than to
compute a differentiation index, but the perturbation index contains more
useful information. Hence there is much interest in relating the two concepts.

Conjecture 1. For any linear differential system νD ≤ νP ≤ νD + 1.

For differential algebraic equations, a rigorous proof of this conjecture can
be found in [9].3 One first shows that a normal ordinary differential system
has the perturbation index νP ≤ 1 (a consequence of Gronwall’s Lemma). For
a general system, one follows the completion algorithm until an underlying
system is reached. One can prove that its right hand side contains derivatives
of the perturbations of order νD. This yields the estimate above.

For partial differential systems, the situation is much more complicated,
as the perturbation index will depend in general on the chosen norm. A
simple case arises, if the underlying equation can be treated with semi-group
theory [21]. Then we may consider our overdetermined system as a differential
algebraic equation on an infinite-dimensional Banach space and the same
argument as above may be applied. Thus we obtain the same estimate.
3 In that article non-linear systems are treated where one must introduce perturbed

differentiation indices. For linear systems they are identical with the above de-
fined indices.
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6 Semi-Discretisation

For simplicity, we restrict to first order linear homogeneous systems with
constant coefficients in n + 1 independent variables of the form

n+1∑
i=1

Miuxi + Nu = 0 . (20)

The matrices Mi and N are here completely arbitrary. Now we discretise
the derivatives with respect to n of the independent variables by some finite
difference method. This yields a differential algebraic equation in the one
remaining independent variable. We are interested in the relation between the
involution indices of the original partial differential system and the obtained
differential algebraic equation, respectively.

Instead of (20) we complete to involution a perturbed system with a generic
right hand side γ(x). For a linear constant coefficients system, the perturba-
tion does not affect the completion. It only serves as a convenient mean of
“book-keeping” which prolongations are needed during the completion.

Definition 5. The involution index ν` in direction x` of the system (20) is
the maximal number of differentiations with respect to x` in a γ-derivative
contained in the involutive completion of the perturbed system.

For the semi-discretisation we proceed as follows. Assume that x` is the
“surviving” independent variable; in other words, afterwards we are dealing
with an ordinary differential system containing only x`-derivatives. In order
to simplify the notation, we rewrite (20). We denote x` by t and renumber
the remaining independent variables as xi with 1 ≤ i ≤ n. Then we solve
as many equations as possible for a t-derivative, as we consider these as the
derivatives of highest class. This yields a system of the form

Eut =
n∑

i=1

Aiuxi
+ Bu + δ , 0 =

n∑
i=1

Ciuxi
+ Du + ε . (21)

Here we assume that the (not necessarily square) matrix E is of maximal rank,
i. e. every equation in the first subsystem really depends on a t-derivative. But
we do not pose any restrictions on the ranks of the matrices Ci.

In (21) we have introduced perturbations δ and ε which are related to the
original perturbations γ by a linear transformation with constant coefficients.
As we are only interested in the number of differentiations applied to them
during the completion, such a transformation has no effect.

We discretise the “spatial” derivatives, i. e. those with respect to the xi,
on a grid where the points xk are labelled by integer vectors k = [k1, . . . , kn].
uk(t) denotes the value of the function u at the point xk at time t. We
approximate in (21) the spatial derivative uxi(xk, t) by the finite difference
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δiuk(t) =
bi∑

`i=−ai

α
(i)
`i

u[k1,...,ki+`i,...,kn](t) (22)

with some real coefficients α
(i)
`i

. Thus different discretisations are allowed
for different values of i, but uxi

is everywhere discretised in the same way.
Entering the approximations (22) into (21) yields

Eu̇k =
n∑

i=1

Aiδiuk + Buk , 0 =
n∑

i=1

Ciδiuk + Duk . (23)

Theorem 1. The involution index of the differential algebraic equation (23)
obtained in the described semi-discretisation of (20) with respect to x` is ν`.

The proof is given in [24]; we outline here only the basic idea. We compare
what happens during the completion of the perturbed system (21) and the
differential algebraic equation (23). One can show that each new equation in
the discretised system corresponds to either an integrability condition or an
obstruction to involution in the original system. Further examination shows
that this only happens for prolongations in t-direction; mere spatial differ-
entiations do not lead to new equations in the differential algebraic system.
Since νl counts only the number of differentiations with respect to t, the
involution index of (23) must coincide with νl.

This result is somewhat surprising. While one surely expects that inte-
grability conditions of the original partial differential system induce inte-
grability conditions in the differential algebraic equation obtained by semi-
discretisation, Theorem 1 says that obstructions to involution also turn into
integrability conditions upon semi-discretisation. Thus even if the original
partial differential system is formally integrable, the differential algebraic
equation might contain integrability conditions.

Example 8. A semi-discretisation with backward differences for the spatial
derivatives of the linear system (8) leads to the differential algebraic equation

v̇n = (wn − wn−1)/∆x , ẇn = 0 , vn − vn−1 = 0 . (24)

It hides the integrability condition wn − 2wn−1 + wn−2 = 0 obviously repre-
senting a discretisation of the obstruction to involution wxx = 0 by centred
differences. The involution index of (8) in direction t is one which is also the
involution index of (24) in agreement with Theorem 1.

For weakly overdetermined systems, Theorem 1 can be strengthened. For
them the differential algebraic equation obtained by a semi-discretisation
with respect to t is formally integrable, if and only if the original partial
differential system is involutive [24]. This result does not only hold for semi-
discretisations by finite differences but also for spectral methods: assuming
periodic boundary conditions, we make the Fourier ansatz
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u(x, t) ≈
∑
k∈G

[ak(t) + ibk(t)] eikx . (25)

Here G is a finite grid of wave vectors, and we split the complex Fourier
coefficients into their real and imaginary part. Entering this ansatz into (9)
yields the following differential algebraic equation where the vectors A and
C consist of the matrices Ai and Ci, respectively:(

ȧk

ḃk

)
=

(
B −k ·A

k ·A B

) (
ak

bk

)
, 0 =

(
D −k ·C

k ·C D

) (
ak

bk

)
. (26)

One can show that this differential algebraic equation is formally integrable,
if and only if the weakly overdetermined system (9) is involutive [24].
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