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Abstract. We discuss geometric singularities of implicit ordinary differ-
ential equations from the point of view of Vessiot theory. We show that
quasi-linear systems admit a special treatment leading to phenomena not
present in the general case. These results are then applied to study static
bifurcations of parametric ordinary differential equations.

1 Introduction

The Vessiot theory [17] provides a powerful framework for analysing differential
equations geometrically. It uses vector fields in contrast to the differential forms
of the more familiar Cartan-Kähler theory [2]. Fackerell [3] applied it in the
context of symmetry analysis of partial differential equations. In [5, 6], we gave
a rigorous proof that Vessiot’s construction of solutions works, if and only if one
is dealing with an involutive equation.

Vessiot’s intention was to provide an alternative proof of the basic existence
and uniqueness theorem for general systems of partial differential equations,
the Cartan-Kähler Theorem. In our opinion, there are better approaches for
this (see e. g. the proof in [14] which mainly follows [9]). However, his results
are very useful for the further geometric analysis of involutive equations. In
particular, one can easily see that Arnold’s treatment of singularities of implicit
ordinary differential equations in [1] is in fact based on what we call the Vessiot
distribution. This identification provides us with a starting point for extending
singularity theory to more general systems. For example, Tuomela [15, 16] used
it for differential algebraic equations and we considered in [7] partial differential
equations of finite type.

In this work, we first review the theory of geometric singularities of general
nonlinear systems of ordinary differential equations which are not underdeter-
mined. Then we discuss the particularities appearing in quasi-linear systems. In
contrast to the general case, the Vessiot distribution is here projectable to the
base manifold which leads to types of singular behaviour which are not admitted
by fully non-linear equations. In particular, solutions can be extended to certain
points where strictly speaking the differential equation is not even defined. We
recover and clarify here results by Rabier [10–12] with alternative proofs.

Finally, we apply the obtained results to the analysis of static bifurcations
in parametric autonomous ordinary differential equations. This is possible due



to the simple observation that differentiation of the equilibrium condition yields
a quasi-linear equation. The projected Vessiot distribution contains now much
information about bifurcations: turning points (also called saddle-node bifur-
cations) are characterised by a vertical distribution, whereas at pitchfork or
transcritical bifurcations the distribution vanishes. Furthermore, the bifurcation
diagram consists of integral manifolds of the Vessiot distribution.

2 Geometric Theory of Differential Equations

The geometric modelling of differential equations is based on jet bundles [8, 9,
13, 14]. Let π : E → T be a fibred manifold. For ordinary differential equa-
tions, we may assume that dim T = 1. For simplicity, we will work in local
coordinates, although we will use throughout a “global notation”. As coordinate
on the base space T we use t and fibre coordinates in the total space E will
be u = (u1, . . . , um). The first derivative of uα will be denoted by u̇α; higher
derivatives are written in the form uαk = dkuα/dtk. Adding all derivatives uαk
with k ≤ q (collectively denoted by u(q)) defines a coordinate system for the
q-th order jet bundle Jqπ. There are natural fibrations πqr : Jqπ → Jrπ for
r < q and πq : Jqπ → T . Sections σ : T → E of the fibration π correspond to
functions u = s(t), as locally they can always be written in the form of a graph
σ(t) =

(
t, s(t)

)
. To such a section σ, we associate its prolongation jqσ : T → Jqπ,

a section of the fibration πq given by jqσ(t) =
(
t, s(t), ṡ(t), s̈(t), . . .

)
.

The geometry of Jqπ is to a large extent determined by its contact structure
describing intrinsically the relationship between the different types of coordi-
nates. The contact distribution is the smallest distribution Cq ⊂ T (Jqπ) that
contains the tangent spaces T (im jqσ) of all prolonged sections and any field in
it is a contact vector field. In local coordinates, Cq is generated by one transversal
and m vertical fields:

C
(q)
trans = ∂t +

q−1∑
j=0

uαj+1∂uαj , (1a)

C(q)
α = ∂uαq , 1 ≤ α ≤ m . (1b)

Proposition 1. A section γ : T → Jqπ is of the form γ = jqσ with σ : T → E,
if and only if Tγ(t)(im γ) ⊆ Cq|γ(t) for all points t ∈ T where γ is defined.

The following intrinsic geometric definition of a differential equation gen-
eralises the usual one, as it allows for certain types of singular behaviour. It
imposes considerably weaker conditions on the restricted projection π̂q which
in the standard definition is expected to be a surjective submersion. Note that
we do not distinguish between scalar equations and systems. Indeed, when we
speak of a differential equation in the sequel, we will always mean a system, if
not explicitly stated otherwise.

Definition 2. An (ordinary) differential equation of order q is a submanifold
Rq ⊆ Jqπ such that the restriction π̂q of the projection πq : Jqπ → T to Rq



has a dense image. A (strong) solution is a (local) section σ : T → E such that
im jqσ ⊆ Rq.

Locally, a differential equation Rq ⊆ Jqπ can be described as the zero set of
some smooth functions Φ : Jqπ → R. Differentiating every function yields the
prolonged equation Rq+1 ⊆ Jq+1π defined by all equations Φ(t,u(q)) = 0 and
DtΦ(t,u(q+1)) = 0 with the formal derivative

DtΦ = C
(q)
trans(Φ) +

m∑
α=1

uαq+1C
(q)
α (Φ) . (2)

Iteration of this process gives the higher prolongations Rq+r ⊆ Jq+rπ. A sub-
sequent projection leads to the differential equation R(1)

q = πq+1
q (Rq+1) ⊆ Rq

which will be a proper submanifold, if integrability conditions are hidden. Rq is
formally integrable, if at any prolongation order r > 0 the equality R(1)

q+r = Rq+r
holds (see [14] for more details). It is easy to show that (under some regular-
ity assumptions) every consistent ordinary differential equation Rq leads after
a finite number of projection and prolongation cycles to a formally integrable
equation R(s)

q ⊆ Rq. Therefore, without loss of generality, we will always assume
in the sequel that we are already dealing with a formally integrable equation.

More precisely, we will study in this work only square first-order equations
with a local representation

R1 :
{
Φ(t,u(1)) = 0 (3)

where Φ : J1π → R
m (thus we have as many equations as unknown functions)

and where we furthermore assume that the symbol matrix, i. e. the Jacobian
∂Φ/∂u̇, is almost everywhere non-singular. These assumptions are less restrictive
as they may appear. Whenever a first-order equation is not underdetermined,
its symbol matrix has almost everywhere rank m. Thus locally we may always
assume that a general first-order equation splits into an equation of the form
considered here plus some purely algebraic equations. Solving the latter ones,
we can eliminate some of the dependent variables uα and obtain then a smaller
equation of the desired form. At least theoretically this is always possible.

By a classical result on jet bundles, the fibration π1
0 : J1π → E is an affine

bundle. A first-order differential equation R1 ⊂ J1π is quasi-linear, if it de-
fines an affine subbundle. For such equations, we assume in the sequel a local
representation of the form

R1 :
{
A(t,u)u̇ = r(t,u) (4)

where the m×m matrix function A is almost everywhere non-singular.

Assumption 3. In the sequel, R1 ⊆ J1π will always be a formally integrable
square first-order ordinary differential equation with a local representation of the
form (3) or (4), respectively, which is not underdetermined.



3 The Vessiot Distribution

A key insight of Cartan was to study infinitesimal solutions of a differential
equation R1 ⊆ J1π, i. e. to consider at any point ρ ∈ R1 those linear subspaces
Uρ ⊆ TρR1 which are potentially part of the tangent space of a prolonged solu-
tion. We will follow here an approach pioneered by Vessiot [17] which is based
on vector fields and dual to the more familiar Cartan-Kähler theory of exterior
differential systems (see [4, 6, 14] for modern presentations in the context of the
geometric theory). By Proposition 1, the tangent spaces Tρ(im j1σ) of prolonged
sections at points ρ ∈ J1π are always subspaces of the contact distribution C1|ρ.
If the section σ is a solution of R1, it furthermore satisfies im j1σ ⊆ R1 by
Definition 2 and hence T (im j1σ) ⊆ TR1. These considerations motivate the
following construction.

Definition 4. The Vessiot distribution of a first-order ordinary differential equa-
tion R1 ⊆ J1π is the distribution V[R1] ⊆ TR1 defined by

V[R1] = TR1 ∩ C1|R1 . (5)

Computing the Vessiot distribution is straightforward and requires only linear
algebra. It follows from Definition 4 that any vector field X contained in V[R1]
is a contact field and thus can be written as a linear combination of the basic
contact fields (1): X = aC

(1)
trans +

∑
α b

αC
(1)
α . On the other hand, X must be

tangent to the manifold R1. Hence, if R1 is described by the local system (3),
then the field X must satisfy the equations dΦ(X) = X(Φ) = 0. Evaluation of
this condition yields a linear system of equations for the coefficients a, bα:

C
(1)
trans(Φ

µ)a+
m∑
α=1

C(1)
α (Φµ)bα = 0 , µ = 1, . . . ,m . (6)

Note that X is vertical with respect to π1, if and only if the coefficient a vanishes.
Concerning our Assumption 3 on the differential equation R1, we remark that
equations of lower order are irrelevant for the Vessiot distribution provided that
the equation is indeed formally integrable [14, Prop. 9.5.10].

Determining the Vessiot distribution of R1 requires essentially the same
computations as prolonging it. Indeed, the prolongation R2 ⊆ J2π is locally
described by the original equations Φµ = 0 together with their prolongations

C
(1)
trans(Φ

µ) +
m∑
α=1

C(1)
α (Φµ)üα = 0 , µ = 1, . . . ,m . (7)

These coincide with (6), if we set a = 1 and bα = üα, i. e. for transversal solutions
of (6). One may say that (6) is a “projective” version of (7).

It should be stressed that we allow that the rank of a distribution varies from
point to point. In fact, this will be important for certain types of singularities.
The following, fairly elementary result is the basis of Vessiot’s approach to the



existence theory of differential equations. It relates solutions with certain sub-
distributions of the Vessiot distribution. We formulate it here only for first-order
ordinary differential equations; for the general case see [14, Prop. 9.5.7].

Lemma 5. If the section σ : T → E is a solution of the first-order ordinary
differential equation R1 ⊆ J1π, then the tangent bundle T (im j1σ) is a one-
dimensional subdistribution of V[R1]|im j1σ transversal to the fibration π1. Con-
versely, if the subdistribution U ⊆ V[R1] is one-dimensional and transversal,
then any integral curve of U has locally the form im j1σ for a solution σ of R1.

Definition 6. A generalised solution of the first-order ordinary differential equa-
tion R1 ⊆ J1π is an integral curve N ⊆ R1 of the Vessiot distribution V[R1].
The projection π1

0(N ) ⊆ E is a geometric solution.

Note that generalised solutions live in the jet bundle J1π and not in the base
manifold E . If the section σ : T → E is a classical solution, then the image of
its prolongation j1σ : T → J1π is a generalised solution. However, not every
generalised solution N projects on a classical one: this will be the case, if and
only if N is everywhere transversal to the fibration π1 : J1π → T .

4 Geometric Singularities

A geometric singularity of a differential equation R1 is a critical point ρ ∈ R1 of
the restricted projection π̂1

0 : R1 → E , i. e. a point where the tangent map Tρπ̂
1
0

is not surjective. Following the terminology of Arnold [1] in the scalar case, we
distinguish three types of points on R1. Note that this taxonomy makes only
sense for formally integrable equations which are not underdetermined.

Definition 7. Let R1 ⊆ J1π be a first-order ordinary differential equation sat-
isfying Assumption 3. A point ρ ∈ R1 is regular, if Vρ[R1] is one-dimensional
and transversal to π1, and regular singular, if Vρ[R1] is one-dimensional and
vertical. If dimVρ[R1] > 1, then ρ is an irregular singularity.

For an equation of the form (3), we define the m×m matrix A(t,u(1)) and
the m-dimensional vector r(t,u(1)) by

A =
∂Φ

∂u̇
, d =

∂Φ

∂t
+
∂Φ

∂u
· u̇ . (8)

In addition to the (symbol) matrix A(t,u(1)), we introduce its determinant
δ(t,u(1)) = detA(t,u(1)) and its adjugate C(t,u(1)) = adjA(t,u(1)). Because
of the well-known identity δ1m = AC = CA, we find imC(ρ) ⊆ kerA(ρ) and
imA(ρ) ⊆ kerC(ρ) for any point ρ ∈ J1π where δ(ρ) = 0. For later use, we note
that if additionally dim kerA(ρ) = 1 at such a point, then C(ρ) 6= 0, as A(ρ)
must possess at least one non-vanishing minor. Hence in this case, we even find
imC(ρ) = kerA(ρ) and imA(ρ) = kerC(ρ).

The following considerations recover results by Rabier [10] from the point of
view of Vessiot’s theory and provide simpler alternative proofs. They show in



particular that geometric singularities are characterised by the vanishing of δ.
We therefore call the subset S1 = {ρ ∈ R1 | δ(ρ) = 0} the singular locus of the
differential equation R1.

Theorem 8. Let R1 ⊆ J1π be a first-order ordinary differential equation sat-
isfying Assumption 3. A point ρ ∈ R1 is regular, if and only if rkA(ρ) = m
and regular singular, if and only if rkA(ρ) = m − 1 and d(ρ) /∈ imA(ρ). A
regular point ρ has an open simply connected neighbourhood U ⊆ R1 without any
geometric singularity and there exists locally a unique strong solution σ such
that ρ ∈ im j1σ ⊆ U . A regular singular point ρ has an open simply connected
neighbourhood U ⊆ R1 without any irregular singularity and there exists locally
a unique generalised solution N such that ρ ∈ N ⊆ U . If the neighbourhood U is
chosen sufficiently small, then in both cases the Vessiot distribution is generated
in U by the vector field

X = δC
(1)
trans − (Cd)tC(q) . (9)

Proof. The first two assertions follow from the fact that the matrix of the linear
system (6) evaluated at a point ρ ∈ R1 is

(
d(ρ) | A(ρ)

)
and that the Vessiot

distribution is one-dimensional, if and only if its rank is m. Since rank is an upper
semicontinuous function, the Vessiot distribution will remain one-dimensional in
a whole neighbourhood U of such a point. Hence any such neighbourhood cannot
contain an irregular singularity where the rank of the matrix

(
d(ρ) | A(ρ)

)
must

be less than m. If the point ρ is regular, we can apply the same argument to the
matrix A(ρ) and find that U cannot even contain a regular singularity.

If the neighbourhood U is chosen simply connected, then the one-dimensional
distribution V[R1] can be generated in it by a single vector field without any
zero. The explicit generator X of (9) is now obtained by simply multiplying (6)
with the adjugate C. Note that the field X does indeed vanish nowhere, as even
at a regular singularity where δ(ρ) = 0 we find by the considerations above that
kerC(ρ) = imA(ρ) and thus C(ρ)d(ρ) 6= 0 since d(ρ) /∈ imA(ρ).

The existence of a unique local integral curve N ⊆ U of X and thus of a
unique generalised solution through ρ follows now by the usual existence and
uniqueness theorems for vector fields. If ρ is a regular point, then X (and thus
also N ) is everywhere on U transversal to π1

0 and we can write N = im γ for
some section γ : T → J1π. By Proposition 1, γ = j1σ for a section σ : T → E .
Thus in this case ρ even lies on a unique (prolonged) strong solution. ut

A different formulation of the existence and uniqeness part of Theorem 8 can
be found in [7, Thm. 4.1]. There the standard existence and uniqueness result for
ordinary differential equations solved for the derivatives is generalised to arbi-
trary formally integrable equations without irregular singularities. In particular,
it is shown that any strong solution can be extended until its prolongation hits
either the boundary of R1 or a regular singularity.

Note that at a regular singularity δ = 0 and hence the vector field X defined
by (9) is indeed vertical. By an extension of the above argument, one can prove
the following statement about irregular singularities [7, Thm. 4.2]. Any irregular



singularity ρ lies on the boundary of an open simply connected neighbourhood
U ⊆ R1 without further irregular singularities. By Theorem 8, V[R1] is generated
on U by a vector field X. Then any extension of X to ρ will vanish. The dynamics
around an irregular singular point ρ is now to a large extent determined by the
eigenvalues of the Jacobian of X at ρ. Usually, there are infinitely many strong
(prolonged) solutions beginning or ending at such point.

Example 9. From a geometric point of view, it is straightforward to understand
what happens at a regular singularity ρ (cf. also [7]). There are two possibilities.1

If the sign of the ∂t-component of X along N does change at ρ (the generic
behaviour), then there exist precisely two strong solutions which both either
end or start at π1

0(ρ) and which arise through the “folding” of the generalised
solution N during the projection. No prolonged strong solution can go through
ρ in this case, as the projection of N is not a graph at π1

0(ρ). Otherwise, the
projection of N is a strong solution which, however, is only of class C1, as its
second derivative at ρ cannot exist by the above comparison of prolongation and
determination of the Vessiot distribution.

As a concrete example, we consider
the equation u̇3−uu̇−t = 0 whose sur-
face R1 ⊆ J1π corresponds to the ele-
mentary catastrophe known as gather
or Whitney pleat. We call this equation
the elliptic gather. The blue surface in
the picture on the right isR1; the short
black lines indicate the direction de-
fined by the Vessiot distribution V[R1]
at some points ρ ∈ R1. The white curve
shows the singular locus. All points on
it are regular singular points. The yel-
low curves depict some generalised so-
lutions determined by numerically inte-
grating the vector field X of Theorem 8
(which has also been computed numer-
ically). Their projection to E is shown
on the red plane.

Whenever a generalised solution crosses the singular locus, the projected
curve changes its direction and thus ceases to be the graph of a function. An
exception is the one generalised solution that goes through the “tip” of the
singular locus, as here the Vessiot distribution is tangential to the singular locus.
Its projection is still the graph of a function which, however, is at t = 0 only
once differentiable; the second derivative blows up at this point.

As the following result shows, generically the Vessiot distribution is transver-
sal to the singular locus at regular singularities and the singular locus is almost

1 We ignore here the degenerate case that the generalised solution N through ρ is
completely vertical, i. e. N ⊆ (π1

0)−1
`
π1

0(ρ)
´
; see, however, the next section.



everywhere a smooth manifold. We omit a proof of this proposition, as we can
simply use the one given by Rabier [10]. He does not interpret the non-degeneracy
condition in terms of the Vessiot distribution. But given the expression (9) for
the generator X of V[R1], it is easy to see that his results imply the transversality
of V[R1] to S1.

Proposition 10. Let ρ ∈ R1 be a regular singular point. If

vt
∂A

∂u̇
(ρ)v /∈ imA(ρ) (10)

for all non-vanishing vectors v ∈ kerA(ρ), then the Vessiot distribution Vρ[R1]
is transversal to the singular locus S1 and the singular locus S1 is a smooth
manifold in a neighbourhood of ρ.

Remark 11. One should note that we do not get here an equivalence between
the condition (10) and transversality of the Vessiot distribution—or the vector
field X—to the singular locus. The converse may become invalid when the deter-
minant δ is of the form δ = ζk for some function ζ and an exponent k > 1. In this
case, transversality cannot be decided by using the differential dδ, as it vanishes
everywhere on the singular locus S1. However, Rabier’s proof of Proposition 10
uses dδ and thus cannot be inverted in such situations.

5 Quasi-Linear Equations

We specialise now the results of the previous section to quasi-linear equations of
the form (4). As we already indicated with our notations, the matrix A is then
indeed the Jacobian with respect to the derivatives. Thus here the only difference
is the fact that in the quasi-linear case A does not depend on the derivatives and
we will continue to denote its determinant by δ and its adjugate by C. However,
the vectors r and d are not related.

Lemma 12. Let R1 ⊆ J1π be a quasi-linear equation satisfying Assumption 3.
According to Theorem 8, on a simply conncected open subset U ⊆ R1 without
any irregular singularity the Vessiot distribution V[R1] is generated by the vector
field X given by (9). This field is projectable to a vector field Y = (π1

0)∗X defined
on π1

0(U) ⊆ R(1)
0 ⊆ E by

Y = δ∂t + (Cr)t∂u . (11)

Proof. Multiplication of (4) with the adjugate C yields the equation δu̇ = Cr.
Thus on R1 we may write X = Y + (Cd)t∂u̇. As all coefficients of Y depend
only on t and u, the field X is projectable to E and (π1

0)∗X = Y . ut

The coordinate form (11) shows that the field Y can be locally continued to
points outside of the projectionR(1)

0 . More precisely, it follows from the definition
of the adjugate that Y can be defined at any point ξ ∈ E where both A and
r are defined. This observation allows us to study the singularities of R1 on E
using the vector field Y instead of working in J1π with the Vessiot distribution
V[R1].



Definition 13. Let R1 ⊆ J1π be a quasi-linear differential equation with local
representation (4) and D ⊆ E the subset where both A and r are defined. ξ ∈ D
is a regular point for R1, if Yξ is transversal to the fibration π : E → T , and an
impasse point otherwise. An impasse point is irregular, if Yξ = 0, and regular
otherwise. The set of all impasse points is the impasse hypersurface S0 ⊆ E. A
geometric solution of the differential equation R1 is an integral curve N ⊆ E of
the vector field Y .

In analogy to Theorem 8, one obtains the following characterisation of the
different cases. We stress again that for quasi-linear equation all conditions live
in E and not in J1π.

Theorem 14. Let R1 ⊆ J1π be a quasi-linear differential equation satisfying
Assumption 3. A point ξ ∈ D is regular for R1, if and only if rkA(ξ) = m. It is
a regular impasse point, if and only if rkA(ξ) = m− 1 and ξ /∈ R(1)

0 .

Proof. The case of a regular point is obvious. If rkA(ξ) < m−1, then all minors
of A(ξ) of size m− 1 and thus also the adjugate C(ξ) vanish. This fact implies
then trivially that Yξ = 0. Hence there only remains the case rkA(ξ) = m − 1.
Recall from above that then imA(ξ) = kerC(ξ). Since ξ /∈ R(1)

0 is equivalent to
r(ξ) /∈ imA(ξ), we thus find in this case that Yξ 6= 0, if and only if ξ /∈ R(1)

0 . ut

We compare now these notions with the corresponding ones for general equa-
tions introduced in Definition 7. Let ρ ∈ R1 be a point on our given differential
equation and ξ = π1

0(ρ) its projection to E . If ρ is a regular point, then trivially
ξ is regular, too. Indeed, it follows immediately from (9) that in this case Xρ is
transversal to π1 and hence its projection Yξ to π. As discussed above, it follows
from [7, Thm. 4.2] that Xρ vanishes, if ρ is an irregular singularity. Hence in this
case ξ is an irregular impasse point.

Implicit in the above proof is the observation that regular singular points of
a quasi-linear equation R1 always show a degenerate behaviour. Indeed, if ρ is
a regular singularity, then the fibre N = (π1

0)−1(ξ) ∩R1 is one-dimensional and
consists entirely of regular singularities. Furthermore, in this degenerate case N
is the unique generalised solution through ρ and it does not project onto a curve
in E but the single point ξ.

The behaviour normally associated with regular singularities appears for
quasi-linear equations at regular impasse points. One possibility is that two
strong solutions can be extended so that they either start or end at ξ and to-
gether define the geometric solution through ξ. This will happen, if the sign of
the ∂t-component of Y changes at ξ. If the sign remains the same, then we find
a unique “strong” solution through ξ which, however, is only C0 in ξ and thus
strictly speaking cannot be considered as a solution. Concrete examples for both
cases will be given in the next section.

Again a degenerate situation may arise. Let R1 be a semi-linear equation
where the symbol matrix A depends only on the independent variable t. If now
rkA(t0) = m− 1 for some point t0 ∈ T , then at all points ξ ∈ π−1(t0) ⊂ E the



vector Yξ is either vertical or vanishes. Assuming that the latter happens only on
some lower-dimensional subset, we find geometric solutions N lying completely
in the fibre π−1(t0). As these project on the single point t0 ∈ T , they cannot be
interpreted as strong solutions with some singularities.

Example 15. Consider the quasi-linear
equation 2uu̇− t = 0. Its singular locus
S1 is the vertical line t = u = 0 which is
simultaneously a generalised solution.
Two points on it, (0, 0,±1), are irreg-
ular singularities; all other points are
regular singularities. The impasse man-
ifold S0 given by u = 0 contains one
irregular impasse point at the origin.
An explicit integration of this equa-
tion is easily possible and the solutions
are of the implicit form u2 − t2/2 = c
for a constant c ∈ R. For c < 0, the
two branches of the square root always
meet on S0 where the solution is not
differentiable. Note that on one branch
u̇ → ∞ whereas on the other branch
u̇ → −∞. For c = 0 one obtains the

two lines intersecting at the origin. For
c > 0 each branch of the square root
yields one strong solution.

There also exists a special version of Proposition 10 for autonomous quasi-
linear equations. In this case the condition (10) must be replaced by

vt
∂A

∂u
(ξ)v /∈ imA(ξ) (12)

for all non-vanishing vectors v ∈ kerA(ξ) and it ensures that the field Y is
transversal to the impasse surface S0 at the impasse point ξ and that S0 is
a smooth manifold in a neighbourhood of ξ. As already discussed in Remark
11, this condition is only sufficient but not necessary. The quasi-linear equation
associated with a hysteresis point (see Example 18 below) represents a concrete
counterexample where condition (12) fails at the hysteresis point but nevertheless
the vector field Y is there transversal to the smooth manifold S0.

6 Static Bifurcations

We apply the results of the last section to the analysis of static bifurcations of
a parametrised autonomous ordinary differential equation of the standard form
u′ = φ(t,u). Opposed to the conventions used so far in this work, t represents
now the parameter and we denote the (not explicitly appearing) independent
variable by x and hence derivatives with respect to it by u′. We continue to
consider t and u as coordinates on a fibred manifold π : E → T .



For static bifurcations one analyses the dependence of solutions of the alge-
braic system φ(t,u) = 0 on the parameter t, i. e. how the equilibria change as t
varies. The solution set may be considered as a bifurcation diagram. Note that
this represents a purely algebraic problem in E . At certain bifurcation values of
the parameter t the number of equilibria changes.

Definition 16. The point ξ = (t,u) ∈ E is a turning point, if

φ(ξ) = 0 ∧ dim ker
∂φ

∂u
(ξ) = 1 ∧ ∂φ

∂t
(ξ) /∈ im

∂φ

∂u
(ξ) . (13)

At a bifurcation point ξ ∈ E, the third condition is replaced by its converse:

φ(ξ) = 0 ∧ dim ker
∂φ

∂u
(ξ) = 1 ∧ ∂φ

∂t
(ξ) ∈ im

∂φ

∂u
(ξ) . (14)

The rationale behind the above distinction is that at a turning point ξ all
solutions of φ = 0 still lie on one smooth curve and the number of solutions only
changes because this curve “turns” at ξ. At a bifurcation point several solution
curves meet. In the bifurcation literature, much emphasis is put on distinguishing
simple turning or bifurcation points from higher ones. In particular, the numer-
ical analysis differs for non-simple points. It will turn out that in our approach
such a distinction is irrelevant. We try to write the solutions as a function u(t).
Differentiating the given algebraic system with respect to the parameter t yields
then a square quasi-linear differential equation for this function:

∂φ

∂u
(t,u)u̇+

∂φ

∂t
(t,u) = 0 . (15)

Thus we set A(t,u) = ∂φ
∂u (t,u) and d(t,u) = ∂φ

∂t (t,u). The bifurcation diagram
consists now of those geometric solutions of (15) on which φ vanishes.

Theorem 17. ξ ∈ E is a turning point, if and only if φ(ξ) = 0 and ξ is a regular
impasse point of (15). ξ ∈ E is a bifurcation point, if and only if φ(ξ) = 0 and
ξ is an irregular impasse point of (15) where rkA(ξ) = m− 1. In this case each
branch of the bifurcation diagram is tangent to an eigenvector of the Jacobian of
the vector field Y at ξ for an eigenvalue with non-vanishing real part.

Proof. The first two assertions follow immediately from comparing Definition 16
with Theorem 14. For the last assertion we note that an irregular impasse point
is, by definition, an equilibrium of the vector field Y and hence it follows from
basic dynamical systems theory. ut
Example 18. We compare a simple turning point or (saddle node bifurcation)
with a hysteresis point (a degenerate turning point). As all our geometric consid-
erations remain invariant under coordinate transformation, we take for simplicity
the well-known normal forms of such points: φ1(t, u) = t− u2 and φ2 = t− u3.
The corresponding quasi-linear equations are 2uu̇ = 1 and 3u2u̇ = 1. Thus in
both cases the impasse manifold is given by the equation u = 0 and consists
entirely of regular impasse points. A straightforward calculation yields for the
vector field defined by (11) Y1 = 2u∂t + ∂u and Y2 = 3u2∂t + ∂u, respectively. In
both cases the origin is the sole turning point in the sense of Definition 16.



Simple Turning Point Hysteresis Point
The above pictures show the fields Y1 and Y2 and their streamlines.2 The red

curve is the bifurcation diagram. One clearly sees that even in the degenerate
case there are no particular numerical problems. The only difference between the
two cases is the behaviour of the ∂t-component of Y : on the left it changes sign
when going through the impasse point, on the right it does not. As explained in
the previous section, this observation entails that on the left we have two strong
solutions starting arbitrarily close to the origin and extendable to the origin,
whereas on the right we find one solution going through the origin which is,
however, not differentiable there.

Example 19. The normal form of a pitchfork bifurcation is φ(t, u) = tu−u3. The
associated quasi-linear equation is then (t − 3u2)u̇ + u = 0 with singular locus
S1 ⊆ R1 given by the points satisfying in addition 3u2 = t. The impasse surface
S0 ⊆ E is also described by this equation. The origin is an irregular impasse
point; all other points on S0 are regular. The vector field of (11) is given by
Y = (t − 3u2)∂t − u∂u and vanishes at the origin as required for an irregular
impasse point.

The picture on the right exhibits
the vector field Y , its streamlines and
the eigenvectors of the Jacobian of Y

at the origin J =
(

1 0
0 −1

)
. Obviously,

they are tangent to the bifurcation di-
agram consisting of the invariant man-
ifolds of Y . The picture also nicely
shows how the pitchfork bifurcation
arises when two turning points moving
on the dashed green line collide.

2 Only one of the streamlines satisfies the algebraic equation φ(ξ) = 0 and thus
represents the bifurcation diagram we want. The other streamlines can be interpreted
as bifurcation diagrams of the perturbed problems φ(ξ) = ε with a constant ε ∈ R.
Indeed, such a constant disappears when we differentiate in order to obtain our quasi-
linear equation. Thus strictly speaking, we simultaneously analyse a whole family of
bifurcation problems in our approach.



We remark that from this geometric point of view a pitchfork and a trans-
critical bifurcation are very similar. There arise only minor differences how the
invariant manifolds lie relative to the eigenspaces. We omit therefore the details
for a transcritical bifurcation.

7 Conclusions

In this work we used Vessiot’s vector field based approach to differential equa-
tions for an analysis of geometric singularities of ordinary differential equations
satisfying certain basic assumptions. We clarified the special role of quasi-linear
equations where the geometric analysis can be performed on the basic fibred
manifold E instead of the jet bundle J1π. This observation is not surprising,
as one can see similar effects also at other places in the theory of differential
equations. In [14, Addendum Sect. 9.5] the method of characteristics is reviewed
from a geometric point of view. There it also turns out that one may consider
the characteristics for linear equations even on T and for quasi-linear ones also
on E . Only for fully non-linear equations one must use the jet bundle J1π.

As an application we studied the theory of static bifurcations of autonomous
ordinary differential equations. We associated a quasi-linear differential equa-
tion and thus a certain vector field Y on the base manifold E with such a bi-
furcation problem. Then we showed that the distinction between turning and
bifurcation points corresponds to the distinction between regular and irregular
impasse points of the associated quasi-linear equation. For equations admitting
only static bifurcation points, these results may lead to a simpler way to de-
termine bifurcation diagrams. Instead of using continuation methods one can
simply integrate the vector field Y . Furthermore, around a bifurcation point ξ
there is no need to search where branches may head, as they can only emerge in
the direction of eigenvectors of the Jacobian of Y at ξ.

We did not consider the question of recognising simple turning or bifurcation
points. As already noted by Rabier and Rheinboldt [11], simple turning points
are characterised by the fact that there also the condition (10) is satisfied. We
discussed in Remark 11 that from a geometric point of view this condition and
consequently the concept of a simple turning point is not fully satisfactory (or
of a more technical nature), since (10) is not equivalent to the transversality of
the vector field X to the singular locus S1 (or the transversality of Y to the
impasse hypersurface S0, respectively). The condition (10) always fails, if the
determinant δ provides a degenerate description of S1 (or S0).

References

1. Arnold, V.: Geometrical Methods in the Theory of Ordinary Differential Equations.
Grundlehren der mathematischen Wissenschaften 250, Springer-Verlag, New York,
2nd edn. (1988)

2. Bryant, R., Chern, S., Gardner, R., Goldschmidt, H., Griffiths, P.: Exterior
Differential Systems. Mathematical Sciences Research Institute Publications 18,
Springer-Verlag, New York (1991)



3. Fackerell, E.: Isovectors and prolongation structures by Vessiot’s vector field for-
mulation of partial differential equations. In: Martini, R. (ed.) Geometric Aspects
of the Einstein Equations and Integrable Systems, pp. 303–321. Lecture Notes in
Physics 239, Springer-Verlag, Berlin (1985)

4. Fesser, D.: On Vessiot’s Theory of Partial Differential Equations. Ph.D. thesis,
Fachbereich Mathematik, Universität Kassel (2008)

5. Fesser, D., Seiler, W.: Vessiot connections of partial differential equations. In: Cal-
met, J., Seiler, W., Tucker, R. (eds.) Global Integrability of Field Theories, pp.
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