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1 Introduction

A key notion in the theory of general (i. e. including under- or overdetermined) sys-
tems of differential equations is involution. As we will see it may be understood as a
simultaneous abstraction and generalisation of Gröbner bases for polynomial ideals to
differential equations (without any restriction to linear or polynomial systems). With-
out the concept of involution (or some variation of it like passivity in Janet–Riquier
theory [27, 48] or differential Gröbner bases [37]), one cannotprove general existence
and uniqueness theorems like the Cartan–Kähler theorem.

Work supported by EU NEST-Adventure grant 5006 (GIFT).
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The terminology “involutive” appeared probably first in the 19th centuryin the analysis
of overdetermined systems of first-order linear differential equationsin one unknown
function. Nowadays these works are subsumed by the Frobenius theorem which is
usually treated in differential geometry (where one still has the notion of aninvolutive
distribution) and no longer in differential equations theory. The first complete theories
of arbitrary differential equations were reached in the early 20th century with the Janet–
Riquier and the Cartan–Kähler theory [6, 9, 24, 29], the latter one formulated in the
language of exterior differential systems (Cartan also provided a differential equations
version for linear first-order systems in [8]).
The Janet–Riquier theory is completely based on local coordinate computations and
requires the introduction of a ranking in analogy to the term orders used to define
Gröbner bases. By contrast, the Cartan–Kähler theory is in principle intrinsic, but in
the classical approach the decision whether or not a given exterior differential system
is involutive requires for the so-called Cartan test at least the introductionof a local
basis on the tangent bundle which is often done via coordinates.
Only much later it was realised that Cartan’s test is actually of a homologicalnature.
The homological approach to involution was mainly pioneered by Spencer[57] and
collaborators [18, 19, 46]; later discussions can be found e. g. in [6,10, 12, 28, 32, 30,
34, 36, 38, 42]. However, one should mention that the Spencer cohomology appeared
first not in the context of differential equations but in deformation theory [56].
This contribution is largely a review; most results are well-known to specialists. How-
ever, these specialists are divided into two classes: many experts in the formal theory
of differential equations are familiar with Spencer cohomology but muchless with
commutative algebra; conversely, few experts in commutative algebraknow the formal
theory. This clear division into two communities is the main reason why even elemen-
tary facts like that the degree of involution and the Castelnuovo–Mumford regularity
coincide have remained unnoticed for a long time. It is our hope that this article may
help to bridge this gap.
Some novel aspects are contained in the use of Pommaret bases; this concerns in partic-
ular Chapter 5 (parts of this material is also contained in [22]). While we do not discuss
here any algorithmic aspects (this is done in [22]), it should be mentioned that by re-
lating concepts like involution or the Castelnuovo–Mumford regularity to Pommaret
bases, we make them immediately accessible for effective computations.
The article is organised as follows. The next chapter introduces axiomatically the poly-
nomial de Rham complex and its dualisation, the Koszul complex. The Spencer coho-
mology and the Koszul homology of a (co)module arise then by (co)tensoring with the
(co)module. Since the symmetric algebra is Noetherian by Hilbert’s basis theorem, it is
straightforward to prove a number of finiteness statements for the Spencer cohomology
via dualisation to the Koszul side which are otherwise quite hard to obtain. It seems
that the duality between the Spencer cohomology and the Koszul homologywas first
noted by Singer and Sternberg [55] (but see also [46, Lemma 5.5]) who attributed it to
private discussions with Grothendieck and Mumford. An independent proof was later
given by Ruiz [49]. The chapter closes by defining involution as the vanishing of the
Spencer cohomology (or the dual Koszul homology, resp.).
Chapter 2 is concerned with the Cartan test for deciding whether a symbolicsystem
is involutive. It represents a homological reformulation of the classicalCartan test in
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the theory of exterior differential systems and is due to Matsushima [39, 40]. We then
discuss the dual version of the Cartan test developed by Serre in a letter appended to
[21]. While the notion of involution is intrinsically defined, any form of Cartan’s test
requires the introduction of coordinates and it turns out that in certain “bad” coordinate
systems the test fails. This problem is known under the nameδ- or quasi-regularity and
appears in all versions of the Cartan test.

Chapter 4 recalls briefly the notion of an involutive basis for a polynomial ideal with
particular emphasis on Pommaret bases. Involutive bases represent a special kind of
Gröbner bases with additional combinatorial properties; they were introduced by Gerdt
and Blinkov [15] combining ideas from the Janet–Riquier theory of differential equa-
tions with the classical theory of Gröbner bases. It is shown that the Pommaret basis
with respect to the degree reverse lexicographic order contains many structural infor-
mation. This chapter essentially summarises some of the results of [51].

Most invariants that can be read off from a Pommaret basis are of a homological nature.
Therefore we study in Chapter 5 the relation between the Pommaret basis (for the
degree reverse lexicographic order) of an idealI and the Koszul homology of the factor
algebraP/I in more detail. The presented results only scratch at the surface of this
question. It is a conjecture of us that for Pommaret bases the Schreyer Theorem can be
significantly generalised so that it yields explicit bases for the whole Koszul homology
and not only for the degree-1-part. This entails that in contrast to general Gröbner bases
this special kind of bases is to a large extent determined by the structure ofthe ideal.

The last two chapters demonstrate how the algebraic theory developed in the previous
chapters can be applied to general differential equations. For this purpose, a differential
equation is defined geometrically as submanifold of a jet bundle. The fundamental
identification leads to a natural polynomial structure in the hierarchy of jet bundles.
It allows us to associate with each differential equation a symbolic system (or dually
a polynomial module) so that involution can be effectively decided with anyform of
Cartan’s test. We also discuss why2-acyclicity implies formal integrability; going to
the Koszul side this becomes an elementary statements about syzygies.

Finally, some conclusions are given. Two small appendices fix the usednotations con-
cerning multi indices and term orders, respectively. A slightly larger appendix gives an
introduction to coalgebras and comodules.

2 Spencer Cohomology and Koszul Homology

Let V be ann-dimensional vector space over a fieldk;1 overV one has the symmetric
algebraSV and the exterior algebraΛV. We introduce two natural complexes based
on the product spacesSqV ⊗ ΛpV. Any element of such a space may be written as ak-linear sum of separable elements, i. e. elements of the formw1 · · ·wq ⊗ v1 ∧ · · · ∧ vp

with wi, vj ∈ V. By convention, we setSjV = 0 for j < 0.

1For simplicity, we assume throughout thatchar k = 0.
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Definition 2.1 For any integerr ≥ 0 the complex

0 // SrV
δ // Sr−1V ⊗ V

δ // Sr−2V ⊗ Λ2V
δ // · · ·

· · ·
δ // Sr−nV ⊗ ΛnV // 0

(2.1)

where the differentialδ is defined by2

δ(w1 · · ·wq ⊗ v1 ∧ · · · ∧ vp) =

q∑

i=1

w1 · · · ŵi · · ·wq ⊗ wi ∧ v1 ∧ · · · ∧ vp (2.2)

is called thepolynomial de Rham complexRr(SV) at degreer over the vector spaceV.
TheKoszul complexKr(SV) at degreer overV is given by

0 // Sr−nV ⊗ ΛnV
∂ // Sr−n+1V ⊗ Λn−1V

∂ // · · ·

· · ·
∂ // SrV // 0

(2.3)

where now the differential∂ is defined as

∂(w1 · · ·wq ⊗ v1 ∧ · · · ∧ vp) =

p∑

i=1

(−1)i+1w1 · · ·wqvi ⊗ v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vp . (2.4)

It is trivial to verify that, due to the skew-symmetry of the wedge product,the differ-
entials satisfyδ2 = 0 and∂2 = 0, so that we are indeed dealing with complexes.
Let {x1, . . . , xn} be a basis ofV. Then a basis of the vector spaceSqV is given by
all termsxµ with µ a multi index3 of lengthq. For a basis of the vector spaceΛpV
we use the following convention: letI be asorted repeated index of lengthp, i. e.
I = (i1, . . . , ip) with 1 ≤ i1 < i2 < · · · < ip ≤ n; then we writexI for xi1 ∧ · · · ∧ xip

and the set of all such “terms” provides a basis ofΛpV. With respect to these bases, we
obtain the following expressions for the above differentials:

δ(xµ ⊗ xI) =
n∑

i=1

sgn
(
{i} ∪ I

)
µix

µ−1i ⊗ x{i}∪I (2.5)

and

∂(xµ ⊗ xI) =

p∑

j=1

(−1)j+1xµ+1ij ⊗ xI\{ij} . (2.6)

Formally, (2.5) looks like the exterior derivative applied to a differentialp-form with
polynomial coefficients. This observation explains the name “polynomialde Rham
complex” for (2.1) and in principle one should use the usual symbold for the differen-
tial but the notationδ has become standard.

2The hat signals that the corresponding factor is omitted.
3See Appendix A for the used conventions on multi indices.
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Remark 2.2 While the de Rham differentialδ indeed depends on the algebra structure
of the exterior algebraΛV, it exploits only the vector space structure of the symmetric
algebraSV. Thus we may substitute the symmetric algebraSV by the symmetric
coalgebra4 SV and defineδ on the components of the freeSV-comoduleSV ⊗ ΛV,
since both are identical as vector spaces. It is not difficult to verify thatwith this
interpretation the differentialδ is a comodule morphism. In fact, we will see later
that in our context this comodule interpretation is even more natural. It is somewhat
surprising that this point of view was introduced only very recently in [33]. For the
Koszul differential∂ we have the opposite situation: we need the algebraSV but only
the vector spaceΛV. Thus one could similarlyΛV replace by the exterior coalgebra,
however, this will not become relevant for us.

Lemma 2.3 We have
(
δ ◦ ∂ + ∂ ◦ δ

)
(ω) = (p+ q)ω for all ω ∈ SqV ⊗ ΛpV.

Proof. Forω = w1 · · ·wq ⊗ v1 ∧ · · · ∧ vp one readily computes that

(∂ ◦ δ)(ω) = qω+

q∑

i=1

p∑

j=1

(−1)jw1 · · · ŵi · · ·wqvj ⊗wi ∧ v1 ∧ · · · ∧ v̂j ∧ · · · ∧ vp (2.7)

and similarly

(δ◦∂)(ω) = pω+

p∑

j=1

q∑

i=1

(−1)j+1w1 · · · ŵi · · ·wqvj ⊗wi∧v1∧· · ·∧ v̂j ∧· · ·∧vp (2.8)

which immediately implies our claim.

Proposition 2.4 The complexesRq(SV) andKq(SV) are exact for all valuesq > 0.
For q = 0 both complexes are of the form0 → k→ 0.

Proof. This is an immediate consequence of Lemma 2.3. It implies that forq > 0
the map∂ induces a contracting homotopy forRq(SV) and converselyδ for Kq(SV)
connecting the respective identity and zero maps. It is well-known that theexistence
of such a map entails exactness.

For the polynomial de Rham complex, this result is also known as theformal Poincaŕe
Lemma, as one may interpret it as a special case of the Poincaré Lemma for general
differential forms. We consider the complexesRq(SV) andKq(SV) as homogeneous
components of complexesR(SV) andK(SV) over theSV-modulesSV ⊗ ΛiV. Since
S0V = k, we find that the Koszul complexK(SV) defines a free resolution of the
ground fieldk. Similarly, the polynomial de Rham complexR(SV) may be considered
as a free coresolution ofk.
The polynomial de Rham and the Koszul complex are related by duality [46, 49, 55].
Recall that we may introduce for any complex ofR-modules its dual complex obtained
by applying the functorHomR(·,R). In the case of finite-dimensional vector spaces,
it is well-known that the homology of the dual complex is the dual space of the coho-
mology of the original complex.

4See Appendix C for some information about coalgebras and comodules.
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Remark 2.5 There exists a canonical isomorphismSq(V
∗) ∼= (SqV)∗: any separable

elementφ1 · · ·φq ∈ Sq(V∗) is interpreted as the linear map onSqV obtained by setting

(φ1 · · ·φq)
(
v1 · · · vq) =

∑

π∈Sq

q∏

i=1

φi(vπ(i)) (2.9)

whereSq denotes the symmetric group of all permutations of1, . . . , q. The same con-
struction can be applied to exterior products and thus we can extend to a canonical
isomorphismSq(V

∗) ⊗ Λp(V
∗) ∼= (SqV ⊗ ΛpV)∗.

At the level of bases, this isomorphism takes the following form. We denoteagain
by {x1, . . . , xn} a basis ofV and by{y1, . . . , yn} the corresponding dual basis ofV∗.
Then the monomialsxµ with |µ| = q form a basis ofSqV and similarly the monomials
yµ = yµ1

1 · · · yµn
n with |µ| = q form a basis ofSq(V∗). However, these two bases arenot

dual to each other, since according to (2.9)yµ(xν) = µ!δν
µ. Thus the dual basis consists

of thedivided powersyµ

µ! . For the exterior algebra no such combinatorial factor arises,
as the evaluation of the expression corresponding to the right hand side of (2.9) on
basis vectors yields only one non-vanishing summand.
Another way to see that the dualisation leads to the divided powers is based on the
coalgebra approach of Remark 2.2. If we substitute in the definition of thepolynomial
de Rham complex the symmetric algebraSV by the symmetric coalgebraSV, then the
dual algebra isS(V∗) and evaluation of the convolution product (C.3) leads to (2.9).

Proposition 2.6
(
R(SV)∗, δ∗

)
is isomorphic to

(
K

(
S(V∗)

)
, ∂

)
.

Proof. There only remains to show that∂ is indeed the pull-back ofδ. Choosing the
above described dual bases, this is a straightforward computation. By definition of the
pull-back,

δ∗
(yµ

µ!
⊗ yI

)
(xν ⊗ xJ) =





vj sgn

(
{j} ∪ J

)
if ∃j :

{
µ = ν − 1j

I = {j} ∪ J

}
,

0 otherwise.
(2.10)

Note thatνj = ν!
µ! if µ = ν − 1j ; hence we find that

δ∗(yµ ⊗ yI) =

p∑

j=1

(−1)j+1yµ+1ij ⊗ yI\{ij} . (2.11)

Comparison with (2.6) yields the desired result.

For reasons that will become apparent in Chapter 7 when we apply the here developed
algebraic theory to differential equations, we prefer to consider the Koszul complex
over the vector spaceV and the polynomial de Rham complex over its dual spaceV∗.
Thus we will always useR

(
S(V∗)

)
andK(SV). If U is a further finite-dimensional

vector space overk with dimU = m, then we may extend to the tensor product com-
plex R

(
S(V∗) ⊗ U

)
= R

(
S(V∗)

)
⊗ U and dually toK(SV ⊗ U∗) = K(SV) ⊗ U∗.
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Everything we have done so far remains valid with trivial modifications, asthe differ-
entials of the complexes are essentially unaffected by this operation. Basically, one
must only add a factoru ∈ U (or ν ∈ U∗, respectively) to each equation and consider
all our computations above as componentwise.

Definition 2.7 Let Nq ⊆ Sq(V∗) ⊗ U be an arbitrary vector subspace. Its(first) pro-
longationis the subspace

Nq,1 =
{
f ∈ Sq+1(V

∗) ⊗ U | δ(f) ∈ Nq ⊗ V∗
}
. (2.12)

A sequence of vector subspaces
(
Nq ⊆ Sq(V∗) ⊗ U

)
q∈N0

is called asymbolic system
overV∗, if Nq+1 ⊆ Nq,1 for all q ∈ N0.

We may equivalently introduce the prolongation as

Nq,1 = (V ⊗Nq) ∩
(
Sq+1(V

∗) ⊗ U
)

(2.13)

with the intersection understood to take place inV∗⊗
(
Sq(V∗)⊗U

)
. This follows imme-

diately from the definition of the differentialδ. The extension to higher prolongations
Nq,r ⊆ Sq+r(V∗) ⊗ U proceeds either by induction,Nq,r+1 = (Nq,r),1 for all r ∈ N,
or alternatively by generalising (2.13) toNq,r =

(⊗r
i=1 V

∗ ⊗ Nq

)
∩

(
Sq+r(V∗) ⊗ U

)

where the intersection is now understood to take place in
⊗r

i=1 V
∗ ⊗

(
Sq(V∗) ⊗ U

)
.

The notion of a symbolic system is fairly classical in the formal theory of differential
equations (see Proposition 7.6). The next result shows, however, that if we take the
coalgebra point of view of the polynomial de Rham complex mentioned in Remark 2.2,
then a symbolic system is equivalent to a simple algebraic structure.

Lemma 2.8 Let (Nq)q∈N0
be a symbolic system. ThenN =

⊕∞
q=0 Nq is a graded

(right) subcomodule of the freeS(V∗)-comoduleS(V∗)⊗U . Conversely, the sequence
(Nq)q∈N0

of the components of any graded (right) subcomoduleN ⊆ S(V∗) ⊗ U
defines a symbolic system.

Proof. Let (Nq)q∈N0
be a symbolic system andf ∈ Nq. Thenδf ∈ Nq−1 ⊗ V and

hence∂f/∂xi ∈ Nq−1 for all 1 ≤ i ≤ n, since our differentialδ is just the exterior
derivative. Using induction we thus find that∂|µ|f/∂xµ ∈ Nq−r for all µ with |µ| = r.
By the definition of the polynomial coproduct, this is equivalent to∆(f) ∈ N ⊗S(V∗)
and henceN is a subcomodule. For the converse, we simply revert every step of this
argument to find that∆(f) ∈ N ⊗ S(V∗) implies thatNq ⊆ Nq−1,1 for all q > 0.

Example 2.9 Let V be a two-dimensional space. The subspacesN0 = k, N1 = V∗

andNq = 〈yq
1〉 ⊂ Sq(V∗) for q ≥ 2 define a symbolic system whereNq,1 = Nq+1

for all q ≥ 2. Indeed, ifk + ℓ = q, thenδ
(
yk
1y

ℓ
2

)
= yk−1

1 yℓ
2 ⊗ y1 + yk

1y
ℓ−1
2 ⊗ y2 so

that the result lies inNq−1 ⊗ V∗ only for ℓ = 0. We will see later that this symbolic
system is associated with partial differential equations of the formu22 = F (x, u(1)),
u12 = G(x, u(1)) where the shorthandu(q) denotes the unknown functionu depending
onx = (x1, x2) and all its derivatives up to orderq.
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Another simple symbolic system over the same dual spaceV∗ is given byN0 = k,
N1 = V∗, N2 = S2(V∗), N3 = 〈y2

1y2, y1y
2
2〉, N4 = 〈y2

1y
2
2〉 andNq = 0 for all q ≥ 5.

This system is related to partial differential equations of the formu222 = F (x, u(2)),
u111 = G(x, u(2)). One can show that any such equation has a finite-dimensional
solution space and this fact is reflected by the vanishing of the associated symbolic
system beyond a certain degree.

From now on, we will not distinguish between a symbolic system(Nq)q∈N0
and the

corresponding subcomoduleN ⊆ S(V∗)⊗U . We are particularly interested in subco-
modulesN where almost all componentsNq are different from zero (i. e. as a vector
spaceN is infinite-dimensional). Recall that it follows immediately from the definition
of the polynomial coproduct that cogeneration inS(V∗) always leads to elements of
at most the same degree as the cogenerator; hence a finitely cogenerated comodule is
necessarily finite-dimensional as vector space. However, the duality betweenS(V∗)
andSV yields easily the following result.

Corollary 2.10 Let (Nq)q∈N0
be an arbitrary symbolic system. There exists an integer

r0 ≥ 0 such thatNr+1 = Nr,1 for all r ≥ r0.

Proof. It is well-known that the annihilatorN 0 ⊆ SV ⊗U∗ is anSV-submodule. Now
Nr+1 ( Nr,1 implies that any minimal basis ofN 0 contains at least one generator of
degreer. Since, by Hilbert’s Basis Theorem, any polynomial ring in a finite numberof
variables and hence also the symmetric algebraSV is Noetherian, an upper boundr0
for such valuesr exists.

By this corollary, we may consider symbolic systems as a kind of finitely cogenerated
“differential comodules”: since the truncated comoduleN≤r0

is a finite-dimensional
vector space, it is obviously finitely cogenerated and by repeated prolongations of the
componentNr0

we obtain the remainder of the comoduleN . Thus we conclude that
every symbolic system is uniquely determined by a finite number of elements.

Definition 2.11 Let N be a graded comodule over the coalgebraC = S(V∗). Its
Spencer complex

(
R(N ), δ

)
is the cotensor product5 complexN ⊠C R

(
S(V∗)

)
. The

Spencer cohomologyof N is the corresponding bigraded cohomology; the cohomology
group atNq ⊗ Λp(V∗) in

(
Rq+p(N ), δ

)
is denoted byHq,p(N ).

SinceN ⊠C C ∼= N for any C-comoduleN , the components of the cotensored com-
plexN ⊠C R

(
S(V∗)

)
are indeed just the vector spacesNq ⊗ Λp(V∗). We are mainly

interested in the special case thatN is a subcomodule of a free comoduleC ⊗ U and
then the differential in the Spencer complexR(N ) is simply given by the restriction
of the differentialδ in the polynomial de Rham complexR

(
S(V∗)

)
to the subspaces

Nq ⊗ Λp(V∗) ⊆ Sq(V∗) ⊗ Λp(V∗) ⊗ U ; this observation explains why we keep the
notationδ for the differential. One can also verify by direct computation that this re-
striction makes sense whenever(Nq)q∈N0

defines a symbolic system (this is basically
the same computation as the one showing the equivalence of the two definitions (2.12)

5The definition of the cotensor product⊠C over a coalgebraC is dual to the one of the usual tensor product;
it was introduced by Eilenberg and Moore [13].
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and (2.13) of the prolongation); in fact, this restriction is the classical approach to
define the Spencer complex.

Remark 2.12 It is important to note here that the Spencer cohomology is bigraded.
If we ignore the polynomial degree and consider only the form degree,we obtain the
modulesHp(N ) =

⊕∞
q=0H

q,p(N ). For these, another point of view is possible. Since
any free comodule is injective, we have exactly the situation of the definition of cotor-
sion: we are given an injective coresolution (ofk) and cotensor it with a comodule.
Thus we may consider the Spencer cohomology as the right derived functor ofN ⊠C ·
and identifyHp(N ) = Cotorp

C(N ,k).
As for arbitrary derived functors, the definition ofCotorpC(N ,k) is independent of
the coresolution used for its computation or, more precisely, the results obtained with
different coresolutions are isomorphic. However, given some otherway to explicitly
determineCotorp

C(N ,k), say via a coresolution ofN , it may be a non-trivial task to
recover the bigrading of the Spencer cohomology.

Lemma 2.13 Let N ⊆ S(V∗) ⊗ U be a symbolic system. ThenHq,0(N ) = 0 and
dimHq−1,1(N ) = dim

(
Nq−1,1/Nq

)
for all q > 0.

Proof. The first claim follows immediately from the formal Poincaré Lemma (Propo-
sition 2.4). For the second claim consider a non-vanishing elementf ∈ Nq−1,1 \ Nq.
Theng = δf ∈ ker δ

Nq−1⊗V∗ and, because of the formal Poincaré Lemma,g 6= 0.

However, by construction,g /∈ im δ
Nq

and hence we find0 6= [g] ∈ Hq−1,1(N ). This

implies immediately the inequalitydimHq−1,1(N ) ≥ dim
(
Nq−1,1/Nq

)
. Conversely,

consider an arbitrary non-vanishing cohomology class[g] ∈ Hq−1,1(N ). Again by the
formal Poincaré Lemma, an elementf ∈ Sq(V

∗) ⊗ U exists such thatg = δf and,
by definition of the prolongation,f ∈ Nq−1,1 \ Nq. Thus we also have the opposite
inequalitydimHq−1,1(N ) ≤ dim

(
Nq−1,1/Nq

)
.

Note that Corollary 2.10 implies thatHq,1(N ) = 0 for a sufficiently high degreeq. Du-
alisation of Definition 2.11 leads to the following classical construction in commutative
algebra with a polynomial module.

Definition 2.14 Let M be a graded module over the symmetric algebraP = SV.
Its Koszul complex

(
K(M), ∂

)
is the tensor product complexM ⊗P K(SV). The

Koszul homologyof M is the corresponding bigraded homology; the homology group
atMq ⊗ ΛpV is denoted byHq,p(M).

Remark 2.15 We observed already above that the Koszul complex defines a free reso-
lution of the fieldk. Hence, as for the Spencer cohomology, we may take another point
of view and consider the Koszul homology as the right derived functorof M ⊗P ·.
According to the definition of the torsion modules, this leads to the identification
Hp(M) =

⊕∞
q=0Hq,p(M) = TorPp (M,k) where we considerk as aP-module. But

again this interpretation ignores the natural bigrading of the Koszul complex K(M).
An alternative way to computeTorPp (M,k) consists of using a free resolution of the
moduleM. If F → M → 0 is such a resolution, then the Koszul homologyH•(M) is
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isomorphic to the homology of the tensor product complexF⊗Pk. Each component in
F is of the formPm and thereforePm ⊗P k = km. Now assume that we actually have
aminimalresolution. In this case all differentials inF possess a positive degree and it
follows from theP-action onk that the induced differential on the complexF ⊗P k is
the zero map. Hence we find thatH•(M) ∼= F ⊗P k anddimHp(M) is just thepth
Betti number ofM. In this sense we may say that the Koszul homology corresponds
to a minimal free resolution.

Lemma 2.16 LetM be a gradedP-module. ThenHq,0(M) = Mq/VMq−1 and thus
dimHq,0(M) gives the numbers of generators of degreeq in any minimal basis ofM.
Furthermore,

Hq,n(M) ∼=
{
m ∈ Mq | Ann (m) = S+V

}
. (2.14)

Proof. The first assertion follows trivially from the definition of the Koszul homology.
Elements ofHq,n(M) are represented by cycles inMq ⊗ ΛnV. If {x1, . . . , xn} is a
basis ofV, these are formsω = m⊗x1∧· · ·∧xn and the condition∂ω = 0 is equivalent
to xim = 0 for 1 ≤ i ≤ n.

Lemma 2.17 Let M be a gradedP-module. Multiplication by an arbitrary element
of S+V induces the zero map on the Koszul homologyH•(M).

Proof. We first observe that ifω ∈ Mq ⊗ ΛpV is a cycle, i. e.∂ω = 0, then for any
v ∈ V the formvω is a boundary, i. e.vω ∈ im ∂. Indeed,

∂
(
v ∧ ω

)
= −v ∧ (∂ω) + vω = vω . (2.15)

Since∂ isSV-linear, this observation remains true, if we take forv an arbitrary element
of S+V, i. e. a polynomial without constant term.

Each subcomoduleN ⊆ S(V∗) ⊗ U induces a submoduleM = N 0 ⊆ SV ⊗ U∗, its
annihilator. Conversely, the annihilator of any submoduleM ⊆ SV ⊗ U∗ defines a
subcomoduleN = M0 ∈ S(V∗) ⊗ U . In view of the duality between the polynomial
de Rham and the Koszul complex, we expect a simple relation between the Spencer
cohomologyH•(N ) of the comoduleN and the Koszul homologyH•(N 0) of its an-
nihilatorN 0.
Such a relation is easily obtained with the help of theSV-moduleN ∗ dual toN . If we
take the dualπ∗ :

(
(S(V∗) ⊗ U)/N

)∗
→

(
S(V∗) ⊗ U

)∗
= SV ⊗ U∗ of the canonical

projectionπ : S(V∗) ⊗ U →
(
S(V∗) ⊗ U

)
/N , thenimπ∗ = N 0. Like for any map,

we have forπ the canonical isomorphismcoker (π∗) ∼= (kerπ)∗ = N ∗ and hence may
identify N ∗ with the factor module(SV ⊗ U∗)/N 0.

Proposition 2.18 LetN ⊆ S(V∗) ⊗ U be a symbolic system. Then for allq ≥ 0 and
1 ≤ p ≤ n (

Hq,p(N )
)∗ ∼= Hq,p(N

∗) ∼= Hq+1,p−1(N
0) (2.16)

where the second isomorphism is induced by the Koszul differential∂.
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Proof. The first isomorphism follows from Proposition 2.6. For the second onewe
note that the considerations above lead to the short exact sequence

0 // N 0 �

� ι // SV ⊗ U∗
π // N ∗ // 0 (2.17)

where the first map is the natural inclusion and the second one the canonical projection.
Tensoring with the vector spaceΛpV is a flat functor and hence does not affect the
exactness so that we obtain a short exact sequence of Koszul complexes:

0 // K(N 0)
�

� // K(SV ⊗ U∗) // K(N ∗) // 0 . (2.18)

SinceK(SV ⊗ U∗) is exact in positive exterior degree, the long exact homological
sequence for (2.18) yields an isomorphismHp(N

∗) → Hp−1(N
0). Furthermore, as

the maps in the exact sequence (2.17) are so simple, it follows straightforwardly from
the construction of the connecting homomorphism that this isomorphism is induced
by the Koszul differential∂. Hence, taking the bigrading into account, we obtain an
isomorphismHq,p(N ∗) → Hq+1,p−1(N 0).

Remark 2.19 From a computational point of view, it is often more convenient to work
with the annihilatorN 0 instead of the dual moduleN ∗. The way we proved the lemma
gave the isomorphism only in one direction. However, Lemma 2.3 allows usto derive
easily an explicit expression for the inverse.
Let ω ∈ N ∗

q ⊗ ΛpV be a cycle and̃ω ∈ SqV ⊗ ΛpV ⊗ U∗ an arbitrary form such that
π(ω̃) = ω. Then∂ω = 0 implies thatω̄ = ∂ω̃ ∈ N 0

q+1 ⊗Λp−1V. Now the isomorphism
used in the proof above simply maps[ω] 7→ [ω̄]. For the inverse we note that, by Lemma
2.3,δω̄ = (p+ q)ω̃− ∂(δω̃) and hence

[
1

p+q
δω̄

]
= [ω̃]. But this implies that the inverse

of our isomorphism is given by the map[ω̄] 7→
[

1
p+q

π(δω̄)
]
.

For our purposes, the most important property of the Spencer cohomology is the fol-
lowing finiteness result obviously requiring the bigrading. A direct proofwould prob-
ably be not easy, but the duality to the Koszul homology (Proposition 2.18) allows us
to restrict to the dual situation where the finiteness is a trivial corollary to Lemma 2.17.

Theorem 2.20 LetN ⊆ S(V∗)⊗U be a symbolic system. Then there exists an integer
q0 ≥ 0 such thatHq,p(N ) = 0 for all q ≥ q0 and 0 ≤ p ≤ n. Dually, let M be a
finitely generated graded polynomial module. Then there exists an integerq0 ≥ 0 such
thatHq,p(M) = 0 for all q ≥ q0 and0 ≤ p ≤ n.

Proof. As mentioned above, it suffices to consider the case of a polynomial moduleM.
The cycles inM ⊗ ΛpV form a finitely generatedSV-module. Thus there exists an
integerq0 ≥ 0 such that the polynomial degree of all elements in a finite generating set
of it is less thanq0. All cycles of higher polynomial degree are then linear combinations
of these generators with polynomial coefficients without constant terms.By Lemma
2.17, they are therefore boundaries. HenceHq,p(M) = 0 for all q ≥ q0.
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Definition 2.21 The degree of involutionof the S(V∗)-comoduleN is the smallest
valueq0 such thatHq,p(N ) = 0 for all q ≥ q0 and0 ≤ p ≤ n = dimV. More generally,
we say thatN is s-acyclicat degreeq0 for an integer0 ≤ s ≤ n, if Hq,p(N ) = 0 for
all q ≥ q0 and0 ≤ p ≤ s. A comodule that isn-acyclic at degreeq0 is calledinvolutive
at degreeq0. Dually, we call anSV-moduleM involutiveat degreeq0, if its Koszul
homology vanishes beyond degreeq0: Hq,p(M) = 0 for all q ≥ q0 and0 ≤ p ≤ n.

With this terminology we may formulate Lemma 2.13 as follows: if the symbolic
systemN is such that its annihilatorN 0 is generated in degree less than or equal
to r0, thenN is 1-acyclic at degreer0, and if converselyr0 is the smallest degree at
which N is 1-acyclic, then any generating set ofN 0 contains an element of degree
r0 or higher. We will see later in Theorem 7.15 that2-acyclicity is very important
for checking formal integrability. It follows trivially from the definition thatif N is
involutive at some degreeq0, then it is also involutive at any higher degreeq ≥ q0.

For complexity considerations, it is of great interest to bound for a given comoduleN
or moduleM, respectively, its degree of involution. In our applications to differential
equations we will be mainly concerned with the special case thatM is a submodule of a
freeSV-module of rankm generated by homogeneous elements of degreeq. Sweeney
[61, Corollary 7.7] derived for this situation a boundq̄ depending only on the values of
n,m andq. It may be expressed as a nested recursion relation:

q̄(n,m, q) = q̄
(
n,m

(
q + n− 1

n

)
, 1

)
,

q̄(n,m, 1) = m

(
q̄(n− 1,m, 1) + n

n− 1

)
+ q̄(n− 1,m, 1) + 1 ,

q̄(0,m, 1) = 0 .

(2.19)

Table 2.1 shows̄q(n,m, 1) for different values ofm andn. One sees that the values
rapidly explode, ifn increases. The situation is still worse for modules generated in
higher order. It seems to be an open question whether this bound is sharp, i. e. whether
for some modules the degree of involution is really that high. Fortunately,q̄(n,m, q)
yields usually a coarse over-estimate of the actual degree of involution.

n\m 1 2 3 4

1 2 3 4 5
2 7 14 23 34
3 53 287 999 2.699
4 29.314 8.129.858 503.006.503 13.151.182.504

Table 2.1q̄(n,m, 1) for different values ofm andn.
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Example 2.22 Let us consider the homogeneous idealI (i. e.m = 1) generated by the
two monomials(x1)q and(x2)q for some valueq > 0 in the polynomial ringk[x1, x2]
in n = 2 variables. For the valueq = 3 this ideal is just the annihilatorN 0 of the
second symbolic systemN considered in Example 2.9. A trivial computation yields
that the only non-vanishing Koszul homology modules areHq,0(I) = 〈[(x1)q], [(x2)q]〉
andH2q−1,1(I) = 〈[(x1)q(x2)q−1 ⊗ x2 − (x1)q−1(x2)q ⊗ x1]〉. Hence the degree of
involution ofI is 2q − 1. By contrast, evaluation of Sweeney’s bound (2.19) yields

q̄(2, 1, q) =
1

4
q4 +

1

2
q3 +

9

4
q2 + 2q + 2 , (2.20)

i. e. a polynomial inq of degree4.

3 Cartan’s Test

We study now some explicit criteria for a (co)module to be involutive. We start with
a symbolic systemN ⊆ S(V∗) ⊗ U . As before, let{x1, . . . , xn} be an ordered basis
of V and{y1, . . . , yn} the corresponding dual basis ofV∗. Then we introduce for any
0 ≤ k ≤ n the following subspaces of the homogeneous componentNq:

N (k)
q =

{
f ∈ Nq | f(xi, v1, . . . , vq−1) = 0 ,

∀1 ≤ i ≤ k , ∀v1, . . . , vq−1 ∈ V
}

=
{
f ∈ Nq |

∂f

∂yi

= 0 ∀1 ≤ i ≤ k
}
.

(3.1)

In the first line we interpreted elements ofNq as multilinear maps onV and in the last
line we considered them as polynomials in the “variables”y1, . . . , yn.
Obviously, these subspaces define a filtration

0 = N (n)
q ⊆ N (n−1)

q ⊆ · · · ⊆ N (1)
q ⊆ N (0)

q = Nq . (3.2)

It is clear that this filtration (and in particular the dimensions of the involved subspaces)
depend on the chosen basis forV∗. Thus it distinguishes certain bases. This effect is
known as the problem ofδ-regularity. In the next chapter we will see it reappear in a
different form for Pommaret bases.

Definition 3.1 Let N ⊆ S(V∗) ⊗ U be a symbolic system. With respect to a given
basis{y1, . . . , yn} of V∗, we define theCartan charactersof the componentNq as

α(k)
q = dimN (k−1)

q − dimN (k)
q , 1 ≤ k ≤ n . (3.3)

A basis{y1, . . . , yn} of V∗ is δ-regular for the componentNq, if the sum
∑n

k=1 kα
(k)
q

attains a minimal value for it.
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One can show that generic bases are alwaysδ-regular. Hence conceptually trivial solu-
tions of the problem ofδ-regularity are to use either a random basis (which isδ-regular
with probability1) or to work with a general (i. e. parametrised) basis. However, from
a computational point of view both approaches are extremely expensive and useless in
larger calculations. In the context of Pommaret bases much more efficient solutions
have been developed (see Remark 4.6 below for references).
We know from the proof of Lemma 2.8 that differentiation with respect to avariableyk

mapsNq+1 into Nq. It follows trivially from the definition of the subspacesN (k)
q that

we may consider the restrictions∂yk
: N

(k−1)
q+1 → N

(k−1)
q .

Proposition 3.2 Let N ⊆ S(V∗) ⊗ U be a symbolic system and{y1, . . . , yn} a basis
of V∗. Then we have for anyq ≥ 0 the inequality

dimNq+1 ≤
n−1∑

k=0

dimN (k)
q =

n∑

k=1

kα(k)
q . (3.4)

Equality holds, if and only if the restricted maps∂yk
: N

(k−1)
q+1 → N

(k−1)
q are surjective

for all 1 ≤ k ≤ n.

Proof. By definition of the subspacesN (k)
q , we have the exact sequences

0 // N (k)
q+1

�

� // N (k−1)
q+1

∂yk // N (k−1)
q

(3.5)

implying the inequalitiesdimN
(k−1)
q+1 − dimN

(k)
q+1 ≤ dimN

(k−1)
q . Summing over all

0 ≤ k ≤ n yields immediately the inequality (3.4). Equality in (3.4) is obtained, if and
only if in all these dimension relations equality holds. But this is the case, if andonly
if all the maps∂yk

are surjective.

Proposition 3.3 The symbolic systemN ⊆ S(V∗)⊗U is involutive at degreeq0, if and
only if a basis{y1, . . . , yn} of V∗ exists such that the maps∂yk

: N
(k−1)
q+1 → N

(k−1)
q

are surjective for all degreesq ≥ q0 and all values1 ≤ k ≤ n.

Proof. We prove only one direction; the converse will follow from our subsequent
considerations for the dual Koszul homology ofN ∗ (see Remark 3.13). Let us take an
arbitrary cycleω ∈ Nq ⊗ Λp(V∗) with 1 ≤ p ≤ n andq ≥ q0; we will show that, if all
maps∂yk

are surjective, then a formη ∈ Nq+1 ⊗ Λp−1(V∗) exists withω = δη. This
implies thatHq,p(N ) = 0.
We do this demonstration in an iterative process, assuming first that the exterior part
of ω depends only onyk, yk+1, . . . , yn. Then we may decomposeω = ω1 + yk ∧ ω2

where the exterior parts of bothω1 andω2 depend only onyk+1, . . . , yn. Sinceω is a
cycle, we haveδω = δω1 − yk ∧ δω2 = 0. Consider now in this equation those terms
where the exterior part is of the formyℓ ∧ yk ∧ · · · with ℓ ≤ k. Such terms occur only
in the second summand and hence we must have∂ω2/∂yl = 0 for all 1 ≤ ℓ < k. This
impliesω2 ∈ N

(k−1)
q ⊗ Λp−1(V∗).
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By assumption, the map∂yk
: N

(k−1)
q+1 → N

(k−1)
q is surjective so that there exists a

form η(k) ∈ N
(k−1)
q+1 ⊗Λp−1(V∗) such that∂yk

η(k) = ω2. Hence the exterior part of the
form ω(k) = ω − δη(k) depends only onyk+1, . . . , yn and we can iterate. Thus starting
with k = 1 we finally obtainω = δ

(
η(1) + · · · + η(n−1)

)
.

While Proposition 3.3 is nice from a theoretical point of view, it is not very useful com-
putationally, as we must check infinitely many conditions, namely one for each degree
q ≥ q0. Under modest assumptions it suffices to consider only the one degreeq0 and
then we obtain an effective criterion for involution representing an algebraic reformu-
lation of the classical Cartan test in the theory of exterior differential systems. It uses
only linear algebra with the two finite-dimensional componentsNq andNq+1 (note,
however, that the test can only be applied inδ-regular bases). In particular, it is not
necessary to determine explicitly any Spencer cohomology module. In thecontext of
differential equations, this observation will later translate into the fact that itis easier
to check involution than formal integrability.

Theorem 3.4 (Cartan Test) Let N ⊆ S(V∗) ⊗ U be a symbolic system such that
Nq,1 = Nq+1 for all q ≥ q0. ThenN is involutive at degreeq0, if and only if a
basis{y1, . . . , yn} of V∗ exists such that we have equality in (3.4) forq = q0.

Implicitly, a proof of this result was already given by Janet [26]. Laterthe theorem was
explicitly demonstrated by Matsushima [39, 40]. We do not give here a proof, as it will
follow automatically from later results on Pommaret bases (see Remark 4.15); in spirit
this corresponds to the proof of Janet.

Example 3.5 Let us consider over a three-dimensional vector spaceV the symbolic
systemN ⊂ S(V∗) defined byN0 = k, N1 = V∗, N2 = 〈y2

1 , y1y2, y1y3, y
2
2〉 and

Nq = Nq−1,1 for q ≥ 3. One easily verifies that hereN (1)
2 = 〈y2

2〉 andN (2)
2 = N

(3)
2 = 0

and therefore the only non-vanishing Cartan characters ofN areα(1)
2 = 3 andα(2)

2 = 1.
Furthermore,N3 = 〈y3

1 , y
2
1y2, y

2
1y3, y1y

2
2 , y

3
2〉. Sinceα(1)

2 + 2α
(2)
2 = 5 = dimN3, the

symbolic systemN passes the Cartan test and is involutive at degreeq = 2. One also
immediately sees that the map∂y1

: N3 → N2 is indeed surjective and that the map
∂y2

: N
(1)
3 = 〈y3

2〉 → N
(1)
2 is even bijective (there is no need to consider also∂y3

, since
bothN (2)

2 andN (2)
3 vanish).

Example 3.6 For an instance where the Cartan test is not passed, we return to the
second symbolic system in Example 2.9. SinceN vanishes beyond degree5, it is
trivially involutive at degree5. We verify now that it is not involutive at a lower degree.
It is clear that∂y1

: N5 → N4 cannot be surjective and alsoα(1)
4 = 1 > dimN5 = 0.

HenceN is not involutive at degree4.

Given the duality between the polynomial de Rham and the Koszul complex,we expect
that a similar criterion for involution exists for polynomial modules. The essence of the
proof of Proposition 2.6 is that differentiation with respect toyk is dual to multiplica-
tion withxk. Hence when we now study, following the letter of Serre appended to [21],
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the dualisation of the considerations above, it is not surprising that the multiplication
with elementsv ∈ V is central.

Lemma 3.7 Let M be a finitely generated gradedSV-module andq > 0 an integer.
Then the following statements are equivalent.

(i) Hr,n(M) = 0 for all r ≥ q.

(ii) If Ann (m) = S+V for anm ∈ M, thenm ∈ M<q.

(iii) The existence of an elementv ∈ V with v ·m = 0 entailsm ∈ M<q.

(iv) For all v ∈ V except the elements of a finite number of proper subspaces ofV the
equationv ·m = 0 entailsm ∈ M<q.

Proof. The equivalence of (i) and (ii) follows immediately from Lemma 2.16. Further-
more, it is trivial that (iv) implies (iii) implies (ii). Hence there only remains toshow
that (iv) is a consequence of (ii).
Assume that (ii) holds and letA =

{
m ∈ M<q | Ann (m) = S+V

}
. We choose a

complementK such thatM<q = A ⊕ K and setM = K ⊕
⊕

r≥q Mr. Because of
(ii) no element ofM\ {0} is annihilated byS+V and henceS+V is not an associated
prime ideal of the moduleM. By a standard result in commutative algebra, the set
AssM of all associated prime ideals ofM contains only finitely many elements. The
intersection of any of these withV is a proper subspace. If we choosev ∈ V such that
it is not contained in any of these subspaces, thenv ·m = 0 entailsm ∈ M<q.

The property ofv in Part (iii) will become so important in the sequel that we provide a
special name for it. It is closely related to the classical notion of a regular sequence in
commutative algebra except that for the latter it is not permitted that the multiplication
with v has a non-trivial kernel whereas here we only restrict the degree ofthe kernel.

Definition 3.8 A vectorv ∈ V is calledquasi-regularat degreeq for the moduleM,
if v · m = 0 entailsm ∈ M<q. A finite sequence(v1, . . . , vk) of elements ofV is
quasi-regularat degreeq for the moduleM, if eachvi is quasi-regular at degreeq for
the factor moduleM/〈v1, . . . , vi−1〉M.

Obviously, if a vectorv is quasi-regular at degreeq, it is also quasi-regular at any degree
r > q. Furthermore, the vectors in a quasi-regular sequence are linearly independent.
Thus such a sequence of lengthn = dimV defines a basis of the vector spaceV.

Lemma 3.9 Let v ∈ V be quasi-regular at degreeq. For eachr ≥ q and 1 ≤ p ≤ n
there is a short exact sequence

0 // Hr,p(M)
α // Hr,p(M/vM)

β
// Hr,p−1(M) // 0 (3.6)

and the multiplication withv is injective onM≥q.
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Proof. As above we decomposeM = A⊕M. SinceA ⊆ M<q, we have the equality
Hr,p(M) = Hr,p(M) for all r ≥ q and, because ofvA = 0, similarlyHr,p(M/vM) =
Hr,p(M/vM) for all r ≥ q.
It follows trivially from the definition of quasi-regularity that multiplication withv is
injective onM≥q. In fact, it is injective onM. Indeed, suppose thatv · m = 0 for
some homogeneous elementm ∈ M. Let us assume first thatm ∈ Mq−1. Then
v · (w ·m) = 0 for all w ∈ V and sincew ·m ∈ Mq, this is only possible, ifw ·m = 0
and thusAnn (m) = S+V implyingm ∈ A. Iterating this argument, we conclude that
m cannot be contained inMq−2 either and so on. Hencem ∈ A.
Because of the injectivity, the sequence

0 // M
v // M

π // M/vM // 0 (3.7)

of graded modules is exact at all degreesr ≥ q. Tensoring with the vector space
ΛV yields a similar sequence for the corresponding Koszul complexesK(M) and
K(M/vM), respectively, with the same exactness properties. Now we consider the
associated long exact homological sequence

· · · // Hr−1,p(M)
H(v)

// Hr,p(M)
H(π)

//

// Hr,p(M/vM)
β

// Hr,p−1(M)
H(v)

// · · · .

(3.8)

Since, by Lemma 2.17,H(v) is the zero map, it decomposes into the desired short
exact sequences withα = H(π) andβ

(
[ω]

)
=

[
1
v
◦ ∂(ω)

]
.

Proposition 3.10 Let M be a finitely generated gradedP-module and the sequence
(v1, . . . , vk) quasi-regular at degreeq. ThenHr,p(M) = 0 for all valuesr ≥ q and
n− k < p ≤ n. If we setM(i) = M/〈v1, . . . , vi〉M, then

Hr,n−k(M) ∼= Hr,n−k+1

(
M(1)

)
∼= · · · ∼= Hr,n

(
M(k)

)
(3.9)

for all r ≥ q.

Proof. We proceed by induction over the lengthk of the quasi-regular sequence. For
k = 1, it follows from Lemma 3.7 thatHr,n(M) = 0 for all r ≥ q. Entering this result
into the short exact sequence (3.6) of Lemma 3.9 gives immediately anisomorphism
Hr,n−1(M) ∼= Hr,n(M(1)).
Assume now that the proposition holds for any quasi-regular sequenceof length less
thank. Then we know already thatHr,p(M) = 0 for all r ≥ q andn− k + 1 < p ≤ n
and thatHr,n−k+1(M) ∼= Hr,n(M(k−1)). Sincevk is quasi-regular at degreeq for
M(k−1), the latter homology group vanishes by Lemma 3.7 proving the first assertion.
Applying the induction hypothesis to the moduleM(i−1) and the quasi-regular se-
quence(vi, . . . , vk) shows thatHr,n−k+i(M

(i−1)) = 0. Now we may use again the ex-
act sequence of Lemma 3.9 to conclude thatHr,n−k+i(M(i)) ∼= Hr,n−k+i−1(M(i−1)).
This proves the second assertion.
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Proposition 3.11 LetM be a gradedSV-module finitely generated in degree less than
q > 0. The moduleM is involutive at degreeq, if and only if a basis{x1, . . . , xn} of
V exists such that the maps

µk : Mr/〈x
1, . . . , xk−1〉Mr−1 −→ Mr+1/〈x

1, . . . , xk−1〉Mr (3.10)

induced by the multiplication withxk are injective for allr ≥ q and1 ≤ k ≤ n.

Proof. We first note that the statement thatM is generated in degree less thanq is
equivalent toHr,0(M) = 0 for all r ≥ q by Lemma 2.16.
If M is involutive at degreeq, thenHr,n(M) = 0 for all r ≥ q and Lemma 3.7 implies
that a generic vectorx1 ∈ V is quasi-regular. Now we proceed by iteration. Setting
M(k) = M/〈x1, · · · , xk〉M, we find thatHr,n(M(k)) = Hr,n−k(M) = 0 for all r ≥ q
by Lemma 3.9. Thus we may again apply Lemma 3.7 in order to show that for any
1 ≤ k < n the quasi-regular sequence(x1, . . . , xk) can be extended by a generic vector
xk+1 ∈ V. As already remarked above, an quasi-regular sequence of lengthn defines a
basis ofV. Now the injectivity of the mapsµk follows from Lemma 3.9.
Conversely, if all mapsµk are injective, then obviously(x1, . . . , xn) defines an quasi-
regular sequence of lengthn. Now the vanishing of all homology groupsHr,p(M)
with r ≥ q and1 ≤ p ≤ n follows from Proposition 3.10 andM is involutive.

Again we face the problem that this proposition requires an infinite number of checks
and thus cannot be applied effectively. Quillen [46, App., Prop. 8] was the first to show
that for a certain class of modules, it suffices to consider only the componentsMq and
Mq+1. This leads to the following dual formulation of the Cartan test (Theorem 3.4);
again we refer to Remark 4.15 for a proof (or alternatively to [35]).

Theorem 3.12 (Dual Cartan Test)LetN 0 ⊆ SV ⊗U∗ be a homogeneous submodule
of the freeSV-moduleSV ⊗ U∗ finitely generated in degree less thanq > 0. Then the
factor moduleM = (SV ⊗ U∗)/N 0 is involutive at degreeq, if and only if a basis
{x1, . . . , xn} of V exists such that the maps

µk : Mq/〈x
1, . . . , xk−1〉Mq−1 −→ Mq+1/〈x

1, . . . , xk−1〉Mq (3.11)

induced by the multiplication withxk are injective for all1 ≤ k ≤ n.

Remark 3.13 Let N ⊆ S(V∗) ⊗ U be a symbolic system and consider the dualSV-
moduleM = N ∗ ∼=

(
SV ⊗U∗

)
/N 0. Let furthermore{x1, . . . , xn} be a basis ofV and

{y1, . . . , yn} the dual basis ofV∗. Then we find thatµ∗
1 = ∂y1

and hence that
(
N (1)

)∗
=

(ker ∂y1
)∗ ∼= cokerµ1 = M(1). Iteration of this argument yields

(
N (k)

)∗ ∼= M(k) for
all 1 ≤ k ≤ n (considering always∂yk

as a map onN (k−1) so thatN (k) = ker ∂yk
and

µk as a map onM(k−1) so thatM(k) = cokerµk). We also haveµk = ∂∗yk
and hence

obtain the isomorphisms(kerµk)∗ ∼= coker∂∗yk
(again considering the maps on the

appropriate domains of definition). Thus injectivity of all the mapsµk is equivalent to
surjectivity of all the maps∂yk

. Hence applying Proposition 3.11 toM proves dually
Proposition 3.3 forN and similarly for the Theorems 3.4 and 3.12. Furthermore, it is
obvious that if the basis{x1, . . . , xn} is quasi-regular at degreeq, then the dual basis
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{y1, . . . , yn} is δ-regular forNq. The converse does not necessarily hold, asδ-regularity
is a much weaker condition than quasi-regularity (the latter implies involution viathe
dual Cartan test; the former is only a necessary condition for applying theCartan test).

Example 3.14 Recall the symbolic systemN of Example 3.5. Its annihilatorN 0 is
the idealI ⊂ P = SV generated by the monomialsx2x3 and(x3)2. We apply now the
dual Cartan test to the the factor moduleM = P/I. For the two relevant module com-
ponents we obtain after a trivial computation thatM2

∼= 〈(x1)2, x1x2, x1x3, (x2)2〉 ∼=
N2 andM3

∼= 〈(x1)3, (x1)2x2, (x1)2x3, x1(x2)2, (x2)3〉 ∼= N3. Similarly, we find
that the non-vanishing factor modules required for the dual Cartan testare given by
M

(1)
2

∼= 〈(x2)2〉 ∼= N
(1)
2 andM(1)

3
∼= 〈(x2)3〉 ∼= N

(1)
3 . It is now trivial to see that the

mapµ1 : M2 → M3 induced by the multiplication withx1 is injective and the map
µ2 : M

(1)
2 → M

(1)
3 induced by the multiplication withx2 is even bijective. Hence by

the dual Cartan test the moduleM is involutive at degree2.

Remark 3.15 Another way to formulate the assumptions of Theorem 3.12 is to require
thatM is a finitely generated gradedSV-module such thatHr,0(M) = Hr,1(M) = 0
for all r ≥ q. Indeed, any such module can be finitely presented and thus is isomor-
phic to a factor module(SV ⊗ U∗)/N 0 for an appropriately chosenU . By the same
argument as in the proof of Proposition 2.18,Hr,1(M) ∼= Hr+1,0(N 0). Since the latter
homology is determined by the minimal generators of the submoduleN 0, the two sets
of assumptions are equivalent.
Consider the monomial idealI = 〈(x1)3, (x2)3〉 ⊂ k[x1, x2] generated in degree3; it is
the annihilator of the second symbolic systemN in Example 2.9. It is trivial that here
µ1 : I4 → I5 is injective. For the mapµ2 we note thatI4/x

1I3
∼= 〈(x1)3x2, (x2)4〉 and

thus it is again easy to see thatµ2 is injective.
If we consider the mapµ2 : I5/x

1I4 → I6/x
1I5, then we find (using the identification

I5/x
1I4

∼= 〈(x1)3(x2)2, (x2)5〉) thatµ2

(
[(x1)3(x2)2]

)
= [(x1)3(x2)3] = 0 so thatµ2

is not injective and the Theorem 3.12 is not valid here. The observation that at some
lower degree the mapsµ1 andµ2 are injective may be understood from the syzygies.
Syz(I) ∼= H1(I) is generated by the single element(x2)3e1 − (x1)3e2 of degree6. As
its coefficients are of degree3, nothing happens with the mapsµi before we encounter
I6 and then the equationµ2

(
[(x1)3(x2)2]

)
= 0 is a trivial consequence of this syzygy.

4 Involutive Bases

Involutive bases are a special form of Gröbner bases with additionalcombinatorial
properties. They were introduced by Gerdt and Blinkov [15, 16] generalising earlier
ideas by Janet [25] in the theory of partial differential equations (a special case was
slightly earlier discovered by Wu [63]); an introduction into their basic theory can
be found in [50]. We assume in the sequel that the reader is familiar with thebasic
concepts in the theory of Gröbner bases; classical introductory texts are [1, 4, 11]. A
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Gröbner basis is defined with respect to a term order; for an involutivebasis we need
one further ingredient, namely a so-called involutive division.
While the precise definition of an involutive division is somewhat technical, the under-
lying idea is simple. We consider first the monomial case. LetT = {t1, . . . , ts} be a
set of terms in the ringP = k[X ] whereX = {x1, . . . , xn}. Then the idealI ⊆ P
generated byT consists of all polynomialsf =

∑s
i=1 Piti where the coefficientsPi are

arbitrary polynomials, i. e.I is the linear span〈T 〉. An involutive divisionL assigns to
each generatorti a set of multiplicative variablesXL,T (ti) ⊆ X (the remaining vari-
ables are denoted byXL,T (ti)). The involutive span〈T 〉L consists of all linear com-
binationsf =

∑s
i=1 Piti where now the coefficients must satisfyPi ∈ k[XL,T (ti)].

Thus in general it contains only a subset of the idealI.
We call the setT aweak involutive basisof I for the involutive divisionL, if 〈T 〉L = I.
For a termxµ ∈ I, we call any generatorti ∈ T such thatxµ ∈ k[XL,T (ti)] · ti an
involutive divisor. ThusT is a weak involutive basis, if every term inI has at least
one involutive divisor. For a(strong) involutive basiswe require additionally that this
involutive divisor is unique (in other words, for any two generatorsti 6= tj ∈ T we
havek[XL,T (ti)] · ti ∩ k[XL,T (tj)] · tj = {0}).
The assignment of the multiplicative variables by the involutive division cannot be ar-
bitrary but must satisfy certain conditions which we omit here (they can befound in the
above references), as we are here only interested in one particularly simple division,
namely thePommaret1 divisionP . While for general involutive divisions the assign-
ment of multiplicative variables depends on the setT (i. e. the same termt may be
assigned different variables if considered as element of different setsT ), the Pommaret
division is a so-called global division where the assignment is independent of T . If
the termt is of the formt = xµ with a multi index of classclsµ = k, then we simply
assign as multiplicative variablesXP (t) = {x1, . . . , xk}.

Example 4.1 Consider again the second symbolic systemN in Example 2.9. Its an-
nihilator is the idealI generated byT = {(x1)3, (x2)3}. Since the first generator is
of class1, x2 is not multiplicative for it with respect to the Pommaret division. As a
consequence the monomial(x1)3x2 ∈ I is not contained in〈T 〉P and thus the minimal
basisT of I is not an involutive basis. An involutive basis is obtained, if we add the
monomials(x1)3x2 and(x1)3(x2)2, as one easily verifies.

The extension to general ideals is now straightforward. LetF = {f1, . . . , fs} be an
arbitrary set of polynomials,≺ a term order andL an involutive division.F is aweak
involutive basisof I = 〈F〉 for ≺ andL, if the monomial setlt F = {lt f1, . . . , lt fs}
is a weak involutive basis of the leading ideallt I. Note that this definition trivially
implies that any weak involutive basis is a Gröbner basis, too. We callF a (strong)
involutive basis, if no two elements ofF have the same leading term andlt F is a
strong involutive basis oflt I. An involutive basis with respect to the Pommaret di-
vision is briefly calledPommaret basis. We also introduce multiplicative variables for
generatorsf ∈ F by settingXL,F ,≺(f) = XL,lt F(lt f).

1Historically the terminology “Pommaret division” is a misnomer, as this division was already introduced by
Janet. But the name has become generally accepted and therefore we stick to it.
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Remark 4.2 One easily shows that by a simple elimination process any weak involu-
tive basis can be reduced to a strong one and thus we will exclusively work with strong
bases (this is no longer possible in more general situations with e. g. local term orders
or coefficient rings) [50]. A particular property of the Pommaret division (in fact of
any global division) is that the Pommaret basis of any monomial ideal is unique.

The above definition does not provide us with an effective criterion for recognising an
involutive basis. For arbitrary involutive divisions no such criterion hasbeen discov-
ered so far. However, the Pommaret division belongs to the so-calledcontinuousdivi-
sions for which the situation is more favourable. A finite setF ⊂ P is locally involutive
for the divisionL, if for every polynomialf ∈ F and for every non-multiplicative vari-
ablexj ∈ XL,F ,≺(f) the productxjf can be involutively reduced2 to zero with respect
to F . Obviously, this property can be checked effectively.

Theorem 4.3 If the finite setF ⊂ P is involutively (head) autoreduced and locally
involutive for a continuous divisionL, thenF is an involutive basis of〈F〉 for L.

As the proof of this theorem is rather technical and requires some concepts not intro-
duced here, we refer to [15, 50]. We show here only a simpler specialcase. However,
it will turn out later (Remarks 4.5 and 4.15) that this special case entails the Cartan test
(in fact, this approach is almost identical with Janet’s proof [26]).

Proposition 4.4 Let Hq ⊂ Pq be a finite triangular set of homogeneous polynomials
of degreeq which is locally involutive for the Pommaret division and a term order≺.
Then the set

Hq+1 =
{
xih | h ∈ Hq, x

i ∈ XP (h)
}
⊂ Pq+1 (4.1)

is also triangular and locally involutive (by induction this implies thatHq is involutive).

Proof. It is trivial to see thatHq+1 is again triangular (all leading terms are different).
For showing that it is also locally involutive, we consider an elementxih ∈ Hq+1.
By construction,cls (xih) = i ≤ clsh. We must show that for any non-multiplicative
index i < j ≤ n the polynomialxj(xih) is expressible as a linear combination of
polynomialsxkh̄ whereh̄ ∈ Hq+1 andxk ∈ XP,≺(h̄). In the case thatj ≤ clsh, this is
trivial, as we may choosēh = xjh andk = i.

Otherwisexj is non-multiplicative forh and sinceHq is assumed to be locally invo-
lutive, the polynomialxjh can be written as ak-linear combination of elements of
Hq+1. For exactly one summand̄h in this linear combination we havelt h̄ = lt (xjh)
and hencexi ∈ XP,≺(h̄). If xi is also multiplicative for all other summands, we are
done. If the variablexi is non-multiplicative for some summand̄h′ ∈ Hq+1, then we
analyse the productxih̄′ in the same manner writinḡh′ = xkh′ for someh′ ∈ Hq.
Sincelt h̄′ ≺ lt (xjh), this process terminates after a finite number of steps leading to
an involutive standard representation ofxj(xih).

2Involutive reducibility is defined as in the standard Gröbner theory; the sole difference is that a reduction is
permitted only, if the reducing elementf ∈ F is multiplied with a polynomial ink[XL,F,≺(f)].
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Remark 4.5 Proposition 4.4 may be considered as an involutive basis version of the
Cartan test. LetI ⊆ P be a homogeneous ideal andHq a triangular vector space basis
of Iq for some degreeq. The setHq is locally involutive (and thus a Pommaret basis
of I≥q), if and only if the setHq+1 defined by (4.1) is a vector space basis ofIq+1.
Denoting byβ(k)

q the number of elements ofF where the leading term is of classk,
these considerations lead to the inequality

dim Iq+1 ≥
n∑

k=1

kβ(k)
q (4.2)

and equality holds, if and only ifF is a Pommaret basis. Remark 4.15 below shows
that (4.2) does not only formally looks like (3.4) but that it is actually equivalent.

While it is almost trivial to prove that any idealI ⊆ P possesses a Gröbner basis
for any term order, the existence of involutive bases is a more difficult question and
depends on the precise form of the chosen division. For some divisions the existence
is always guaranteed; one speaks ofNoetheriandivisions.
For Pommaret bases the situation is more complicated. It is easy to find ideals without
a Pommaret basis—consider for example〈x1x2〉 ⊂ k[x1, x2] where a Pommaret basis
would have to include all termsx1(x2)k with k ≥ 1. A closer look reveals that this
is actually only a problem of the chosen coordinates. If we begin as abovewith the
symmetric algebraSV and considerI as an ideal in it, then for a generic basis of
V the corresponding polynomial idealI has a Pommaret basis. We call a basis (or
coordinates){x1, . . . , xn} such thatI possesses a Pommaret basisδ-regular for the
idealI.3 The use of the same terminology as in the Cartan test is no coincidence, as
we will show in the next chapter. In the example above the transformationx1 → x1+x2

leads to the ideal〈(x2)2 + x1x2〉 which has a Pommaret basis for any term order where
x2 ≻ x1 (if x2 ≺ x1, we can use the transformationx2 → x1 + x2).

Remark 4.6 For general information about the algorithmic determination of involutive
bases we refer to [15, 16, 17]. Effective criteria for recognisingδ-singular and effective
methods for the construction ofδ-regular coordinates for a given idealI are discussed
in detail in [22]. From a strictly algorithmic point of view, it is unpleasant thatthe
Pommaret division is not Noetherian. But we will see in the remainder of this chapter
that this seeming disadvantage has a number of benefits, as for many applications in
algebraic geometry it is of considerable interest to know “good” coordinates.

We turn now to properties of involutive bases, in particular to those not shared by
ordinary Gröbner bases. For simplicity, we always assume that we are dealing with a
homogeneous idealI and that also all considered bases ofI are homogeneous.
If H = {h1, . . . , hs} is a Gröbner basis of the idealI, then it is well-known that any
polynomialf ∈ I possesses a standard representationf =

∑s
i=1 Pihi where the co-

efficientsPi ∈ P satisfylt (Pihi) � lt f wheneverPi 6= 0. However, even with this
constraint this representation is in general not unique. This changes, ifwe assume

3Of course the used term order is here of great importance: it follows immediately from the definition of an
involutive basis that theδ-regularity of a coordinate system is completely determined by lt I.
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thatH is an involutive basis for an involutive divisionL. Imposing now the additional
constraint thatPi ∈ k[

XL,lt H(lt hi)
]
, we obtain the uniqueinvolutive standard repre-

sentationof f with respect toH. This uniqueness is the key to most applications of
involutive bases.4

Another way to express the uniqueness of the involutive standard representation is to
say thatH induces aStanley decompositionof I. Because of the assumed homogeneity,
I may be considered as a graded vector space with respect to the naturalgrading given
by the total degree. A Stanley decomposition is then an isomorphism of graded vector
spacesI ∼=

⊕
t∈T k[Xt] · t whereT is some finite set of generators andXt ⊆ X is

some subset of variables. In our case, we obtain the decomposition

I ∼=

s⊕

i=1

k[
XL,lt H(lt hi)

]
· hi . (4.3)

Pommaret bases lead to a special kind of Stanley decompositions, so-called Rees de-
compositions[47], where the subsetsXt are always of the form{x1, . . . , xkt} for some
value0 ≤ kt ≤ n.
A simple application of a Stanley decomposition (in fact, the one which motivated its
introduction by Stanley [58]5) is that one can trivially read off theHilbert seriesof I:

HI(λ) =
∑

t∈T

λqt

(1 − λ)kt
(4.4)

where we introducedqt = deg t andkt = |Xt|. In particular, the(Krull) dimensionof
the idealI is given byD = maxt∈T kt and themultiplicity (or degree) by the number
of generatorst ∈ T with kt = D.
For most purposes, it is of greater interest to obtain acomplementary decomposition,
i. e. a Stanley decomposition of the factor algebraA = P/I. Sturmfels and White [60]
presented a recursive algorithm for computing such a decomposition given a Gröbner
basis ofI. Somewhat surprising, the knowledge of an arbitrary involutive basis does
not seem to give an advantage here. The situation changes, if one considers special in-
volutive divisions. In the context of determining formally well-posed initialconditions
for overdetermined systems of partial differential equations, Janet [27, §15] presented
an algorithmic solution to this problem already in the 1920s. For Pommaret bases the
solution is almost trivial; in fact, one only needs the degree of the basis (thereason will
become evident below when we discuss the Castelnuovo–Mumford regularity).

Proposition 4.7 The homogeneous idealI ⊆ P possesses a Pommaret basisH with
degH = q, if and only if the two sets̄T0 = {xµ ∈ T \ lt I | deg xµ < q} and
T̄1 = {xµ ∈ T \ lt I | deg xµ = q} yield the complementary decomposition

A ∼=
⊕

t∈T̄0

k · t⊕
⊕

t∈T̄1

k[XP (t)] · t . (4.5)

4One easily shows that with respect to aweak involutive basis also every ideal member has an involutive
standard representation. However, it will be unique, if andonly if one is dealing with a strong involutive basis.
For this reason, for most advanced applications of involutive bases only the strong ones are of real interest.

5One should note that in the context of partial differential equations Janet [27] derived already much earlier a
similar expression for the Hilbert function.
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Remark 4.8 Stanley decompositions are not unique. The complementary decompo-
sition (4.5) is generally rather redundant. One can show that any Pommaret basis is
simultaneously a Janet basis. Applying Janet’s algorithm to it almost always yields a
more compact decomposition with less generators. However, from a theoretical point
of view, Proposition 4.7 is very useful, as it provides a closed formula and not only an
algorithm. Note that (4.5) is again a Rees decomposition.

Proposition 4.9 Let H be a homogeneous Pommaret basis of the homogeneous ideal
I ⊆ P with degH = q. ThenD = dimA is given by

D = min
{
i | 〈H, x1, . . . , xi〉q = Pq

}
. (4.6)

Remark 4.10 As a corollary to this result, one can easily show that{x1, . . . , xD} is a
maximal strongly independent set moduloI (see [20, 31] for the notion of an indepen-
dent set modulo an ideal and its relation to the dimension). Here we see forthe first
time that the knowledge ofδ-regular coordinates is of some interest, as generally no
maximal independent set of this particularly simple form exists.
In fact, combining this observation with Proposition 4.7 yields that the restriction of
the canonical projectionπ : P → A = P/I to the subringk[x1, . . . , xD] is aNoether
normalisationof A. Thus computingδ-regular coordinates determines automatically
a Noether normalisation. One can show thatδ-regularity is equivalent to simultaneous
Noether normalisations oflt I and all its primary components [5, 51].

Another measure for the size ofA is itsdepth. It can also be immediately read off from
a Pommaret basis. The proof of this fact provided by [51] relies on a direct verification
that the given sequence is regular. Later in this article (Theorem 5.6) wewill provide a
homological proof of the following statement about the depth.

Proposition 4.11 LetH be a homogeneous Pommaret basis of the homogeneous ideal
I ⊆ P for a class respecting term order≺ andd = minh∈H clsh. Then(x1, . . . , xd−1)
is a maximal regular sequence forA and hencedepthA = d− 1.

Remark 4.12 Combining Propositions 4.9 and 4.11 leads immediately to the so-called
Hironaka criterion for Cohen–Macaulay algebras: the factor algebraA = P/I is
Cohen–Macaulay, if and only if it possesses a Rees decomposition where all gener-
ators are of the same class.

Definition 4.13 A homogeneous idealI ⊆ P is calledq-regular, if its ith syzygy mod-
ule can be generated by elements of degree less than or equal toq+i; theCastelnuovo–
Mumford regularityreg I is the least valueq for which I is q-regular.

Among other applications,reg I represents an important measure for the complexity
of Gröbner basis computations [2]. According to Bayer and Stillman [3], generically
the reduced Gröbner basis with respect to the degree reverse lexicographic order has
the degreereg I and no other term order yields a lower degree. However, one rarely
knows whether or not one is in the generic case so that this result is only oflimited use
for concrete computations. For Pommaret bases we rediscover hereagain simply the
question ofδ-regularity.
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Theorem 4.14 Let I ⊆ P be a homogeneous ideal. Thenreg I = q, if and only if I
has in some coordinates a homogeneous Pommaret basisH with respect to the degree
reverse lexicographic order such thatdegH = q.

This result implies that inδ-regular coordinates the equalityregI = reg (lt I) holds
whereas in general we only have the inequalityreg I ≤ reg (lt I). Another remarkable
implication is that in arbitrary coordinatesx1, . . . , xn the idealI either does not possess
a finite Pommaret basis or the basis is of the fixed degreereg I.

Remark 4.15 According to Remark 2.15, the Koszul homology of a moduleM is
equivalent to its minimal free resolution. Thus ifreg I = q, then all homology modules
Hr,p(I) with r > q vanish. Taking into account the degree shift in (2.16), for the factor
moduleM = P/I thus all homology modulesHr,p(M) with r ≥ q vanish. Hence the
Castelnuovo–Mumford regularity ofI is the same as the degree of involution ofM. It
is very surprising that this elementary fact remained unobserved until very recently; it
is implicitly contained in [53] and explicitly mentioned by Malgrange [35].
Combining this observation with Theorem 4.14 and Remark 4.5, we finally see that
Proposition 4.4 may indeed be considered as an involutive basis versionof the Cartan
test. Let—as in Remark 4.5—the setHq be a basis of the vector spaceIq where all
generators have different leading terms. Then we may choose as representatives of a
basis ofMq polynomials which have as leading terms exactly those terms which do
not appear inlt Hq. Elementary combinatorics shows that ifHq containsβ(k)

q elements
with a leading term of classk, then our basis ofMq contains

α(k)
q = m

(
q + n− k − 1

q − 1

)
− β(k)

q (4.7)

representatives with a leading term of classk.
It is no coincidence that we use here the same notation as for the Cartan characters.
As a vector space the symbolic systemN = I0 is isomorphic toP/I; a concrete iso-
morphism is given by replacing in the above representativesxi by yi. If we use a class
respecting term order, then it follows from Lemma B.1 thatdimN

(k)
q =

∑n
j=k+1 α

(j)
q

so that the numbersα(k)
q are indeed the Cartan characters. A well-known identity for

binomial coefficients proves now that (3.4) and (4.2) are equivalent inequalities.

Theorem 4.14 represents probably the simplest method for computingreg I. It requires
the knowledge ofδ-regular coordinates, but as already mentioned in Remark 4.6 these
can be constructed effectively. In recent years, a number of methods for the determi-
nation ofreg I have been developed [3, 5, 62]. However, they all also require the use
of generic coordinates (in [51] their relation to Pommaret bases is studiedin detail).

Example 4.16 Consider the homogeneous ideal

I = 〈z8 − wxy6, y7 − x6z, yz7 − wx7〉 ⊂ Q[w, x, y, z] . (4.8)

The given basis of degree8 is already a Gröbner basis for the degree reverse lexico-
graphic term order. If we perform a permutation of the variables and considerI as an
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ideal inQ[w, y, x, z], then we obtain for the degree reverse lexicographic term order
(in the new variables!) the following Gröbner basis of degree50:

{
y7 − x6z, yz7 − wx7, z8 − wxy6, y8z6 − wx13,

y15z5 − wx19, y22z4 − wx25, y29z3 − wx31,

y36z2 − wx37, y43z − wx43, y50 − wx49
}
. (4.9)

Unfortunately, neither coordinate system is generic: asreg I = 13, one yields a basis
of too low degree and the other one one of too high degree.
With a Pommaret basis it is no problem to determine the Castelnuovo-Mumford regu-
larity, as the first coordinate system isδ-regular. A Pommaret basis ofI for the degree
reverse lexicographic term order is obtained by adding the polynomialszk(y7 − x6z)
for 1 ≤ k ≤ 6 and thus the degree of the basis is indeed13.

Remark 4.17 In order to obtain their above mentioned result, Bayer and Stillman first
proved the following characterisation of aq-regular ideal (which may be considered
as a variant ofδ-regularity): if I is a homogeneous ideal which can be generated by
elements of degree less than or equal toq, then it isq-regular, if and only if for some
value0 ≤ d ≤ n linear formsy1, . . . , yd ∈ P1 exist such that

(
〈I, y1, . . . , yj−1〉 : yj

)
q

= 〈I, y1, . . . , yj−1〉q , 1 ≤ j ≤ d , (4.10a)

〈I, y1, . . . , yd〉q = Pq . (4.10b)

We will discuss later in Remark 5.5 that this characterisation ofq-regularity is equiva-
lent to the dual Cartan test.

5 Pommaret Bases and Homology

Now we study the relationship between Pommaret bases and the homological con-
structions introduced in Chapters 2 and 3. We assume throughout that a fixed basis
{x1, . . . , xn} of V has been chosen so that we may identifySV = k[x1, . . . , xn] = P .
For simplicity, we restrict to homogeneous idealsI ⊆ P. We only consider Pommaret
bases for the degree reverse lexicographic order≺degrevlex, as for any other term or-
der the corresponding Pommaret basis (if it exists) cannot be of lowerdegree by the
inequalityreg I ≤ reg (lt I) and Theorem 4.14.
It turns out that this relationship takes its simplest form, if we compare the Pommaret
basis of the idealI and the Koszul homology of its factor algebraP/I which we
consider here as aP-module in order to be consistent with the terminology introduced
in Chapters 2 and 3. Like for general Gröbner bases, essentially everything relevant for
involutive bases can be read off the leading ideal. Therefore, we showfirst that at least
for our chosen term order quasi-regularity is also already decided by the leading ideal.
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Lemma 5.1 Let I ⊆ P be a homogeneous ideal and≺ the degree reverse lexico-
graphic order. The sequence(x1, . . . , xn) is quasi-regular at degreeq for the module
M = P/I, if and only if it is quasi-regular at degreeq for M′ = P/ lt I.

Proof. Let G be a Gröbner basis ofI for ≺. Then the normal form with respect to the
basisG defines an isomorphism between the vector spacesM andM′. One direction is
now trivial, as an obvious necessary condition form = [f ] ∈ M to satisfyx1 ·m = 0 is
thatx1 · [lt f ] = 0 in M′. Hence quasi-regularity ofx1 for M′ implies quasi-regularity
of x1 for M and by iteration the same holds true for the whole sequence (note that here
we could have used any term order).
For the converse letr ≥ q be an arbitrary degree. Because of the mentioned iso-
morphism, we may choose for the vector spaceMr a basis where each member is
represented by a monomial, i. e. the representatives simultaneously induce a basis of
M′

r. Letxµ be one of these monomials. As we assume thatx1 is quasi-regular forM,
we must havex1 · [xµ] 6= 0 in M. Suppose now thatx1 · [xµ] = 0 in M′ so thatx1 is
not quasi-regular forM′.
Thusxµ+11 ∈ lt I. Sincelt I = 〈lt G〉 by the definition of a Gröbner basis,G must
contain a polynomialg with lt g | xµ+11 . Because of the assumptionxµ /∈ lt I, we
must havecls (lt g) = 1. By Lemma B.1, this implies that every term ing is of class1.
Iteration of this argument shows that the normal form ofxµ+11 with respect toG is
divisible byx1, i. e. it can be written asx1f with f ∈ Pr andlt f ≺ xµ. Consider now
the polynomialf̄ = xµ − f ∈ Pr \ {0}. As it consists entirely of terms not contained
in lt I, we have[f̄ ] 6= 0 in Mr. However, by constructionx1 · [f̄ ] = 0 contradicting the
injectivity of multiplication byx1 onMr.
For the remaining elements of the sequence(x1, . . . , xn) we note the isomorphism
M(k) = M/〈x1, . . . , xk〉M ∼= P(k)/I(k) for each1 ≤ k < n where we introduced
the abbreviationsP(k) = k[xk+1, . . . , xn] andI(k) = I ∩ P(k). It implies that we may
iterate the arguments above so that indeed quasi-regularity of(x1, . . . , xn) for M′ is
equivalent to quasi-regularity of the sequence forM′.

Note that restriction to the degree reverse lexicographic order is here essential, as in
general we have only the inequalityregM ≤ reg (lt M) and if it is strict, then a
sequence may be quasi-regular forM at any degreeregM ≤ q < reg (lt M), but it
cannot be quasi-regular forM′ at such a degree by the results below.

Theorem 5.2 The basis{x1, . . . , xn} is δ-regular for the homogeneous idealI ⊆ P
in the sense thatI possesses a Pommaret basisH for the degree reverse lexicographic
term order withdegH = q, if and only if the sequence(x1, . . . , xn) is quasi-regular
for the factor algebraP/I at degreeq but not at any lower degree.

Proof. It suffices to consider monomial idealsI: for Pommaret bases it is obvious from
their definition that a basis isδ-regular forI, if and only if it is so forlt I; a similar
statement holds for quasi-regularity by Lemma 5.1.
Let us first assume that the basis is{x1, . . . , xn} is δ-regular in the described sense. By
Proposition 4.7, the leading termslt H induce a complementary decomposition of the
form (4.5) ofM = P/I where all generators are of degreeq = degH or less. Thus, if
Mq 6= 0 (otherwise there is nothing to show), then we can choose a vector space basis
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of it as part of the complementary decomposition and the variablex1 is multiplicative
for all its members. But this observation immediately implies that multiplication with
x1 is injective from degreeq on, so thatx1 is quasi-regular forM at degreeq.

For the remaining elements of{x1, . . . , xn} we proceed as in the proof of Lemma 5.1
and use the isomorphismM(k) ∼= P(k)/I(k). One easily verifies that a Pommaret basis
of I(k) is obtained by settingx1 = · · · = xk = 0 in the partial basisH(k) = {h ∈ H |
clsh > k}. Thus we can again iterate for each1 < k ≤ n the argument above so that
indeed(x1, . . . , xn) is a quasi-regular sequence forM at degreeq.

For the converse, we first show that quasi-regularity of the sequence(x1, . . . , xn) im-
plies the existence of a Rees decomposition forP/I. Exploiting again the isomorphism
M(k) ∼= P(k)/I(k), one easily sees that a vector space basis ofM

(k)
q is induced by all

termsxµ /∈ I with |µ| = q andclsµ ≥ k. By the definition of quasi-regularity, mul-
tiplication with xk is injective onM(k), hence we take{x1, . . . , xk} as multiplicative
variables for such a term (which is exactly the assignment used in the Reesdecompo-
sition induced by a Pommaret basis according to Proposition 4.7).

We claim now that this assignment yields a Rees decomposition ofM≥q (and hence
induces one ofP/I, since we only have to add all termsxµ /∈ I such that|µ| < q
without any multiplicative variables). The only thing to prove is that our decomposition
indeed covers all of(P/I)≥q. But this is trivial. If xµ /∈ I is an arbitrary term with
|µ| = q + 1 andclsµ = k, then we can writexµ = xk · xµ−1k . Obviously,xµ /∈ I
impliesxµ−1k /∈ I andcls (µ− 1k) ≥ k so thatxk is multiplicative for it. Hence all of
Mq+1 is covered and an easy induction shows that we have a decomposition ofM≥q.

Proposition 4.7 entails now thatI possesses aweakPommaret basis of degreeq. Since
the reduction to a strong basis as mentioned in Remark 4.2 can only decrease the de-
gree, we conclude thatI has a strong Pommaret basis of degree at mostq. However,
if the degree of the basis actually decreased, then, by the converse statement already
proven,(x1, . . . , xn) would be a quasi-regular sequence forM at a lower degree than
q contradicting our assumptions.

The same “reverse” argument shows that ifI has a Pommaret basis of degreeq, then
the sequence(x1, . . . , xn) cannot be quasi-regular forM at any degree less thanq, as
otherwise a Pommaret basis of lower degree would exist which is not possible by the
discussion following Theorem 4.14.

For monomialidealsI ⊆ P a much stronger statement is possible. Using again the
isomorphismM(k) ∼= P(k)/I(k), we may identify elements ofM(k) with linear com-
binations of the termsxν /∈ I satisfyingclsxν > k. Finally, if we denote as before by
µk : M(k−1) → M(k−1) the map induced by multiplication withxk, then we obtain
a simple relationship between the (unique!) Pommaret basis of the monomial ideal I
and the kernels of the mapsµk.

Proposition 5.3 Let the basis{x1, . . . , xn} of V beδ-regular for the monomial ideal
I ⊆ P. Furthermore, letH be the Pommaret basis ofI and setHk = {xν ∈ H |
cls ν = k} for any1 ≤ k ≤ n. Then the set{xν−1k | xν ∈ Hk} is a basis ofkerµk.
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Proof. Assume thatxν ∈ Hk. Thenxν−1k /∈ I, as otherwise the Pommaret basisH
was not involutively autoreduced, and hence we findxν−1k ∈ kerµk.
Conversely, suppose thatxν ∈ kerµk. Obviously, this impliesxν+1k ∈ I and the
Pommaret basisH must contain an involutive divisor ofxν+1k . If this divisor was not
xν+1k itself, the termxν would have to be an element ofI which is obviously not
possible. Sincexν ∈ kerµk entailscls (ν + 1k) = k, we thus findxν+1k ∈ Hk.

We noted already in Remark 4.15 that the degree of involution is nothing butthe
Castelnuovo–Mumford regularity. There we used the equivalence of the Koszul ho-
mology to the minimal free resolution. With the help of Theorem 5.2, we can also give
a simple direct proof.

Corollary 5.4 LetI ⊆ P be a homogeneous ideal. Then the factor moduleM = P/I
is involutive at degreeq but not at any lower degree, if and only if the Castelnuovo–
Mumford regularity takes the valuereg I = q.

Proof. By Theorem 4.14,reg I = q, if and only if I possesses in suitable variables
x1, . . . , xn a Pommaret basisH with degH = q. According to Theorem 5.2, the se-
quence(x1, . . . , xn) is then quasi-regular forM at degreeq but not any lower degree,
so that by the dual Cartan test (Theorem 3.12) the moduleM is involutive at degreeq
but not any lower degree.

Remark 5.5 Given this result, it is not so surprising to see that the characterisation of
the Castelnuovo–Mumford regularity mentioned in Remark 4.17 and the dual Cartan
test in Theorem 3.12 are equivalent. Consider a homogeneous idealI ⊆ P for which
the basis{x1, . . . , xn} of V is δ-regular and assume that for some degreeq ≥ 0 the
condition (4.10a) is violated for some1 ≤ j ≤ D = dim (P/I). Thus there exists
a polynomialf ∈ Pq−1 such thatf /∈ 〈I, x1, . . . , xj−1〉 but xjf is contained in this
ideal. If we setMj = P/〈I, x1, . . . , xj〉, then obviously the equivalence class[f ]
lies in the kernel of the mapµj : Mj−1 → Mj−1 induced by multiplication withxj .
Since trivially forM = P/I the moduleM(j) = M/〈x1, . . . , xj〉M is isomorphic to
Mj , the conditions of Theorem 3.12 are not satisfied forM either. Conversely, any
representative of a non-trivial element ofkerµj of degreeq provides us at once with
such a polynomialf . There is no need to consider a valuej > D, since we know from
Proposition 4.9 that(MD)≥regI = 0.

As an application we consider the following theorem providing a classical characteri-
sation of the depth via Koszul homology which in fact is often even used asdefinition
of depthM (see e. g. [54, Sect. IV.A.4]). Note that, taking into account the relation
between the minimal free resolution of a module and its Koszul homology discussed
in Remark 2.15, it also trivially implies the Auslander–Buchsbaum formularelating
depth and projective dimension.

Theorem 5.6 LetM be aP-module. ThendepthM = d, if and only ifHn−d(M) 6= 0
andHn−d+1(M) = · · · = Hn(M) = 0.
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Proof. For simplicity, we give the proof only for the case of an idealI ⊆ P. The
extension to modules is straightforward. LetH be a Pommaret basis ofI with respect
to the degree reverse lexicographic order,d = minh∈H clsh (and thusdepth I = d)
andHd = {h ∈ H | clsh = d}. We choose a polynomial̄h ∈ Hd of maximal degree
and show now that it induces a non-zero element ofHn−d(I).
By Lemma B.1,h̄ ∈ 〈x1, . . . , xd〉 and thus it possesses a unique representationh̄ =
x1h̄(1) + · · ·+xdh̄(d) with h̄(i) ∈ k[xi, . . . , xn]. The polynomial̄h(d) cannot lie inI, as
otherwise there would exist anh ∈ H with lt h |P lt h̄(d) |P lt h̄ contradicting the fact
that any Pommaret basis is involutively head autoreduced. We claim now that for any
d < k ≤ n polynomialsPh ∈ 〈x1, . . . , xd〉 exist such thatxkh̄ =

∑
h∈H Phh.

Obviously, the variablexk is non-multiplicative forh̄. By definition of a Pommaret
basis, for each generatorh ∈ H a polynomialPh ∈ k[x1, . . . , xcls h] exists such that
xkh̄ =

∑
h∈H Phh. No polynomialh with clsh > d lies in 〈x1, . . . , xd〉 (obviously

lt h /∈ 〈x1, . . . , xd〉). As the leading terms cannot cancel in the sum, this implies already
that Ph ∈ 〈x1, . . . , xd〉 for all h ∈ H \ Hd. For all h ∈ Hd we know thatPh ∈k[x1, . . . , xd] and thus the only possibility forPh /∈ 〈x1, . . . , xd〉 is thatPh contains a
constant term. However, asI is a homogeneous ideal and as the degree ofh̄ is maximal
in Hd, this is not possible for degree reason. As above, each of the coefficients may
thus be uniquely decomposedPh = x1P

(1)
h + · · · + xdP

(d)
h with P (i)

h ∈ k[xi, . . . , xn].

Because of the uniqueness of these decompositions we find thatxkh̄(i) =
∑

h∈H P
(i)
h h

and therefore we conclude thatxkh̄(i) ∈ I for anyd < k ≤ n.
Let I = (i1, . . . , id−1) be a repeated index withi1 < i2 < · · · , id−1. Then its comple-
mentĪ = {1, . . . , n} \ I is a repeated index of lengthn− d+ 1 and we may represent
any element̄ω ∈ P ⊗ Λn−d+1V in the formω̄ =

∑
|I|=d−1 f̄IdxĪ . We consider now

in particular all repeated indices withid−1 ≤ d. For each of them a unique value
i ∈ {1, . . . , d} exists such thati /∈ I and we set̄fI = (−1)d−ih̄(i). For all remaining
coefficients we only assume thatf̄I ∈ I. Then, by our considerations above, the so
constructed form̄ω is not contained inI ⊗ Λn−d+1V.
We claim thatω = ∂ω̄ ∈ I⊗Λn−dV. If we writeω =

∑
|I|=d fIdx

Ī , then by definition

of the Koszul differentialfI =
∑d

j=1(−1)jxij f̄I\{ij}. Let us first assume thatid > d.
Then it follows from our choice of̄ω that fI\{ij} ∈ I for all j < d and that always
xidfI\{id} ∈ I implying trivially thatfI ∈ I. If id = d, then one easily verifies that we
have chosen̄ω precisely such thatfI = h̄ ∈ I. Hence our claim is proven.
If we can now show that it is not possible to choose a formω̃ ∈ P ⊗ Λn−d+2V
such thatω̄ + ∂ω̃ ∈ I ⊗ Λn−d+1V, then we have constructed a non-zero element
[ω] ∈ Hn−d(I). But this is easy to achieve by considering in particular the coef-
ficient f̄(1,2,...,d−1) = h̄(d) /∈ I. The corresponding coefficient of the form∂ω̃ is
given by

∑d−1
j=1(−1)jxj f̃(1,2,...,d−1)\{j} ∈ 〈x1, . . . , xd−1〉. As noted above, we have

h̄(d) ∈ k[xd, . . . , xn] so that it is not possible to eliminate it in this manner and hence
no formω̄ + ∂ω̃ can be contained inI ⊗ Λn−d+1V.
There remains to show thatHn−d+1(I) = · · · = Hn(I) = 0 under our assump-
tions. Hn(I) = 0 follows immediately from Lemma 2.16. Consider now a cycle
ω ∈ I ⊗ Λn−kV with 0 < k < d. Since the Koszul complexK(P) is exact, a
form ω̄ ∈ P ⊗ Λn−k+1V exists with∂ω̄ = ω. For all I we have by assumption
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fI =
∑d

j=1(−1)jxij f̄I\{ij} ∈ I; our goal is to show that (moduloim ∂) we can al-
ways choosēω such that all coefficients̄fJ ∈ I, too.
Without loss of generality, we may assume that all coefficientsf̄J are in normal form
with respect to the Gröbner basisH, as the difference is trivially contained inI. In
addition, we may assume thatlt fI = lt (xij f̄I\{ij}) for some valuej. Indeed, it is
easy to see that cancellations between such leading terms can always be eliminated by
subtracting a suitable form∂ω̃ from ω̄.
We begin with those repeated indicesI = (i1, . . . , ik) for which all indices satisfy
ij < d = minh∈H clsh. In this caselt fI ∈ 〈lt H〉P = lt I implies that already
lt f̄I\{ij} ∈ lt I for the abovej. But unlessf̄I\{ij} = 0, this observation contradicts
our assumption that allfJ are in normal form and thus do not contain any terms from
lt I. Therefore allf̄J where all entries ofJ are less thand must vanish.
We continue with those repeated indicesI = (i1, . . . , ik) where only one indexiℓ > d.
Then, by our considerations above,f̄I\{iℓ} = 0 and hencelt fI = lt (xij f̄I\{ij}) for
some valuej 6= ℓ. Thusij < d and the same argument as above implies that all such
f̄I\{ij} = 0. A trivial induction proves now that in fact all̄fJ = 0 and therefore we find
ω̄ ∈ I ⊗ Λn−k+1V.

6 Formal Geometry of Differential Equations

In the next chapter we will demonstrate how the algebraic and homologicaltheory
presented so far naturally appears in the analysis of differential equations. Perhaps
somewhat paradoxically, the key for applying algebraic methods lies in first providing
a differential geometric framework. For this purpose, we must brieflyrecall some basic
notions from the formal geometry of differential equations [30, 32, 42, 53].
Let π : E → X be a fibred manifold with ann-dimensional base spaceX and an
(m + n)-dimensional total spaceE (in the simplest caseX = Rn andE = Rn+m

with π being the projection on the firstn components). Local coordinates onX are
x = (x1, . . . , xn) and fibre coordinates onE areu = (u1, . . . , um). A section is then
a map1 σ : X → E satisfyingπ ◦ σ = idX . In local coordinates, such a sectionσ
corresponds to a smooth functionu = s(x), asσ(x) =

(
x, s(x)

)
.

A q-jet is an equivalence class[σ]
(q)
x0

of sections where two sectionsσ1, σ2 are consid-
ered as equivalent, if their graphs have at the pointσi(x0) a contact of orderq, in other
words if their Taylor expansions atx0 coincides up to orderq (thus we may consider a
q-jet as a truncated Taylor series). Theqth order jet bundleJqπ is then defined to be the
set of all suchq-jets. One easily verifies thatJqπ is an(n+m

(
n+q

q

)
)-dimensional man-

ifold. Projection on the expansion pointx0 defines a fibrationπq : Jqπ → X . As fibre
coordinates for the point[σ]

(q)
x0

we may useu(q) = (uα
µ) with 1 ≤ α ≤ n and a multi

indexµ where0 ≤ |µ| ≤ q and the interpretation thatuα
µ is the value of∂|µ|sα/∂xµ at

the expansion pointx0 ∈ X .

1For notational simplicity, we do not explicitly mention local charts and use a global notation. Nevertheless
all construction are to be understood purely locally.
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A differential equationis now a fibred submanifoldRq ⊆ Jqπ. We will always assume
that it may be locally described as the zero set of a functionΦ : Jqπ → Rt; thus we
recover the usual picture of a differential equationΦ(x,u(q)) = 0 (note that we do not
distinguish between a scalar equation and a system). Theprolongationof a section
σ : X → E is the sectionjqσ : X → Jqπ locally defined byuα

µ = ∂|µ|sα/∂xµ(x).
We callσ a solutionof the differential equationRq, if im (jqσ) ⊆ Rq. Expressed in
coordinates, this is equivalent to the usual definition.
If q > r, then we also have the canonical fibrationsπq

r : Jqπ → Jrπ defined by
simply “forgetting” the higher-order derivatives. This leads to two natural operations
with a differential equationRq. The first one is theprojectionto lower order: given a
differential equationRq ⊆ Jqπ its r-fold projection isR(r)

q−r = πq
q−r(Rq) ⊆ Jq−rπ.

While the projection is easy to describe geometrically, it is, in particular for non-linear
equations, hard to perform effectively, as it requires the elimination of variables.
In the second basic operation, theprolongationto higher order, we encounter the oppo-
site situation: while it is easy to perform effectively in local coordinates, it issomewhat
cumbersome to provide a rigorous intrinsic definition. Given a differential equation
Rq ⊆ Jqπ, we may consider the restriction̂πq : Rq → X of the projectionπq which
providesRq with the structure of a fibred manifold over which we may again construct
jet bundles. If we consider now bothJrπ̂

q andJq+rπ as submanifolds ofJrπ
q (which

is possible with certain straightforward identifications), then ther-fold prolongation of
Rq is the differential equationRq+r = Jrπ̂

q ∩ Jq+rπ ⊆ Jq+rπ.
In local coordinates, prolongation requires only theformal derivative. If Φ is an ar-
bitrary smooth functionJqπ → R, then its formal derivativeDiΦ with respect to the
variablexi is a smooth functionJq+1π → R given by the chain rule:

DiΦ =
∂Φ

∂xi
+

m∑

α=1

∑

0≤|µ|≤q

∂Φ

∂uα
µ

uα
µ+1i

. (6.1)

If now the differential equationRq is locally described as the zero set of the functions
Φτ : Jqπ → R for 1 ≤ τ ≤ t, then its first prolongationRq+1 is the common zero set
of the functionsΦτ and their formal derivativesDiΦ

τ for 1 ≤ i ≤ n and1 ≤ τ ≤ t.
Higher prolongations are obtained by iteration.
It should be noted that in general neither a projectionR

(r)
q−r nor a prolongationRq+r is

again a manifold, as we must expect that singularities appear. For simplicity, we will
ignore this problem and always assume that we are dealing with aregular differential
equation where all operations yield manifolds.
One could think that prolongation and projection are some kind of “inverse” operations:
if one first prolongs an equationRq ⊆ Jqπ to Rq+r ⊆ Jq+rπ for somer > 0 and sub-
sequently projects back toJqπ with πq+r

q , one might naively expect that the obtained

equationR(r)
q coincides with the original equationRq. However, this is in general not

correct, asintegrability conditionsmay arise: we only get that alwaysR(r)
q ⊆ Rq.

Example 6.1 From a computational point of view, one may distinguish two different
mechanisms for the generation of integrability conditions during prolongations and
projections (for ordinary differential equations only the first one occurs): (i) the local
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representation ofRq comprises equations of different orders and formal differentiation
of the lower-order equations leads to new (i. e.algebraically independent equations),
(ii) generalised cross-derivatives.
As a concrete example for the first mechanism consider the trivial ordinary differential
equationR1 in two dependent variablesu1, u2 and one independent variablex defined
by (u1)′ = u2 andu1 = x. The local representation ofR2 contains in addition the
equations(u1)′′ = (u2)′ and(u1)′ = 1. As the second one is of first order, it survives
a subsequent projection back to second order and (after an obvious simplification) the
projected systemR(1)

2 is given by(u1)′ = 1, u1 = x andu2 = 1.
For demonstrating of the second mechanism, we use a classical exampledue to Janet,
namely the partial differential equationR2 in one dependent variableu and three inde-
pendent variablesx1, x2, x3 locally described byu33+x2u11 = 0 andu22 = 0. Among
others, the second prolongationR4 contains the equationsu2233 +x2u1122 + u112 = 0,
u1122 = 0 andu2233 = 0. An obvious linear combination of these equations yields
the integrability conditionu112 = 0 and henceR(1)

3 is a proper subset ofR3. Note
that here the integrability condition is of higher order than the original system; this is a
typical phenomenon for partial differential equations.

It is important to note that integrability conditions are not additional restrictions on
the solution space of the considered equationRq; any solution ofRq automatically
satisfies them. They represent conditions implicitly contained or hidden inRq and
which can be made visible by performing a suitable sequence of prolongations and
projections. They may be considered as obstructions for the order by order construc-
tion of formal power series solutions. In practice, it often considerablesimplifies the
integration of the equation, if at least some integrability conditions are added.
These considerations motivate the following definition where the term “integrable” is
used in its most basic meaning: existence of solutions. As we discuss hereonly formal
solutions, we speak of formal integrability.2 One should not confuse this concept with
other notions like complete integrability where properties like the existence of first
integrals or symmetries are considered.

Definition 6.2 The differential equationRq ⊆ Jqπ is calledformally integrable, if for
all r ≥ 0 the equalityR(1)

q+r = Rq+r holds.

While this geometric definition of formal integrability is very natural, it has an obvious
and serious drawback: it requires the satisfaction of an infinite number of conditions
(surjectivity of the projectionŝπq+r+1

q+r : Rq+r+1 → Rq+r for all r ≥ 0). Thus in the
given form formal integrability cannot be verified effectively. We will see in the next
chapter that algebraic and homological methods lead to a finite criterion forformal
integrability. The key for the application of these methods lies in a natural polynomial
structure hidden in the jet bundle hierarchy, the so-called fundamental identification.
As this topic is often ignored in the literature, we discuss it here in some detail. It is
based the following crucial observation.

2In some applications like Lie symmetry theorylocal solvability is very important [41]. A differential equa-
tion Rq is locally solvable, if for every pointρ ∈ Rq a solutionσ exists such thatρ ∈ im jqσ. Again in the
sense of existence of the formal solutions, formal integrability trivially implies local solvability.
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Proposition 6.3 The jet bundleJqπ of order q is affine over the jet bundleJq−1π of
order q − 1.

Proof. The simplest approach to proving this proposition consists of studying the effect
of fibred changes of coordinates̄x = x̄(x) and ū = ū(x,u) in the total spaceE on
the derivatives which are fibre coordinates inJqπ. Using the chain rule one easily
computes that in repeated index notation the result for the highest-order derivatives is

ūα
j1···jq

=

(
∂ūα

∂uβ

∂xi1

∂x̄j1
· · ·

∂xiq

∂x̄jq

)
uβ

i1···iq
+ · · · (6.2)

where the dots represent a complicated expression in the derivatives of lower order and
where∂x/∂x̄ represents the inverse of the Jacobian∂x̄/∂x. But this implies that (6.2)
is indeed affine in the derivatives of orderq as claimed.

An affine space is always modelled on a vector space: the difference between two
points may be interpreted as a vector. In our case it is easy to identify this vector space.
Let [σ]

(q)
x and [σ′]

(q)
x be two points inJqπ such that[σ]

(q−1)
x = [σ′]

(q−1)
x , i. e. the two

points belong to the same fibre with respect to the fibrationπq
q−1. Thus[σ]

(q)
x and[σ′]

(q)
x

correspond to two Taylor series truncated at degreeq which coincide up to degreeq−1.
Obviously, this observation implies that their difference consists of one homogeneous
polynomial of degreeq for each dependent variableuα.

In a more intrinsic language, we may formulate this result as follows. Letρ = [σ]
(q)
x

be a point inJqπ andρ̄ = [σ]
(q−1)
x = πq

q−1(ρ) its projection toJq−1π; we furthermore
setξ = σ(x) = πq

0(ρ) ∈ E. Then according to Proposition 6.3, the fibre(πq
q−1)

−1(ρ̄) is
an affine space modelled on the vector spaceSq(T

∗
x
X ) ⊗ Vξπ whereSq denotes again

the q-fold symmetric product andVξπ ⊂ TξE is the vertical bundledefined as the
kernel of the tangent mapTξπ. Indeed, this follows immediately from our discussion
so far: the symmetric algebraS(T ∗

x
X ) is a coordinate-free form of the polynomial

ring and one easily verifies that the homogeneous part of (6.2) obtained by dropping
the terms represented by the dots describes the transformation behaviour of vectors in
Sq(T

∗
x
X ) ⊗ VξE (note that we must use thecotangent spaceT ∗

x
X , as tangent vectors

would transform with the inverse matrix).
By Proposition 6.3, the jet bundleJqπ is an affine bundle overJq−1π. This fact implies
that the tangent space to the affine space(πq

q−1)
−1(ρ̄) at the pointρ ∈ Jqπ is canon-

ically isomorphic to the corresponding vector space, i. e. toSq(T
∗
x
X ) ⊗ VξE. This

isomorphism is called thefundamental identification. We derive now a local coordi-
nate expression for it. On one side we have the tangent space to the fibre(πq

q−1)
−1(ρ̄)

at the pointρ, i. e. the vertical spaceVρπ
q
q−1 defined as the kernel of the tangent map

Tρπ
q
q−1. Obviously, it is spanned by all the vectors∂uα

µ
with |µ| = q. Let us consider

one of these vectors; it is tangent to the curveγ : t 7→ ρ(t) whereρ(0) = ρ and all
coordinates of a pointρ(t) coincide with those ofρ except for the one coordinateuα

µ

corresponding to the chosen vector which is increased byt.
On the other side, we may compute the difference quotient(ρ(t)−ρ)/t interpreting the
points as above as truncated Taylor series. Theuα-component of the result is obviously
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the polynomial(uα
µ(t)−uα

µ)xµ/µ!. Hence the fundamental identification is just the map
ǫq : Vρπ

q
q−1 → Sq(T

∗
x
X ) ⊗ VξE given by

ǫq(∂uα
µ
) =

1

µ!
dxµ ⊗ ∂uα . (6.3)

Note the combinatorial factor1
µ! having its origin in Taylor’s formula!

7 Algebraic Analysis of Differential Equations

Definition 7.1 Let Rq ⊆ Jqπ be a differential equation. The(geometric) symbolNq

of Rq is a family of vector spaces overRq where the value atρ ∈ Rq is given by

(Nq)ρ = TρRq ∩ Vρπ
q
q−1 = Vρ

(
πq

q−1 Rq

)
. (7.1)

Thus the symbol is the vertical part of the tangent space of the submanifold Rq with
respect to the fibrationπq

q−1. If Rq is globally described by a mapΦ : Jqπ → E ′ with a
vector bundleπ′ : E ′ → X , then we introduce thesymbol mapσ : V πq

q−1 → TE ′ given
by σ = TΦ V π

q
q−1

and defineNq = kerσ. Locally, this leads to the following picture.

Let (x,u(q)) be coordinates onJqπ in a neighbourhood ofρ. We first determineTρRq

as a subspace ofTρ(Jqπ). Let (x,u(q); ẋ, u̇(q)) be the induced coordinates onTρ(Jqπ);
every vectorX ∈ Tρ(Jqπ) has the formX = ẋi∂xi + u̇α

µ∂uα
µ
. Assuming thatRq is

locally defined byΦτ (x,u(q)) = 0 with τ = 1, . . . , t, its tangent spaceTρRq consists
of all vectorsX such thatdΦτ (X) = XΦτ = 0. The symbolNq is by definition the
vertical part of this tangent space. Hence we are only interested in thosesolutions of
the above conditions wherėx = u̇(q−1) = 0 and locallyNq can be described as the
solution space of the following system of linear equations:

(Nq)ρ :






∑

1≤α≤m
|µ|=q

∂Φτ

∂uα
µ

(ρ) u̇α
µ = 0 , τ = 1, . . . , t . (7.2)

This is a system with real coefficients, as the derivatives∂Φτ/∂uα
µ are evaluated at the

point ρ ∈ Rq. We call its matrix thesymbol matrixand denote it byMq(ρ). It is also
the matrix of the symbol mapσ in local coordinates.
The symbol is most easily understood for linear differential equations.Loosely speak-
ing, the geometric symbol is then simply the highest-order or principal part of the
system (considered as algebraic equations). For non-linear systems we perform a brute
force linearisation at the pointρ in order to obtain(Nq)ρ. Obviously,dim(Nq)ρ might
vary with ρ. For this reason, we speak in Definition 7.1 only of a family of vector
spaces and not of a vector bundle. Only if the dimension remains constant overRq,
the symbolNq is a vector subbundle ofV πq

q−1. For simplicity, we will assume that all
considered symbols are vector bundles.
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Example 7.2 For Janet’s partial differential equationR2 considered in Example 6.1
the symbol equations arėu33+x2u̇11 = 0 andu̇22 = 0 (asR2 is a linear system without
lower-order terms, the symbol equations look formally like the differential equation
itself; however, the symbol equations arealgebraic and not differential equations).
Hence the symbolN2 is here the one-dimensional distribution spanned by the vector
field ∂u11

− x2∂u33
.

Of course, not only the original equationRq has a symbolNq, but also every prolonga-
tionRq+r ⊆ Jq+rπ of it possesses a symbolNq+r ⊆ T (Jq+rπ). It follows easily from
the coordinate expression (6.1) of the formal derivative that for obtaining a local repre-
sentation of the prolonged symbolNq+r, there is no need to explicitly compute a local
representation of the prolonged differential equationRq+r. We can directly derive it
from a local representation ofNq, as we need only the partial derivatives∂DiΦ

τ/∂uα
ν

with 1 ≤ i ≤ n and |ν| = q + 1, i. e. the highest-order part of the formal derivative
DiΦ

τ , for determining the symbolNq+1. It is given by∂DiΦ
τ/∂uα

ν = ∂Φτ/∂uα
ν−1i

(if νi = 0, the derivative vanishes) and thus a local representation ofNq+1 is

(Nq+1)ρ :






∑

1≤α≤m
|µ|=q

∂Φτ

∂uα
µ

u̇α
µ+1i

= 0 ,
τ = 1, . . . , p ,

i = 1, . . . , n .
(7.3)

In our geometric approach to integrability conditions, their existence is signalled by
a dimension inequality:dimR

(1)
q < dimRq. By the following result, which follows

from a straightforward analysis of the Jacobians of the involved differential equations,
the dimension ofR(1)

q is related todimNq+1, i. e. analysing the prolonged symbol
matrixMq+1 gives information about possible integrability conditions.

Proposition 7.3 If Nq+1 is a vector bundle, thendimR
(1)
q = dimRq+1 − dimNq+1.

In the classical theory of partial differential equations a different notion of symbol is
used which should not be confused with the geometric symbol introducedabove: the
classical symbol isnot an intrinsic object. Our notion of symbol is closely related to
what is traditionally called the principal symbol which is intrinsically defined.
Assume we are given a one-formχ ∈ T ∗X . It induces for everyq > 0 a map
ιχ,q : V π → V πq

q−1 defined byιχ,q(v) = ǫq(χ
q ⊗ v) whereǫq is the fundamental

identification andχq denotes theq-fold symmetric product ofχ. In local coordinates,
we writeχ = χidx

i and obtainιχ,q : vα∂uα 7→ χµv
α∂uα

µ
whereµ runs over all multi

indices of lengthq andχµ = χµ1

1 · · ·χµn
n .

Let σ be the symbol map of the differential equationRq globally described by the map
Φ : Jqπ → E ′. Then theprincipal symbolof Rq is the linear mapτχ : V π → TE ′

defined byτχ = σ ◦ ιχ,q. Locally, we can associate a matrixT [χ] with τχ:

T τ
α [χ] =

∑

|µ|=q

∂Φτ

∂uα
µ

χµ . (7.4)
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If dim E = m anddim E ′ = p, it hasp rows andm columns. Its entries are homo-
geneous polynomials of degreeq in the coefficients ofχ. We may think ofT [χ] as a
kind of contraction of the symbol matrixMq. Both matrices have the same number of
rows. The column with indexα of T [χ] is a linear combination of all columns inMq

corresponding to a variablėuα
µ with the coefficients given byχµ.

Remark 7.4 Using the matrixT [χ] of the principal symbol, we may relate the con-
struction of integrability conditions with syzygy computations. Assume that thefunc-
tions Φτ with 1 ≤ τ ≤ t locally representing the differential equationRq lie in a
differential fieldF. Then the entries ofT [χ] are polynomials inP = F[χ1, . . . , χn].
The rows ofT [χ] may be considered as elements ofPm and generate a submodule
M ⊆ Pm. Let S ∈ Syz(M) ⊆ Pt be a syzygy of the rows ofT [χ]. The substitu-
tion χi → Di transforms each componentSτ of S into a differential operator̂Sτ . By
construction,Ψ =

∑t
τ=1 ŜτΦτ is a linear combination of differential consequences of

Rq in which the highest-order terms cancel. In fact, this represents nothing but the
rigorous mathematical formulation of “taking a cross-derivative.”

Example 7.5 For Janet’s differential equation the module generated by the rows of
T [χ] is the idealI1 = 〈χ2

3 + x2χ2
1, χ

2
2〉. Obviously, its syzygy module is spanned by

S1 = χ2
2e1 − (χ2

3 + x2χ2
1)e2 and applying the corresponding differential operator to

Janet’s equation yields the above mentioned integrability conditionu112 = 0.

The fundamental identificationǫq allows us to identify the symbol(Nq)ρ with a sub-
space ofSq(T

∗
xX ) ⊗ Vξπ whereξ = πq

0(ρ) andx = π(ξ). In local coordinates,ǫq
is given by (6.3); hence its main effect is the introduction of some combinatorial fac-
tors which can be absorbed in the choice of an appropriate basis. More precisely, we
recover here the discussion in Remark 2.5. If we take{∂x1 , . . . , ∂xn} as basis of the
tangent spaceTxX and the dual basis{dx1, . . . ,dxn} for the cotangent spaceT ∗

xX ,
then the “terms”∂xµ = ∂µ1

x1 · · ·∂µn

xn with |µ| = q form a basis ofSq(TxX ) whereas
the dual basis ofSq(T

∗
xX ) is given by the “divided powers”1

µ!dx
µ. If we express an

elementf ∈ Sq(T
∗
xX ) ⊗ Vξπ in this basis asf = 1

µ!f
α
µ dxµ ⊗ ∂uα whereµ runs over

all multi indices with|µ| = q, then the symbolNq consists of all suchf satisfying the
linear system of equations

∑
1≤α≤m,|µ|=q

∂Φτ

∂uα
µ
fα

µ = 0 with τ = 1, . . . , t. Obviously,

this is the same linear system as (7.2) defining the symbol as a subspace of Vρπ
q
q−1.

Proposition 7.6 Let Rq ⊆ Jqπ be a differential equation and
(
ρr ∈ Rr

)
r≥q

be a
sequence of points such thatπr

q(ρr) = ρq and setξ = πq
0(ρq) and x = πq(ρq). If we

setNr = Sr(T
∗
xX ) ⊗ Vξπ for 0 ≤ r < q, then the sequence

(
(Nr)ρr

)
r∈N0

defines a
symbolic system inS(T ∗

xX ) ⊗ Vξπ which satisfiesNr+1 = Nr,1 for all r ≥ q.

Proof. For notational simplicity, we consider onlyr = q. Let f = 1
ν!f

α
ν dxν ⊗ ∂uα

whereν runs over all multi indices with|ν| = q + 1 be an element ofNq,1. By
definition of the prolongation, this is equivalent toδ(f) ∈ Nq ⊗ T ∗

xX and hence we
find for every1 ≤ i ≤ n that νi

ν! f
α
ν dxν−1i ⊗ ∂uα ∈ Nq. In other words, the coefficients

fα
ν must satisfy the linear system of equations

∑
1≤α≤m,|ν|=q+1,νi>0

∂Φτ

∂uα
ν−1i

fα
ν = 0
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with τ = 1, . . . , t andi = 1, . . . , n. A comparison with (7.3) shows that this system
describes the prolonged symbolNq+1. Hence we haveNq+1 = Nq,1 as claimed.

In this proposition we used a sequence of pointsρr ∈ Rr with πr
q(ρr) = ρq in order to

consider the symbols(Nr)ρr
. Obviously, such a sequence does not necessarily exists,

unless we are dealing with a formally integrable equation. However, by the final asser-
tion, the obtained symbolic system is independent of the choice of these points, as we
may simply setNr+1 = Nr,1 for all r ≥ q. Hence at each pointρ ∈ Rq the symbol
(Nq)ρ induces a symbolic system which, according to Lemma 2.8, we may alterna-
tively consider as a subcomoduleN [ρ] ⊆ S(T ∗

xX )⊗Vξπ; we then speak of thesymbol
comoduleof Rq at the pointρ. One can now easily verify that the symbolic systems
given in Example 2.9 are associated to the their mentioned differential equations.

Remark 7.7 In Proposition 7.6 and in the definition of the symbol comoduleN we
simply set the lower-order componentsNr for 0 ≤ r < q to the full symmetric product
Sr(T

∗
xX ) ⊗ Vξπ. In principle, one could use a more precise approach by considering

instead the symbols of the projected equationsR
(q−r)
r . However, for the subsequent

involution analysis it only matters what happens in degreeq and beyond which is not
affected by such changes in lower order. Hence we stick to this simpler approach.

Remark 7.8 The comodulesN arising as symbols are of a special form: their annihi-
latorsN 0 possess bases where all generators are homogeneous of the same degreeq,
namely the order of the underlying differential equationRq. It follows now immedi-
ately from the identification of the degree of involution ofN and the Castelnuovo–
Mumford regularity ofN 0 that the minimal free resolution ofN 0 is linear, i. e. the
syzygy modules of any order can be generated by syzygies of degree 1. This was al-
ready noted as a “curiosité” by Serre in his letter appended to [21]. Aslater shown by
Eisenbud and Goto [14], this represents in fact a characteristic property of q-regular
modules: ifM is q-regular, then the truncationM≥q possesses a linear resolution.

Definition 7.9 The symbolNq of the differential equationRq ⊆ Jqπ of order q is
involutiveat the pointρ ∈ Rq, if the symbol comoduleN [ρ] is involutive at degreeq.

Choosing local coordinates(x,u(q)) in a neighbourhood of a given pointρ ∈ Rq, we
can apply Cartan’s test (Theorem 3.4) for deciding involution. Recall that it requires
only linear algebra computations with the two symbolsNq andNq+1 and thus is easily
performed effectively. In practice, one uses a dual approach exploiting that the annihi-
latorN 0 ⊆ S(TxX )⊗Vξπ is anS(TxX )-submodule, thesymbol module. In our chosen
coordinates and bases the submoduleN 0 is generated by the “polynomials”

∑

1≤α≤m
|µ|=q

∂Φτ

∂uα
µ

∂µ
x ⊗ ∂uα , τ = 1, . . . , t , (7.5)

corresponding to the left hand sides in (7.2). IdentifyingS(TxX ) with the polynomial
ringP = R[∂x1 , . . . , ∂xn ], one readily recognises inN 0 the polynomial module gener-
ated by the rows of the matrixT [χ] of the principal symbol which already appeared in
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Remark 7.4. We may now apply the theory of Pommaret bases to the submoduleN 0.
Then the following result follows immediately from Theorem 5.2.

Proposition 7.10 The symbolNq of the differential equationRq ⊆ Jqπ is involutive
at the pointρ ∈ Rq, if and only if in suitable local coordinates an involutive head
autoreduction transforms the generators (7.5) into a Pommaret basis ofthe symbol
moduleN 0 for a class respecting term order.

In principle, at some pointsρ ∈ Rq the symbol could be involutive, whereas at other
points on the differential equation this is not the case. For notational simplicity, we
will assume throughout this work that all points onRq behave uniformly and therefore
drop from now on the explicit reference to the pointρ ∈ Rq.
Proposition 7.10 transforms the Cartan test into an easily applicable effective criterion
for an involutive symbol. In order to recover some results in the literature, we ex-
press it in a less algebraic language. Recall that the columns ofMq correspond to the
unknownsu̇α

µ; we sort them according to a class respecting term order (it suffices, if
we take care that a column corresponding to an unknownu̇α

µ is always to the left of a
column corresponding to the unknownu̇β

ν , if clsµ > cls ν). Now an involutive head
autoreduction is equivalent to determining a row echelon formM△

q of Mq using only
row operations. The unknowṅuα

µ corresponding to the column where the first non-

vanishing entry of a row sits is called theleaderof this row. If β(k)
q is the number of

leaders that are of classk, then we call these numbers theindicesof the symbolNq.
The problem ofδ-regularity concerns this notion. The class of a derivative is not in-
variant under coordinate transformations. In different coordinate systems we may thus
obtain different values for the indices.δ-regular coordinates are distinguished by the
fact that the sum

∑n
k=1 kβ

(k)
q takes its maximal value. It is not difficult to see that

actually we are here only reformulating Remark 4.5. Hence (4.2) immediately implies
the following result.

Proposition 7.11 The symbolNq with the indicesβ(k)
q is involutive, if and only if the

matrixMq+1 of the prolonged symbolNq+1 satisfiesrankMq+1 =
∑n

k=1 kβ
(k)
q .

Remark 7.12 A special situation arises, if there is only one dependent variable, as
thenanyfirst-order symbolN1 is involutive. The symbol moduleN 0 is now an ideal
in P generated by linear polynomials. Using some linear algebra, we may always as-
sume that all generators have different leading terms (with respect to the degree reverse
lexicographic order). Because of the linearity, this implies that all leading terms are rel-
atively prime. It is straightforward to show (in fact, this is nothing but Buchberger’s
first criterion) that allS-polynomials reduce to zero and hence our generating set is a
Gröbner basis. As one easily verifies that the leading terms involutively generate the
leading ideal, we have a Pommaret basis ofN 0 or equivalentlyN1 is involutive.
This observation is the deeper reason for a classification of partial differential equa-
tions suggested by Drach (see [59, Chapt. 5]). Using a simple trick due tohim, we
may transform any differential equationRq into one with only one dependent variable.
If we first rewriteRq as a first-order equation, then the transformed equation will be
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of second order. Only in special circumstances one can derive a first-order equation
in one dependent variables. Thus from a theoretical point of view we may distinguish
two basic classes of differential equations: first-order and second-order equations, re-
spectively, in one dependent variable. The first class is much simpler,as its symbol is
always involutive (like for ordinary differential equations).

Definition 7.13 The differential equationRq is calledinvolutive, if it is formally inte-
grable and if its symbolNq is involutive.

The term “involution” is often used in a rather imprecise manner. In particular, involu-
tion is sometimes taken as a synonym for formal integrability. While Definition 7.13
obviously implies that an involutive equation is also formally integrable, the converse
is generally not true: involution is a stronger concept than formal integrability.

Theorem 7.14Rq is an involutive differential equation, if and only if its symbolNq is
involutive andR(1)

q = Rq.

We omit a proof of this theorem, as it follows immediately from Theorem 7.15 below
and the finiteness of the Spencer cohomology (Theorem 2.20). Checking whether or
not the symbolNq is involutive via the Cartan test (Theorem 3.4 or its alternative for-
mulation Proposition 7.11) requires only computations in orderq andq+1. Obviously,
the same is true for verifying the equalityR(1)

q = Rq. Hence Theorem 7.14 represents
indeed a finite criterion for involution. A closer look at the above developedhomolog-
ical theory yields a finite criterion for formal integrability independent of involution.

Theorem 7.15 The differential equationRq is formally integrable, if and only if an
integerr ≥ 0 exists such that the symbolic systemN defined by the symbolNq and all
its prolongations is2-acyclic at degreeq+ r and the equalityR(1)

q+r′ = Rq+r′ holds for
all values0 ≤ r′ ≤ r.

Proof. One direction is trivial. For a formally integrable equationRq we even have
R

(1)
q+r′ = Rq+r′ for all r′ ≥ 0 and by Theorem 2.20 the symbolic systemN must

become2-acyclic at some degreeq+ r. For the converse, we first note that, because of
Lemma 2.13, the symbolic systemN is trivially 1-acyclic at degreeq. Our assumption
says that in addition the Spencer cohomology modulesHq+s,2(N ) vanish for alls ≥ r.
According to Proposition 2.18, this implies dually that the Koszul homology modules
Hq+s,1(N 0) of the symbol moduleN 0 vanish for alls > r.
Recall from Remark 2.15 that the Koszul homology corresponds to a minimal free
resolution ofN 0 and hence our assumption tells us that the maximal degree of a min-
imal generator in the first syzygy moduleSyz(N 0) is q + r. In Remark 7.4 we have
seen that the syzygies ofN 0 are related to those integrability conditions arising from
generalised cross-derivatives between the highest-order equations. If now the equality
R

(1)
q+r′ = Rq+r′ holds for all 0 ≤ r′ ≤ r, then none of these cross-derivatives can

produce an integrability condition. Furthermore, no integrability conditions can arise
from lower-order equations. HenceRq is formally integrable.
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An abstract proof of this result was given by Goldschmidt [19]. The proof above is
interesting from a computational point of view as it demonstrates that (a generating set
of) the Koszul homology moduleH1(N 0) shows us exactly which generalised cross-
derivatives may produce integrability conditions (Kruglikov and Lychagin developed
recently an alternative approach for the construction of these conditionsbased on multi-
brackets, see [32] and references therein). Of course, we cannot decide solely on the
basis of the symbolNq whether or not these integrability conditions vanish modulo the
equations describingRq, as this depends on the lower-order terms. Therefore, we must
check a finite number of projectionŝπq+r+1

q+r : Rq+r+1 → Rq+r for surjectivity.

Example 7.16 We continue with Janet’s partial differential equationR2 defined by
u33 + x2u11 = u22 = 0. In Example 7.5 above we constructed via the syzygyS1 =
χ2

2e1 − (χ2
3 + x2χ2

1)e2 the integrability conditionu112 = 0. Geometrically, we have
arrived then at the equationR(1)

3 defined by this condition, the original equations and
their formal derivatives. The rows of the principal symbol ofR

(1)
3 generate the ideal

I2 = 〈χ2
3 + x2χ2

1, χ
2
2, χ

2
1χ2〉. Its syzygy module is spanned byS1, S2 = χ2

1e2 − χ2e3

andS3 = χ1
1χ2e1 − x2χ2

2e3. Applying the differential operator corresponding toS2

yields zero, whereasS3 leads to a further integrability condition:u1111 = 0.

Geometrically, we are now dealing with the differential equationR
(2)
4 described by the

two integrability conditions, the original equations and all prolongations up to order4.
The rows of the principal symbolT [χ] define now the idealI3 = I2 + 〈χ4

1〉 and for
its syzygy module we need two further generators, namelyS4 = χ2

1e3 − χ2e4 and
S5 = (χ2

3 + x2χ2
1)e4 − χ4

1e1. One easily checks than none of them leads to a new
integrability condition so thatR(2)

4 is a formally integrable equation.

However,R(2)
4 is not involutive. One way to see this consisting of noting that in the

syzygyS5 the coefficient ofe4 is of degree2. Sincee4 represents a differential equation
of order 4, the corresponding cross-derivative takes place in order6. According to
Remark 7.8, we can always obtain a linear resolution for an involutive symbol. Indeed,
we must prolong here once:R(2)

5 is an involutive equation with vanishing symbol.

Another way to prove this goes as follows. Consider a pointρ ∈ R
(2)
4 wherex2 = a

for some constanta ∈ R and the idealI = 〈(x3)2 + a(x1)2, (x2)2, (x1)2x2, (x1)4〉.
Then one easily verifies that the truncated idealI≥4 is the annihilator of the symbol
comoduleN at the pointρ. For a Pommaret basis ofI we must add the generators
(x2)2x3, (x1)2x2x3 and(x1)4x3. Since the last generator is of degree5, we find that
reg I = 5 and hence according to Remark 4.15 the degree of involution ofN is 5.

8 Conclusions

A central question for any differential equation is the existence of solutions. For for-
mal solutions the existence is equivalent to the formal integrability of the equation. The
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Cartan–K̈ahler theorem(see [42, 53] and references therein) provides us with an ex-
istence and uniqueness theorem for analytic solutions of involutive analyticequations
generalising the classical Cauchy–Kovalevskaya theorem. Comparedwith alternative
approaches like Riquier’s existence theorem, the proof of the Cartan–Kähler theorem
does not require a convergence analysis of power series. This allowsus sometimes to
extend it to larger function spaces (which is very important for applications), if addi-
tional information about the equation is given; a concrete example can befound in [52]
where smooth solutions of hyperbolic systems with elliptic constraints are treated.

For deciding the mere existence of solutions, formal integrability is sufficient. If one
is interested in the size of the solution space (or equivalently in the number and form
of conditions leading to a unique solution), then one needs more information. The
simplest approach (implicitly already exploited by Janet) consists of using acomple-
mentary decomposition of the symbol module for deriving a (formally) well-posed
initial value problem and is trivial for a not only formally integrable but even involu-
tive system. Generally speaking, the main difference between formal integrability and
involution is the same as the one between a Gröbner and a Pommaret basis: the former
one is concerned only with the first syzygy module (i. e.H1(M)), the latter one with
the full syzygy resolution (i. e. the full Koszul homologyH•(M)).

In order to apply such results, it is important that one deals with an involutive dif-
ferential equation. TheCartan–Kuranishi theorem(see again [42, 53] and references
therein) asserts that any differential equationRq satisfying some modest regularity as-
sumptions is either inconsistent or can be completed to an equivalent involutive equa-
tion of the formR

(s)
q+r ; a concrete instance of such a completion process was given

in Example 7.16 for Janet’s equation. The key for proving this result is the observa-
tion that any symbol becomes involutive, if it is sufficiently often prolonged, in other
words the finiteness of the Spencer cohomology (Theorem 2.20). Thepower of the
homological approach to involution becomes evident in its trivial proof.

For concrete computations, a direct application of the Cartan–Kuranishiprocedure be-
comes quickly cumbersome, as it requires an explicit local representation of every
appearing differential equation. In the (small!) Janet example the finalinvolutive sys-
temR

(2)
5 is locally described by44 equations. However, all relevant information can

be extracted from just7 equations corresponding to the Pommaret basis of the symbol
module. In the language of [23] these equations comprise the skeleton ofR

(2)
5 . On

the basis of this notion, [23] presents a hybrid completion algorithm that combines
the algebraic efficiency of Pommaret bases with the intrinsic geometry of the Cartan–
Kuranishi procedure.

For lack of space we could not discuss applications of involutive differential equations
in this contribution. Pommaret [43, 44, 45] presents in his books many applications, in
particular in mathematical physics and control theory. Some applications innumerical
analysis can be found in [53] and references therein. Generally speaking, wherever
under- or overdetermined systems of differential equations appear,the theory of invo-
lution will make any subsequent analysis significantly easier; in many cases such an
analysis will even be impossible without the concept of involution (or at least formal
integrability).
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A Multi Indices

As there exist different kinds of multi indices but apparently no standard names for
them, we must introduce our own terminology. Letx1, . . . , xn be n variables. For
various constructions with them, we distinguish in this article between multi indices
and repeated indices. Amulti indexis an elementµ = [µ1, . . . , µn] ∈ Nn

0 ; the value
|µ| = µ1+· · ·+µn is its length. A typical use of a multi index isxµ = (x1)µ1 · · · (xn)µn

or for a functionu = u(x1, . . . , xn)

∂|µ|u

∂xµ
=

∂|µ|u

∂(x1)µ1 · · · ∂(xn)µn
. (A.1)

We furthermore defineµ! = µ1! · · ·µn!. If k is the smallest value such thatµk 6= 0, we
call it theclassof the multi indexµ and writeclsµ = k.
By convention, we introduce for the special multi index0 = [0, . . . , 0] thatx0 = 1 and
∂|0|u/∂x0 = u. Obviously,0! = 1 and|0| = 0. In principle,cls 0 is undefined, but in
many situations it is convenient to setcls 0 = n. Other special multi indices appearing
occasionally are

ℓi = [0, . . . , 0, ℓ, 0, . . . , 0] (A.2)

whereℓ ∈ N is theith entry and all other entries vanish. The addition of multi indices
is defined componentwise, i. e.µ+ ν = [µ1 + ν1, . . . , µn + νn]. If we want to increase
theith entry of a multi indexµ by one, we can thus simply writeµ+ 1i using (A.2).
A repeated indexof lengthq is an ordered sequenceI = (i1, . . . , iq) where each entry
ik is an element of{1, . . . , n}. NowxI is a shorthand for the productxi1xi2 · · ·xiq and
correspondingly for partial derivatives. Obviously, here the ordering of the entries does
not matter. However, our main use of repeated indices is for exterior forms where the
ordering determines the sign. In fact, there we only consider indicesI = (i1, . . . , iq)
with i1 < i2 < · · · < iq, i. e. all entries are different and sorted in ascending order.
If I, J are two such repeated indices, thenI ∪ J denotes the index obtained by first
concatenatingI andJ and then sorting the entries. Obviously, this only yields a valid
result, if I andJ have no entries in common. We setsgn (I ∪ J) = ±1 depending on
whether an even or odd number of transpositions is required for the sorting. If I andJ
have entries in common, we setsgn (I ∪ J) = 0; this convention is useful to avoid case
distinctions in some sums.

B Term Orders

Term orders are crucial for the definition of Gröbner bases and thusof involutive bases.
As some of our conventions are inverse to those usually used in commutative algebra,
we collect them in this short appendix.
Let P = k[x1, . . . , xn] and define the set oftermsT = {xµ | µ ∈ Nn

0}. Recall that a
term orderis a total order≺ onT satisfying (i)1 � t and (ii) r ≺ s ⇒ rt ≺ st for all
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r, s, t ∈ T. A term order isdegree compatible, if deg s < deg t impliess ≺ t. Finally,
we say that a term orderrespects classes, if deg s = deg t and cls s < cls t implies
s ≺ t.

We define now thelexicographicorder byxµ ≺lex x
ν , if the last non-vanishing entry of

µ− ν is negative. With respect to thereverse lexicographicorder,xµ ≺revlex x
ν , if the

first non-vanishing entry ofµ− ν is positive. The latter one is not a term order, as1 is
not the smallest term, but its degree compatible version is a term order:xµ ≺degrevlexx

ν ,
if |µ| < |ν| or if |µ| = |ν| andxµ ≺revlex x

ν .

Here we defined the orders inverse to the usual convention in most texts on Gröbner
bases: the classical forms arise, if one inverts the order of the variables: x1, . . . , xn 7→
xn, . . . , x1. Our version fits better to the conventions used in differential equations
theory, in particular to our definition of the class of a multi index.

Lemma B.1 Let ≺ be degree compatible and the conditionlt f ∈ 〈x1, . . . , xk〉 be
equivalent tof ∈ 〈x1, . . . , xk〉 for any homogeneous polynomialf ∈ P, then≺ is the
degree reverse lexicographic order≺degrevlex.

The proof of this well-known characterisation lemma is left as an easy exercise to the
reader. We note the following simple consequence of it: on terms of the same degree
any class respecting term order coincides with the degree reverse lexicographic order.

C Coalgebras and Comodules

Since the notion of a coalgebra and a comodule is still unfamiliar to many mathemati-
cians, we collect here the basic definitions and properties; for an in depthtreatment
we refer to [7]. Roughly, the idea behind coalgebras is the inversion of certain arrows
in diagrams encoding properties of the multiplication in an algebra. Thus, ifA is an
algebra over a fieldk, then the product is a homomorphismA ⊗ A → A and the unit
may be interpreted as a linear mapk→ A. Correspondingly, acoalgebraC over a fieldk is a vector space equipped with acoproduct, a homomorphism∆ : C → C ⊗C, and a
counit, a linear mapǫ : C → R. The associativity of the product in an algebra and the
defining property of the unit dualise to the requirement that the diagrams

C ⊗ C ⊗ C C ⊗ C
∆⊗idCoo C ⊗ C

ǫ⊗idC

wwooooooo idC⊗ǫ

''OOOOOOOk⊗ C C ⊗ k
C ⊗ C

idC⊗∆

OO

C
∆oo

∆

OO

C

∆

OO

γ

ggOOOOOOOOO γ

77ooooooooo

(C.1)

(whereγ mapsc ∈ C to 1 ⊗ c or c⊗ 1, respectively) commute.
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Analogously,C-comodules arise from dualisingA-modules: a (right)comoduleis a
vector spaceN with acoactionρ : N → N ⊗ C such that the two diagrams

N
ρ

//

ρ

��

N ⊗ C

idN⊗∆

��

N
ρ

//

idN ""F
F

F
F

F
F

F
F

F
N ⊗ C

idN⊗ǫ

��
N ⊗ C

ρ⊗idC

// N ⊗ C ⊗ C N

(C.2)

commute. A special case is acoidealN ⊆ C where the coaction is the coproduct∆.
The subcomoduleL ⊂ N cogeneratedby a setG ⊆ N is by definition the intersection
of all subcomodules ofN containingG.
The linear dualC∗ of a coalgebraC has a natural algebra structure via theconvolution
product⋆. It is defined for arbitrary elementsφ, ψ ∈ C∗ by requiring that the relation

〈φ ⋆ ψ, c〉 =
〈
φ⊗ ψ,∆(c)

〉
(C.3)

holds for allc ∈ C. The unit element ofC∗ is simply the counitǫ. If N is aC-comodule
with coactionρ, then its dual spaceN ∗ is naturally a rightC∗-module with the action
ρ∗ : N ∗ ⊗ C∗ → N ∗ defined in similar manner by requiring that the relation

〈
ρ∗(ν, ψ), n

〉
=

〈
ν ⊗ ψ, ρ(n)

〉
(C.4)

holds for allν ∈ N ∗, ψ ∈ C∗ andn ∈ N . For arbitrary subsetsL ⊆ N we define in
the usual manner theannihilator L0 = {ν ∈ N ∗ | ν(ℓ) = 0 ∀ℓ ∈ L} ⊆ N ∗. Similarly,
for any subsetL∗ ⊆ N ∗ the annihilator is(L∗)0 = {n ∈ N | λ(n) = 0 ∀λ ∈ L∗} ⊆ N .
One can show that ifL ⊆ N is a subcomodule, thenL0 ⊆ N ∗ is a submodule, and
conversely ifL∗ ⊆ N ∗ is a submodule, then(L∗)0 ⊆ N is a subcomodule.
If V is a finite-dimensional vector space, then the tensor algebraTV can be given the
structure of a coalgebra with the coproduct

∆(v1 ⊗ · · · ⊗ vq) =

q∑

i=0

(v1 ⊗ · · · ⊗ vi) ⊗ (vi+1 ⊗ · · · ⊗ vq) . (C.5)

and the counitǫ : TV → k which is the identity onT0V and zero everywhere else. This
coalgebra structure is inherited by the symmetric algebraSV defined in the usual way
as a factor algebra ofTV. We denote the symmetric coalgebra bySV.
If {x1, . . . , xn} is a basis ofV, then we may use as basis of the symmetric coalgebra
SV all monomialsxµ with a multi indexµ ∈ Nn

0 providing the well-known isomorphy
of SV with the polynomial algebrak[x1, . . . , xn]. In this basis the coproduct ofSV is
given by “Taylor expansion”

∆(f) =
∑

µ∈Nn
0

1

µ!

∂|µ|f

∂xµ
⊗ xµ (C.6)

for any polynomialf ∈ k[x1, . . . , xn]
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By definition, a subsetJ ⊂ SV is a coideal, if and only if∆(J ) ⊆ J ⊗ C which, by
(C.6), is equivalent to the condition∂|µ|f/∂xµ ∈ J for all f ∈ J . Similarly, a subset
N ⊆ (SV)m is a subcomodule, if and only if this condition holds in each component.
Let F ⊂ SqV be a finite set of homogeneous polynomials of degreeq. We are inter-
ested in the homogeneous coidealJ cogenerated byF . Obviously, we must take for
Jq thek-linear span ofF . In a given basis{x1, . . . , xn} of V, we set for0 < r ≤ q

Jq−r =
{∂|µ|f
∂xµ

| f ∈ Jq, µ ∈ Nn
0 , |µ| = r

}
. (C.7)

It is easy to see thatJ =
⊕q

r=0 Jr satisfies∆(J ) ⊆ J ⊗ C and that it is the smallest
subset ofSV containingF with this property. Note that, in contrast to the algebra case,
we obtain components of lower degree andJ is finite-dimensional as vector space.
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[48] C. Riquier,Les Systèmes d’Équations aux Derivées Partielles, Gauthier-Villars, Paris, 1910.
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