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1 Introduction

A key notion in the theory of general (i. e. including under- or overdeieed) sys-
tems of differential equations is involution. As we will see it may be undedsts a
simultaneous abstraction and generalisation of Grobner bases forgpoigl ideals to
differential equations (without any restriction to linear or polynomial syste With-
out the concept of involution (or some variation of it like passivity in JaRejuier
theory [27, 48] or differential Grobner bases [37]), one camprove general existence
and uniqueness theorems like the Cartan—Kahler theorem.

Work supported by EU NEST-Adventure grant 5006 (GIFT).
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The terminology “involutive” appeared probably first in the 19th centoithe analysis
of overdetermined systems of first-order linear differential equatiore unknown
function. Nowadays these works are subsumed by the Frobeniusthaehich is
usually treated in differential geometry (where one still has the notion afvatutive

distribution) and no longer in differential equations theory. The firstglete theories
of arbitrary differential equations were reached in the early 20th cemtitih the Janet—
Riquier and the Cartan—Kabhler theory [6, 9, 24, 29], the latter onedtated in the
language of exterior differential systems (Cartan also provided aréliffial equations
version for linear first-order systems in [8]).

The Janet—Riquier theory is completely based on local coordinate cotiopstand
requires the introduction of a ranking in analogy to the term orders useéfioed
Grobner bases. By contrast, the Cartan—Kabhler theory is in principiasic, but in

the classical approach the decision whether or not a given exterierefifial system
is involutive requires for the so-called Cartan test at least the introduofienlocal

basis on the tangent bundle which is often done via coordinates.

Only much later it was realised that Cartan’s test is actually of a homologatate.

The homological approach to involution was mainly pioneered by SpgbZérand

collaborators [18, 19, 46]; later discussions can be found e. g. itQf612, 28, 32, 30,
34, 36, 38, 42]. However, one should mention that the Spencer cabgynappeared
first not in the context of differential equations but in deformation ti¢56].

This contribution is largely a review; most results are well-known to spetsali$ow-

ever, these specialists are divided into two classes: many experts inrthal theory

of differential equations are familiar with Spencer cohomology but mlesks with

commutative algebra; conversely, few experts in commutative aldeloa the formal

theory. This clear division into two communities is the main reason why eleenen-

tary facts like that the degree of involution and the Castelnuovo—Mum#gayd|arity

coincide have remained unnoticed for a long time. It is our hope that tticdeamay

help to bridge this gap.

Some novel aspects are contained in the use of Pommaret basesnt&esan partic-
ular Chapter 5 (parts of this material is also contained in [22]). While weoddiscuss
here any algorithmic aspects (this is done in [22]), it should be mentioradyhre-

lating concepts like involution or the Castelnuovo—Mumford regularity to Paretn
bases, we make them immediately accessible for effective computations.

The article is organised as follows. The next chapter introduces axiattice poly-

nomial de Rham complex and its dualisation, the Koszul complex. Thec8peoho-

mology and the Koszul homology of a (co)module arise then by (catampwith the

(co)module. Since the symmetric algebra is Noetherian by Hilbert's basisa, it is

straightforward to prove a number of finiteness statements for the 8pesitcomology
via dualisation to the Koszul side which are otherwise quite hard to obtaireihs
that the duality between the Spencer cohomology and the Koszul homwhgyjirst

noted by Singer and Sternberg [55] (but see also [46, Lemma 5t )attributed it to
private discussions with Grothendieck and Mumford. An independettfpvas later
given by Ruiz [49]. The chapter closes by defining involution as the amsof the

Spencer cohomology (or the dual Koszul homology, resp.).

Chapter 2 is concerned with the Cartan test for deciding whether a syngysliem

is involutive. It represents a homological reformulation of the classizatan test in
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the theory of exterior differential systems and is due to Matsushima [§9We then

discuss the dual version of the Cartan test developed by Serre in a [gemded to
[21]. While the notion of involution is intrinsically defined, any form of Cartaest

requires the introduction of coordinates and it turns out that in certaid™t@ordinate

systems the test fails. This problem is known under the naroequasi-regularity and
appears in all versions of the Cartan test.

Chapter 4 recalls briefly the notion of an involutive basis for a polynomigdliavith
particular emphasis on Pommaret bases. Involutive bases repeespacial kind of
Grobner bases with additional combinatorial properties; they werednted by Gerdt
and Blinkov [15] combining ideas from the Janet—Riquier theory of diffiial equa-
tions with the classical theory of Grobner bases. It is shown that tharzoet basis
with respect to the degree reverse lexicographic order contains ntracyusal infor-
mation. This chapter essentially summarises some of the results of [51].

Most invariants that can be read off from a Pommaret basis are ahalbgical nature.
Therefore we study in Chapter 5 the relation between the Pommaret fasibe
degree reverse lexicographic order) of an ideahd the Koszul homology of the factor
algebraP /Z in more detail. The presented results only scratch at the surface of this
question. Itis a conjecture of us that for Pommaret bases the Schregerem can be
significantly generalised so that it yields explicit bases for the whole Kd&zuaology

and not only for the degree-part. This entails that in contrast to general Grobner bases
this special kind of bases is to a large extent determined by the structtive iofeal.

The last two chapters demonstrate how the algebraic theory developezprettious
chapters can be applied to general differential equations. For thisgeirp differential
equation is defined geometrically as submanifold of a jet bundle. Theafoedtal
identification leads to a natural polynomial structure in the hierarchy ofjetles.
It allows us to associate with each differential equation a symbolic systeduédly
a polynomial module) so that involution can be effectively decided withfany of
Cartan’s test. We also discuss winacyclicity implies formal integrability; going to
the Koszul side this becomes an elementary statements about syzygies.

Finally, some conclusions are given. Two small appendices fix thensations con-
cerning multi indices and term orders, respectively. A slightly largeeagjx gives an
introduction to coalgebras and comodules.

2 Spencer Cohomology and Koszul Homology

Let V be ann-dimensional vector space over a fiélg over) one has the symmetric
algebraSV and the exterior algebrA). We introduce two natural complexes based
on the product space$,V ® A,V. Any element of such a space may be written as a
k-linear sum of separable elements, i. e. elements of the farm- w, @ v1 A --- A v,

with w;, v; € V. By convention, we sef;V = 0 for j < 0.

1For simplicity, we assume throughout théiar k = 0.
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Definition 2.1 For any integer > 0 the complex

§ § 5
0 —= SV —= S VeV — = S, V@AY — > -
(2.1)
5

— S W VOAY —— 0

where the differentiad is defined by

q
5(w1---wq®v1/\---/\vp):Zwl---ﬂ)\i---wq®wi/\v1/\---/\vp (2.2)
i=1

is called thgpolynomial de Rham complék. (SV) at degree: over the vector space.
TheKoszul complexX,.(SV) at degree: overV is given by

0 )
00— S WVOAY —= S, 1 VRA, 1V —— -
(2.3)
)

SV 0

where now the differentiad is defined as

p
O(wr -+ wg @VI A~ Avp) :Z(—l)“‘lwl---wqw@vl/\---/\z’)}/\---/\vp . (2.4)
i=1

It is trivial to verify that, due to the skew-symmetry of the wedge prodti,differ-
entials satisfyi? = 0 ando? = 0, so that we are indeed dealing with complexes.

Let {z!,...,2"} be a basis ob. Then a basis of the vector spasg) is given by
all termsa# with 1 a multi indexX of lengthq. For a basis of the vector spaggV
we use the following convention: |dt be asortedrepeated index of length, i.e.
I=(i1,...,ip) With 1 <y < iy < --- < i, < n; then we writex! for z* A --- Az
and the set of all such “terms” provides a basig\g¥’. With respect to these bases, we
obtain the following expressions for the above differentials:

Szt @al) = Z sgn ({i} U I),uix“_li @ il (2.5)
i=1
and )
8(]}“ ® J,‘I) — Z(_l)j—Q—lm/H—hj ® xI\{H} ] (26)
j=1

Formally, (2.5) looks like the exterior derivative applied to a differentidbrm with

polynomial coefficients. This observation explains the name “polynodeaRham
complex” for (2.1) and in principle one should use the usual synilfot the differen-
tial but the notatiod has become standard.

2The hat signals that the corresponding factor is omitted.
3See Appendix A for the used conventions on multi indices.
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Remark 2.2 While the de Rham differentialindeed depends on the algebra structure
of the exterior algebra V), it exploits only the vector space structure of the symmetric
algebraSy. Thus we may substitute the symmetric algelia by the symmetric
coalgebrd GV and definey on the components of the fr&&)-comoduleGY @ AV,
since both are identical as vector spaces. It is not difficult to verify witt this
interpretation the differentiad is a comodule morphism. In fact, we will see later
that in our context this comodule interpretation is even more natural. lneadbat
surprising that this point of view was introduced only very recently in [38dr the
Koszul differentiald we have the opposite situation: we need the algébtédut only
the vector spacdV. Thus one could similarly\V replace by the exterior coalgebra,
however, this will not become relevant for us.

Lemma 2.3 We havg§ o 0+ 00 d)(w) = (p+ q)w forall w € S,V @ A, V.

Proof. Forw = wy -+ wy, ® v1 A -+ - A v, One readily computes that

q
(006)(w) =qw—!—ZZ(—l)jwl---@;---quj®w7;/\v1/\---/\'6}/\---/\vp 2.7)

i=1 j=1

and similarly
(600)(w) = pw+22(—1)j+1w1 S Wy WU QW AU A AT A Ay (2.8)

which immediately implies our claim. |

Proposition 2.4 The complexe®, (SV) and K,(SV) are exact for all valueg > 0.
For ¢ = 0 both complexes are of the forin— k — 0.

Proof. This is an immediate consequence of Lemma 2.3. It implies thag for 0
the mapo induces a contracting homotopy fé&,(SV) and conversely for K,(SV)
connecting the respective identity and zero maps. It is well-known thagxistence
of such a map entails exactness. |

For the polynomial de Rham complex, this result is also known afotineal Poincaé
Lemma as one may interpret it as a special case of the Poincaré Lemmarferaj
differential forms. We consider the complexBs(SV) and K,(SV) as homogeneous
components of complexd’(SV) and K (SV) over theSV-modulesSY ® A;V. Since
SoV = k, we find that the Koszul complek (SV) defines a free resolution of the
ground fieldk. Similarly, the polynomial de Rham complé¥(SV) may be considered
as a free coresolution &.

The polynomial de Rham and the Koszul complex are related by duality4Ri&b5].
Recall that we may introduce for any complexf@fmodules its dual complex obtained
by applying the functoHomz (-, R). In the case of finite-dimensional vector spaces,
it is well-known that the homology of the dual complex is the dual spaceeofdino-
mology of the original complex.

4See Appendix C for some information about coalgebras anddatas.
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Remark 2.5 There exists a canonical isomorphisin(V*) = (S,V)*: any separable
elementyp; - - - ¢, € S,(V*) is interpreted as the linear map SRV obtained by setting

(61 dq) (01 ZH@ Un(i)) (2.9)

TES, =1

wheresS, denotes the symmetric group of all permutationg of. ., ¢. The same con-
struction can be applied to exterior products and thus we can extend tmaican
isomorphismS,(V*) @ A,(V*) = (S,V @ A,V)*.

At the level of bases, this isomorphism takes the following form. We deagéen
by {z!,...,2"} a basis ofv and by{y:, ..., y.} the corresponding dual basis Bf.
Then the monomials* with |u| = ¢ form a basis of5,V and similarly the monomials
y, = y)'" -yl with |u| = ¢ form a basis o5, (V*). However, these two bases aat
dual to each other, since according to (29)=") = u!d},. Thus the dual basis consists
of thedivided powers-. For the exterior algebra no such combinatorial factor arises,
as the evaluation of the expression corresponding to the right hand fs{@ep on
basis vectors yields only one non-vanishing summand.

Another way to see that the dualisation leads to the divided powers is baste o
coalgebra approach of Remark 2.2. If we substitute in the definition qfdhygmomial
de Rham complex the symmetric algebfe by the symmetric coalgeb@&), then the
dual algebra iS(V*) and evaluation of the convolution product (C.3) leads to (2.9).

Proposition 2.6 (R(SV)*,6*) is isomorphic to( K (S(V*)),9).
Proof. There only remains to show thatis indeed the pull-back of. Choosing the

above described dual bases, this is a straightforward computationefBytion of the
pull-back,

p vjsgn ({j TETER
a*(%w)w@w:{ﬂg ({73u) 'HJ'{I={J‘}UJ}’ (2.10)

0 otherwise.

Note that; = 4 if = v — 1;; hence we find that

p
,U. ® y Z ]+1 ,U.+1 yI\{71} ) (211)
Jj=1
Comparison with (2.6) yields the desired result. a

For reasons that will become apparent in Chapter 7 when we apply theéesloped
algebraic theory to differential equations, we prefer to consider thelaomplex
over the vector spacg and the polynomial de Rham complex over its dual space
Thus we will always use?(S(V*)) and K(SV). If U is a further finite-dimensional
vector space ovek with dim#/ = m, then we may extend to the tensor product com-
plex R(S(V*) @ U) = R(S(V*)) ® U and dually toK (SV ®@ U*) = K(SV) @ U*.
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Everything we have done so far remains valid with trivial modificationghadiffer-
entials of the complexes are essentially unaffected by this operation. aBgsane
must only add a factos € U (or v € U*, respectively) to each equation and consider
all our computations above as componentwise.

Definition 2.7 Let N, C S,(V*) ® U be an arbitrary vector subspace. (fisst) pro-
longationis the subspace

Ngi ={f € Sqr1(V)@U | 5(f) e Ny @ V*} . (2.12)

A sequence of vector subspadg€, C S,(V*) @ U)
overV*, if V11 C N, forall ¢ € No.

4N, 1S called asymbolic system

We may equivalently introduce the prolongation as
N1 = (VAN N (Sg1 (V) @U) (2.13)

with the intersection understood to take plac®im (S, (V*)&uf). This follows imme-
diately from the definition of the differential The extension to higher prolongations
Ny C Sy4(V*) @ U proceeds either by inductio,, 1 = (V)1 forallr € N,

or alternatively by generalising (2.13) 16, = (Q._, V* @ Ng) N (S (V*) @ U)
where the intersection is now understood to take pla@jn, V* @ (S,(V*) @ U).

The notion of a symbolic system is fairly classical in the formal theory dédéhtial
equations (see Proposition 7.6). The next result shows, howewatrif tive take the
coalgebra point of view of the polynomial de Rham complex mentioned idRie2.2,
then a symbolic system is equivalent to a simple algebraic structure.

Lemma 2.8 Let (N, ).en, be a symbolic system. TheWi = @2 N, is a graded
(right) subcomodule of the fre®(V*)-comoduleS (V*) @ U. Conversely, the sequence
(Ny)qen, Of the components of any graded (right) subcomodleC &(V*) @ U
defines a symbolic system.

Proof. Let (V,),en, be a symbolic system anfl € N,. Thenéf € MV,_; @ V and
hencedf/0z" € N,_, forall 1 < i < n, since our differentiab is just the exterior
derivative. Using induction we thus find thait!l f /0z* € N, for all u with || = 7.

By the definition of the polynomial coproduct, this is equivalenity) € V'@ &(V*)

and henceV is a subcomodule. For the converse, we simply revert every step of this
argument to find thal (f) € N @ &(V*) implies that\, C N, ; forall¢g > 0. O

Example 2.9 Let V be a two-dimensional space. The subspadgs= k, N; = V*
and N, = (y) C S,(V*) for ¢ > 2 define a symbolic system wheré, ; = N 41
for all ¢ > 2. Indeed, ifk + ¢ = ¢, thend(y}ys) = vi'v5 @ y1 + yhys ' @ y2 SO
that the result lies ioV,_; @ V* only for ¢ = 0. We will see later that this symbolic
system is associated with partial differential equations of the fesn= F(x,u"),
u12 = G(x,uM) where the shorthand9’ denotes the unknown functiandepending
onx = (z!,2?) and all its derivatives up to order
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Another simple symbolic system over the same dual sp#cis given by N, = k,

N =V No = S (V*), N3 = (yiy2, 1193), Na = (yiy3) andN, = 0 forall g > 5.

This system is related to partial differential equations of the fapm = F(x, u(?),

uin = G(x,u®). One can show that any such equation has a finite-dimensional
solution space and this fact is reflected by the vanishing of the associatdublec
system beyond a certain degree.

From now on, we will not distinguish between a symbolic syst&f),cn, and the
corresponding subcomodul C G(V*) ® U. We are particularly interested in subco-
modules\ where almost all components, are different from zero (i. e. as a vector
spaceV is infinite-dimensional). Recall that it follows immediately from the definition
of the polynomial coproduct that cogenerationdigy*) always leads to elements of
at most the same degree as the cogenerator; hence a finitely cdgdremmodule is
necessarily finite-dimensional as vector space. However, the duatieberS (V™)
andSV yields easily the following result.

Corollary 2.10 Let (N, ).en, be an arbitrary symbolic system. There exists an integer
ro > 0 such thatV,. 11 = N, forall » > ro.

Proof. It is well-known that the annihilatok® C SV ® ¢/* is anSV-submodule. Now
N;41 € N1 implies that any minimal basis df"® contains at least one generator of
degreer. Since, by Hilbert's Basis Theorem, any polynomial ring in a finite nunaber
variables and hence also the symmetric algebvas Noetherian, an upper boung
for such values exists. d

By this corollary, we may consider symbolic systems as a kind of finitelgcerated

“differential comodules”: since the truncated comoddle,, is a finite-dimensional

vector space, it is obviously finitely cogenerated and by repeated pgations of the

component\,,, we obtain the remainder of the comodWlé Thus we conclude that
every symbolic system is uniquely determined by a finite number of elements

Definition 2.11 Let A/ be a graded comodule over the coalgebra= G(V*). lts
Spencer complef (), ) is the cotensor produttomplex\' K¢ R(S(V*)). The
Spencer cohomologyf V is the corresponding bigraded cohomology; the cohomology
group at\V, ® A, (V*) in (Ry4p(N),6) is denoted by %7 (N).

SinceN X C = N for any C-comoduleV, the components of the cotensored com-
plex V' K¢ R(S(V*)) are indeed just the vector spacks ® A,(V*). We are mainly
interested in the special case ti\dtis a subcomodule of a free comodules ¢/ and
then the differential in the Spencer compl&x\’) is simply given by the restriction
of the differentials in the polynomial de Rham complek(&(V*)) to the subspaces
N, @ Ap(V*) € 6,(V*) @ A, (V*) @ U, this observation explains why we keep the
notationé for the differential. One can also verify by direct computation that this re-
striction makes sense whenevgY, ),cn, defines a symbolic system (this is basically
the same computation as the one showing the equivalence of the two dedifziha)

5The definition of the cotensor produs; over a coalgebra is dual to the one of the usual tensor product;
it was introduced by Eilenberg and Moore [13].
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and (2.13) of the prolongation); in fact, this restriction is the classicatcagmh to
define the Spencer complex.

Remark 2.12 It is important to note here that the Spencer cohomology is bigraded.
If we ignore the polynomial degree and consider only the form degveebtain the
modulesH?(N) = @3‘;0 H*P(N). For these, another point of view is possible. Since
any free comodule is injective, we have exactly the situation of the definifiootor-
sion we are given an injective coresolution (kf and cotensor it with a comodule.
Thus we may consider the Spencer cohomology as the right derinetbfuof V' X -
and identifyH?(N') = Cotorfh (N, k).

As for arbitrary derived functors, the definition @fotor?. (N, k) is independent of
the coresolution used for its computation or, more precisely, the resulsmeld with
different coresolutions are isomorphic. However, given some otlagrto explicitly
determineCotor? (N, k), say via a coresolution of/, it may be a non-trivial task to
recover the bigrading of the Spencer cohomology.

Lemma2.13 Let ' C &(V*) ® U be a symbolic system. Theén-°(A) = 0 and
dim H4~ M1 (N) = dim (NVy—1,1/Ng) forall ¢ > 0.

Proof. The first claim follows immediately from the formal Poincaré Lemma f#ero
sition 2.4). For the second claim consider a non-vanishing elefhentV;,_; ; \ N,.
Theng = §f € ker 5|Nq_1®v* and, because of the formal Poincaré Lemma# 0.
However, by constructiony ¢ im |, and hence we find # [g] € HI=LY(N). This
implies immediately the inequaliim 79~ (N) > dim (N;—1,1/N). Conversely,
consider an arbitrary non-vanishing cohomology clgés H?~11(N). Again by the
formal Poincaré Lemma, an elemefitc &,(V*) ® U exists such thay = 6 f and,
by definition of the prolongationf € A,_1 1 \ AV,. Thus we also have the opposite
inequalitydim H7~ "1 (V) < dim (NVy—1,1/Nj). a0

Note that Corollary 2.10 implies th&t?! (') = 0 for a sufficiently high degreeg. Du-
alisation of Definition 2.11 leads to the following classical construction in catative
algebra with a polynomial module.

Definition 2.14 Let M be a graded module over the symmetric algeBra= SV.

Its Koszul compleX K (M), d) is the tensor product complext ®p K(SV). The
Koszul homologyf M is the corresponding bigraded homology; the homology group
at M, ® A,V is denoted byH, ,(M).

Remark 2.15 We observed already above that the Koszul complex defines a fee re
lution of the fieldk. Hence, as for the Spencer cohomology, we may take another point
of view and consider the Koszul homology as the right derived functot @p -.
According to the definition of the torsion modules, this leads to the identification
H,(M) = @2‘;0 Hyp(M) = TorZ,’(M, k) where we considek as aP-module. But
again this interpretation ignores the natural bigrading of the Koszul coniplé1).

An alternative way to comput@orf(/\/l, k) consists of using a free resolution of the
moduleM. If ¥ — M — 0 is such a resolution, then the Koszul homoldgyM) is
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isomorphic to the homology of the tensor product comptexr k. Each component in

F is of the formP™ and thereforé®™ @ k = k™. Now assume that we actually have
aminimalresolution. In this case all differentials jf possess a positive degree and it
follows from theP-action onk that the induced differential on the compléxzp k is

the zero map. Hence we find thE} (M) = F @ k anddim H,(M) is just thepth

Betti number ofM. In this sense we may say that the Koszul homology corresponds
to a minimal free resolution.

Lemma 2.16 Let M be a gradedP-module. Thert, (M) = M,/VM,_; and thus
dim H, o(M) gives the numbers of generators of degyéie any minimal basis of\1.
Furthermore,

Hgn(M) = {me M, |Ann(m)=5,V}. (2.14)

Proof. The first assertion follows trivially from the definition of the Koszul honglo
Elements ofH, (M) are represented by cycles i, ® A, V. If {z!,... 2"} is a
basis of), these are forms = m®a! A---Az™ and the conditiodw = 0 is equivalent
tozim=0for1<i<n. O

Lemma 2.17 Let M be a gradedP-module. Multiplication by an arbitrary element
of S,V induces the zero map on the Koszul homol&gyM).

Proof. We first observe that ib € M, ® A,V is a cycle, i.edw = 0, then for any
v € V the formuw is a boundary, i. evw € im 9. Indeed,

I(vAw) =—vA (Qw) +rvw =W . (2.15)

Sinced is SV-linear, this observation remains true, if we taked@mn arbitrary element
of 5.V, i.e. a polynomial without constant term. a

Each subcomoduld’ € &(V*) @ U induces a submodulgt = N° C SV @ U*, its
annihilator. Conversely, the annihilator of any submodeC SV ® U/* defines a
subcomoduleV = M° € &(V*) @ U. In view of the duality between the polynomial
de Rham and the Koszul complex, we expect a simple relation betweempémnees
cohomologyH*(/N') of the comoduleV and the Koszul homolog¥, (A°) of its an-
nihilator A/°.

Such a relation is easily obtained with the help of he&module N * dual toN. If we
take the duak* : ((6(V*) @ U)/N)" — (&(V*) @U)" = SV @ U* of the canonical
projectionw : S(V*) @ U — (6(V*) @ U) /N, thenim=* = N°. Like for any map,
we have forr the canonical isomorphisaoker (7*) 2 (ker 7)* = N* and hence may
identify A with the factor modulé SV @ t/*)/N°.

Proposition 2.18 Let N/ C &(V*) @ U be a symbolic system. Then for al> 0 and
I1<p<n
(HTP(N))" = Hyp(N7) = Hyt1,p-1(N?) (2.16)

where the second isomorphism is induced by the Koszul differéntial



Chapter 2 Spencer Cohomology and Koszul Homology 11

Proof. The first isomorphism follows from Proposition 2.6. For the second weae
note that the considerations above lead to the short exact sequence

0 N0 s SV QU — N 0 (2.17)

where the first map is the natural inclusion and the second one the cahomajection.
Tensoring with the vector spacg,V is a flat functor and hence does not affect the
exactness so that we obtain a short exact sequence of Koszul gesiple

0 —= K(N°) = K(SVoU*) —= KN*) —= 0. (2.18)

Since K (SV ® U*) is exact in positive exterior degree, the long exact homological
sequence for (2.18) yields an isomorphisfp(N*) — H,_1(N°). Furthermore, as
the maps in the exact sequence (2.17) are so simple, it follows straigattily from

the construction of the connecting homomorphism that this isomorphism useadd
by the Koszul differentiab. Hence, taking the bigrading into account, we obtain an
isomorphismH, ,(N*) — Hyi1p-1(NO). a

Remark 2.19 From a computational point of view, it is often more convenient to work
with the annihilator\V® instead of the dual modulg™. The way we proved the lemma
gave the isomorphism only in one direction. However, Lemma 2.3 allovis dsrive
easily an explicit expression for the inverse.

Letw € Ny ® A,V be acycle and € S,V ® A,V @ U* an arbitrary form such that
7(0) = w. Thendw = 0 implies thato = 0o € NV, , ® A,_1V. Now the isomorphism
used in the proof above simply majpg — [©]. For the inverse we note that, by Lemma
2.3,60 = (p+q)w —9(dw) and hencg 1-dw] = [0]. But this implies that the inverse
of our isomorphism is given by the map] — [ﬁw(éw)].

For our purposes, the most important property of the Spencer cologmis the fol-
lowing finiteness result obviously requiring the bigrading. A direct prwotild prob-
ably be not easy, but the duality to the Koszul homology (Proposition) 2/i@&vs us
to restrict to the dual situation where the finiteness is a trivial corollary torhar.17.

Theorem 2.20 Let A/ C &(V*) ® U be a symbolic system. Then there exists an integer
qo > 0 such thatH%?(N) = 0 forall ¢ > qo and0 < p < n. Dually, let M be a
finitely generated graded polynomial module. Then there exists an injgget such
that H, ,(M) =0forall ¢ > go and0 < p < n.

Proof. As mentioned above, it suffices to consider the case of a polynomiallendd.

The cycles inM ® A,V form a finitely generatedV-module. Thus there exists an
integerqgy > 0 such that the polynomial degree of all elements in a finite generating set
of itis less thany,. All cycles of higher polynomial degree are then linear combinations
of these generators with polynomial coefficients without constant teBgd_emma
2.17, they are therefore boundaries. Heftg,(M) = 0 for all ¢ > ¢o. d
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Definition 2.21 The degree of involutiorof the &(V*)-comodule is the smallest
valuegq, such that/4?(N) = 0 forall ¢ > ¢ and0 < p < n = dim V. More generally,
we say thatV is s-acyclicat degregy, for an integeid < s < n, if H%?(N) = 0 for
all g > ¢o and0 < p < s. A comodule that isi-acyclic at degregy is calledinvolutive
at degreegyy. Dually, we call anSV-module M involutive at degreey, if its Koszul
homology vanishes beyond degige H, ,(M) = 0 for all ¢ > go and0 < p < n.

With this terminology we may formulate Lemma 2.13 as follows: if the symbolic
system/\ is such that its annihilataN® is generated in degree less than or equal
to rg, then\ is 1-acyclic at degree, and if conversely is the smallest degree at
which A/ is 1-acyclic, then any generating set &f° contains an element of degree
ro or higher. We will see later in Theorem 7.15 thagcyclicity is very important
for checking formal integrability. It follows trivially from the definition thé#t A is
involutive at some degreg, then it is also involutive at any higher degree .

For complexity considerations, it is of great interest to bound for argdmodule\

or moduleM, respectively, its degree of involution. In our applications to differential
equations we will be mainly concerned with the special casethat a submodule of a
free SV-module of rankmn generated by homogeneous elements of degr&sveeney
[61, Corollary 7.7] derived for this situation a bougdiepending only on the values of
n, m andq. It may be expressed as a nested recursion relation:

atnm ) =q(mm ("7 0).

n

Q(n_17m71)+n
n—1

(2.19)

Q(namal):m( >+Q(n_17m71)+17

g(0,m,1)=0.

Table 2.1 showsg(n,m, 1) for different values ofn andn. One sees that the values
rapidly explode, ifn increases. The situation is still worse for modules generated in
higher order. It seems to be an open question whether this bound [ sleamwhether

for some modules the degree of involution is really that high. Fortunagély,m, q)
yields usually a coarse over-estimate of the actual degree of involution.

[n\m | 1 2 3 4 |
1 2 3 4 5
2 7 14 23 34
3 53 287 999 2.699
4 | 29.314| 8.129.858| 503.006.503 13.151.182.504

Table 2.1g(n,m, 1) for different values ofn andn.
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Example 2.22 Let us consider the homogeneous idgél. e.m = 1) generated by the
two monomials(z!)? and(«?)? for some value; > 0 in the polynomial ringk[z!, 22

in n = 2 variables. For the valug = 3 this ideal is just the annihilatok© of the
second symbolic systert” considered in Example 2.9. A trivial computation yields
that the only non-vanishing Koszul homology modulesye (Z) = ([(z*)], [(z*)])
and Hoy—11(Z) = {[(z")¥(z*)77! @ 2% — (2')771(2?)? ® z']). Hence the degree of
involution of Z is 2¢ — 1. By contrast, evaluation of Sweeney’s bound (2.19) yields

1 1 9
q(2,1,q9) = Zq“ - 5(13 - Zqz +2¢+2, (2.20)

i. e. a polynomial in; of degreet.

3 Cartan’s Test

We study now some explicit criteria for a (co)module to be involutive. We stdh

a symbolic systemV' C &(V*) ® U. As before, let{z!,... 2"} be an ordered basis
of V and{yi,...,y,} the corresponding dual basis ¥f. Then we introduce for any
0 < k < n the following subspaces of the homogeneous compakgnt

N = {F €Ny | £ or,. . 040) = 0.
V1i<i<k, Vvl,...,vq71€V} (3.1)
- of .
_{feNq|a—%_OV1gzgk}.

In the first line we interpreted elements.df, as multilinear maps o and in the last
line we considered them as polynomials in the “variablgs” . ., y,..
Obviously, these subspaces define a filtration

0=NM NIV C...c NV VO =N, . (3.2)

Itis clear that this filtration (and in particular the dimensions of the involvédgaces)
depend on the chosen basis #or. Thus it distinguishes certain bases. This effect is
known as the problem af-regularity. In the next chapter we will see it reappear in a
different form for Pommaret bases.

Definition 3.1 Let /' C &(V*) ® U be a symbolic system. With respect to a given
basis{y,...,y,} of V*, we define theCartan character®f the componeny, as

o) = dm NP —dm NP 1<k<n. @3

A basis{y,...,yn} of V* is é-regular for the component/,, if the sum>_}_, kag’“)
attains a minimal value for it.
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One can show that generic bases are alwagegyular. Hence conceptually trivial solu-
tions of the problem of-regularity are to use either a random basis (whicftisgular
with probability 1) or to work with a general (i. e. parametrised) basis. However, from
a computational point of view both approaches are extremely expeasiy useless in
larger calculations. In the context of Pommaret bases much moreeffgolutions
have been developed (see Remark 4.6 below for references).

We know from the proof of Lemma 2.8 that differentiation with respectvaréabley;
maps/\,1 into NV,. It follows trivially from the definition of the subspacaéz(’“) that

we may consider the restriction, : N\ — AT,
Proposition 3.2 Let V' C &(V*) ® U be a symbolic system arfd, .. .,y,} a basis
of V*. Then we have for any > 0 the inequality

n—1 n

dim N4 < Zdim./\fq(k) = Zkaék) . (3.4)
k=0 k=1

Equality holds, if and only if the restricted mafg, : V¥ — A"~ are surjective
forall 1 <k <n.

Proof. By definition of the subspace*s’q“’), we have the exact sequences
Ay,
k k— —
0 —— N®) s NETD T e (3.5)

implying the inequalitiestim A%V — dim A%, < dim NV{*". Summing over all

0 < k < nyields immediately the inequality (3.4). Equality in (3.4) is obtained, if and
only if in all these dimension relations equality holds. But this is the case, ibahd

if all the mapsd,, are surjective. d

Proposition 3.3 The symbolic systeii C &(V*) @U is involutive at degregy, if and

only if a basis{yi,...,y.} of V* exists such that the magg, : V\7" — NV
are surjective for all degreeg> ¢y and all valuesl < k < n.

Proof. We prove only one direction; the converse will follow from our subsegue
considerations for the dual Koszul homology/6f (see Remark 3.13). Let us take an
arbitrary cyclew € MV, ® A,(V*) with 1 < p < n andq > qo; we will show that, if all
mapsd,, are surjective, then a form e N1 ® A,—1(V*) exists withw = én. This
implies thatiH%?(N) = 0.

We do this demonstration in an iterative process, assuming first that theogxpart
of w depends only oy, yx+1,.-.,yn. Then we may decompose = wi + yr A wo
where the exterior parts of bothy andw, depend only onyi.1,...,y,. Sincew is a
cycle, we havédw = dw; — yr A dws = 0. Consider now in this equation those terms
where the exterior part is of the forgm Ay, A - -+ with £ < k. Such terms occur only
in the second summand and hence we must bayg¢dy, = 0 forall 1 < ¢ < k. This

impliesw, € N @ A,_1 (V).
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By assumption, the maf,, : N.\" — AF7" is surjective so that there exists a

formn® e N4V @ A,_1 (V") such thad,, ™ = w,. Hence the exterior part of the

formw® = w — 61*) depends only op;1,. .., , and we can iterate. Thus starting
with k = 1 we finally obtainw = §(n® + - -+ + n»=V). a

While Proposition 3.3 is nice from a theoretical point of view, it is not vesgful com-
putationally, as we must check infinitely many conditions, namely one fdr éagree
q > qo. Under modest assumptions it suffices to consider only the one degesel
then we obtain an effective criterion for involution representing an algeleformu-
lation of the classical Cartan test in the theory of exterior differential gystdt uses
only linear algebra with the two finite-dimensional componekiisand A, (note,
however, that the test can only be appliediregular bases). In particular, it is not
necessary to determine explicitly any Spencer cohomology module. lkotitext of
differential equations, this observation will later translate into the fact thataasier
to check involution than formal integrability.

Theorem 3.4 (Cartan Test)Let Y C &(V*) ® U be a symbolic system such that
Ny1 = Ny for all ¢ > go. ThenN is involutive at degreey, if and only if a
basis{y, ..., yn} of V* exists such that we have equality in (3.4) for qo.

Implicitly, a proof of this result was already given by Janet [26]. Labtertheorem was
explicitly demonstrated by Matsushima [39, 40]. We do not give hereafpas it will
follow automatically from later results on Pommaret bases (see Rentdsk 4h spirit
this corresponds to the proof of Janet.

Example 3.5 Let us consider over a three-dimensional vector spatke symbolic
systemN C &(V*) defined byNy = k, N1 = V*, Ao = (42, y192, y1y3,y5) and
N, = N,_1, for ¢ > 3. One easily verifies that heré!") = (42) and\V ? = A{¥) =0
and therefore the only non-vanishing Cartan charactet$ afeagl) =3 anda§2) =1
Furthermore N5 = (3, y3ys, y3ys, y1v3, y3). Sinceaél) + 20(52) =5 = dim N3, the
symbolic system\ passes the Cartan test and is involutive at degree2. One also
immediately sees that the map, : N5 — N is indeed surjective and that the map
Dy, N = (3) — N is even bijective (there is no need to consider d@lso since
both AV{> and A vanish).

Example 3.6 For an instance where the Cartan test is not passed, we return to the
second symbolic system in Example 2.9. Sin¢evanishes beyond degrég it is
trivially involutive at degreé. We verify now that it is not involutive at a lower degree.
Itis clear thatd,, : N5 — A cannot be surjective and alsq") = 1 > dim\; = 0.
Hence\ is not involutive at degree.

Given the duality between the polynomial de Rham and the Koszul convpdesxxpect
that a similar criterion for involution exists for polynomial modules. Theeesg of the
proof of Proposition 2.6 is that differentiation with respecttos dual to multiplica-
tion with z*. Hence when we now study, following the letter of Serre appended tp [21]
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the dualisation of the considerations above, it is not surprising that the fraatipn
with elements € V is central.

Lemma 3.7 Let M be a finitely generated gradeg’-module and; > 0 an integer.
Then the following statements are equivalent.

() Hyn(M)=0forall r>q.
(i) If Ann(m) =S4V foranm e M, thenm € M,.
(iii) The existence of an element V withv - m = 0 entailsm € M.

(iv) Forall v € V except the elements of a finite number of proper subspacggto#
equationv - m = 0 entailsm € M.

Proof. The equivalence of (i) and (ii) follows immediately from Lemma 2.16.tkeir-
more, it is trivial that (iv) implies (iii) implies (ii). Hence there only remainssioow
that (iv) is a consequence of (ii).

Assume that (i) holds and let = {m € M., | Ann(m) = S;V}. We choose a
complement such thatM ., = A® K and setM = K & @quMT' Because of

(ii) no element ofM \ {0} is annihilated byS, V and hence5, V is not an associated
prime ideal of the modulé\l. By a standard result in commutative algebra, the set
Ass M of all associated prime ideals @#f contains only finitely many elements. The
intersection of any of these with is a proper subspace. If we choase V such that

it is not contained in any of these subspaces, them = 0 entailsm € M_,,. O

The property ofv in Part (i) will become so important in the sequel that we provide a
special name for it. It is closely related to the classical notion of a regatarence in
commutative algebra except that for the latter it is not permitted that the ticdtipn
with v has a non-trivial kernel whereas here we only restrict the degrdedernel.

Definition 3.8 A vectorv € V is calledquasi-regularat degreey for the moduleM,
if v-m = 0entailsm € M.,. A finite sequencéuv,,...,v;) of elements ofy is
quasi-regularat degreey for the moduleM, if eachw; is quasi-regular at degregfor
the factor moduleM / (v, ..., v;—1) M.

Obviously, if a vectow is quasi-regular at degreeit is also quasi-regular at any degree
r > q. Furthermore, the vectors in a quasi-regular sequence are lineadgendent.
Thus such a sequence of length= dim V defines a basis of the vector spate

Lemma 3.9 Letv € V be quasi-regular at degreg¢ For eachr > gand1 <p <n
there is a short exact sequence

o B
O - an(./\/l) - HT,p(M/UM) —_— Hr,pfl(M) — 0 (36)

and the multiplication withv is injective onM > .
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Proof. As above we decomposel = A & M. SinceA C M, we have the equality
H,,(M) = H, (M) forallr > g and, because ofA = 0, similarly H,. ,(M /v M) =

H, ,(M/vM) forall r > q.

It follows trivially from the definition of quasi-regularity that multiplication withis
injective onMs,. In fact, it is injective onM. Indeed, suppose that m = 0 for
some homogeneous elementc M. Let us assume first that € M,_;. Then

v (w-m)=0forallw eV and sincav - m € M,, this is only possible, ifv - m = 0
and thusAnn (m) = S,V implying m € A. lterating this argument, we conclude that
m cannot be contained in,_» either and so on. Henee € A.

Because of the injectivity, the sequence

v

0 M M —= M/oM ——= 0 (3.7)

of graded modules is exact at all degrees> ¢q. Tensoring with the vector space
AV yields a similar sequence for the corresponding Koszul complé&xest) and
K(M/vM), respectively, with the same exactness properties. Now we consider the
associated long exact homological sequence

H(v) H(~)
M) — oy

(3.8)
B H(v)
— H ,(M/oM) —— H,p (M) ——— ---.

Since, by Lemma 2.17F (v) is the zero map, it decomposes into the desired short
exact sequences with= H (r) and3([w]) = [% 0 O(w)]. a

Proposition 3.10 Let M be a finitely generated gradeB-module and the sequence
(v1,...,v,) quasi-regular at degreg. ThenH, ,(M) = 0 for all valuesr > ¢ and
n—k<p<n. lfwesetM® = M/(vy,...,v;)M, then

Hr,n—k(M) = H7’,n,—k+1 (M(l)) =...= Hr,n (M(k)) (39)
forall r > q.

Proof. We proceed by induction over the lengtlof the quasi-regular sequence. For
k = 1, it follows from Lemma 3.7 that, ,,(M) = 0 for all » > ¢. Entering this result
into the short exact sequence (3.6) of Lemma 3.9 gives immediatésoarorphism
Hr,nfl(M) = Hr,n(M(l))

Assume now that the proposition holds for any quasi-regular sequ#neagth less
thank. Then we know already thdf, ,(M) =0forall» > gandn—k+1<p<n
and thatH, ,,_j1(M) = H, ,(M*=V). Sincev; is quasi-regular at degregfor
ME=1) "the latter homology group vanishes by Lemma 3.7 proving the firsttamse
Applying the induction hypothesis to the module~") and the quasi-regular se-
quence(v,, . . ., vi) shows thatt,. ,, (M=) = 0. Now we may use again the ex-
act sequence of Lemma 3.9 to conclude taf, ;i (M) = H, ,, gy 1 (ME-D),
This proves the second assertion. |
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Proposition 3.11 Let M be a gradedSV-module finitely generated in degree less than
q > 0. The moduleM is involutive at degree, if and only if a basigz!,... 2"} of
Y exists such that the maps

s My /@t My — Mg /(a2 M, (3.10)
induced by the multiplication with* are injective for allr > gand1 < k < n.

Proof. We first note that the statement th&t is generated in degree less thais
equivalent toH,. (M) = 0 for all » > ¢ by Lemma 2.16.

If M is involutive at degree, thenH,. ,(M) = 0 forall » > ¢ and Lemma 3.7 implies
that a generic vectar! € V is quasi-regular. Now we proceed by iteration. Setting
ME) = Mzt - 2*) M, we find thatH,. ,,(M*)) = H,,, (M) = 0forallr > ¢

by Lemma 3.9. Thus we may again apply Lemma 3.7 in order to show ahainfy

1 < k < nthe quasi-regular sequenge, . . ., z*) can be extended by a generic vector
zF*1 € V. As already remarked above, an quasi-regular sequence of lemigtfines a
basis ofy. Now the injectivity of the mapg,, follows from Lemma 3.9.

Conversely, if all mapg, are injective, then obviouslg:!, . .., z") defines an quasi-
regular sequence of lengith Now the vanishing of all homology grougs, , (M)
with r > ¢ and1 < p < n follows from Proposition 3.10 and is involutive. a

Again we face the problem that this proposition requires an infinite nunmferexks
and thus cannot be applied effectively. Quillen [46, App., Prop. & tha first to show
that for a certain class of modules, it suffices to consider only the coemgaM,, and
M+1. This leads to the following dual formulation of the Cartan test (Theoret)) 3.
again we refer to Remark 4.15 for a proof (or alternatively to [35]).

Theorem 3.12 (Dual Cartan Test)Let N C SV @ U* be a homogeneous submodule
of the freeSV-moduleSY  U* finitely generated in degree less than- 0. Then the
factor moduleM = (SV @ U*)/N? is involutive at degree, if and only if a basis
{z',..., 2"} of V exists such that the maps

pr s Mg/t Y M —— My (@t 2R M,, (3.11)
induced by the multiplication with* are injective for alll < k < n.

Remark 3.13 Let /' C &(V*) @ U be a symbolic system and consider the digt
moduleM = N* = (SVeu*)/N°. Let furthermore{z!, ..., 2"} be a basis oP and
{y1,...,yn} the dual basis 0f*. Then we find that; = 9,, and hence thatvV))* =
(ker 9y, )* = coker y1; = M), Iteration of this argument yieldg\V'*))" = M) for

all 1 < k < n (considering alway®,, as a map oW *~1 so that\/*) = ker 9,, and

1 @s a map oo *~1) so thatM(*¥) = coker ). We also haveu, = 0;, and hence
obtain the isomorphismgker ;)" = coker d;, (again considering the maps on the
appropriate domains of definition). Thus injectivity of all the mapss equivalent to
surjectivity of all the map$),,. Hence applying Proposition 3.11 fef proves dually
Proposition 3.3 for\V" and similarly for the Theorems 3.4 and 3.12. Furthermore, it is
obvious that if the basiéz!, ..., 2"} is quasi-regular at degreg then the dual basis
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{y1,...,yn}isd-regular for\,. The converse does not necessarily hold-esgularity
is a much weaker condition than quasi-regularity (the latter implies involutiotheia
dual Cartan test; the former is only a necessary condition for applyinGanian test).

Example 3.14 Recall the symbolic systerv of Example 3.5. Its annihilatok™ is
the idealZ c P = SV generated by the monomiatdz3 and(z3)?. We apply now the
dual Cartan test to the the factor modul¢ = P/Z. For the two relevant module com-
ponents we obtain after a trivial computation thett, = ((z1)?, z12?, 2123, (22)?)
No and M3 = ((21)3, (21)222, (21)%23, 2 (2?)?, (22)3) = N3. Similarly, we find
that the non-vanishing factor modules required for the dual Cartaratesgiven by
MDY = ((22)2) = MY and MY = ((22)3) = MY, Itis now trivial to see that the
mapu; : My — Ms induced by the multiplication with! is injective and the map
fo /\/lg” — Mgl) induced by the multiplication witlx? is even bijective. Hence by
the dual Cartan test the moduld is involutive at degree.

Remark 3.15 Another way to formulate the assumptions of Theorem 3.12 is to require
that M is a finitely generated gradegl’-module such tha#l,.o(M) = H, (M) = 0

for all » > ¢. Indeed, any such module can be finitely presented and thus is isomor-
phic to a factor moduléSY @ u*)/N° for an appropriately chosei. By the same
argument as in the proof of Proposition 2.18,; (M) = H,..1 o(N?). Since the latter
homology is determined by the minimal generators of the submodt|ehe two sets

of assumptions are equivalent.

Consider the monomial idedl = ((x')3, (22)3) C k[z!,2?] generated in degrex it is

the annihilator of the second symbolic systafrin Example 2.9. It is trivial that here

w1 : Iy — Is is injective. For the map, we note that, /=175 = ((z')322, (2%)*) and
thus it is again easy to see thatis injective.

If we consider the maps, : Z5 /2'Z, — Zs/x'Zs, then we find (using the identification

T /o' Ty = ((21)3(2%)?, (22)%)) that s ([(21)%(2%)%]) = [(2})?(2%)] = 0 s0 thatus

is not injective and the Theorem 3.12 is not valid here. The observatairattsome
lower degree the maps, andu. are injective may be understood from the syzygies.
Syz(T) = H,(Z) is generated by the single elemént)?e; — (z!)3e, of degrees. As

its coefficients are of degrex nothing happens with the maps before we encounter

Zs and then the equatiogm; ([(z')?*(2?)?]) = 0 is a trivial consequence of this syzygy.

4 |nvolutive Bases

Involutive bases are a special form of Grobner bases with additicorabinatorial
properties. They were introduced by Gerdt and Blinkov [15, 16] gadiséng earlier
ideas by Janet [25] in the theory of partial differential equations (aiapease was
slightly earlier discovered by Wu [63]); an introduction into their basic thieman
be found in [50]. We assume in the sequel that the reader is familiar witbakie
concepts in the theory of Grobner bases; classical introductory tex{d a4, 11]. A
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Grobner basis is defined with respect to a term order; for an involbthgs we need
one further ingredient, namely a so-called involutive division.

While the precise definition of an involutive division is somewhat technicalutider-
lying idea is simple. We consider first the monomial case. L et {¢,...,t;} be a
set of terms in the ring® = k[X] whereX = {z!,... ,z"}. Then the ideal C P
generated by consists of all polynomialg = >~7_, P;t; where the coefficient®, are
arbitrary polynomials, i. €7 is the linear spaf7). An involutive divisionL assigns to
each generatar; a set of multiplicative variableX;, r(¢;) C X (the remaining vari-
ables are denoted by 7(t;)). The involutive spai{7);, consists of all linear com-
binationsf = >"7_, P;it; where now the coefficients must satisty € k[X, 7(t;)].
Thus in general it contains only a subset of the ideal

We call the sef” aweak involutive basisf Z for the involutive divisionZ, if (T), = 7.
For a termz* € Z, we call any generatar, € 7 such thate” € k[X. 7(¢;)] - t; an
involutive divisor Thus7 is a weak involutive basis, if every term ihhas at least
one involutive divisor. For dstrong) involutive basisve require additionally that this
involutive divisor is unique (in other words, for any two generators: t; € 7 we
haveIk[XL,T(ti)] -t N ﬂ([XL’T(tj)] 1y = {O})

The assignment of the multiplicative variables by the involutive divisiomogabe ar-
bitrary but must satisfy certain conditions which we omit here (they cdouoad in the
above references), as we are here only interested in one particulaplesdivision,
namely thePommaret division P. While for general involutive divisions the assign-
ment of multiplicative variables depends on the efi. e. the same term may be
assigned different variables if considered as element of diffeets?9, the Pommaret
division is a so-called global division where the assignment is indeperadel. If
the termt is of the form¢ = x# with a multi index of classls u = k, then we simply
assign as multiplicative variablesp (t) = {z*, ..., z*}.

Example 4.1 Consider again the second symbolic syst&hin Example 2.9. Its an-
nihilator is the idealZ generated by = {(2!)3, (#2)3}. Since the first generator is
of classl1, x2 is not multiplicative for it with respect to the Pommaret division. As a
consequence the monomiat')32? € 7 is not contained if7 ) » and thus the minimal
basis7 of Z is not an involutive basis. An involutive basis is obtained, if we add the
monomials(x!)32? and(z!)3(2?2)?, as one easily verifies.

The extension to general ideals is now straightforward. Eet {f1,..., fs} be an
arbitrary set of polynomialsx a term order and. an involutive division.F is aweak
involutive basif Z = (F) for < and L, if the monomial sett 7 = {1t f1,...,1t fs}

is a weak involutive basis of the leading idéaf. Note that this definition trivially
implies that any weak involutive basis is a Grobner basis, too. Wefcall(strong)
involutive basisif no two elements ofF have the same leading term ahdF is a
strong involutive basis oft Z. An involutive basis with respect to the Pommaret di-
vision is briefly calledPommaret basisWe also introduce multiplicative variables for
generatory € F by settingX, » < (f) = X1 #(1t f).

IHistorically the terminology “Pommaret division” is a mimmer, as this division was already introduced by
Janet. But the name has become generally accepted andbtieanref stick to it.



Chapter 4 Involutive Bases 21

Remark 4.2 One easily shows that by a simple elimination process any weak involu-
tive basis can be reduced to a strong one and thus we will exclusivekywithr strong
bases (this is no longer possible in more general situations with e. g. locabtders

or coefficient rings) [50]. A particular property of the Pommaretigion (in fact of

any global division) is that the Pommaret basis of any monomial idealiipie.

The above definition does not provide us with an effective criteriondoognising an
involutive basis. For arbitrary involutive divisions no such criterion hasn discov-
ered so far. However, the Pommaret division belongs to the so-aalgthuousdivi-
sions for which the situation is more favourable. A finite et P islocally involutive
for the divisionL, if for every polynomialf € F and for every non-multiplicative vari-
ablez’ € X, 7 ~(f) the product’ f can be involutively reducédo zero with respect
to F. Obviously, this property can be checked effectively.

Theorem 4.3 If the finite setF C P is involutively (head) autoreduced and locally
involutive for a continuous divisioh, thenF is an involutive basis ofF) for L.

As the proof of this theorem is rather technical and requires some ptsoet intro-
duced here, we refer to [15, 50]. We show here only a simpler speasa. However,
it will turn out later (Remarks 4.5 and 4.15) that this special case entailS#ntan test
(in fact, this approach is almost identical with Janet’s proof [26]).

Proposition 4.4 Let H, C P, be a finite triangular set of homogeneous polynomials
of degree; which is locally involutive for the Pommaret division and a term order
Then the set

Hot1 = {mih | heHy, a' € Xp(h)} C Pyt (4.1)

is also triangular and locally involutive (by induction this implies ti4tis involutive).

Proof. Itis trivial to see that,; is again triangular (all leading terms are different).
For showing that it is also locally involutive, we consider an elemént € H 1.
By constructiongls (x'h) = i < clsh. We must show that for any non-multiplicative
indexi < j < n the polynomialz’(z°h) is expressible as a linear combination of
polynomialsz*h whereh € H,1 andz* € Xp - (h). Inthe case that < cls h, this is
trivial, as we may choosk = 27 h andk = i.

Otherwisezr? is non-multiplicative forh and sinceH, is assumed to be locally invo-
lutive, the polynomialz’h can be written as &-linear combination of elements of
Hy+1. For exactly one summantdin this linear combination we haveh = 1t (7 h)

and hencer’ € Xp < (h). If 2% is also multiplicative for all other summands, we are
done. If the variable:* is non-multiplicative for some summard € H,1, then we
analyse the productis’ in the same manner writingg’ = z*n’ for someh’ € H,.
Sincelt ' < 1t (z7h), this process terminates after a finite number of steps leading to
an involutive standard representationofzh). a

2Involutive reducibility is defined as in the standard Grébtheory; the sole difference is that a reduction is
permitted only, if the reducing elemeyfite F is multiplied with a polynomial irk[ X, = < (f)]-.
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Remark 4.5 Proposition 4.4 may be considered as an involutive basis version of the
Cartan test. LeT C P be a homogeneous ideal akg a triangular vector space basis

of Z, for some degreg. The setH, is locally involutive (and thus a Pommaret basis
of Z-,), if and only if the setH,,, defined by (4.1) is a vector space basisZf; .

Denoting byﬁék) the number of elements of where the leading term is of clags
these considerations lead to the inequality

dimZy 1 > Y kB (4.2)
k=1

and equality holds, if and only i is a Pommaret basis. Remark 4.15 below shows
that (4.2) does not only formally looks like (3.4) but that it is actuallyiegjent.

While it is almost trivial to prove that any idedl C P possesses a Grobner basis
for any term order, the existence of involutive bases is a more diffiadstion and
depends on the precise form of the chosen division. For some digii@enexistence

is always guaranteed; one speakdoktheriandivisions.

For Pommaret bases the situation is more complicated. It is easy to fird vd&zout

a Pommaret basis—consider for examptéz?) C k[z!, 2?] where a Pommaret basis
would have to include all terms! (22)* with k£ > 1. A closer look reveals that this

is actually only a problem of the chosen coordinates. If we begin as abithreéhe
symmetric algebresV and considefZ as an ideal in it, then for a generic basis of
V the corresponding polynomial ided@l has a Pommaret basis. We call a basis (or
coordinates)z!,...,2"} such thatZ possesses a Pommaret basiggular for the
ideal Z.3 The use of the same terminology as in the Cartan test is no coincidence, as
we will show in the next chapter. In the example above the transformatien 2! + 2
leads to the ideal(z?)? + x'2?) which has a Pommaret basis for any term order where
2?2 = o' (if 22 < 2!, we can use the transformatief — z! + 22).

Remark 4.6 For general information about the algorithmic determination of involutive
bases we refer to [15, 16, 17]. Effective criteria for recognisirgingular and effective
methods for the construction éfregular coordinates for a given ideakre discussed

in detail in [22]. From a strictly algorithmic point of view, it is unpleasant ttz
Pommaret division is not Noetherian. But we will see in the remainderisfctiapter
that this seeming disadvantage has a number of benefits, as for malicapns in
algebraic geometry it is of considerable interest to know “good” coaitéis

We turn now to properties of involutive bases, in particular to those natedhay

ordinary Grobner bases. For simplicity, we always assume that evdesaling with a
homogeneous idedl and that also all considered baseg @re homogeneous.

If H ={hy,...,hs}is a Grobner basis of the ided| then it is well-known that any
polynomial f € Z possesses a standard representation Y ;_, P;h; where the co-
efficients P, € P satisfylt (P;h;) < 1t f wheneverP; £ 0. However, even with this
constraint this representation is in general not unique. This changeg #ssume

30f course the used term order is here of great importancelliws immediately from the definition of an
involutive basis that thé-regularity of a coordinate system is completely determibglt Z.
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that’H is an involutive basis for an involutive divisiah. Imposing now the additional
constraint tha?; € Ik[X L1e (1t hi)], we obtain the uniquivolutive standard repre-
sentationof f with respect tg{. This uniqueness is the key to most applications of
involutive base$.

Another way to express the uniqueness of the involutive standardsesgggion is to
say that induces &tanley decompositiaf Z. Because of the assumed homogeneity,
Z may be considered as a graded vector space with respect to the gadliag given

by the total degree. A Stanley decomposition is then an isomorphism cédjkaattor
spacesl = @, k[X,] - t where7 is some finite set of generators and C X is
some subset of variables. In our case, we obtain the decomposition

=P K[Xpan(t hi)] - hi . (4.3)
1=1
Pommaret bases lead to a special kind of Stanley decompositionsljeshRees de-
compositiong47], where the subsets; are always of the fornfz!, ..., 2%} for some
value0 < k; < n.
A simple application of a Stanley decomposition (in fact, the one which motvtgte
introduction by Stanley [58) is that one can trivially read off thidilbert seriesof Z:

A\t
Hz(N) = ; m (4.4)

where we introduced; = degt andk; = |X;|. In particular, thgKrull) dimensionof
the idealZ is given byD = max;c7 k; and themultiplicity (or degre@ by the number
of generators € 7 with k;, = D.

For most purposes, it is of greater interest to obtagomplementary decomposition
i. e. a Stanley decomposition of the factor algedra- P/Z. Sturmfels and White [60]
presented a recursive algorithm for computing such a decompositien gi Grobner
basis ofZ. Somewhat surprising, the knowledge of an arbitrary involutive basés d
not seem to give an advantage here. The situation changes, if oridersrspecial in-
volutive divisions. In the context of determining formally well-posed initahditions
for overdetermined systems of partial differential equations, J&Yet15] presented
an algorithmic solution to this problem already in the 1920s. For Pommaseslihe
solution is almost trivial; in fact, one only needs the degree of the basisggisen will
become evident below when we discuss the Castelnuovo—Mumfortariggu

Proposition 4.7 The homogeneous ide@dl C P possesses a Pommaret bakiswith
deg’H = g, if and only if the two setdy = {z* € T \ItZ | dega" < ¢} and
Ty = {2t € T\t Z | dega* = ¢} yield the complementary decomposition

A2 Pk-to PKXpt) - t. (4.5)

teTo teTy

4One easily shows that with respect tavaakinvolutive basis also every ideal member has an involutive
standard representation. However, it will be unique, if anfy if one is dealing with a strong involutive basis.
For this reason, for most advanced applications of invedutiases only the strong ones are of real interest.

50ne should note that in the context of partial differentigliations Janet [27] derived already much earlier a
similar expression for the Hilbert function.
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Remark 4.8 Stanley decompositions are not unique. The complementary decompo-
sition (4.5) is generally rather redundant. One can show that any Pahivesis is
simultaneously a Janet basis. Applying Janet’s algorithm to it almost alyialds a
more compact decomposition with less generators. However, fromoeetiieal point

of view, Proposition 4.7 is very useful, as it provides a closed formuthreot only an
algorithm. Note that (4.5) is again a Rees decomposition.

Proposition 4.9 Let H be a homogeneous Pommaret basis of the homogeneous ideal
7 C P withdegH = ¢q. ThenD = dim A is given by

D=min{i| (H,z',....2") =Py} . (4.6)

Remark 4.10 As a corollary to this result, one can easily show that, ..., 2"} is a
maximal strongly independent set moddlgsee [20, 31] for the notion of an indepen-
dent set modulo an ideal and its relation to the dimension). Here we séw®eféirst
time that the knowledge aof-regular coordinates is of some interest, as generally no
maximal independent set of this particularly simple form exists.

In fact, combining this observation with Proposition 4.7 yields that the réstniof

the canonical projection : ? — A = P/Z to the subringk[z?, ..., 2] is aNoether
normalisationof .A. Thus computingi-regular coordinates determines automatically
a Noether normalisation. One can show thaggularity is equivalent to simultaneous
Noether normalisations af Z and all its primary components [5, 51].

Another measure for the size dfis itsdepth It can also be immediately read off from
a Pommaret basis. The proof of this fact provided by [51] relies adnegtdverification
that the given sequence is regular. Later in this article (Theorem 5.@)iyerovide a
homological proof of the following statement about the depth.

Proposition 4.11 Let’H be a homogeneous Pommaret basis of the homogeneous ideal
T C P for a class respecting term order andd = miny,cy cls h. Then(z!, ... 297 1)
is a maximal regular sequence fgrand hencelepth A = d — 1.

Remark 4.12 Combining Propositions 4.9 and 4.11 leads immediately to the so-called
Hironaka criterion for Cohen—Macaulay algebras: the factor algeldra= P/7 is
Cohen—Macaulay, if and only if it possesses a Rees decompositior \&ahegener-
ators are of the same class.

Definition 4.13 A homogeneous idedl C P is calledg-regular, if its ith syzygy mod-
ule can be generated by elements of degree less than or equial;tthe Castelnuovo—
Mumford regularityreg 7 is the least value for which 7 is ¢-regular.

Among other applicationsieg Z represents an important measure for the complexity
of Grobner basis computations [2]. According to Bayer and Stillmand&herically

the reduced Grobner basis with respect to the degree reverse lapbig order has

the degreeeg Z and no other term order yields a lower degree. However, one rarely
knows whether or not one is in the generic case so that this result is oliyitefd use

for concrete computations. For Pommaret bases we rediscoveagaire simply the
question ofy-regularity.
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Theorem 4.14 LetZ C P be a homogeneous ideal. TherZ = ¢, if and only if 7
has in some coordinates a homogeneous Pommaret hawith respect to the degree
reverse lexicographic order such théatg H = q.

This result implies that id-regular coordinates the equalitygZ = reg (It Z) holds
whereas in general we only have the inequalityZ < reg (1t 7). Another remarkable
implication is that in arbitrary coordinates, . .. , 2™ the idealZ either does not possess
a finite Pommaret basis or the basis is of the fixed degre®.

Remark 4.15 According to Remark 2.15, the Koszul homology of a modieis
equivalent to its minimal free resolution. Thusd Z = ¢, then all homology modules
H, ,(T) with r > ¢ vanish. Taking into account the degree shift in (2.16), for the factor
moduleM = P /T thus all homology module#.,. ,(M) with » > ¢ vanish. Hence the
Castelnuovo—Mumford regularity @f is the same as the degree of involutiondf. It

is very surprising that this elementary fact remained unobserved @mjilrecently; it

is implicitly contained in [53] and explicitly mentioned by Malgrange [35].

Combining this observation with Theorem 4.14 and Remark 4.5, we finafytisat
Proposition 4.4 may indeed be considered as an involutive basis veifsilba Cartan
test. Let—as in Remark 4.5—the sk{, be a basis of the vector spaZg where all
generators have different leading terms. Then we may choose Esegpatives of a
basis of M, polynomials which have as leading terms exactly those terms which do

not appear int H,. Elementary combinatorics shows thatdf contains@ék) elements
with a leading term of clask, then our basis oM, contains

) +n—k—1
agw:m(q ] )—@g“ (4.7)

representatives with a leading term of class

It is no coincidence that we use here the same notation as for the Cadeatiehms.
As a vector space the symbolic systéfm= Z° is isomorphic taP/Z; a concrete iso-
morphism is given by replacing in the above representatiVésy y;. If we use a class

n

respecting term order, then it follows from Lemma B.1 thah /¥ = D imkt1 af?

so that the number@é’“) are indeed the Cartan characters. A well-known identity for
binomial coefficients proves now that (3.4) and (4.2) are equivahequalities.

Theorem 4.14 represents probably the simplest method for compugjfig It requires

the knowledge ob-regular coordinates, but as already mentioned in Remark 4.6 these
can be constructed effectively. In recent years, a number of mistfoy the determi-
nation ofreg Z have been developed [3, 5, 62]. However, they all also require the us
of generic coordinates (in [51] their relation to Pommaret bases is studaktail).

Example 4.16 Consider the homogeneous ideal

6

T— (5 —wayl, " — a2, 2" —wa') C Qlw,z,y,2] . 4.8)

The given basis of degreeis already a Grobner basis for the degree reverse lexico-
graphic term order. If we perform a permutation of the variables amdiderZ as an
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ideal in Q[w,y, z, z], then we obtain for the degree reverse lexicographic term order
(in the new variables!) the following Grobner basis of dedree

{y7 — 2%, g2 —wa”, 22 —way, 825 — wa'3,

15

=4
Y z° —wx 31

=4
19224 25 29,3 031

y3022 — e %y — a3, P — wx49} . (4.9)

Unfortunately, neither coordinate system is generictegd = 13, one yields a basis
of too low degree and the other one one of too high degree.

With a Pommaret basis it is no problem to determine the Castelnuovo-Mdmégu-
larity, as the first coordinate systemdisegular. A Pommaret basis @ffor the degree
reverse lexicographic term order is obtained by adding the polynomiglg — 2°2)
for 1 < k < 6 and thus the degree of the basis is indégd

Remark 4.17 In order to obtain their above mentioned result, Bayer and Stillman first
proved the following characterisation of¢aregular ideal (which may be considered
as a variant ob-regularity): if Z is a homogeneous ideal which can be generated by
elements of degree less than or equad,tthen it isg-regular, if and only if for some
value0 < d < n linear formsy, ..., yqs € Py exist such that

(Zoyr, - yi-1) i ws), = oy yi-1)g, 1< <d, (4.10a)
<Z7y17"'7yd>q :Pq . (410b)

We will discuss later in Remark 5.5 that this characterisatiog-i@gularity is equiva-
lent to the dual Cartan test.

5 Pommaret Bases and Homology

Now we study the relationship between Pommaret bases and the homblomica
structions introduced in Chapters 2 and 3. We assume throughout thadabisis
{z',...,2"} of V has been chosen so that we may idenfily = k[z!,... 2"] = P.
For simplicity, we restrict to homogeneous ideals. P. We only consider Pommaret
bases for the degree reverse lexicographic ore@greviex as for any other term or-
der the corresponding Pommaret basis (if it exists) cannot be of Idegree by the
inequalityregZ < reg (It 7) and Theorem 4.14.

It turns out that this relationship takes its simplest form, if we compare dmenfRaret
basis of the ideall and the Koszul homology of its factor algebFgZ which we
consider here as’/A-module in order to be consistent with the terminology introduced
in Chapters 2 and 3. Like for general Grobner bases, essentialiytieie relevant for
involutive bases can be read off the leading ideal. Therefore, we Sretuhat at least
for our chosen term order quasi-regularity is also already decidedele#iding ideal.
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Lemmab5.1 LetZ C P be a homogeneous ideal andthe degree reverse lexico-
graphic order. The sequende’, ..., z") is quasi-regular at degree for the module
M =P/Z,ifand only if it is quasi-regular at degregfor M’ =P /1t Z.

Proof. Let G be a Grobner basis df for <. Then the normal form with respect to the
basisg defines an isomorphism between the vector spadesid M’. One direction is
now trivial, as an obvious necessary conditionsfoe= [f] € M to satisfyz! -m = 0is
thatz! - [It f] = 0in M’. Hence quasi-regularity af! for M’ implies quasi-regularity
of ! for M and by iteration the same holds true for the whole sequence (note that here
we could have used any term order).

For the converse let > ¢ be an arbitrary degree. Because of the mentioned iso-
morphism, we may choose for the vector spdee a basis where each member is
represented by a monomial, i. e. the representatives simultaneousbteiadoasis of
M'.. Letz* be one of these monomials. As we assume thas quasi-regular fom,
we must have:! - [z#] # 0 in M. Suppose now that! - [z#] = 0 in M’ so thatz! is
not quasi-regular foA’.

Thusz#™!t € It Z. Sincelt Z = (It G) by the definition of a Grobner basig, must
contain a polynomial with 1t g | z#*11. Because of the assumptiaft ¢ 1t Z, we
must have'ls (It g) = 1. By Lemma B.1, this implies that every termgris of classl.
Iteration of this argument shows that the normal formz6f ! with respect tog is
divisible by z!, i. e. it can be written as' f with f € P, andlt f < z*. Consider now
the polynomialf = z# — f € P, \ {0}. As it consists entirely of terms not contained
in 1t Z, we havef] # 0in M.,.. However, by construction' - [f] = 0 contradicting the
injectivity of multiplication byx! on M,..

For the remaining elements of the sequelieg, ..., z") we note the isomorphism
ME) = M/ M = PE) /7K for eachl < k < n where we introduced
the abbreviation®®) = k[z"*+1 ... z"] andZ® =7 nP®. It implies that we may
iterate the arguments above so that indeed quasi-regularity'of. ., ™) for M’ is
equivalent to quasi-regularity of the sequencefdt. |

Note that restriction to the degree reverse lexicographic order is hseati, as in
general we have only the inequalityg M < reg (It M) and if it is strict, then a
sequence may be quasi-regular fof at any degreeeg M < ¢ < reg (It M), but it
cannot be quasi-regular fagvt’ at such a degree by the results below.

Theorem 5.2 The basis{z!,..., 2"} is d-regular for the homogeneous idealC P

in the sense thaf possesses a Pommaret bakior the degree reverse lexicographic
term order withdeg H = ¢, if and only if the sequence:!, ..., ") is quasi-regular
for the factor algebraP /7 at degreeg; but not at any lower degree.

Proof. It suffices to consider monomial idedlsfor Pommaret bases it is obvious from
their definition that a basis i&regular forZ, if and only if it is so forlt Z; a similar
statement holds for quasi-regularity by Lemma 5.1.

Let us first assume that the basigis, ..., z"} is -regular in the described sense. By
Proposition 4.7, the leading territsi induce a complementary decomposition of the
form (4.5) of M = P/Z where all generators are of degree- deg H or less. Thus, if
M, # 0 (otherwise there is nothing to show), then we can choose a vector sasise b
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of it as part of the complementary decomposition and the variable multiplicative
for all its members. But this observation immediately implies that multiplication with
z! is injective from degree on, so that:' is quasi-regular foM at degree.

For the remaining elements ¢f*, ..., 2"} we proceed as in the proof of Lemma 5.1
and use the isomorphismt(*) = p(k) /7(k)  One easily verifies that a Pommaret basis
of Z(*) is obtained by setting' = --- = 2* = 0 in the partial basig{*) = {h € H |
clsh > k}. Thus we can again iterate for eath< & < n the argument above so that
indeed(z!, ..., 2") is a quasi-regular sequence fbt at degree;.

For the converse, we first show that quasi-regularity of the sequence. ., z™) im-
plies the existence of a Rees decompositiorfgf. Exploiting again the isomorphism

M®) =~ pk) )Tk one easily sees that a vector space basistf is induced by all
termsz# ¢ T with |u| = ¢ andcls > k. By the definition of quasi-regularity, mul-
tiplication with z* is injective onM(*), hence we takéz', ... z*} as multiplicative
variables for such a term (which is exactly the assignment used in thede@eespo-
sition induced by a Pommaret basis according to Proposition 4.7).

We claim now that this assignment yields a Rees decompositiovl 9f (and hence
induces one ofP/Z, since we only have to add all term¢ ¢ Z such thatju| < ¢

without any multiplicative variables). The only thing to prove is that our deoosition
indeed covers all ofP/Z)>,. But this is trivial. If z* ¢ Z is an arbitrary term with
lu| = ¢ + 1 andcls u = k, then we can writec” = z* - 2#~1%. Obviously,z" ¢ T

impliesxz#~1x ¢ T andcls (1 — 1) > k so thatz* is multiplicative for it. Hence all of
M,+1 is covered and an easy induction shows that we have a decompositdn. of

Proposition 4.7 entails now th@tpossessesweakPommaret basis of degreeSince
the reduction to a strong basis as mentioned in Remark 4.2 can only sie¢heade-
gree, we conclude that has a strong Pommaret basis of degree at mpostowever,
if the degree of the basis actually decreased, then, by the converseetatdready
proven,(z!,... 2™) would be a quasi-regular sequence farat a lower degree than
g contradicting our assumptions.

The same “reverse” argument shows thaf tias a Pommaret basis of degrgdhen
the sequencér!, ..., 2") cannot be quasi-regular fovt at any degree less thanas
otherwise a Pommaret basis of lower degree would exist which is nstippedy the
discussion following Theorem 4.14. 0

For monomialidealsZ C P a much stronger statement is possible. Using again the
isomorphismMm (%) = pk) /7(k) we may identify elements of4(*) with linear com-
binations of the terms” ¢ 7 satisfyingcls z” > k. Finally, if we denote as before by
w2 MED o ME=1) the map induced by multiplication with*, then we obtain

a simple relationship between the (unique!) Pommaret basis of the mdrideahZ

and the kernels of the mapg.

Proposition 5.3 Let the basigz!,... 2"} of V be§-regular for the monomial ideal
Z C P. Furthermore, letH be the Pommaret basis af and setH, = {z¥ € H |
clsv = k} forany1 < k < n. Then the sefz?~ !+ | 2 € H;} is a basis ofker .



Chapter 5 Pommaret Bases and Homology 29

Proof. Assume that” € H;. Thenz”~!* ¢ 7, as otherwise the Pommaret bagis
was not involutively autoreduced, and hence we fitid' € ker p,.

Conversely, suppose that € ker ;. Obviously, this impliest” ™ € 7 and the
Pommaret basis/ must contain an involutive divisor af'*1+. If this divisor was not
v+ jtself, the termz” would have to be an element @fwhich is obviously not
possible. Since” € ker u, entailscls (v + 1;) = k, we thus finde? 1+ € Hy. d

We noted already in Remark 4.15 that the degree of involution is nothinghleut
Castelnuovo—Mumford regularity. There we used the equivalenceeoKdszul ho-
mology to the minimal free resolution. With the help of Theorem 5.2, we tsmgive
a simple direct proof.

Corollary 5.4 LetZ C P be a homogeneous ideal. Then the factor module- P/7
is involutive at degree but not at any lower degree, if and only if the Castelnuovo—
Mumford regularity takes the valuegZ = q.

Proof. By Theorem 4.14regZ = ¢, if and only if Z possesses in suitable variables
z', ..., 2™ a Pommaret basi® with deg’H = ¢. According to Theorem 5.2, the se-
quence(z!,. .., z™) is then quasi-regular fat1 at degreey but not any lower degree,
so that by the dual Cartan test (Theorem 3.12) the madiliss involutive at degree
but not any lower degree. a

Remark 5.5 Given this result, it is not so surprising to see that the characterisation of
the Castelnuovo—Mumford regularity mentioned in Remark 4.17 and takChrtan
test in Theorem 3.12 are equivalent. Consider a homogeneousZided? for which
the basis{z!,...,2"} of V is §-regular and assume that for some degyee 0 the
condition (4.10a) is violated for some< j < D = dim (P/Z). Thus there exists
a polynomialf € P,_; such thatf ¢ (Z,z',...,27=1) but 2/ f is contained in this
ideal. If we setM; = P/(Z,z',...,27), then obviously the equivalence clag’
lies in the kernel of the map; : M;_; — M;_; induced by multiplication withz7.
Since trivially for M = P/Z the moduleM ) = M/(z!,... x7) M is isomorphic to
M, the conditions of Theorem 3.12 are not satisfiedfdreither. Conversely, any
representative of a non-trivial elementlefr 1.; of degreey provides us at once with
such a polynomiaf. There is no need to consider a valug D, since we know from
Proposition 4.9 thatM p ) >reg 7 = 0.

As an application we consider the following theorem providing a classicabcheri-
sation of the depth via Koszul homology which in fact is often even usefsition

of depth M (see e.g. [54, Sect. IV.A.4]). Note that, taking into account the relation
between the minimal free resolution of a module and its Koszul homologyissed

in Remark 2.15, it also trivially implies the Auslander—Buchsbaum formelating
depth and projective dimension.

Theorem 5.6 Let M be aP-module. Thedepth M = d, ifand only if H,,_4(M) # 0
andH,,_44+1(M) =--- = H,(M) = 0.
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Proof. For simplicity, we give the proof only for the case of an idgalc P. The
extension to modules is straightforward. ¢tbe a Pommaret basis @fwith respect
to the degree reverse lexicographic ordés= miny ey clsh (and thusdepth Z = d)
andHy = {h € H | clsh = d}. We choose a polynomial ¢ +, of maximal degree
and show now that it induces a non-zero elemerf/pf (7).

By Lemma B.1,h € (z!,...,2%) and thus it possesses a unique representatien
2R - 2@ with () € K[z, ..., 2"]. The polynomiak(¥) cannot lie inZ, as
otherwise there would exist @anc H with 1t & |p 1t 2(? |p 1t h contradicting the fact
that any Pommaret basis is involutively head autoreduced. We claim radviothany

d < k < n polynomialspP, € (z',...,z%) exist such that*h = 3", _,, Pyh.

Obviously, the variable:* is non-multiplicative forh. By definition of a Pommaret
basis, for each generatorc H a polynomialP, € k[z!,...,z°"] exists such that
a*h = 3", c4; Poh. No polynomialh with clsh > d lies in (z!,...,2¢) (obviously
Ith¢ (x',... 2%). As the leading terms cannot cancel in the sum, this implies already
that P, € (z!,...,29) foral h € H\ Hy. Forallh € H,; we know thatP, €
klz!,..., 2% and thus the only possibility faP, ¢ (z',...,z%) is that P, contains a
constant term. However, d5s a homogeneous ideal and as the degréei®@maximal

in H4, this is not possible for degree reason. As above, each of the ¢eerfionay
thus be uniquely decomposétl = & PV + - + 24P with P{") € k[7,...,a").
Because of the uniqueness of these decompositions we findthiat = 3", _,, P}E’)h
and therefore we conclude thelth() € 7 for anyd < k < n.

Letl = (i1,...,iq—1) be arepeated index with < iy < --- ,i4—1. Then its comple-
mentl = {1,...,n} \ I is a repeated index of length— d + 1 and we may represent
any elemento € P ® A,,_411V in the formo = lel:d—l frda!. We consider now
in particular all repeated indices witty_; < d. For each of them a unique value
i € {1,...,d} exists such that ¢ I and we setf; = (—1)4"*h(*). For all remaining
coefficients we only assume that € Z. Then, by our considerations above, the so
constructed fornm is not contained iz @ A, _q4+1V.

We claim thaty = 90 € Z@ A, —gV. If we writew = 37, _, frda’, then by definition

of the Koszul differentialf; = 7, (—1)7% fr,(;,)- Let us first assume thag > d.
Then it follows from our choice of; that f;\(;,;1 € Z for all j < d and that always

2 f1 11,3 € Z implying trivially that f; € Z. If iq = d, then one easily verifies that we
have chosew precisely such that; = h € Z. Hence our claim is proven.

If we can now show that it is not possible to choose a farme P @ A,_gi2V
such thato + 0o € 7 ® A,_411V, then we have constructed a non-zero element
[w] € H,—q(Z). But this is easy to achieve by considering in particular the coef-
ficient f 2, a1y = @ ¢ Z. The corresponding coefficient of the forow is
given byZj;ll(—1)ijf(mwd,l)\{j} e («',...,z%1). As noted above, we have
R € k[z¢,...,z"] so that it is not possible to eliminate it in this manner and hence
no formw + 0w can be contained Ifi ® A,,— 441V

There remains to show thdf, _4+1(Z) = --- = H,(Z) = 0 under our assump-
tions. H,(Z) = 0 follows immediately from Lemma 2.16. Consider now a cycle
w e IT®A,_xVwith0 < k < d. Since the Koszul compleX (P) is exact, a
formo € P ® A,_p+1V exists withdw = w. For all I we have by assumption



Chapter 6 Formal Geometry of Differential Equations 31

fr = ijl(—l)jxifff\{ij} € T, our goal is to show that (modulien 9) we can al-
ways choose such that all coefficient$; € Z, too.

Without loss of generality, we may assume that all coefficigiptare in normal form
with respect to the Grobner basks as the difference is trivially contained i In
addition, we may assume thatf; = 1t (2% f;\(;,}) for some valugj. Indeed, it is
easy to see that cancellations between such leading terms can alwdiysibated by
subtracting a suitable fordw from @.

We begin with those repeated indicés= (i1, ...,4;) for which all indices satisfy

i; < d = minpepclsh. In this caset f; € (It H)p = 1t Z implies that already

It fr ;3 € It Z for the abovej. But unlessfy (;,; = 0, this observation contradicts
our assumption that ajf; are in normal form and thus do not contain any terms from
It Z. Therefore allf; where all entries of are less thad must vanish.

We continue with those repeated indides: (i1, . . .,4;) where only one index > d.
Then, by our considerations abov; (;,; = 0 and hencet f; = 1t (2% f1\;,3) for
some valugj # ¢. Thusi; < d and the same argument as above implies that all such
fri,3 = 0. Atrivial induction proves now that in fact afl; = 0 and therefore we find
weIRN, 1V 0

6 Formal Geometry of Differential Equations

In the next chapter we will demonstrate how the algebraic and homolotjieaty
presented so far naturally appears in the analysis of differential eqsatiBerhaps
somewhat paradoxically, the key for applying algebraic methods liessirpfioviding
a differential geometric framework. For this purpose, we must brieftpll some basic
notions from the formal geometry of differential equations [30, 32,582.

Letw : £ — X be a fibred manifold with am-dimensional base space and an
(m + n)-dimensional total spacé (in the simplest cas&¢’ = R™ and& = R"t™
with 7 being the projection on the first components). Local coordinates ahare
x = («',...,2") and fibre coordinates afiareu = (u!,...,u™). A section is then
amapg o : X — & satisfyingm o 0 = idx. In local coordinates, such a section
corresponds to a smooth function= s(x), aso(x) = (x,s(x)).

A ¢-jetis an equivalence cla$s]§£{3 of sections where two sections, o2 are consid-
ered as equivalent, if their graphs have at the pejtt,) a contact of ordey, in other
words if their Taylor expansions at, coincides up to ordey (thus we may consider a
g-jet as atruncated Taylor series). Tdth order jet bundle/,r is then defined to be the
set of all suchy-jets. One easily verifies thdt is an(n+m(”jq))-dimensional man-
ifold. Projection on the expansion poixg defines a fibratiom? : J,m — X. As fibre

coordinates for the poiriz]\?) we may use1® = (ug) with 1 < o < n and a multi

index . where0 < || < ¢ and the interpretation that} is the value ob!*s* /0z+ at
the expansion pointy, € X.

1For notational simplicity, we do not explicitly mention klccharts and use a global notation. Nevertheless
all construction are to be understood purely locally.
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A differential equationis now a fibred submanifol®&, C .J,7. We will always assume
that it may be locally described as the zero set of a func®on./,= — R*; thus we
recover the usual picture of a differential equatdx, u'?) = 0 (note that we do not
distinguish between a scalar equation and a system). pidiengationof a section
o : X — & isthe sectionj,o : X — J,x locally defined byus = 9!#ls* /0t (x).
We call o a solutionof the differential equatiorR,, if im (j,0) € R,. Expressed in
coordinates, this is equivalent to the usual definition.

If ¢ > r, then we also have the canonical fibratiorfs : J,7 — J.7 defined by
simply “forgetting” the higher-order derivatives. This leads to two natoperations
with a differential equatiork,. The first one is thgrojectionto lower order: given a
differential equatiork, C J,7 its r-fold projection istf_)T =my_(Rq) C Jyg—r.
While the projection is easy to describe geometrically, it is, in particular forlireear
equations, hard to perform effectively, as it requires the eliminatioranébles.

In the second basic operation, g®longationto higher order, we encounter the oppo-
site situation: while it is easy to perform effectively in local coordinates,dbimewhat
cumbersome to provide a rigorous intrinsic definition. Given a differet@ation
R, C J,m, we may consider the restrictiatf : R, — X of the projectionr? which
providesR, with the structure of a fibred manifold over which we may again construct
jet bundles. If we consider now both#? and.J,+,m as submanifolds of,.7? (which
is possible with certain straightforward identifications), thervttield prolongation of
R, is the differential equatio® .+, = J, 79N Jy1,7m C Jyppm.

In local coordinates, prolongation requires only toemal derivative If ® is an ar-
bitrary smooth function/,= — RR, then its formal derivativeD;® with respect to the
variablez’ is a smooth functiow,, ;= — R given by the chain rule:

0P & oD
Di® = o—+ Sy %ugﬂi . (6.1)
I3

X
a=10<|u|<q

If now the differential equatiofk,, is locally described as the zero set of the functions
o7 : J,m — Rforl < 7 <t then its first prolongatio® ., is the common zero set
of the functions®™ and their formal derivative®,®™ for 1 < i <nandl < 7 < t.
Higher prolongations are obtained by iteration.

It should be noted that in general neither a projecﬂd]ﬁ)r nor a prolongatiork .+ is
again a manifold, as we must expect that singularities appear. For sty)phie will
ignore this problem and always assume that we are dealing wégudar differential
equation where all operations yield manifolds.

One could think that prolongation and projection are some kind of “inVerserations:

if one first prolongs an equatioR, C J,7 to Ry4, C Jy4,m fOr somer > 0 and sub-
sequently projects back té,7 with 7Z*", one might naively expect that the obtained

equatiorﬂzﬁf) coincides with the original equatioR,. However, this is in general not
correct, asntegrability conditiongmay arise: we only get that alwayé,’") CR,.

Example 6.1 From a computational point of view, one may distinguish two different
mechanisms for the generation of integrability conditions during prolongsitand
projections (for ordinary differential equations only the first one osgu(i) the local
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representation oR, comprises equations of different orders and formal differentiation
of the lower-order equations leads to new (ialgebraicallyindependent equations),
(ii) generalised cross-derivatives.

As a concrete example for the first mechanism consider the trivial arglidifferential
equationR; in two dependent variables , > and one independent variahtalefined

by (u')’ = u? andu! = x. The local representation &, contains in addition the
equationgu!)” = (u?)" and(u')’ = 1. As the second one is of first order, it survives
a subsequent projection back to second order and (after an obvoplfisation) the
projected systen‘mg) is given by(u!) =1, u! = z andu? = 1.

For demonstrating of the second mechanism, we use a classical exdueptie Janet,
namely the partial differential equatid, in one dependent variableand three inde-
pendent variables!, x2, 2% locally described byizs + 2?11 = 0 andus, = 0. Among
others, the second prolongati® contains the equationssss + 22u;122 + 1112 = 0,
ui122 = 0 andusgess = 0. An obvious linear combination of these equations yields
the integrability condition:;12 = 0 and henceRgl) is a proper subset ok3;. Note
that here the integrability condition is of higher order than the original sysieisis a
typical phenomenon for partial differential equations.

It is important to note that integrability conditions are not additional restristion
the solution space of the considered equafiyy any solution ofR, automatically
satisfies them. They represent conditions implicitly contained or hiddéR,imand
which can be made visible by performing a suitable sequence of prdlongaand
projections. They may be considered as obstructions for the orderdey construc-
tion of formal power series solutions. In practice, it often consideraiilifies the
integration of the equation, if at least some integrability conditions are added
These considerations motivate the following definition where the term “iabdgt is
used in its most basic meaning: existence of solutions. As we discussriigfermal
solutions, we speak of formal integrabiltyOne should not confuse this concept with
other notions like complete integrability where properties like the existencesf fi
integrals or symmetries are considered.

Definition 6.2 The differential equatioR, C J, is calledformally integrable if for
allr > 0the equalityR(lﬁr = Ry, holds.

q

While this geometric definition of formal integrability is very natural, it has brious
and serious drawback: it requires the satisfaction of an infinite nunfhasralitions
(surjectivity of the projections?f "' : Ryyry1 — Ryyr forall v > 0). Thus in the
given form formal integrability cannot be verified effectively. We widlesin the next
chapter that algebraic and homological methods lead to a finite criterioforfioal
integrability. The key for the application of these methods lies in a naturahpaotjal
structure hidden in the jet bundle hierarchy, the so-called fundamemrtatifidation.
As this topic is often ignored in the literature, we discuss it here in some detdsl. |
based the following crucial observation.

2In some applications like Lie symmetry thedocal solvabilityis very important [41]. A differential equa-
tion R4 is locally solvable, if for every poinp € R4 a solutiono exists such thap € im j,o. Again in the
sense of existence of the formal solutions, formal intejtalirivially implies local solvability.
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Proposition 6.3 The jet bundleJ,n of order ¢ is affine over the jet bundlg,_, = of
orderqg — 1.

Proof. The simplest approach to proving this proposition consists of studyindft e
of fibred changes of coordinate&s= x(x) anda = u(x, u) in the total spac& on
the derivatives which are fibre coordinates.pr. Using the chain rule one easily
computes that in repeated index notation the result for the highest-ardeatiles is

PR (LSO AW 62

where the dots represent a complicated expression in the derivativveges order and
wheredx/0x represents the inverse of the Jacobi&) 0x. But this implies that (6.2)
is indeed affine in the derivatives of ordgas claimed. O

An affine space is always modelled on a vector space: the differesivesbn two
points may be interpreted as a vector. In our case it is easy to identify ttergpace.
Let [0 and[0)\? be two points inJ,r such thato]? " = [o/1%", i.e. the two
points belong to the same fibre with respect to the fibratfpn . Thus[a]&]) and[a’]&”
correspond to two Taylor series truncated at degredich coincide up to degreg-1.
Obviously, this observation implies that their difference consists of ongolgeneous
polynomial of degree for each dependent variabl€ .

In a more intrinsic language, we may formulate this result as foIIows.pL:et[o],({’)

be a point inJ,m andp = [o]&q’l) = m_(p) its projection toJ, ,m; we furthermore
set¢ = o(x) = m3(p) € €. Then according to Proposition 6.3, the filgrg_,)~"(p) is

an affine space modelled on the vector spagd; X') ® Vem whereS, denotes again
the ¢g-fold symmetric product and:m C T.£ is the vertical bundledefined as the
kernel of the tangent mape=. Indeed, this follows immediately from our discussion
so far: the symmetric algebr&(7:X) is a coordinate-free form of the polynomial
ring and one easily verifies that the homogeneous part of (6.2) obdtaneropping
the terms represented by the dots describes the transformation behafweators in
Sq(T:X) ® Ve£€ (note that we must use tlostangent spacé’; X, as tangent vectors
would transform with the inverse matrix).

By Proposition 6.3, the jet bundlg r is an affine bundle ovef,_, 7. This fact implies
that the tangent space to the affine spatge_l)*l(ﬁ) at the pointp € J 7 is canon-
ically isomorphic to the corresponding vector space, i.eS§0l; X) ® V:£. This
isomorphism is called theundamental identificatianWe derive now a local coordi-
nate expression for it. On one side we have the tangent space to therfibre' (p)

at the pointp, i. e. the vertical spack,n;_, defined as the kernel of the tangent map
T,m]_,. Obviously, it is spanned by all the vectdis. with [u| = ¢. Let us consider
one of these vectors; it is tangent to the cusvet — p(t) wherep(0) = p and all
coordinates of a point(t) coincide with those of except for the one coordinate;
corresponding to the chosen vector which is increased by

On the other side, we may compute the difference quotjgni — p) /¢ interpreting the
points as above as truncated Taylor series. dheomponent of the result is obviously
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the polynomialuf (t) —ug;)=* /u!. Hence the fundamental identification is just the map
g Vg — S4(TiX) ® Vi€ given by
Eq(auﬁc) = %dx“ ® aua . (63)

Note the combinatorial factc;ﬁ having its origin in Taylor’s formula!

7 Algebraic Analysis of Differential Equations

Definition 7.1 Let R, C J,n be a differential equation. Thigieometric) symbal
of R, is a family of vector spaces ov@&, where the value gt € R, is given by

No)p =T,Rq N V,mg_y = Vp(”g—l ‘Rq) : (7.1)

Thus the symbol is the vertical part of the tangent space of the sulwtthlf, with
respect to the fibration?_,. If R, is globally described by amap: J,7 — £’ with a
vector bundler’ : & — X, then we introduce theymbol map : Vrl_ | — TE' given
by o = T‘I’\vwg ) and defineV,, = kero. Locally, this leads to the following picture.

Let (x,u(?) be coordinates or,r in a neighbourhood of. We first determing’, R,
as a subspace @f,(J,7). Let (x,ul®; %, u(®) be the induced coordinates @p(J,7);
every vectorX ¢ T,(J,m) has the formX = i'0,: + uj;d,e. Assuming thaiR, is
locally defined byd™ (x,ul®) = 0 with 7 = 1,...,¢, its tangent spac&,R, consists
of all vectorsX such thatd®™(X) = X®" = 0. The symbolV, is by definition the
vertical part of this tangent space. Hence we are only interested in slobsgons of
the above conditions whete = 4(?~Y = (0 and locally\, can be described as the
solution space of the following system of linear equations:

0BT
AREESY —(pig =0, T=1...t. (7.2)
1<a<m H
lul=aq

This is a system with real coefficients, as the derivatts/ou;; are evaluated at the
pointp € R,. We call its matrix thesymbol matrixand denote it by\/,(p). Itis also
the matrix of the symbol magp in local coordinates.

The symbol is most easily understood for linear differential equatibogsely speak-
ing, the geometric symbol is then simply the highest-order or principal gfathe
system (considered as algebraic equations). For non-linear syseeperferm a brute
force linearisation at the pointin order to obtainV,),. Obviously,dim(N;), might
vary with p. For this reason, we speak in Definition 7.1 only of a family of vector
spaces and not of a vector bundle. Only if the dimension remains comst@riR,,,
the symbolV, is a vector subbundle afr_,. For simplicity, we will assume that all
considered symbols are vector bundles.
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Example 7.2 For Janet's partial differential equatioR, considered in Example 6.1
the symbol equations atgs;+z%1;; = 0 andiss = 0 (@SR is a linear system without
lower-order terms, the symbol equations look formally like the differém@guation
itself; however, the symbol equations akgebraic and not differential equations).
Hence the symbal; is here the one-dimensional distribution spanned by the vector
field y,, — 2%0u,,.

Of course, not only the original equati@t, has a symbal,, but also every prolonga-
tion Ry4r C Jy4r7 Of it possesses a symhf, ., C T'(Jg4,7). It follows easily from
the coordinate expression (6.1) of the formal derivative that ftetiobg a local repre-
sentation of the prolonged symhbl,..,., there is no need to explicitly compute a local
representation of the prolonged differential equatidp,,.. We can directly derive it
from a local representation o¥,, as we need only the partial derivative®,; @™ /u?
with 1 < i < n and|v| = ¢ + 1, i.e. the highest-order part of the formal derivative
D;®7, for determining the symboV, ;. Itis given byoD;®7/oug = 07 /ous_,

(if v; = 0, the derivative vanishes) and thus a local representatiov, of is

oP™ T=1,...,p
N, : —a%,, =0, ey 7.3
( (I+1)P 1S§§7n auﬁ pt1; i=1,....n. ( )
|ul=q

In our geometric approach to integrability conditions, their existence is kéghhy

a dimension inequalitydim Rgl) < dimR,. By the following result, which follows
from a straightforward analysis of the Jacobians of the involved difteabequations,
the dimension ofRfll) is related todim N4, i.e. analysing the prolonged symbol
matrix M, gives information about possible integrability conditions.

Proposition 7.3 If A/, is a vector bundle, thedim R{") = dim R, 1 — dim N ;.

In the classical theory of partial differential equations a different motibsymbol is
used which should not be confused with the geometric symbol introdaicede: the
classical symbol isiot an intrinsic object. Our notion of symbol is closely related to
what is traditionally called the principal symbol which is intrinsically defined.
Assume we are given a one-forsn € T*X. It induces for everyy > 0 a map
lyq @ Vo — Vrl_| defined by., ,(v) = €,(x? ® v) whereg, is the fundamental
identification andy? denotes the-fold symmetric product of. In local coordinates,
we write y = y;dz’ and obtain, , : v*9ye — Xuvaauﬁ wherey runs over all multi
indices of lengthy andy,, = x/" -+ - x#~.

Let o be the symbol map of the differential equati®y globally described by the map
® : J,mr — £'. Then theprincipal symbolof R, is the linear mapr, : Vo — TE&'
defined byr, = o o, 4. Locally, we can associate a matfi¥y| with 7, :

= Y0 9 (7.4

lul=q ~H
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If dim& = m anddim &’ = p, it hasp rows andm columns. Its entries are homo-
geneous polynomials of degrgen the coefficients ofc. We may think of7'[x] as a
kind of contraction of the symbol matrik/,. Both matrices have the same number of
rows. The column with index of T'[x] is a linear combination of all columns i,
corresponding to a variabkg; with the coefficients given by,.

Remark 7.4 Using the matrix7'[x] of the principal symbol, we may relate the con-
struction of integrability conditions with syzygy computations. Assume thafuthe-
tions @™ with 1 < 7 < ¢ locally representing the differential equatidty, lie in a
differential fieldTF. Then the entries df'[x] are polynomials inP? = F[x1,..., Xn]-
The rows ofT[x] may be considered as elements/if and generate a submodule
M C P™, LetS € Syz(M) C P! be a syzygy of the rows df [x]. The substitu-
tion y; — D; transforms each componesfif of S into a differential operatof,. By
construction¥ = 3! S, ®7 is a linear combination of differential consequences of
R, in which the highest-order terms cancel. In fact, this represents nothinthé
rigorous mathematical formulation of “taking a cross-derivative.”

Example 7.5 For Janet’s differential equation the module generated by the rows of
T[x] is the idealZ; = (x3 + 22x3,x3). Obviously, its syzygy module is spanned by
S1 = x%e1 — (X3 + 22x?)e, and applying the corresponding differential operator to
Janet’s equation yields the above mentioned integrability conditipn= 0.

The fundamental identificatios, allows us to identify the symbdlV,), with a sub-
space ofS, (T X) ® Ver where¢ = nf(p) andz = 7(£). In local coordinatese,
is given by (6.3); hence its main effect is the introduction of some coatbiial fac-
tors which can be absorbed in the choice of an appropriate basis. Mersely, we
recover here the discussion in Remark 2.5. If we thhg, ..., 0.~} as basis of the
tangent spacé&, X’ and the dual basi§dz?,...,dz"} for the cotangent spacg:x
then the “terms’d,. = 9o --- 04 with |u| = ¢ form a basis ofS, (7., X') whereas
the dual basis of,(7; X) is given by the “divided powers’/%da:/”. If we express an
elementf € Sy(T;X) ® Ver in this basis ag = ﬁfﬁdx“ ® Oy~ Wherey runs over
all multi indices with|u| = ¢, then the symeN consists of all suclf satisfying the
linear system of equation’s, -, <., |.1=4 aua f =0with 7 =1,...,t. Obviously,

this is the same linear system as (7.2) deflnlng the symbol as a subsﬁp@@(g_q.

Proposition 7.6 Let R, C J,= be a differential equation andp, € R,) 5q D€ 8

sequence of points such théf(p,) = p, and sett = w§(p,) andz = 79(p,). If we
set\, = &,(T;X) @ Ve for 0 < r < ¢, then the sequencgN;. ,,T)TelNO defines a
symbolic system i (7 X') ® Ver which satisfiesV, 11 = N,.; forall r > q.

Proof. For notational simplicity, we consider onty= ¢q. Let f = ﬁf{,’“dx” ® Oye
where v runs over all multi indices witjy| = ¢ + 1 be an element ol ;. By
definition of the prolongation, this is equivalentd¢f) € N, @ T X and hence we
find for everyl <i < nthat% f¢dz"~' @ d,« € Ny. In other words, the coefficients

, . . . a7
[ must satisfy the linear system of equation§ .., |uj=q+1,1.>0 Buz . fo =0



38 Spencer Cohomology, Differential Equations, and Pomnases, Seiler

with 7 =1,...,tandi = 1,...,n. A comparison with (7.3) shows that this system
describes the prolonged symb] ;. Hence we hava/,,, = N, as claimed. 0O

In this proposition we used a sequence of pointe R, with 7} (p,.) = p, in order to
consider the symbol§V,.),,. Obviously, such a sequence does not necessarily exists,
unless we are dealing with a formally integrable equation. However, byrtakdsser-
tion, the obtained symbolic system is independent of the choice of theds,pasrwe
may simply set\,.+; = N,.; for all » > ¢. Hence at each point € R, the symbol
(Ny), induces a symbolic system which, according to Lemma 2.8, we may alterna
tively consider as a subcomodulép] C (T X) ® Vemr; we then speak of theymbol
comoduleof R, at the pointp. One can now easily verify that the symbolic systems
given in Example 2.9 are associated to the their mentioned differentiatieqs.

Remark 7.7 In Proposition 7.6 and in the definition of the symbol comoduiaeve
simply set the lower-order componenits for 0 < r < ¢ to the full symmetric product
S, (T;X) ® Vem. In principle, one could use a more precise approach by considering

instead the symbols of the projected equati@d%’r). However, for the subsequent
involution analysis it only matters what happens in degre@d beyond which is not
affected by such changes in lower order. Hence we stick to this simpbeoagh.

Remark 7.8 The comodulesV arising as symbols are of a special form: their annihi-
lators N possess bases where all generators are homogeneous of theesaee,d
namely the order of the underlying differential equati@p. It follows now immedi-
ately from the identification of the degree of involution bf and the Castelnuovo—
Mumford regularity of A’* that the minimal free resolution of/° is linear, i.e. the
syzygy modules of any order can be generated by syzygies ofaégihis was al-
ready noted as a “curiosité” by Serre in his letter appended to [21]atks shown by
Eisenbud and Goto [14], this represents in fact a characteristic pyopleg-regular
modules: ifM is g-regular, then the truncatia® >, possesses a linear resolution.

Definition 7.9 The symbolVN, of the differential equatiorR, C J,x of ordergq is
involutiveat the pointy € R,,, if the symbol comoduleV|[p] is involutive at degree.

Choosing local coordinates, u@) in a neighbourhood of a given poipte R, we
can apply Cartan’s test (Theorem 3.4) for deciding involution. Recatlitirequires
only linear algebra computations with the two symhb¥lsand\,; and thus is easily
performed effectively. In practice, one uses a dual approacloigrg that the annihi-
lator NV C S(T,X)® Veris anS(T, X )-submodule, theymbol moduleln our chosen
coordinates and bases the submoduvileis generated by the “polynomials”

Z gq)aag@aua, r=1,...,t, (7.5)
1<a<m #
lnl=q

corresponding to the left hand sides in (7.2). Identifyi#{@, X') with the polynomial
rng P = R[0,1,...,0.], one readily recognises ik the polynomial module gener-
ated by the rows of the matrik[x] of the principal symbol which already appeared in



Chapter 7 Algebraic Analysis of Differential Equations 39

Remark 7.4. We may now apply the theory of Pommaret bases to theosluen™®.
Then the following result follows immediately from Theorem 5.2.

Proposition 7.10 The symbolV, of the differential equatiorR, C J,7 is involutive

at the pointp € R,, if and only if in suitable local coordinates an involutive head
autoreduction transforms the generators (7.5) into a Pommaret badiseo§ymbol
moduleN" for a class respecting term order.

In principle, at some pointg € R, the symbol could be involutive, whereas at other
points on the differential equation this is not the case. For notational simphegy
will assume throughout this work that all points &) behave uniformly and therefore
drop from now on the explicit reference to the poing R,,.

Proposition 7.10 transforms the Cartan test into an easily applicableiegfedterion

for an involutive symbol. In order to recover some results in the literatwe ex-
press it in a less algebraic language. Recall that the columns, aforrespond to the
unknownsis;; we sort them according to a class respecting term order (it suffices, if
we take care that a column corresponding to an unknafvis always to the left of a
column corresponding to the unknowit, if cls iz > clsv). Now an involutive head
autoreduction is equivalent to determining a row echelon fafth of M, using only
row operations. The unknowi; corresponding to the column where the first non-

vanishing entry of a row sits is called ttheader of this row. Ifﬁék) is the number of
leaders that are of clags then we call these numbers timelicesof the symbolV,.

The problem of§-regularity concerns this notion. The class of a derivative is not in-
variant under coordinate transformations. In different coordinggéesns we may thus
obtain different values for the indiceg:regular coordinates are distinguished by the
fact that the suny 7_, k4" takes its maximal value. It is not difficult to see that
actually we are here only reformulating Remark 4.5. Hence (4.2) inatedy implies

the following result.

Proposition 7.11 The symbolV, with the indices@flk) is involutive, if and only if the
matrix M, of the prolonged symbd\,,; satisfiesank M, = >}, kﬁé’“).

Remark 7.12 A special situation arises, if there is only one dependent variable, as
thenanyfirst-order symbolV; is involutive. The symbol modulg/® is now an ideal

in P generated by linear polynomials. Using some linear algebra, we mayskg
sume that all generators have different leading terms (with resped ttetiree reverse
lexicographic order). Because of the linearity, this implies that all leadimggare rel-
atively prime. It is straightforward to show (in fact, this is nothing but Baedger's

first criterion) that allS-polynomials reduce to zero and hence our generating set is a
Grobner basis. As one easily verifies that the leading terms involutietemgte the
leading ideal, we have a Pommaret basig/dfor equivalently\; is involutive.

This observation is the deeper reason for a classification of partiatefifial equa-
tions suggested by Drach (see [59, Chapt. 5]). Using a simple trick dharntowe

may transform any differential equati@®, into one with only one dependent variable.

If we first rewrite R, as a first-order equation, then the transformed equation will be
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of second order. Only in special circumstances one can derivetaffidsr equation
in one dependent variables. Thus from a theoretical point of view wedisinguish

two basic classes of differential equations: first-order and secatel-equations, re-
spectively, in one dependent variable. The first class is much singgléis symbol is
always involutive (like for ordinary differential equations).

Definition 7.13 The differential equatio®k, is calledinvolutive if it is formally inte-
grable and if its symbaV is involutive.

The term “involution” is often used in a rather imprecise manner. In pdaticinvolu-
tion is sometimes taken as a synonym for formal integrability. While Definitidi3 7
obviously implies that an involutive equation is also formally integrable, thvese
is generally not true: involution is a stronger concept than formal inteljsa

Theorem 7.14 R, is an involutive differential equation, if and only if its symig] is
involutive andR\" = R,,.

We omit a proof of this theorem, as it follows immediately from Theorend hélow
and the finiteness of the Spencer cohomology (Theorem 2.20). @igeskether or
not the symboJV;, is involutive via the Cartan test (Theorem 3.4 or its alternative for-
mulation Proposition 7.11) requires only computations in ogcandg + 1. Obviously,

the same is true for verifying the equal'@/ﬁ,l) = R,. Hence Theorem 7.14 represents
indeed a finite criterion for involution. A closer look at the above develdpadolog-
ical theory yields a finite criterion for formal integrability independent ofitution.

Theorem 7.15 The differential equatiork, is formally integrable, if and only if an
integerr > 0 exists such that the symbolic syst&frdefined by the symbgal, and all
its prolongations i2-acyclic at degree + r and the equalityzflﬂr, = R4+, holds for
all valueso < ' < r.

Proof. One direction is trivial. For a formally integrable equati®; we even have

Rflﬂr = Ry forall ¥ > 0 and by Theorem 2.20 the symbolic syst&vhmust
become2-acyclic at some degreg+ r. For the converse, we first note that, because of
Lemma 2.13, the symbolic systemis trivially 1-acyclic at degreg. Our assumption
says that in addition the Spencer conomology modHless:2(A) vanish for alls > r.
According to Proposition 2.18, this implies dually that the Koszul homologgutes
Hyis1(N?) of the symbol moduleév® vanish for alls > r.

Recall from Remark 2.15 that the Koszul homology corresponds tonamal free
resolution ofA/° and hence our assumption tells us that the maximal degree of a min-
imal generator in the first syzygy modulgz(A°) is ¢ + . In Remark 7.4 we have
seen that the syzygies af° are related to those integrability conditions arising from
generalised cross-derivatives between the highest-order equdfioesy the equality
Rflﬂr = R4+~ holds for all0 <+’ < r, then none of these cross-derivatives can
produce an integrability condition. Furthermore, no integrability conditicars arise
from lower-order equations. Hengg, is formally integrable. 0



Chapter 8 Conclusions 41

An abstract proof of this result was given by Goldschmidt [19]. Thaopabove is
interesting from a computational point of view as it demonstrates that@rgtng set

of) the Koszul homology modulé&l; (AV°) shows us exactly which generalised cross-
derivatives may produce integrability conditions (Kruglikov and Lychadgveloped
recently an alternative approach for the construction of these conditasexl on multi-
brackets, see [32] and references therein). Of course, we tdenile solely on the
basis of the symboV/, whether or not these integrability conditions vanish modulo the
equations describing,,, as this depends on the lower-order terms. Therefore, we must

check a finite number of projectiorﬁgjﬁjfrl : Rgtr4+1 — Rq4r fOr surjectivity.

Example 7.16 We continue with Janet’s partial differential equati@a defined by
uss3 + x%u1; = uze = 0. In Example 7.5 above we constructed via the syzggy=
x3e1 — (X3 + 22x?)e, the integrability condition:;;2 = 0. Geometrically, we have
arrived then at the equatidfagl) defined by this condition, the original equations and
their formal derivatives. The rows of the principal symbol7 1) generate the ideal
To = (% + 2%x%, X3, X3 x2). Its syzygy module is spanned By, S, = y%es; — xz2e3
andS; = yixqer — z2x3es. Applying the differential operator correspondingSe
yields zero, whereaS; leads to a further integrability conditioni;;;; = 0.

Geometrically, we are now dealing with the differential equamilﬁ) described by the
two integrability conditions, the original equations and all prolongations upderd.

The rows of the principal symbdl'[x] define now the ideal; = Z, + (x}) and for

its syzygy module we need two further generators, nansgly= x?e; — y2e4 and

S5 = (x3 + 2%x%)es — xje1. One easily checks than none of them leads to a new

integrability condition so thaRff> is a formally integrable equation.

However,Rf) is not involutive. One way to see this consisting of noting that in the
syzygyS:; the coefficient og, is of degree. Sincee, represents a differential equation
of order4, the corresponding cross-derivative takes place in oédeAccording to
Remark 7.8, we can always obtain a linear resolution for an involutisésy. Indeed,

we must prolong here oncezéz) is an involutive equation with vanishing symbol.

Another way to prove this goes as follows. Consider a ppiEEtRff) wherez? = a
for some constant € R and the ideall = ((2%)? + a(x!)?, (2?)?, (z1)%2?, (z1)*).
Then one easily verifies that the truncated id&a] is the annihilator of the symbol
comoduleN at the pointp. For a Pommaret basis @f we must add the generators
(x2)223, (x1)%2%2® and (z1)*23. Since the last generator is of degreewe find that
regZ = 5 and hence according to Remark 4.15 the degree of involutiov 5.

8 Conclusions

A central question for any differential equation is the existence of solsitiéior for-
mal solutions the existence is equivalent to the formal integrability of thateaqu The
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Cartan—Kahler theoren(see [42, 53] and references therein) provides us with an ex-
istence and uniqueness theorem for analytic solutions of involutive anatytiations
generalising the classical Cauchy—Kovalevskaya theorem. Compétiedlternative
approaches like Riquier's existence theorem, the proof of the CartarieKtheorem
does not require a convergence analysis of power series. This alb&smetimes to
extend it to larger function spaces (which is very important for applicajian addi-
tional information about the equation is given; a concrete example ctouhd in [52]
where smooth solutions of hyperbolic systems with elliptic constraints aredtrea

For deciding the mere existence of solutions, formal integrability is sufficié one

is interested in the size of the solution space (or equivalently in the numbdoan

of conditions leading to a unique solution), then one needs more informalibe

simplest approach (implicitly already exploited by Janet) consists of uscayrgple-
mentary decomposition of the symbol module for deriving a (formallgjlaposed
initial value problem and is trivial for a not only formally integrable but ewevolu-

tive system. Generally speaking, the main difference between fortegjrability and
involution is the same as the one between a Grobner and a Pommarethaéismer
one is concerned only with the first syzygy module (iFg(M)), the latter one with
the full syzygy resolution (i. e. the full Koszul homologd#, (M)).

In order to apply such results, it is important that one deals with an invelwif
ferential equation. Th€artan—Kuranishi theorenisee again [42, 53] and references
therein) asserts that any differential equationsatisfying some modest regularity as-
sumptions is either inconsistent or can be completed to an equivalenttimectgua-

tion of the formelir; a concrete instance of such a completion process was given
in Example 7.16 for Janet’'s equation. The key for proving this resultesotiserva-

tion that any symbol becomes involutive, if it is sufficiently often prolahge other
words the finiteness of the Spencer cohomology (Theorem 2.20).pdWer of the
homological approach to involution becomes evident in its trivial proof.

For concrete computations, a direct application of the Cartan—Kurgmisbeédure be-
comes quickly cumbersome, as it requires an explicit local represamtaf every
appearing differential equation. In the (small!) Janet example theifinalutive sys-

tem Rf) is locally described byt4 equations. However, all relevant information can
be extracted from just equations corresponding to the Pommaret basis of the symbol
module. In the language of [23] these equations comprise the skeIetEé?’ofOn

the basis of this notion, [23] presents a hybrid completion algorithm thabuows

the algebraic efficiency of Pommaret bases with the intrinsic geometryedt #ntan—
Kuranishi procedure.

For lack of space we could not discuss applications of involutive diffekequations
in this contribution. Pommaret [43, 44, 45] presents in his books maplycagtions, in
particular in mathematical physics and control theory. Some applicatiamsnirerical
analysis can be found in [53] and references therein. Generall\kisgeavherever
under- or overdetermined systems of differential equations apipeeatheory of invo-
lution will make any subsequent analysis significantly easier; in manyscase an
analysis will even be impossible without the concept of involution (or at lessal

integrability).
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A  Multi Indices

As there exist different kinds of multi indices but apparently no stashaa@mes for
them, we must introduce our own terminology. L€t ..., z" ben variables. For
various constructions with them, we distinguish in this article between multi indice
and repeated indices. #wulti indexis an elemeniu = [u1, ..., u,] € N; the value

|p| = p1+- - -+p, isits length. Atypical use of a multi indexig: = (x!)#t ... (z7)+»

or for a functionu = u(x!,..., 2")

olrly oy,
oz O(xh)m - 9(an)en (A1)

We furthermore defin@! = p4!--- u,!. If k is the smallest value such that # 0, we
call it theclassof the multi indexu and writecls u = k.
By convention, we introduce for the special multi index [0, ..., 0] thatz® = 1 and
0% /02" = u. Obviously,0! = 1 and|0| = 0. In principle,cls0 is undefined, but in
many situations it is convenient to &0 = n. Other special multi indices appearing
occasionally are

¢;=10,...,0,2,0,...,0] (A.2)

wherel € N is theith entry and all other entries vanish. The addition of multi indices
is defined componentwise, i.g.+ v = [u1 + v1, ..., ity + vy). If we want to increase
theith entry of a multi index. by one, we can thus simply write+ 1, using (A.2).

A repeated indexf lengthq is an ordered sequende= (i1, ... ,1,) where each entry

i, is an element of1,...,n}. Nowz! is a shorthand for the produet: 2?2 - - - 2% and
correspondingly for partial derivatives. Obviously, here the ardpof the entries does
not matter. However, our main use of repeated indices is for exteniorsfavhere the
ordering determines the sign. In fact, there we only consider indices(i1, . .., %,)
with iy < iy < --- < ig, i.€. all entries are different and sorted in ascending order.
If I, J are two such repeated indices, then J denotes the index obtained by first
concatenating and.J and then sorting the entries. Obviously, this only yields a valid
result, if I andJ have no entries in common. We sgh (I U J) = +1 depending on
whether an even or odd number of transpositions is required for thiegolf I and.J
have entries in common, we sgh (I U J) = 0; this convention is useful to avoid case
distinctions in some sums.

B Term Orders

Term orders are crucial for the definition of Grobner bases anddhinsolutive bases.
As some of our conventions are inverse to those usually used in conmveutidebra,
we collect them in this short appendix.

Let P = k[z!,...,2"] and define the set aérmsT = {z* | 1 € Np}. Recall that a
term orderis a total order< on T satisfying ()1 < ¢ and (ii)r < s = rt < st for all
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r,s,t € T. A term order isdegree compatiblef degs < degt impliess < t. Finally,
we say that a term ordeespects classe$f degs = degt andclss < clst implies
s <t

We define now théexicographicorder byxz# <ex 2, if the last non-vanishing entry of

1 — v is negative. With respect to threverse lexicographiorder,z# <eviex 2V, if the

first non-vanishing entry of — v is positive. The latter one is not a term order,ldas

not the smallest term, but its degree compatible version is a term artlefiegreviexz” ,

if || < |v|orif|u] = |v| andz? <reviex 7.

Here we defined the orders inverse to the usual convention in most ex@sddbner
bases: the classical forms arise, if one inverts the order of the vasiable .., 2" —

2™, ...,z'. Our version fits better to the conventions used in differential equations
theory, in particular to our definition of the class of a multi index.

Lemma B.1 Let < be degree compatible and the conditibnf € (x!,...,2") be
equivalent tof < (z!,...,z") for any homogeneous polynomiglc P, then< is the
degree reverse lexicographic ordegegreviex

The proof of this well-known characterisation lemma is left as an easgiseeto the
reader. We note the following simple consequence of it: on terms of the dagree
any class respecting term order coincides with the degree reversegeitaic order.

C Coalgebras and Comodules

Since the notion of a coalgebra and a comodule is still unfamiliar to many mathe
cians, we collect here the basic definitions and properties; for an in degattment
we refer to [7]. Roughly, the idea behind coalgebras is the inversioertdia arrows

in diagrams encoding properties of the multiplication in an algebra. Thus,isfan
algebra over a fieldk, then the product is a homomorphisi® A — A and the unit
may be interpreted as a linear miap- A. Correspondingly, aoalgebraC over a field

k is a vector space equipped witltaproduct a homomorphism : ¢ — C®C, and a
counit a linear map : C — R. The associativity of the product in an algebra and the
defining property of the unit dualise to the requirement that the diagrams

A®ide
CRCRC ~—— CRC . cec
e;@ry %e
ide®A A k®C A Cok (C.1)
R X /
C®C<——"—2C C

(wherey mapsc € Cto1 ® corc® 1, respectively) commute.
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Analogously,C-comodules arise from dualising-modules: a (rightcomoduleis a
vector spaceV” with acoactionp : ' — N ® C such that the two diagrams

N ! N&cC N L NecC
p l l idy®A l idy ®e (C.2)
idar
N@C —= NRCxC N
p®ide

commute. A special case iscaideal ' C C where the coaction is the coprodust
The subcomodul€ c N cogeneratedy a setg C A is by definition the intersection
of all subcomodules aof/ containingg.

The linear duat* of a coalgebra’ has a natural algebra structure via ttwavolution
productx. Itis defined for arbitrary elements ) € C* by requiring that the relation

(pxp,c) = (9 @1, A(c)) (C.3)

holds for allc € C. The unit element af* is simply the counit. If A/ is aC-comodule
with coactionp, then its dual spac&™ is naturally a rightC*-module with the action
p*: N* @ C* — N* defined in similar manner by requiring that the relation

(p* (v, ), n) = (v @, p(n)) (C.4)

holds for allv € N*, v € C* andn € N. For arbitrary subset§ C N we define in
the usual manner thennihilator £° = {v € N* | v(¢) = 0V¢ € L} C N*. Similarly,
for any subser* C A/* the annihilator i£*)° = {n e N | A\(n) =0VA € L*} CN.
One can show that it € A is a subcomodule, thed® C A* is a submodule, and
conversely ifC* C A* is a submodule, thef£*)° C N is a subcomodule.

If V is a finite-dimensional vector space, then the tensor algébraan be given the
structure of a coalgebra with the coproduct

q
A1 @ @v) =Y (1@ ®@0;) @ (vig1 @ @ vg) . (C.5)
=0

and the counit : TV — k which is the identity o7,V and zero everywhere else. This
coalgebra structure is inherited by the symmetric algehralefined in the usual way

as a factor algebra @fV. We denote the symmetric coalgebra®y .

If {z!,...,2"} is a basis o), then we may use as basis of the symmetric coalgebra
SV all monomialsz# with a multi indexy € N providing the well-known isomorphy

of SV with the polynomial algebr&[z!, ..., z"]. In this basis the coproduct &fV is
given by “Taylor expansion”

]
NGEDY LIS & o (C.6)

!
P ul Oz

for any polynomialf € k[z!,..., 2"]
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By definition, a subse’ C &V is a coideal, if and only iA(7) C J ® C which, by
(C.6), is equivalent to the conditiant*! f /0z* € 7 for all f € 7. Similarly, a subset
N C (6V)™ is a subcomodule, if and only if this condition holds in each component.
Let 7 ¢ &,V be a finite set of homogeneous polynomials of degte¥/e are inter-
ested in the homogeneous coidgatogenerated byr. Obviously, we must take for
J, thek-linear span ofF. In a given basi§z*, ..., 2"} of V, we setfor0 < r < ¢

olnl f

OxH

Ty =1

It is easy to see thal = @!_, J, satisfiesA(J) C J ® C and that it is the smallest
subset of5V containingF with this property. Note that, in contrast to the algebra case,
we obtain components of lower degree andks finite-dimensional as vector space.

| f € oy e NG, [l =7} . €
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