
Errata and Comments

Nobody is perfect and thus my book Involution (Springer-Verlag 2010) contains of
course errors. Those that have been found before the date at the bottom are contained
in the following list together with some additional comments. The list is ordered by
chapter. A negative line number is taken from the bottom; displayed formulae are not
counted as lines.

Chapter 2: (Formal Geometry of Differential Equations)

Example 2.3.7: An unpleasant “feature” of the given example is that the case
uxx = (x/y)2 yields an inconsistent equation (further computations lead to
the equation x = 0). Here is a modified version leading to two distinct
consistent cases:

y5uyy +
1
2

u2
xx = 0 , (1a)

yuxy− xuxx = 0 . (1b)

The following linear combination of differential consequence yields then
an equation that factors:

xy3Dy (1b)+ y4Dx (1b)−Dx (1a) = (uxx− x2y3)uxxx = 0 .

Completion of the original equations augmented by one of the factors yields
two involutive equations of finite type. The first one is of third order and
given by the following equations:

uxxx = 0 , y5uyy +
1
2

u2
xx = 0 ,

yuxxy−uxx = 0 , yuxy− xuxx = 0 .

Its general solution depends on four parameters:

u(x,y) = ax2y+
a2

2
+bx+ cy+d .

The second case yields a second-order equation:

uxx = x2y3 , uxy = x3y2 , uyy =
1
2

x4y

with a general solution depending only on three parameters:

u(x,y) =
1

12
x4y3 + ex+ f y+g .

Thus the two cases differ not only in the order at which one obtains an
involutive equation, but also on the size of the solution space.
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In general, the treatment of fully nonlinear equations, i. e. equations which
are nonlinear in the derivatives of maximal order, is highly nontrivial. If
the nonlinearity is of a polynomial form (which is the case in most practi-
cally occuring differential equations), the Thomas decomposition allows to
combine the completion to involution (in the form of determining a passive
system for the Janet division) with an algorithmic treatment of the arising
case distinctions. A modern description of this theory can be found in [10];
an implementation in MAPLE is described in [2].

Definition 2.3.15: I have been repeatedly asked whether it is obvious that one
always has the inclusion R(1)

q+r ⊆ Rq+r? There are (at least) two ways to
see this. The simplest approach consists of studying the corresponding lo-
cal systems. By definition, R(1)

q+r = π
q+r+1
q+r (Rq+r+1). Assume that we are

given some local system describing Rq+r; then a local system for Rq+r+1
is obtained by adding all formal derivatives of the equations in this local
system. Obviously, the original equations “survive” the projection back to
order q+ r, as they are of order q+ r or less, and thus the arising local sys-
tem of R(1)

q+r contains at least these equations (and potentially some more,
if integrability conditions exist) which proves the claimed inclusion.
One can also give an intrinsic argument, although it is a bit more awkward
due to the fact that the intrinsic definition (2.51) of a prolonged differen-
tial equation is rather cumbersome. For notational simplicity, we will now
show thatR(r)

q ⊆Rq. The following diagram exhibits all needed maps.

Jrπ̂
q ι̂q,r //

(π̂q)r
0

��

Jrπ
q

(πq)r
0 !!

Jq+rπ
ιq,roo

π
q+r
q

��
Rq

ι //

π̂
q

��

Jqπ

π
q
0
��

π
q

��

E

π

��
X

γ

FF

X

σ

[[ jqσ

[[
jq+rσ

bb

γ

::

As the projection π̂q : Rq → X is just a restriction of the canonical pro-
jection πq : Jqπ →X , we may consider any section γ ∈ Γloc(π̂

q) simulta-
neously as a section in Γloc(π

q) and consequently the jet bundle Jrπ̂
q as a

subset of Jrπ
q (making ι̂q,r a simple inclusion map). Now we take a point

[γ]
(r)
x0 ∈ Jrπ̂

q and assume that it also contained in im ιq,r so that it lies in the
intersection definingRq+r ⊆ Jq+rπ . This assumption implies that a section
σ ∈ Γloc(π) exists with [γ]

(r)
x0 = [ jqσ ]

(r)
x0 and thus [γ]

(r)
x0 = ιq,r

(
[σ ]

(q+r)
x0

)
.

Now we find on one hand that [σ ]
(q+r)
x0 ∈ Rq+r. On the other hand, it fol-

lows from imγ ⊆Rq that [σ ]
(q)
x0 ∈ Rq. As the section γ was arbitrary, this
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observation entails that every point in Rq+r lies over a point in Rq and
hence our assertion π

q+r
q (Rq+r)⊆Rq.

Example 2.4.2: In order to be dimensionally consistent, one should include in
the incompressible Navier-Stokes equations (2.88) the constant fluid den-
sity ρ . Equation (2.88a) then reads

ρut +ρ(u ·∇∇∇)u = ν4u−∇∇∇p .

However, in mathematics it is common to set ρ = 1, as mathematicians
simply ignore dimensions.

Chapter 3: Involution I: Algebraic Theory

Figure 3.1: In the left half of the diagramm, there should also be a vertical arrow
starting at the multi index [2,0], as for the full cones every direction is
“allowed”.

Lemma 3.1.19: In the proof the notations are not fully consistent with the use
of multi indices instead of terms. In the third line, a rigorous formulation
is xµ = lcm{xν | ν ∈ B}. In (3.4) the intersection with Nn

0 is unnecessary;
it suffices to write ν̃ ∈ 〈B〉.

Lemma 3.4.14: The lemma claims an equivalence between two statements; how-
ever, only one direction is correct. The direction considered as “obvious” in
the proof is in fact wrong, as the following simple counterexample demon-
strates. Consider the set F = {1+ x1x2, x1x2}. Obviously, it is not involu-
tively head autoreduced for any term order or involutive division. Neverthe-
less, it induces a direct sum decomposition of the involutive span 〈F〉L,≺.

Chapter 4: (Completion to Involution)

Lemma 4.1.5: In the fifth line of the proof wrong variable names are used. The
correct definition of the position k is k = max{` | ν(i)

` 6= ν
(i+1)
` }.

Lemma 4.1.8: As constructivity includes continuity, the correct statement of the
lemma is that any globally defined continuous division is constructive.

Lemma 4.3.2: This lemma is very useful in many theoretical considerations, as
it implies that for any ideal I with a Pommaret basis a degree q exists such
that I≥q possesses a Pommaret basis where all generators are of degree q.
This property seems to be particular for the Pommaret division and does
not hold for the Janet division. The following simple counterexample is
due to Mario Albert and Matthias Fetzer (private communication).
Consider the monomial ideal I = 〈x1,x2

2〉Ck[x1,x2,x3]. Then for any de-
gree q≥ 2 the minimal basis of I≥q consists simply of all terms of degree q
contained in I. Two elements of this set are the generators h1 = x1xq−1

3 and
h2 = x2

2xq−2
3 . The first one is the only term in Iq with x3-degree q− 1; all

other generators are of lower degree in x3. Thus with respect to the Janet
division x3 is multiplicative only for h1. But this observation immediately
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implies that no term of degree q can be an involutive divisor of the non-
multiplicative product x3h2, as its x3-degree is q−1 and h1 is not a divisor.
Hence, it is not possible to find a Janet basis consisting only of elements of
the same degree.

Corollary 4.3.10: In the definition of the set BP, we must of course require that
µ 6= ν , i. e. ν must have a proper Pommaret divisor in B.

Example 4.3.18: As one can see in Example 4.3.14, the transformed and au-
toreduced basis is F̃4 = {z̃2− x̃ỹ, ỹz̃, ỹ2}. Obviously, it is not possible
that linear terms arise in the generators as printed.

Section 4.3: We discuss here the problem of δ -regularity only in the context
of polynomial ideals. But it is of course also highly relevant for differ-
ential equations. In a purely algebraic setting, this concerns for example
the computation of Pommaret bases for ideals in a ring of linear differ-
ential operators D = F[∂x1 , . . . ,∂xn ] where F is some field of functions in
the variables x1, . . . ,xn. More generally, it is shown in Proposition 7.1.19
how for arbitrary differential equations the notion of an involutive symbol
is related to Pommaret bases.
Any solution of the problem of δ -regularity for polynomial ideals can im-
mediately also be applied to differential equations (and vice versa). The
only point is that one must use the contragredient transformation: if x̄= Ax
represents a transformation to δ -regular coordinates for an ideal in the poly-
nomial ring P = k[x1, . . . ,xn], then the right transformation for the corre-
sponding ideal in the ring D is x̄ = A−tx, i. e. we must take the transposed
of the inverse matrix of A. This fact follows immediately from the dif-
ferent transformation properties of a monomial xµ and the corresponding
differential operator ∂ |µ|/∂xµ (or the derivative uµ , respectively).
For a concrete instance consider Example 4.3.18 where we saw that the
transformation x̃ = z, ỹ = y+ z and z̃ = x yields δ -regular coordinates for
the polynomial ideal 〈z2− y2−2x2, xz+ xy, yz+ y2 + x2〉 ⊂k[x,y,z]. If in-
stead we had considered the linear differential system uzz−uyy−2uxx = 0,
uxz+uxy = 0 and uyz+uyy+uxx = 0 obtained by substituting derivatives for
the monomials, then we would have to use the transformation x̃ = −y+ z,
ỹ = y and z̃ = x in order to find exactly the same transformation behaviour
as in the polynomial case.

Algorithm 4.6: Line /10/ of this algorithm for computing a minimal involutive
basis must be replaced by the following line:

Q←Q∪H′∪
{

x?h | h ∈H, x ∈ XL,H,≺(h)
}
.

Only then the proof of Theorem 4.4.4. is correct: in order to ensure local
involution upon termination we must add toQ the non-multiplicative prod-
ucts of all elements ofH and not only of the new element g. Because of the
changes of H made in the previous line, we must generally expect that for
the elements that remain in H variables which previously were multiplica-
tive become now non-multiplicative and hence the corresponding product
must be added to Q.
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While this correction makes the algorithm more expensive, as it enlarges
the setQ, one can also achieve a simple optimisation by modifying Line /9/.
In its current form, it moves all elements of H with a leading exponent
larger than le≺ g toQ. However, a closer look at the proof of Theorem 4.4.4
quickly reveals that it suffices to move only those elements with a leading
exponent which is a multiple of le≺ g, i. e. we may replace the first state-
ment in Line /9/ by

H′←
{

h ∈H | le≺ g | le≺ h
}
.

Generally, this modification will have the effect that much less generators
are moved which should significantly increase the efficiency of the algo-
rithm. The correctness follows from the following simple considerations.
It is not necessary to have max≺H≺min≺Q. By the structure of the algo-
rithm, the setH is always involutive up to the leading exponent of min≺Q
and this suffices to invoke Lemma 4.2.6 in the termination proof. No other
part of the proof of Theorem 4.4.4 is affected by this modification.

Chapter 5: (Structure Analysis of Polynomial Module)

Algorithm 5.1: The given algorithm has two minor problems. Opposed to what
is written in the main text, it is not guaranteed that the set B′q constructed
in Line /6/ is a minimal basis of the monoid ideal generated by it. Hence
it must be minimised before the recursive call in the next line. Further-
more, it may happen that B′q = ∅ and thus the algorithm must be adapted to
handle this trivial case. A corrected version is given in Algorithm 1 where
Minimise denotes a procedure for extracting the minimal basis from an
arbitrary monomial basis.

Proposition 5.1.4/Algorithm 5.2: The proof and the algorithm based on it can
be slightly simplified. If we define the numbers qk−1 not as the maximum
but as the minimum minµ∈(dk,...,dn) µk−1, then we can simply say that in
each step the setB is enlarged by all multi indices ν = [0, . . . ,0,q,dk, . . . ,dn]
with 0 ≤ q < qk−1. This leads to the same result as the given description.
Indeed, if this minimum is smaller than the maximum q̄k−1, then for all
values qk−1 ≤ q≤ q̄k−1 the subset (q,dk, . . . ,dn) must be non-empty, as for
any multi index µ ∈ (qk−1,dk, . . . ,dn) the index k−1 is non-multiplicative
by definition of the Janet division and hence µ +1k+1 must be an element
of the Janet basis BJ . Iteration proves the claim.
Applying this simplification to Algorithm 5.2 is trivial. In Line /6/ max
must be replaced by min and the iteration must be ended one step before
this minimum. Furthermore, Line /7/ is simply erased.

Proposition 5.1.6: In the statement of the proposition “Pommaret basis of de-
gree q” must be replaced by “Pommaret basis of degree ≤ q”. Otherwise,
the “only if” part is not true, as one can see from its proof where it cannot
be guaranteed that the final Pommaret basis is still of degree q.
A further comment: the simple complementary Rees decomposition given
here is usually highly redundant (see Example 5.1.7). Hironaka [12, §4]
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Algorithm 1 Complementary decomposition (from minimal basis)
Input: minimal basis B of monoid ideal I ⊂Nn

0
Output: finite complementary decomposition B

1: if B = ∅ then {I is the zero ideal and thus the complement the whole ring}
2: B ←

{(
[0, . . . ,0],{1,2, . . . ,n}

)}
3: else if n = 1 then {in this case B = {ν}}
4: q0← ν1
5: if q0 = 0 then {I is the whole ring and thus the complement empty}
6: B ← ∅
7: else
8: B ←

{(
[0],∅

)
, . . . ,

(
[q0−1],∅

)}
9: end if

10: else
11: q0←maxν∈B νn; B ← ∅
12: for q from 0 to q0 do
13: B′q← Minimise

(
{ν ′ ∈Nn−1

0 | ν ∈ B, νn ≤ q}
)

14: B′q← ComplementaryDecomposition(B′q)
15: if B′q 6= ∅ then
16: if q < q0 then
17: B ←B∪

{(
[ν ′,q],Nν′

)
| (ν ′,Nν′) ∈ B′q

}
18: else
19: B ←B∪

{(
[ν ′,q],Nν′ ∪{n}

)
| (ν ′,Nν′) ∈ B′q

}
20: end if
21: end if
22: end for
23: end if
24: return B
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provided a computational description of a complementary Rees decompo-
sition which generally is much more compact. Given a Pommaret basis H
of the monoid ideal I, one can straightforwardly determine this decompo-
sition algorithmically and it exists only, if the ideal is quasi-stable. The key
is to apply the projections

pr(k) : Nn
0 −→N

n
0, [µ1, . . . ,µn] 7−→ [0, . . . ,0,µk+1, . . . ,µn]

for 0≤ k < n to the given monoid ideal ICNn
0. Given a multi index ν ∈Nn

0
we denote Ck(ν) the cone defined by the vertex ν and the multiplicative
indices 1, . . . ,k, i. e.

Ck(ν) = ν +(N0)1 + · · ·+(N0)k .

Given a finite setN ⊂Nn
0, we write Ck(N ) for the union of all cones Ck(ν)

with ν ∈N . Finally, we introduce for 0≤ k < n the sets

N k =
(
pr(k+1)(I)+(N0)k+1

)
\pr(k)(I)

We claim now that the complement I can be written as the disjoint union
of all the sets Ck(N k), i. e. these sets induce a complementary Rees decom-
position. Indeed, it is not difficult to see that

Ck(N k) =
{

ν ∈ I | ν +(Nn
0)k+1∩I 6= ∅

}
\Ck−1(N k−1)

=
{

ν ∈ I | ∃` ∈N : ν + `k+1 ∈ I ∧∀1≤ j ≤ k : ν +(N0) j ⊆ I
}
.

Of course, we can really speak of a Rees decomposition only, if all the
sets N k are finite. Hironaka only showed that this is generically the case.
However, it is not difficult to show that this is the case, if and only if the
ideal I is quasi-stable, i. e. if it possesses a Pommaret basis.

Proof. Let us assume first that all the sets N k are finite and denote by q̃
the maximal degree of an element of one of these sets. We study now an
induced decomposition of I>q̃. If ν ∈ N k, then by construction clsν > k.
Assume that |ν |= q. Then we obtain a disjoint decomposition

Ck(ν)>q = Ck(ν +1k)∪Ck−1(ν +1k−1)∪·· ·∪C1(ν +11) . (2)

Note that cls(ν +1i) = i for all 1 ≤ i ≤ k and hence Ci(ν + 1i) equals the
Pommaret cone CP(ν+1i). Iterating the decomposition step (2) sufficiently
often until all vertices are of degree q̃+1, we obtain a disjoint decomposi-
tion of I>q̃ consisting entirely of Pommaret cones with vertices of degree
q̃+1. According to Proposition 5.1.6, this implies the existence of a Pom-
maret basis of I of degree at most q̃+1.
The converse follows immediately from Algorithm 2 below, as it produces
only finite sets.
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Hironaka’s approach translates immediately into an algorithm; in fact, one
simply obtains a special form of Janet’s Algorithm 5.2 assuming that the
input is not an arbitrary Janet basis but a Pommaret basis. In the way we
present it in Algorithm 2, the order of the outer loop is reversed. This has
the benefit that after the kth iteration of the loop the set H is a Pommaret
basis of the ideal1 I : 〈x1, . . . ,xk〉∞ = I : (xk)∞.

Algorithm 2 Complementary Rees decomposition (from Pommaret basis)
Input: Pommaret basisH of monoid ideal I ⊂Nn

0
Output: complementary Rees decomposition

1: for k from 1 to n do
2: N k−1←

⋃
µ∈H

cls µ=k

⋃µk
`=1{µ− `k}

3: H← {µ ∈H∪N k−1 | cls µ > k}
4: involutively autoreduceH
5: end for
6: return N 0, . . . ,N n−1

Remark 5.1.8: Replace B by B.

Remark 5.1.8: Identifying the appearing monoid ideals in Nn
0 with monomial

ideals in the polynomial ring P , it is easy to see that Stanley filtrations as
defined here provide a simple example for the prime filtrations introduced
by Eisenbud [7, Prop. 3.7]. Indeed, settingM j = P/I j, we find that

M j/M j−1 ∼= k[xk | k ∈ N
ν( j) ]∼= P/〈xk | k /∈ N

ν( j)〉 .

Proposition 5.2.1: In the proposition only an expression for the Hilbert series
is given. Of course, one obtains equally easily an explicit formula for the
Hilbert function of the algebra A:

hA(q) = ∑
t∈T

[qt ≤ q]
(

q−qt + kt −1
q−qt

)
.

Here [·] denotes the Kronecker-Iverson symbol which yields 1, if the con-
dition in the bracket is satisfied, and 0 otherwise. The Hilbert polynomial
ofA is obtained by simply omitting the Kronecker-Iverson terms. Thus the
Hilbert function is always polynomial beyond the degree maxt∈T qt (but it
is possible that it becomes polynomial already at some lower degree; the
Hilbert regularity cannot be deduced from the above representation).

Page 177, Line 1: Read X 6= Xt̄ instead of X 6= Xt .

Proposition 5.2.7: The proof of this proposition makes essential use of the ob-
servation that we can always find a maximal regular sequence lying in P1.
The given reference [18, Lemma 4.1] refers for the crucial point to a result

1As for monoid ideals the notion of a colon ideal makes no sense, we identify now each multi index µ

with the term xµ and I with the corresponding monomial ideal.
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of Baclawski and Garsia [3, Lemma 2.2] who in turn credit the book by Ka-
plansky [14, Sect. 2.2]. If one follows the proof until the end, one notices
that it is actually more or less a (variation of a) side product of Kaplansky’s
proof of the fact that a finitely generated module over a Noetherian ring has
only finitely many associated prime ideals. Thus, assuming this standard
theorem considerably simplifies the proof.2

Proposition 1. Let k be an infinite field and R a standard k-algebra (i. e.
R is a graded k-algebra such that R0 = k and R is generated as an al-
gebra by R1 with dimkR1 = n <∞). We write R+ = ⊕q>0Rq. IfM is
a finitely generated, graded R-module such that AnnR (m) 6= R+ for all
non-vanishing homogeneous elements m ∈M, then a generic element of
R1 is a non zero divisor on M (i. e. identifying R1 ∼= kn, the set of non
zero divisors contains a Zariski open set).

Proof. By definition, every zero divisor on M lies in some annihilator
AnnR (m). Since R is Noetherian and thus satisfies the ascending chain
condition, every annihilator is contained in a maximal one. By a simple
standard argument (see e. g. [14, Thm. 6]), any maximal annihilator is a
prime ideal and thus an associated prime. Under the made assumptions on
the ring R and the module M, AssRM is a finite set. Thus there exists
a finite number of elements m1, . . . ,mr ∈M such that all zero divisors on
M lie in AnnR (m1)∪ ·· · ∪AnnR (mr). Since no annihilator equals R+,
all intersections AnnR (m1)∩R1 define proper k-linear subspaces of R1.
Since the field k is infinite, the claim follows.

Proposition 5.2.7: Half of the proof can be omitted by refering to a standard
result in commutative algebra, namely that over a Noetherian ring all max-
imal regular sequences have the same length. Thus, once we have estab-
lished that x1, . . . ,xd is a maximal regular sequence, we are done and there
is no need to study longer sequences y1, . . . ,yd+1.

Proposition 5.3.4: Following some ideas contained in the thesis of Caviglia [4,
Sect. 4.1], one can derive yet another algebraic characterisation of quasi-
stable ideals (called weakly stable by him) leading even to an explicit de-
scription of the Pommaret basis of such an ideal. Let B= {t1, . . . , tr} be the
minimal basis of the monomial ideal I ⊂P . We assume that the generators
are sorted according to the (pure not degree!) reverse lexicographic order:
t1 � t2 � ·· · � tr. For each index 1 ≤ i ≤ r, we introduce the monomial
colon ideal Ji = 〈t1, . . . , ti−1〉 : ti. Setting ki = cls ti, we consider the set Ci
of all terms in Pi = k[xki+1, . . . ,xn], i. e. of terms in the non-multiplicative
variables of the generator ti, which are not contained in Ji.

2In fact, the following result is just a variation of Lemma 6.2.8 where only the special case R = SV is
treated. There one allows on one side that more generally below a prescribed degree q some module elements
have R+ as annihilator; on the other side one must impose the restriction that the module is generated in
degree q−1 (see below). However, the key argument is the same in both proofs.
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Proposition 2. The ideal I is quasi-stable, if and only if all the sets Ci are
finite and thus all the ideals Ĵi = Ji ∩Pi EPi zero-dimensional. In this
case the Pommaret basis of I is given by

H= B∪
r⋃

i=1

{sti | s ∈ Ci} . (3)

Proof. Assume first that all sets Ci and thus H is finite. Obviously, H
generates I and thus we only have to prove that it is involutive for the
Pommaret division. Consider a term r ∈ C̄i = {ti}∪{sti | s∈ Ci}; obviously,
clsr = ki. We choose an index ki < j ≤ n which is thus non-multiplicative
for r. If x jr ∈ C̄i, then there is nothing to prove. Otherwise write r = sti
with s = 1 or s ∈ Ci. Then x jr /∈ C̄i is equivalent to x js /∈ Ci which in turn
implies that x jr ∈ 〈t1, . . . , ti−1〉. Let 1 ≤ ` < i be the smallest index such
that t` | x jsti and write x jr = rmrnmt` with terms rm ∈ k[x1, . . . ,xk` ] and
rnm ∈ k[xk`+1, . . . ,xn]. Because of the minimality of the index `, we must
have that rnm ∈ C`. Hence rnmt` is an element ofH and an involutive divisor
of x jr so that we are done.
For the opposite direction, assume that I is quasi-stable and hence pos-
sesses a finite Pommaret basisH. Obviously, this basis can be written in the
form (3) with the sets Ci replaced by some finite sets Ĉi ⊂ k[xki+1, . . . ,xn]
of terms. We first show that Ĉi∩Ji = ∅ and thus Ĉi ⊆ Ci. Assume that there
existed a term s ∈ Ĉi ∩Ji. Then sti ∈ 〈t1, . . . , ti−1〉. As above choose the
minimal index 1≤ ` < i such that t` | sti and write sti = rmrnmt` with terms
rm ∈ k[x1, . . . ,xk` ] and rnm ∈ k[xk`+1, . . . ,xn]. The minimality of ` implies
that rnmt` cannot have a proper involutive divisor inH3 and thus must itself
be an element of H. But then rnmt` |P sti in contradiction to the fact that a
monomial involutive basis is always involutively autoreduced.
Let s be an arbitrary term in Pi \ Ĉi. Then sti /∈ H, but it must possess an
involutive divisor s jt j ∈ H. Using again the argument in the footnote, we
find j < i and thus s ∈ Ji. Hence we also have the inclusion Ci ⊆ Ĉi which
finishes the proof.

Definition 5.4.8: It is somewhat pointless to define that a division is of Schreyer
type with respect to a term order. Obviously, it suffices to consider in the
definition monomial involutive bases H and thus the property of being of
Schreyer type is independent of the used term order.

Example 5.4.11: In Equation (5.37a) the non-existent syzygy S4;2 must be re-
placed by S3;2.

Theorem 5.4.12: In the resolution (5.38) the first term should be P t0 and not
P t1 .

3Assume that some term s jt j ∈ H was a proper involutive divisor of rnmt`. Since s j contains only non-
multiplicative variables for t j , this immediately implies that k j ≥ k`. If k j > k`, the reverse lexicographic
order implies j < `. If k j = k` = k, then we must have degxk t j < degxk t` which again yields j < `.
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Theorem 5.4.12: The derivation of (5.40) speaks just of a “simple induction”
and a “well-known identity.” May be it is worth while giving a few more
details. The case i = 1 is trivial. For the induction step we first note that
obviously β

(`)
i = 0, if ` < i+ 1. Exploiting this observation, we can write

with the help of the induction assumption

β
(k)
i+1 =

k−1

∑
`=i+1

β
(`)
i =

k−1

∑
`=i+1

`−1

∑
j=1

(
`− j−1

i−1

)
β
( j)
0

=
k−i−1

∑
j=1

[
k−1

∑
`=i+ j

(
`− j−1

i−1

)]
β
( j)
0 .

Shifting the index in the inner sum by j+1 yields our claim via the follow-
ing identity obtained by summing over one column in the Pascal triangle:

k− j−2

∑
m=i−1

(
m

i−1

)
=

(
k− j−1

i

)
.

The final expression for the ranks ti is obtained from the same identity in a
very similar computation:

ti =
n

∑
j=1

j−i

∑
k=1

(
j− k−1

i−1

)
β
(k)
0 =

n−i

∑
k=1

[
n

∑
j=i+k

(
j− k−1

i−1

)]
β
(k)
0

=
n−i

∑
k=1

(
n− k

i

)
β
(k)
0 .

Theorem 5.4.12: In the given form the theorem gives only an upper bound ti for
the total Betti numbers βi. But of course one can perform in the graded case
the same calculations degree by degree and obtains then an upper bound for
the bigraded Betti numbers: if β

(k)
0, j denotes the number of generators in the

Pommaret basisH of class k and degree j, then

ti, j =
n−i

∑
k=1

(
n− k

i

)
β
(k)
0, j−i

is an upper bound of the Betti number βi, j.

Page 200, Line 11: Read ti instead of ri.

Remark 5.4.13: There is a typo in (5.41): of course, we must use the induced
Schreyer order ≺H instead of the original order ≺ for selecting the leading
terms of syzygies.

Theorem 5.5.7: It is perhaps worth while to note explicitly the following result
which is implicitly hidden in the proof of the theorem (and which was al-
ready explicitly mentioned by Mall [15, Thm 2.15]): The reduced Gröbner
basis G of an ideal I for a term order ≺ is a Pommaret basis, if and only if
the leading ideal lt≺I is stable.

11



Proof. Since G is a reduced Gröbner basis, its leading terms lt≺G form the
minimal basis of lt≺I. According to Proposition 3.4.16, the leading ideal
lt≺I is now stable, if and only if lt≺G is its Pommaret basis.

Example 5.5.9: The ideal should be called U instead of I.

Theorem 5.5.11: One of the decisive arguments in the proof is very short and
in fact some non-trivial considerations are missing. In particular, from the
given proof it is not apparent why we need the assumption that a class
respecting term order is used.
Consider the chosen generator hγ of minimal class d and maximal degree
in its class. Because of the use of a class respecting term order, the sup-
port of hγ is contained in the submodule 〈x1, . . . ,xd〉m ⊂ Pm, as any other
term is of higher class. If Sγ;k = xkeγ −∑β P(γ;k)

β
eβ ∈ Ps is one of the

first syzygies induced by hγ , then we again find that all coefficients satisfy
P(γ;k)

β
∈ 〈x1, . . . ,xd〉. This follows for all generators hβ with clshβ > d from

class considerations and for the generators hβ with clshβ = d from degree
considerations. Thus the syzygy Sγ;d+1 is of minimal class and maximal
degree in its class in the Pommaret basis of the first syzygy module. Fur-
thermore, its support lies by the considerations above in the submodule
〈x1, . . . ,xd+1〉s ⊂Ps (with xd+1 required only for the leading term xd+1eγ ).
Now a simple iteration shows that the crucial syzygy Sγ;d+1,...,n has indeed
no constant term, as its support lies in a submodule 〈x1, . . . ,xn−1〉t ⊂P t for
some rank t.
This more detailed argument furthermore shows that the assumptions of
the theorem can be slightly relaxed. We only need that the Pommaret basis
contains a generator hγ of minimal class d and maximal degree in its class
such that its support lies in 〈x1, . . . ,xd〉m ⊂ Pm. If the term order is class
respecting, the existence of such a generator is guaranteed. If we consider
for example the first syzygy module in our resolution, then we use there a
Pommaret basis for a term order which is not class respecting (in general,
a Schreyer order does not respect classes, even if it is induced by a class
respecting term order). However, we showed above that it nevertheless
contains a generator with the required properties and thus we may conclude
that the resolution of the syzygy module induced by this Pommaret basis is
of minimal length.

Corollary 5.5.31: The given proof is a bit short. As trivial consequences of
Proposition 5.5.28 and Corollary 5.5.29, we only obtain the inequalities

satI = degH1 ≤ degH= regI ,
regIsat = degH̄ ≤ degH= regI .

It requires a little more work to prove that in at least one of them actually
equality holds. The following proof has been published in [17].

12



We first note that in δ -regular coordinates all involved quantities are al-
ready determined by the leading ideal and therefore we may restrict for no-
tational simplicity to a monomial ideal I. If satI = regI, then we are done.
Thus assume that satI < regI; we show now that then it is not possible that
regIsat < regI. Consider an element hmax ∈ H with deghmax = degH; by
assumption, we must have clshmax > 1. Now the inequality regIsat < regI
may only hold, ifH1 contains an element h1 = (x1)`h̄1 with h̄1 |P hmax.
It follows from our assumptions that h̄1 is a proper divisor of hmax. Thus we
can find a variable x j with j > 1 which divides hmax/h̄1. Since x j is non-
multiplicative for h1, the Pommaret basis H must contain an involutive
divisor h2 of x jh1. If clsh2 = 1, then we have either degh2 > degh1 (if
h2 = x jh1) or degx1 h2 < degx1 h1. In both cases we may replace h1 by h2
and start again; after a finite number of such restarts, we will have clsh2 > 1
by degree reasons. But now the Pommaret basis H contains an involutive
divisor h2 of hmax in contradiction to the definition of a strong involutive
basis. Hence we must have regIsat = regI.

Chapter 6: (Involution II: Homological Theory)

Remark 6.1.15: In the last but first line of the remark read βq,p(M) instead of
βq,pM.

Example 6.1.24: In line 6 the representative of the generator of H2q−1,1(I)
should read xqyq−1⊗ y− xq−1yq⊗ x (there is a spurious exponent 1 in the
last factor).

Lemma 6.2.8: (This error also concerns the subsequent material up to Propo-
sition 6.2.11.) All the results here are only correct, if we assume that the
moduleM is finitely generated by elements of degree q−1. Otherwise we
cannot expect in the proof of Lemma 6.2.8 thatM is a module, as the mul-
tiplication of elements of K by ring elements may lead to elements of A.
This additional assumption slightly simplifies the proof of Lemma 6.2.10,
as we do not need to consider elements of degree less than q−1.
Fortunately, this restriction does not pose any problems for our derivation
of the dual Cartan test. Indeed, in the proof of the Proposition 6.2.12, we
may simply apply the previous results to the module M≥q−1 which by
assumption is indeed finitely generated by elements of degree q−1.

Definition 6.2.9: Following Serre’s letter appended to [11], I use here the termi-
nology quasi-regular (at a degree q). In the commutative algebra commu-
nity, the terminology filter-regular (usually without the specification of a
degree) introduced by Schenzel et al. [16] for local rings has become more
common (Aramova and Herzog [1] speak of an almost regular sequence).
Applied to the polynomial ring, both are equivalent. One should also note
that many modern textbooks on commutative algebra introduce a concept
of quasi-regularity which is not related to our use of this notion.

Lemma 6.3.1: (This error also concerns Theorem 6.3.2 and the Remarks 6.3.5
and 6.3.7). Given the Pommaret basis H of the ideal I ⊆ P , the ideal I(k)
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should not be defined as I ∩P(k) but as I(k) = 〈H x1=···=xk=0〉 ⊆ P(k). All
statements are correct then.

Remark 6.3.5: In (6.36) the middle term should be Hq+1,p(P/I). This iso-
morphism follows from the fact that any minimal resolution of I trivially
induces a minimal resolution of P/I where all terms are simply moved by
one position. This also implies that in (6.37) also the indices in the middle
term must be changed to βq+1,p(P/I). In the argument leading to (6.36),
the reference to Proposition 6.1.18 is superfluous.

Chapter 7: (Involution III: Differential Theory)

Theorem 7.1.6: There is a typo in the formula giving R(1)
q , namely an s too

much. The correct definition isR(1)
q = π

q+1
q (Rq+1).

Example 7.2.12: As the name “Frobenius Theorem” indicates, this result is usu-
ally attributed to Frobenius [9]. Actually, Frobenius’ contribution consists
“only” of transferring the theorem to the language of Pfaffian systems (dif-
ferential one-forms). The here used formulation via first-order linear differ-
ential operators is older: Deahna [6] proved the sufficiency of involution for
the existence of solutions; the necessity was shown by Clebsch [5] based
on results by Jacobi [13] (posthumously published by Clebsch).

Section 7.3: For the special case of linear differential equations with constant
coefficients, Wong [19] gave a simple description of the completion pro-
cess. Assume that we are given the equation Eu′ = Au where E,A are
t×m matrices. Set V0 =R

m and recursively Vk+1 = A−1
(
EVk

)
. This se-

quence trivially stabilises at some index 0 ≤ k ≤ n. It is not difficult to
see that Vk is just the constraint manifold after the kth completion step.
This fact stems from the simple observation that if u must satisfy the alge-
braic equations Bu = 0 for some matrix B, then differentiation shows that
the derivatives must satisfy the identical equation Bu′ = 0. Obviously, this
only holds because of the constant coefficients!

Example 7.4.3: The general solution presented in (7.71) is false. Computing
explicitly the Taylor expansion of the solution around the origin, one ob-
tains the following polynomial of degree 5

u(x,y,z) = a1 +a2x+a3y+a4z+
1
2

a5x2 +a6xy+a7xz+a8yz+

1
6

a9x3 +
1
2

a10x2z+a11xyz+
1
2

a5yz2 +

1
6

a12x3z+
1
2

a9xyz2 +
1
6

a10yz3 +
1
6

a12xyz3 .

Chapter 9: (Existence and Uniqueness of Solutions)

Section 9.1: This section considers only the existence and uniqueness theory for
involutive ordinary differential equations. It is, however, also completely
straightforward and quite instructive to extend the usual elementary, i. e.
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linear, stability theory of equilibria of normal ordinary differential equa-
tions to arbitrary, not underdetermined involutive ones (some of this mate-
rial has now been published in [8]).
We begin with the case of a linear system with constant coefficients:

u′ = Mu , 0 = Nu .

We claim that this system is involutive, if and only if the kernel of N is
an M-invariant subspace. If the system is involutive, then the algebraic
equations obtained by prolonging the algebraic subsystem must be linearly
dependent of the algebraic subsystem. More precisely, a matrix L must
exist such that Nu′ = NMu = LNu. For any vector u ∈ kerN we thus
obtain NMu = LNu = 0 and kerN is M-invariant. The converse follows
from reverting the argument: the M-invariance gives now the existence of
the matrix L guaranteeing the involution of the system.
We split the vector u into two components u = (v,w) such that the alge-
braic subsystem takes the form 0 = Cv+Dw with an invertible matrix D.
Obviously, this is only possible, if the matrix N has maximal rank which
we can always achieve by eliminating redundant constraints. The splitting
induces a decomposition

M =

(
A B
C D

)
.

Solving the algebraic equations, we obtain w = −D−1Cv and the normal
ordinary differential equation v′ = Sv where S = A−BD−1C is the Schur
complement of the matrix (

A B
C D

)
which arises naturally as structure matrix of the equivalent linear system
v′ = Av + Bw, 0 = Cv + Dw (which is obviously not involutive, but of
index 1 in the DAE jargon).
Any homogeneous linear system admits the zero solution as an equilibrium.
In order to decide its stability we should not look at all eigenvalues of M
but only at those which possess eigenvectors lying in kerN; in other words
we should analyse the linear map obtained by restricting M to this kernel.
In the decomposed form, this map is given by the Schur complement S.
Hence its eigenvalues decide the stability of the origin.
The extension to nonlinear, semi-explicit autonomous systems of the form

u′ = φφφ(u) , 0 = ψψψ(u)

is very simple. We assume that φφφ(0) = ψψψ(0) = 0 so that again the origin is
an equilibrium. We denote by

M =
∂φφφ

∂u
(0) , N =

∂ψψψ

∂u
(0)
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the Jacobians at the origin. We claim that if the system is involutive, then
kerN is M-invariant. As above, involution entails the existence of a matrix-
valued function ζζζ such that

∂ψψψ

∂u
·φφφ = ζζζ ·ψψψ .

Differentiating this condition and evaluating the result at the origin yields
again NM = LN where L = ζζζ (0). Now we can apply the same arguments
as in the linear case. Thus again not all eigenvalues of M are relevant but
only those possessing eigenvectors lying in kerN.
Obviously, we do not change the solution space of our system, if we add a
linear combination of the constraints to the right hand side of its differential
part. One readily checks that the invariance of kerN is not affected by such
a transformation. Also all stability relevant eigenvalues remain unchanged
whereas the eigenvalues with eigenvectors transversal to kerN will gener-
ally change. Indeed, the remaining eigenvalues describe the stability of the
constraint manifold under the flow of the underlying vector field and our
transformation yields a different underlying vector field. Thus for the nu-
merical integration of our system, these eigenvalues are highly relevant—
but not for the stability of the equilibrium!

Page 412, Line 14: Read t f ′(x+ut) = 1 instead of t f ′(x+ut) 6= 1.

Appendix A: (Miscellaneous)

Lemma A.1.2: In the last line of the proof omit the erroneous ∈ Bi after the
definition of the multi index µ .

Appendix B: (Algebra)

Page 544, Line -2: In the definition of the differential of a tensor product com-
plex the crucial sign factor is missing. The correct expression is

∂k =
⊕

i+ j=k

(
di⊗ idN j +(−1)iidMi ⊗δ j

)
.

Only with this factor, the complex condition ∂ ◦∂ = 0 is satisfied.

Page 552, Line 17: Read contracting homotopy instead of contracting1 homo-
topy.

Lemma B.2.33: There is a small gap in the proof of the exactness at the second
term of the sequence, as it is not shown that the element m1 = ι(n) ∈M1
has a preimage under (idM1 −ψ ◦ φ). This preimage is given by m̃1 =
m1−ψ(m2). Indeed,

(idM1 −ψ ◦φ)
(
m1−ψ(m2)

)
=

m1−ψ
(
φ(m1)+(idM2 −φ ◦ψ)(m2)

)
= m1

where in the last line the argument of ψ vanishes, since we come from an
element of kerρ2.
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Definition B.2.35: Read 0→M→ I for the injective coresolution instead of
0→I →M.

References:

[167] This article by Goldschmidt appeared in 1967 (not 1965) and in Volume
86 (not 82).

[168] And this article by Goldschmidt also appeared in 1967 (not in 1969).
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