Prof. Dr. Karoline Disser
![Photo](photo.jpg)
Faculty 10: Mathematics and Natural Sciences
Universität Kassel
Heinrich-Plett-Straße 40
34131 Kassel
- office:
- HPS - 3318
- hours:
- wednesday 11 – 12 (by arrangement)
- tel.:
- (+49) 0561 / 804 – 4613
- e-mail:
Research Interests
Applied Analysis and Theory of PDEs:mathematical fluid dynamics, fluid-structure interaction, complex flows, geophysical flows, reaction-diffusion and bulk-interface systems, elliptic and parabolic regularity, regularity theory in non-smooth settings, variational methods for evolution
Teaching
Link to Current CoursesMaterial for Past Courses:
reelle Zahlen, Konvergenz, Stetigkeit, Differentiation und Integration reeller Funktionen
lecture notes
Winter 2020 (U Kassel)
classical examples and methods, Euler-Lagrange-equations, introduction to elasticity, direct method: abstract and examples, varying types of convexity
lecture notes (version of October 2020)
Winter 2020 (U Kassel), Winter 2018 (TU Darmstadt), Winter 2015 (HU Berlin, with A. Mielke)
interpolation theory; real and complex interpolation; examples: Lebesgue-, Lorentz-, Hölder-, Sobolev-, Slobodeckii-, Bessel potential-, Besov-, Orlicz- (and even more :-)) spaces; trace theorems
lecture notes
Winter 2010 (TU Darmstadt)
internet seminar; introduction to continuum mechanics: modelling of fluid flow, constitutive laws and methods in the analysis of power-law-, Oldroyd-B-type, and viscoelastic dumbbell-type- fluids
notes: 1, 2, 3, 4.
Summer 2010 (TU Darmstadt)
List and Links to further Past Courses:
Summer 2020: Grundzüge der Mathematik 2 (U Kassel)
Summer 2020: Evolutionsgleichungen (U Kassel)
Summer 2016: Analysis II (5 weeks, TU Berlin)
Summer 2015: Lineare Algebra I (HHU Düsseldorf)
Winter 2018: Modelle, Mathematisierung und Naturverstehen: Prandtl und die Folgen with A. Nordmann (TU Darmstadt)
interdisciplinary seminar on the concept of mathematical models in the philosophy of science
Winter 2017: IRTG 1529 Seminar on Mathematical Fluid Dynamics (TU Darmstadt)
Summer 2015: Navier-Stokes Equations, with M. Köhne (HHU Düsseldorf)
Summer 2011: Generalized Principle of Linearized Stability with J. Saal (TU Darmstadt)
Publications
Links may be to older versions.
- K. Disser
Global existence, uniqueness and stability for nonlinear dissipative systems of bulk-interface interaction.
J. Differential Equations 269 (2020), 4023-4044. -
K. Disser
Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system.
arXiv:1904.01996, doi: 10.3934/dcdss.2020326, Discrete and Continous Dynamical Systems - Series S (2019). -
K. Disser and J. Rehberg
The 3D transient semiconductor equations with gradient-dependent and interfacial recombination.
Mathematical Models and Methods in Applied Sciences (M3AS) 29 (2019), 1819-1851. - K. Disser, M. Liero and J. Zinsl
On the evolutionary Gamma-convergence of gradient systems modeling slow and fast chemical reactions.
Nonlinearity 31 (2018), 3689-3706. - K. Disser, A.F.M. ter Elst and J. Rehberg
On maximal parabolic regularity for non-autonomous parabolic operators.
J. Differential Equations 262 (2017), 2039-2072. - K. Disser, G. P. Galdi, G. Mazzone und P. Zunino
Inertial motions of a rigid body with a cavity filled with a viscous liquid.
Arch. Rat. Mech. Anal. 221 (2016), 487-526. -
K. Disser
An entropic gradient structure for quasi-steady-state approximations of chemical reactions.
Proceedings of the GAMM, 87th annual meeting, PAMM 16 (2016). - K. Disser, J. Rehberg und A. F. M. ter Elst
Hölder estimates for parabolic operators on domains with rough boundary.
Ann. Sc. Norm. Sup. Pisa XVII (2015), 65-79. -
K. Disser
Well-posedness for coupled bulk-interface diffusion with mixed boundary conditions.
Analysis 35 (2015), 309-317. -
K. Disser, M. Meyries and J. Rehberg
A unified framework for parabolic equations with mixed boundary conditions and diffusion on interfaces.
J. Math. Anal. Appl. 430 (2015), 1102-1123. -
K. Disser, H.-C. Kaiser and Joachim Rehberg
Optimal Sobolev regularity for linear second-order divergence elliptic operators occurring in real-world problems.
SIAM J. Math. Anal. 47 (2015), 1719-1746. -
K. Disser and M. Liero
On gradient structures for Markov chains and the passage to Wasserstein gradient flows.
Netw. Heterog. Media 10 (2015), 235-253. -
K. Disser
Parabolic equations with mixed boundary conditions, degenerate diffusion and diffusion on interfaces.
Proceedings of the GAMM, 85th annual meeting, PAMM 14 (2014), 993-994. -
K. Götze
Strong solutions for the free movement of a rigid body in an Oldroyd-B fluid.
J. Math. Fluid Mech. 15 (2013), 663-688. -
M. Geissert, K. Götze and M. Hieber
Lp-theory for strong solutions to fluid rigid-body interaction in Newtonian and generalized Newtonian fluids.
Trans. Amer. Math. Soc. 365 (2013), 1393-1439. -
K. Götze
Free fall of a rigid body in a viscoelastic fluid.
Geophysical Fluid Dynamics, Workshop, February 18-22, 2013, 10 of Oberwolfach Reports, MFO (2013), 554-556. -
K. Götze
Maximal Lp-regularity for a 2D fluid-solid interaction problem.
Oper. Theory Adv. Appl. 221 (2012), 373-384.
Brief CV
-
Professor (Analysis)
Universität Kassel, since 2020 -
Habilitation
HU Berlin, 2017
Referees: Prof. A. Mielke, Prof. H. Abels, Prof. E. Emmrich -
Visiting Professor (Partial Differential Equations)
HHU Düsseldorf, summer 2015 -
PostDoc
WIAS Berlin, 2011-2016 TU Darmstadt, 2009-2011, 2017-2020;
Waseda University, Tokyo (3 months) -
PhD (Mathematics, Dr. rer. nat.)
TU Darmstadt, 2007-2009
-
Magistra Artium (Philosophy, Political Sciences, Mathematics)
TU Darmstadt, 2002-2008; University of Saskatchewan, 2005-2006
-
Diploma (Mathematics)
TU Darmstadt, 2002-2007; University of Saskatchewan, 2005-2006