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Computer Algebra Systems and the Lambert W Function

David Jeffrey
www.apmaths.uwo.ca/~djeffrey/

Abstract: I have worked on many aspects of computer algebra systems, mostly in conjunction with
either Soft Warehouse (Derive) or Maplesoft (Maple). One particular project has touched many of
the challenges that system developers face: the implementation of the Lambert W function. In this
talk, I shall present some of the interesting properties of W, and use them to discuss the various
challenges that our favourite systems continue to grapple with. Some examples of such challenges
are branch cuts, simplification, numerical evaluation, integration.

Real Problems over the Reals: From Complete Elimination
Procedures to Subtropical Decisions

Thomas Sturm
www.loria.fr/~tsturm/

Abstract: Effective quantifier elimination procedures for first-order theories provide a powerful
tool for generically solving a wide range of problems based on logical specifications. In contrast to
general first-order provers, quantifier elimination procedures are based on a fixed set of admissible
logical symbols with an implicitly fixed semantics. This admits the use of sub-algorithms from
symbolic computation. We are going to focus on quantifier elimination for the reals and its ap-
plications giving examples from geometry and verification. Beyond quantifier elimination we are
going to discuss recent results on an incomplete decision procedure for the existential fragment of
the reals, which has been successfully applied to the analysis of reaction systems in chemistry and
in the life sciences. We conclude with an overview on further quantifier-eliminable theories that
have been realized in our open-source computer logic software Redlog (www.redlog.eu).

Exploring a Homotopy Approach to the Science of Data:
Huge Scenarios, Topological Scintigraphy and Flagellate Struc-
tures
Pedro Real
personales.us.es/real/

Abstract: Given a cloud of points (or dataset) embedded in some high dimensional space, Topo-
logical Data Analysis focuses on recovering topological information of an unknow lower dimensional
space within which the previous dataset is sampled. At present, this information is obtained mainly
using algorithms for computing persistent homology. In this talk, we introduce some basic notions
and algorithms for providing a more advanced topological analysis of the datasets, based on ho-
motopy concepts and higher order (co)homological statistics. This theory generating asymmetric
topological dynamics in a ”huge” or ”classifying” data scenario is presented here using the rel-
evant and informative analogy of ”breathing topological life to a digital image”. The promising
conclusions regarding not only the power of topological discrimination of this technique but also
its potential feasibility of a parallel processing allow to be optimistic about opening a door to a
new area of Data Analysis: Homotopy-based Data Analysis and Recognition.
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What’s New in Mathematica?

Simone Szurmant
Simone.Szurmant@additive-net.de

What’s New in Maple 2016?

Jürgen Gerhard
GerhardJuergen@web.de

Abstract: We will present some of the new features in Maple 2016, in the areas of thermophysical
computations, structured data manipulation, physics, series and limit computations, symbolic
integration and summation, differential equations, statistics, graph theory, and others, and discuss
some applications.
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Application of Computer Algebra System and the
Mean-Value Theory for Evaluating Electrostatic Potential
and its Associated Field for Nontrivial Configurations

Haiduke Sarafian

The Pennsylvania State University, University College, York, PA, 17403

Evaluation of electrostatic potential at an arbitrary point within a two dimen-
sional region free of electric charge containing geometrically dispersed nontrivial
configurations electrified to constant potentials applying the standard classic ap-
proach, i.e. Laplace equation is challenging. The challenge stems from the fact
that the solution of the Laplace equation needs to be adjusted to the boundary
conditions imposed by the configurations. Numeric solution of the latter is chal-
lenging as it lacks generalities. An entirely different numeric solution method
is based on the application of The Mean-Value Theory. The latter is a pure nu-
meric approach; although the output of its iterated refined version is successful, it
is cumbersome. In this investigation utilizing the powerful features of Computer
Algebra Systems (CAS), specifically Mathematica by a way of example we show
an innovative approach. Our approach is based on a combination of numeric as-
pect of The Mean-Value Theory on one hand and Mathematica features on the
other hand. This semi numeric-symbolic approach not only provides the desired
output, but it also generates information beyond the scope of the standard classic
method. By way of example we present the intricacies of our approach, showing
1) how the potential is evaluated and 2) how corollary information not addressed
in classic cases such as electric field is calculated as well. Our method is applied
to a two-dimensional case; its three dimensional version may easily be applied to
cases of interest.

1 Motivations and Goals

In two dimensional electrostatic it is a classic practice to map the potential that
arises from a single common geometric object such as a line, a square, a circle and
etc that is electrified to a potential. Stepping away from these cases one encoun-
ters multiple-body geometric configurations, each charged to a certain potential.
Addressing the latter not only theoretically is interesting but is valued for practical
applications. Analytic solutions of these scenarios mathematically are challeng-
ing and because each scenario embodies a specific configuration, solutions lack the
generalities. The mathematical challenges stem from the fact that the potential,
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φ that is subject to Laplace equation, ∇2φ = 0 ought to be in compliance with the
boundary conditions imposed by the geometry of the configuration. As such, in
most cases one relies on the numeric solution of the Laplace equation [1],[2],[3].
An entirely alternative approach to addressing the same issue is a pure numeric
method of another sort. This method by-passes the Laplace equation in its en-
tirety; it is called The Mean-Value Theory, see for instance its applications [4].
Generally speaking one drops a virtual fishnet on the given configuration dividing
the region of interest in grids. To begin with one assigns a wisely chosen guessti-
mated numeric potential to each node of the grid. Then one replaces the initial
nodal potentials with the average of the potentials of the closest nodes. Repetition
of the procedure stabilizes the potentials. The accuracy of the output is controlled
by 1) recursive repetitions and 2) the fishnet mesh size; the smaller the mesh the
better the output. This method appears to require either cumbersome manual or
programming efforts.

Being aware of the latter issues, we present an effective, a short-cut approach cur-
ing both aforementioned challenges. The core of the solution is based on utilizing
a Computer Algebra System (CAS) specifically Mathematica [5],[6]. To demon-
strate the approach we craft our investigation that is composed of three sections.
In addition to Motivations and Goals, in Section 2 by a way of example we present
the detailed analysis. This section also includes the results and associated graphic
output. Having this information on hand we further the analysis by evaluating the
electric field. This is a fresh idea, literature lacks this information. We close our
work with a few remarks.

2 Physics of the problem and its solution

Consider a set of two two-dimensional kinked metallic structure shown in Fig 1.
The segments symmetrically are separated with a gap, and horizontally are ex-
tended to infinity. Assume the bottom and the top pieces are electrified to constant
potentials e.g., φ = 0 and φ = 3.0V , respectively. The given structure resem-
bles the profile of an unusual parallel-plate capacitor; this structure is suggested in
[7]. It is one of the objectives of this investigation to determine the electrostatic
potential at any point within the plates.

According to what is outlined in Sect. 1, in order to evaluate the potential we
drop a fishnet with a coarse mesh size on the region of interest. This is shown in
Fig 1.
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Figure 1. Display of the kinked structure with its accompanied fishnet grid.

The origin of the coordinate system conveniently is set as shown. The fishnet
is composed of a 5x11 grid. The node at the top left is p[1,1] and the one at the
bottom right is p[6,11]. The matrix below is the intuitive nodal start-up potential
assignment of the entire grid; potential of the exterior nodes are designated by x.

Utilizing this input we apply the nearest averaging values; for the scenario
at hand only four values would contribute. In other words one fourth of the
sum of the four closest adjacent nodal potentials of the start up values replaces
the initial chosen node’s potential. Repetition of the procedure stabilizes the
potentials. The presentation version displays two matrices after one and four
repetitions, respectively.

As shown, the difference between the chosen nodal potentials for the scenario
at hand just after only four recursions are negligibly small; i.e. potentials are sta-
bilized. Customarily, for two distinct reasons 1) to achieve a higher numeric
accuracy and 2) more importantly, for determining the potential at any point one is
to refine the mesh size. This is straightforward; however, it is cumbersome. In-
stead we devised a fresh, innovative approach. We utilize Mathematica numeric
interpolation. This operation utilizes the stabilized nodal potentials and in one
step produces a refined output as if an extremely fine mesh is used. What follows
is the numeric and accompanied graphic output of the interpolated procedure.
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Figure 2. The first column of the table is the ordinates of the nodes. The
second column is the corresponding potentials. The graph is the display of the
adjacent table.

As shown the first column of the table includes not only the discrete integer y-
values of the nodes but ordinates of the points between the nodes. Consequently,
as explained in the text utilizing interpolation the second column embodies the
corresponding potentials. The adjacent graph is the display of the Table. Accord-
ingly, the interpolated plot gives the potential of any arbitrary y-valued ordinate.
For the sake of clarification the output of this procedure is detailed for the 6th ver-
tical grid-line. One may follow the same approach tabulating and plotting curves
for any of the vertical grid-lines. Next we extend the procedure for horizontal grid
lines with ordinates of 1,2 and 3. These are shown in Fig 3. Each set of curves
is composed of a pair of lines. The dashed lines represents the point-to-point
connected curves; the smooth solid lines are the interpolated curves.
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Figure 3. Coordinate of the x-axis is the same as the coordinate of the grid-
lines in Fig 1. Dots are the potentials corresponding to the last matrix in the text.
The dashed lines are the point-to-point connected curves. The smooth solid curves
are the interpolated potentials.

With this information at hand utilizing, ~E = −~∇φ surprisingly we are able
to calculate the associated electric fields. This procedure embodies two valued
points: 1) as shown the interpolated data is a continuous function making the gra-
dient operable. Otherwise we would have to replace the gradient with a difference
equation i.e., ∆φ

∆ξ where ξ is the distance between the potential contours. This
would have given less accurate fields. 2) As shown in Fig 3 potential is a two di-
mensional function, φ(x,y) so that its associated field is a two dimensional vector,
{Ex,Ey}. For a sake of completeness two such continuous fields associated with
two grid-lines are tabulated and graphed. Presentation version displays the tables
and their associated figures.

By tabulating and plotting these fields we illustrate that with a coarse mesh
shown in Fig 1 we are able to evaluate the fields as if the mesh was refined and
optimized.

3 Conclusions

Obtaining analytic solution even for two dimensional semi complicated geomet-
rically dispersed electrified objects is challenging. Laplace equation is the master
equation that needs to be adjusted to the relevant boundaries; this makes the so-
lution peculiar to a specific scenario, as such it lacks generalities. An alternative
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solution other than numeric solution of Laplace equation is the Mean-Value The-
ory. This requires refined cumbersome programming. In this investigation we
show utilizing a Computer Algebra System (CAS), specifically Mathematica a
less cumbersome, satisfactory shortcut solution can be obtained. By way of ex-
ample we present the specifics of our approach. For the sake of completeness we
utilize the numeric output of the analysis and semi-analytically computed axillary
quantities such as the fields. The presented approach conveniently may be applied
to configurations of interest and readily may be extended to 3D configurations.
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Experimental and Finite Elements Stress Analysis of
a Double Edge Notched Specimen

A. Bilek1, M. Beldi1, T. Cherfi1, S. Djebali1, S. Larbi1,

1 LMSE Laboratory, Mechanical Engineering Department, UMMTO University, Tizi-Ouzou,
Algeria, alibilek@ummto.dz

Photoelasticity and finite elements analysis are used to determine the stress field
developed in a birefringent double edge notched specimen loaded in tension. Ex-
perimental isochromatic fringes and isoclinics fringes are obtained on a regular po-
lariscope by using circularly polarized light and plane polarized light. Simulated
isochromatic fringes and isoclinic fringes are obtained particularly in the neigh-
borhood of the notches. The shear stress along the weakened cross section in the
neighborhood of the notches are determined numerically and experimentally with
the help of the isochromatic fringe pattern. Details of the procedure are fully given
in the paper. Relatively good agreements are obtained between the experimental
and the simulated results.
Keywords: Isochromatic, isoclinic, stress, birefringent, notch

1 Introduction

In stress analysis experimental procedures can sometimes be time consuming and
theoretical studies can also be in some cases very complex. Numerical solutions
can therefore be very helpful. Various authors (see Refs. [1, 8]) have used ex-
perimental techniques as well as finite elements analysis to solve these kinds of
problems. In this study, a stress field is applied to a double edge notched specimen
(see Fig. 1); the load is applied in a loading frame equipped with a dynamometer
that measures the applied load. The stress field is then determined experimentally
on the analyzer of a regular polariscope by using both plane polarized light and cir-
cularly polarized light. The isochromatic fringe pattern is used to determine stress
values, particularly in the neighborhood of the notches. A finite element analysis
is used to simulate the isochromatic fringe pattern and the isoclinic fringe pattern
for comparison purposes. We consider that the material of the model behaves as a
purely isotropic material. To achieve better approximation, the mesh is refined in
the neighborhood of the contact zone.
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2 Theory and experimental procedure

Fig.1 shows the photoelasticity method which is based on the birefringent phe-
nomenon. In some transparent isotropic materials an incident light beam splits in
two independent light beams which travel through the model thickness at different
velocities ν1 and ν2. The corresponding refractive indexes n1 and n2 depend on
the principal stresses developed in the stressed model. In the light intensity ob-
tained with plane polarized light on the analyzer of a polariscope (see Eq. (1)), the
terms sin2 2α and sin2 ϕ/2 give respectively the isoclinic fringes and the isochro-
matic fringes [9].

I = a2 sin2 2α sin2 ϕ/2 (1)

The isochromatics (loci of points of equal maximum shear stress) are used to
determine the principal stresses difference in the whole model particularly in the
neighborhood of the notches (see Eq. (2)).

σ1−σ2 =
N(λ/C)

e
(2)

Figure 1: Light propagation through a photoelastic model and experimental setup.

3 Experimental results

The isochromatic fringe pattern (see Fig. 2) is obtained on a white field circular
polariscope, two quarter wave plates are added in the light path in order to elimi-
nate the isoclinic fringes that can hide the isochromatic fringes. The isochromatic
fringe pattern is then recorded for further analysis. The fringe orders are easily
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determined from the isochromatic fringe pattern (see Fig. 2), the first order be-
ing N = 0.5 since we use a white field. In the neighborhood of the notches we
observe higher fringe orders as one might expect. The fringe orders in the neigh-
boorhood of the contact zone are determined easily and accurately by zooming in
the neighboorhood of the notch (see Fig. 2 right) in order to obtain the principal
stresses difference for comparison purposes with the finite element solution. The
order reaches N = 10.5 near the tip of the notch. The following values given here
after are used to implemente the experimental solution as well as the numerical
one: Young’s modulus (E = 2437N/mm2), Poison’s ratio (µ = 0.37), applied load
(F = 850N) and fringe value ( f = λ/C = 11N/mm/ f ringe).

Figure 2: Experimental isochromatic fringes (left), Close-up of the notch (right).

4 Finite elements analysis

Since we are using two dimensional photoelasticity, we understand that we are
dealing with plan stress problems, stresses do not vary along the thickness of the
model. Therefore, in the finite element solution we simply consider that the stress
is constant along the thickness. The meshing of the model is refined in the in the
neighborhood of the notches to obtain more accurate results. The details of the
procedure are shown here after.

4.1 Isoclinic reconstruction

The values of the isoclinic parameter are calculated with the following relation (see
eq. (3)) that can be readily obtained from Mohr’s circle of stresses.

α = arctan(2τxy/(σx−σy)) (3)
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The isoclinic fringes (sin2 2α) can therefore be calculated for different polar-
izer and analyzer settings. In the finite elements solution a color scale is used to
represent the different values of the isoclinic term. On the reconstructed isoclinic
fringe pattern, the blue color corresponds to a dark isoclinic fringe obtained exper-
imentally on the analyzer of a plane polariscope.

4.2 Isochromatic reconstruction

Isochromatic fringes are calculated with the term sin2 ϕ/2 . Using Mohr’s stress
relations and (Eq.2), one can easily obtain the values of the isochromatic parameter
ϕ , the isochromatic parameter (see Eq. (4)).

ϕ =
2πe

(λ/C)

√
(σx−σy)2 +4τ2

xy (4)

The program calculates the isochromatic fringe pattern on the whole model. In
the color scale used by the software, the blue color corresponds to a dark isochro-
matic fringe.

5 Comparison between experimental and simulated re-
sults

5.1 Experimental and simulated isochromatic fringes

The experimental and the simulated isochromatic fringe patterns (see Fig.3) are
relatively similar; the blue simulated isochromatic fringes correspond to the dark
experimental isochromatic fringes. We see clearly a concentration of isochromatic
fringes in the neighbourhood of the notches. In the finite element solution we see
also stress concentrations in the neighbourhood of the holes but these are not taken
into account in this study as the experimental loading frame hides this zone. We
are therefore mainly interested in the stress fields developed in the neighbourhood
of the notches.

We can see relatively good agreements between experimental values and nu-
merical ones (see Fig. 3). Stresses are higher in the vicinity of the notches, and
then decrease to a lower constant value.

5.2 Experimental and simulated isoclinic fringes

One should know that experimentally it is not possible to obtain the isoclinics
alone. We have therefore, on the recorded experimental photoelastic fringes, both
the isochromatics which appear in color when we use polychromatic light and the
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Figure 3: Experimental and simulated isochromatic fringes and shear stress in the
neighbourhood of the notches.

isoclinics. We show the isoclinics for four positions of the polarizer and the ana-
lyzer axis (see Fig. 4). We can see relatively good agreements between the simu-
lated and the experimental isoclinics, the blue color corresponds to a dark isoclinic
fringe. The isoclinics can further be used to determine the stress trajectories called
also isostatics.

Figure 4: Experimental and simulated isoclinic fringes.

6 Conclusion

We have analysed a stress field developed in a birefringent double edge notched
specimen by using photoelasticity and finite element analysis. The purpose is
to analyse the stress field, particularly in the neighbourhood of the notches. We
showed that photoelastic fringes and stresses can be simulated easily and accu-
rately. Since the fringe order at the notch tip is difficult to determine experimen-
tally, stress at the notch tip is determined more accurately with the finite element
analysis and this is of great importance in the design of mechanical components.
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1 Introduction

The understanding of the physical phenomena that govern fluid / particle flows is
continuously improving, particularly in the last decade. Transport phenomena and
solid particles deposit in the context of hydraulic turbine engine systems is multi-
disciplinary. For modeling and simulation of such flows, there are several methods
which use dynamic meshing. These methods follows the movement of the objects
in a Lagrangian way [1, 2, 3]. However, the remeshing steps can be expensive and
very difficult, especially in the 3D case.

To overcome the constraints caused by the use of adaptive meshing and reduce
the problems associated with linking steps, new methods with fixed meshing are
used. These are also called methods of fictitious domain as they extend a problem
defined on a mobile and complex area (the fluid domain) to a domain (fictional)
larger but fixed. R. Glowinski et al (see [4, 5, 6, 7, 8, 9]) are the investigators
of fictitious domain methods. If the fixed field is sufficiently simple, this kind of
method allows the use of Cartesian meshes, which allows the use of fast solvers.

Although the Navier-Stokes equations describing the behavior of a fluid still ad-
mit no evidence of existence of a general solution, they are still widely used to
describe Newtonian fluid flows. In the case of the presence of particles in the fluid,
the processing of the interaction between the fluid phase and the solid phase adds
complexity to the studied problem.

In this paper we present a method of simulating the movement of one or more
convex rigid body in a Newtonian incompressible fluid. We used a penalty method
which is based on a reformulation of the stress tensor which allows the canceling
of the deformation rate in the volume occupied by the particle. This method con-
sists on constraining the movement of the fluid to be the same as the movement of
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a particle by increasing locally the viscosity of the fluid [10, 11, 12]. This method
has been used by many authors, initially to consider the Dirichlet condition at the
edge of the field, and then to deal with the presence of an obstacle within a flow. It
has been expanded recently to deal with the stress of rigid motion for a particle in
a fluid for a finite differences approach then for finite elements [13, 14].

The objective of this work is to develop a code from FreeFem ++ that simulates
Stokes or Navier-Stokes flows (with low Reynolds number) in the presence of solid
particles. A test case on the sedimentation of a particle is presented.

2 Mathematical formulation of the problem

We consider a connected, bounded and regular domain Ω⊂ R2 (see Fig.1) and we
denote by (Bi)i=1,···,N the rigid particles, strongly included in Ω. B denotes the
whole rigid domain: B = ∪iBi. The domain Ω \B is filled with Newtonian fluid
governed by the Navier-Stokes equations. We note µ the viscosity of the fluid, p
the presure and ff the external forces exerted on it. Since we consider a Newtonian
fluid, the stress tensor σ is given by the following relation (see Eq. (1)):

σ = 2µD(u)− pI, where D(u) =
∇(u)+(∇(u))T

2
(1)

Figure 1: Partcicles Bi in a Newtonian fluid.

We consider homogeneous Dirichlet conditions on ∂Ω. The presence of vis-
cosity imposes a no-slip condition on the boundary ∂B of the rigid domain.
At the initial time the particles with density ρi are distributed randomly over the
fluid. The position of the center of the ith particle is denoted by xi, by vi and ωi

its translational and angular velocities. We denote by mi and Ji the mass and the
kinematic momentum about its center of mass:
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mi =
∫

Bi

ρi, Ji =
∫

Bi

ρi‖x− xi‖2 (2)

We have to find the velocity u(u1,u2) and the pressure field p defined in Ω\B, as
well as the velocities of the particlesV := (vi=1,...,N) ∈ R2N and ω := (ωi=1,...,N) ∈
RN such that (see Eq. (3)):





ρf(
∂u
∂ t +u.∇u)−div(σ) = ff dans Ω\B,

div(u) = 0 in Ω\B,
u = 0 on ∂Ω,
u = vi +ωi(x− xi)

⊥ on ∂B, ∀i ∈ {1,··· ,N}
(3)

where ρf denotes the density of the fluid and ff = ρfgey is the external force exerted
on the fluid (gravity forces). The fluid exerts hydrodynamic forces on the particles.
Newton’s second law for these particles is written then as follows (see Eq. (4)):





mi
dVi
dt =

∫
Bi

fi−
∫

∂Bi
σn,

Ji
dωi
dt =

∫
Bi
(x− xi)

⊥.fi−
∫

∂Bi
(x− xi)

⊥.σn,
(4)

Where, fi denotes the external non-hydrodynamical forces exerted on the sphere,
such as gravity : fi =−ρigey.

3 Variational formulation and Penalisation method

The variational formulation obtained on the whole fluid/particle domain Ω is given
here after (see Eq. (5)):





Find (u, p) ∈KB×L2
0(Ω) suchthat

∫
Ω ρ̃ Du

Dt v+2µ
∫

ΩD(u) : D(v)− ∫
Ω pdiv(v) =

∫
Ω f̃.v, ∀v ∈KB

∫
Ω qdiv(u) = 0, ∀q ∈ L2

0,

(5)

with ρ̃ := ρ f 1Ω\B+∑N
i=1 ρ f 1Bi , f̃ := f f 1Ω\B+∑N

i=1 fi1Bi and KB = {u∈H1
0 (Ω)D(u)=

0 inB}.
Using a penalty method, we will rather consider the following problem:
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Find (u, p) ∈H1
0(Ω)×L2(Ω) suchthat

∫
Ω ρ̃ Du

Dt v+2µ
∫

ΩD(u) : D(v)+ 2
ε
∫

BD(u) : D(v)

−∫
Ω pdiv(v) =

∫
Ω f̃.v, ∀v ∈H1

0(Ω),

∫
Ω qdiv(u) = 0, ∀q ∈ L2(Ω),

(6)

The variational formulation (see Eq. (6)) shows that the physics behind this method
is to consider the rigid domain as a fluid with infinite viscosity.
The time discretization is performed by using the method of characteristics [15].

4 Results

In Fig. 2, we show the results of the sedimentation of elliptic particle in a closed
box filled with a Navier-Stokes fluid at different time steps.

Figure 2: Sedimentation of particule -configurations at different time steps-

5 Conclusion

In this paper, we have proposed a strategy for the numerical modeling of the mo-
tion of a convex rigid particle in a Newtonian fluid. The rigid motion is imposed
by penalizing the strain tensor, the time discretization is performed by using the
method of characteristics.
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The code was written in FreeFem++ version 3.26 and at each time step the gener-
alized Navier-Stokes problem is solved by using standard finite elements.
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1 Introduction

Nowadays the majority of college math instructors use LATEX when preparing ma-
terials for their classes. LATEX is a powerful editor specifically designed for writing
scientific and mathematical formulas. In this regard, the scope of its capabilities
ranges from the simplest to the most complex. However, it falls somewhat short
when it comes to dealing with graphics. Making graphics with LATEX can be a chal-
lenging and cumbersome task, requiring additional coding skills that can divert the
attention from the main goal, which is teaching the subject matter.

What most LATEX users do is to create their graphics with the aid of a sepa-
rate program and then import them in the working LATEX document. Of course,
more advanced users can resort to TiKZ, which is a TEX package with its own
commands and syntax, but this is difficult for the beginner or the occasional user,
due to the steep learning curve. To overcome this issue the authors developed a
package called KETpic[1], using a CAS to generate the LATEX code for graphics.
Here is a quick example of how it works: A CAS (say, Scilab [2]) user would
download the folder ketpicsciL5 and the file ketpic.sty both from [1]. For
definiteness, suppose that, in a Linux box, they are downloaded to the directory
/home/username/ketpic. Then, in a Scilab session the user would write the
following sequence of commands:

y = x+2

y = x2

x

y

O
Figure 1

cd("/home/username/ketpic");
Ketlib=lib("ketpicsciL5");
Ketint();
gr1=Plotdata("x^2","x");
gr2=Lineplot([-1,1],[2,4]);
h1=Hatchdata("ii",list(gr1,"n"),list(gr2,"s"));
Openfile("fig1");
Drwline(gr1,gr2,h1);
Expr([2,4],"se","y=x+2",[2,5],"nw","y=x^2");
Closefile("1");
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This creates a fig1.tex file in the directory /home/username/ketpic, con-
taining the LATEX code that generates Figure 1. To use it, the user must add
\usepackage{ketpic} to the preamble of her document; then, the command line
\input{fig1.tex} will do the job. The resulting .tex document should be com-
piled with X ELATEX or LATEX for better results.

2 Migration from KETpic to KETCindy

KETCindy[1] is an upgrade of KETpic which combines its features with those of
the popular dynamic geometry software Cinderella. Cinderella works as a GUI for
KETCindy: Graphics are shown in Cinderella via a KETCindy script while Scilab
runs in the background. The interactive features of the latter allow editing the
figures via the CindyScript editor. A brief procedural step of the process is shown
in Figure 2.

1. Draw geometric objects on the Cinderella worksheet.

2. Write a script as in Section 1 to generate the LATEX code for the figure.

3. Execute a batch process of Scilab, LATEX compiler and a PDF viewer.

Figure 2

KETCindy’s codes are short and compact, yet they generate high resolution im-
ages as good as KETpic’s ones, suitable for inclusion in high quality documentation
projects or research papers.
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3 Interfacing with CASs

The most recent version of KETCindy includes capabilities of interfacing with
Computer Algebra Systems others than Scilab. In this paper we illustrate the case
of Maxima [4], but there exist versions for Fricas [5] and Risa/Asir [6]. The flow
chart of these interfaces is shown in Figure 3.

KETCindy

Scilab LATEX

Maxima

ãSource File
ãBatch File

Returned Results (textfile)

Further Use in KETCindy

Figure 3

When interfacing with Maxima, the command Mxfun is all we need to complete
the task. Other commands such as calcbyM and Mxtex may be used for multistep
and code conversion to LATEX, respectively. The output of the CAS is returned to
KETCindy as a character string for further processing of the graphics. Used this
way, KETCindy proves to be a powerful companion to CASs.

4 Examples

4.1 Fourier Series
The second author has developed a package for computing the Fourier series of
piecewise defined functions in Maxima, called fourier_sec. Below we show the
code needed to compute the Fourier expansion of degree 10 of a square wave.

cmdL=Concat(Mxbatch("fourier_sec"),[
"hs(x):=if (x<0 and x>=-1) then 0 "

+"elseif (0<=x and x<=1) then 1",[],
"c:fourier_sec_coeff",["hs(x)","x"],
"c[1]::c[2]::c[3]",[]

]);
CalcbyM("c",cmdL,[]);
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c0=text(c_1); cn=text(c_2);
Mxtex("2",c_3);
sn=replace(c_3,"%pi","pi");
fs=c0;
forall(1..10,

tmp1=assign("("+cn+")*cos(n*pi*x)","n",#);
tmp2=assign("("+sn+")*sin(n*pi*x)","n",#);
fs=fs+"+"+tmp1+"+"+tmp2;

);
Plotdata("2",fs,"x",["Num=400"]);
Expr([D,"e","s_n="+tx2,E,"e","n=10"]);

sn = 1−(−1)n

π n n = 10

x

y

O

Figure 4

4.2 Generating 3D Models

One of the appealing features of KETCindy is its capability of displaying 3D graph-
ics (through .obj files). These are to be viewed with programs such as Meshlab [7].
Once the basic 3D graphics has been coded, and prior sending the file to a 3D
printer, using Maxima the surface can be fine-tuned by giving it the desired thick-
ness (this is required by the 3D printing process), in addition to other features. The
final code, along with its 3D printed version, is shown in Figure 5.

fd=["p","x=U*cos(V)","y=U*sin(V)","z=cos(V)^2-sin(V)^2",
"U=[0,2]","V=[0,2*pi]","e"];

tmp=Mkobjnrm("1",fd);
cmdL=["assume",["U>0"],"a:trigsimp",[tmp],"a",[]];
CalcbyM("ans",cmdL);
Mxfun("1","solve",[den,"C"]);
cmdL=["assume",["U>0"],

"a1:limit",[norm1,"V","0"],...];
CalcbyM("lim1",cmdL,[""]);
norm="if or(V==%p/2*[0,1,2,3,4]) then Out=[0,0,1];"

+"else Out="+norm+";end";
cmd=Mkobjthickcmd("1",fd,norm,[0.05,"+n+s-e-w+"]);
Mkviewobj("ds",cmd),["m","v");
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Figure 5

5 Conclusions

The goal of the paper is to show by way of examples how our package KETCindy
can be used to generate high quality 2D and 3D graphics to be used within tech-
nical LATEX documents. Also, a brief description of the interface between several
CASs and LATEX through KETCindy is presented.

Acknowledgments
This work was supported by JSPS KAKENHI Grant Numbers 25350370, 15K01037,
15K00944. The second author was partially supported by the Mexican Consejo
Nacional de Ciencia y Tecnología, Project CB-2012 179115.

References
[1] KeTpic/KeTCindy, http://ketpic.com/?lang=english
[2] Scilab, http://www.scilab.org
[3] Cinderella, http://www.cinderella.de
[4] Maxima, http://maxima.sourceforge.net
[5] Fricas, http://fricas.sourceforge.net
[6] Risa/Asir, http://www.math.kobe-u.ac.jp/Asir/asir.html
[7] Meshlab, http://meshlab.sourceforge.net
[8] Kaneko M., Yamashita S., Kitahara K., Maeda Y., Nakamura Y., Kortenkamp U, Takato S.,

KETCindy— Collaboration of Cinderella and KETpic, Reports on CADGME 2014 Confer-
ence Working Group, The International Journal for Technology in Mathematics Education,
22(4), 179–185, 2015.

[9] Takato S., Hamaguchi N., Sarafian H., Generating Data of Mathematical Figures for 3D Print-
ers with KETpicand Educational Impact of the Printed Models, ICMS 2014, LNCS, vol. 8592,
pp. 629–634, Springer, Heidelberg, 2014.

[10] Kaneko M, Takato S., The effective use of LaTeX drawing in linear algebra, The Electronic
Journal of Mathematics and Technology 5(2), pp. 1–20, 2011.

27



On the Visualization of Random Fibonacci-Padovan
Sequences

T. Mylläri1, A. Mylläri 1, A. Anckar 2, G. Högnäs 2

1 St. George’s University, Grenada, West Indies, amyllari@sgu.edu
2 Åbo Akademi University, Turku/ Åbo, Finland

Fibonacci numbers [1] are known for more than two thousand years, Padovan
numbers are much younger, they were introduced only recently [2]. Viswanath in
his classic paper [3] studied the growth rate of random Fibonacci sequences

fn = fn−1± fn−2

and got the exponent 1.13198824. . . (named later Viswanath’s constant). Gogin and
Mylläri [4] studied the problem of the growth rate of random Fibonacci-Padovan
sequences and showed that the average growth rate of such sequences in the case
of equal probabilities, limn→∞

n
√

E(un) is equal to the greatest positive root (appr.
1.43756) of the cubic equation

λ 3 =
1
2

λ 2 +λ +
1
2
.

Here we study random (with equal probabilities) Fibonacci-Padovan sequences
and consider a problem of visualization of the tree of possible outcomes. We
represent elements of random sequences as triplets (x,y,z) and define operators
F(x,y,z) = (y,z,y+ z) and P(x,y,z) = (y,z,x+ y) for Fibonacci and Padovan se-
quence correspondingly. To visualize individual random sequences we suggest
direction-length attitude, where length= (x+y+z), direction= (x,y,z)/length.

To visualize full set of possible outcomes, we use colour-brightness approach,
where RGB colour and brightness correspond to direction-length. When studying
probability distribution of all possible directions, it could be also useful to visualize
directions only. Suggested algorithms are realized in Wolfram Mathematica 10.4.

If we use a triplet (1,1,1) as a start, next triplet will be (1,1,2) independent
on what operator is used since F(1,1,1) = P(1,1,1) = (1,1,2) (see right branch
on Figure 1). So in our studies we use triplet (1,1,2) as the starting point. The
possible triplets may be written as W (1,1,2) where W ∈< F,P >, the set of words
generated by F and P.

Let us note that

FPF(x,y,z) = FP(y,z,y+ z) = F(z,y+ z,y+ z) = (y+ z,y+ z,2(y+ z))
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Figure 1: The Fibonacci-Padovan tree. Left (blue) arrow corresponds to Fibonacci
operator applied, right (green) - Padovan.

which is a multiple of (1,1,2). So, whenever the sequence FPF appears some-
where in the word W, we get a subtree similar to the full tree W (1,1,2). Some
nodes multiple of (1,1,2) are highlited on Figure 2.

Figure 2: The Fibonacci-Padovan tree. Multiples of (1,1,2) are marked red.

We characterise triplets (x,y,z) by direction and length, where

length = (x+ y+ z),

direction = (x,y,z)/length = (
x

x+ y+ z
,

y
x+ y+ z

,
z

x+ y+ z
).

This approach (to use directions, i.e. normalize components of the vector by its
norm) was used, e.g., by Furstenberg and Kesten [5].
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Figure 3: Part of the Fibonacci-Padovan tree (left) and its RGB visualizations:
direction-length (center) and directions only (right).

Figure 3 shows first four levels of the tree and its RGB visualizations: direction-
length (brightness is normalized by the last element of the largest triplet corre-
sponding to the word FFF . . .) and directions only. Figure 4 shows larger part of
the tree.

Figure 4: RGB visualization.

Let us note that operators F(x,y,z) = (y,z,y+ z) and P(x,y,z) = (y,z,x+ y)
put some restrictions on the elements of triplets: for the triplet (x,y,z) we always
have x ≤ y≤ z and y≤ 2x, z≤ 2y. It restricts the colors of the image. To improve
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the situation one can add extra transformation of colours, the simplest is to use the
command ImageAdjust in Wolfram Mathematica (see Figure 5).

Figure 5: RGB visualization (directions only) with modified color space. Multiples
of (1,1,2) are easily seen - they have same color as the first (uppermost) stripe.

Interesting results could be obtained also if one uses HSB (hue-saturation-
brightness) approach, see Figures 6 and 7.
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Figure 6: HSB visualization (directions only).

Figure 7: Same as Figure 6 with adjusted colours.
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While the first part was devoted only to the main procedures calculateResidues
and ContourIntegration applied to a wide class of complex functions f (z) which are
rational polynomials, products of rational and trigonometric/hyperbolic functions,
rational functions consisting of trigonometric/hyperbolic functions. However, the
investigations of the second part of this paper are special topics which occur in the
context of contour integration and are of interest in itselves. The issues discussed
in this paper are:
(1) introduction of a language for creation and visualization of non-trivial inte-
gration paths consisting of polylines and circular arcs such as contours γ which
exclude certain poles or branch cuts, or the sophisticated contour for Meijer G-
functions meandering around integer singularities but avoiding half-integral ones,
or the Pochhammer double-loop contour for the evaluation of the so-called Euler’s
integral etc. ;
(2) criterium for the determination of poles inside/outside an arbitrary closed con-
tour;
(3) visualization and extraction of (non-trivial) branch cuts for various functions
f (z) such as

√
sin(z) or arcsin(zn);

(4) treatment of contour integrals for which the integrands possess branch cuts such
as f (z) =

√
z/(z2 +1);

(5) transformation of improper integrals (along the real axis) into exotic contour
integrals with the help of change of variables, e.g.

∫ +∞
0

1
x3+1 dx with variables x→

reiΦ where Φ→ 2π
3 etc.;

(6) symbolic evaluation of the integral representation for special functions such as
Meijer G-function or Euler’s integral for Beta function.
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The Atwood machine is a well-known device that is usually used to demon-
strate the uniformly accelerated motion (see Ref. [1]). It consists of two bodies
attached to opposite ends of a massless inextensible thread wound round a mass-
less frictionless pulley. It is assumed that each body can move only along a vertical,
and the thread doesn’t slip on the pulley. Such Atwood’s machine is a simple me-
chanical system with one degree freedom and one can easily show that the bodies
acceleration is given by

a =
m2−m1

m2 +m1
g , (1)

where m1 and m2 (m2 >m1) are the bodies masses, and g is the gravity acceleration.
As the acceleration a can be easily found experimentally Eq. (1) is often used to
find the local Earth gravity constant g.

However, doing the corresponding experiment, one can observe that the result
obtained may differ noticeably from the true value of g. Trying to explain such
result, one can notice that it is very difficult to constrain the bodies to move strictly
along verticals and to avoid their oscillations.

It should be noted that swinging Atwood’s machine has been a subject of a
number of papers (see, for example, Refs. [2, 3, 4, 5, 6]) and its mechanical be-
haviour has been studied quite well. In particular, it has been proven that the sys-
tem of differential equations describing dynamics of swinging Atwood’s machine
is not integrable, in general. It has been shown also that, depending on the mass
ratio m2/m1, the system can demonstrate different types of motion, namely, peri-
odic, quasi-periodic, or chaotic motion but physical reasons of such behaviour of
the system and significance of oscillations has not been usually discussed.

The main purpose of the present paper is to analyze the terms appearing in
the equations of motion owing to oscillations and to study their influence on the
system behaviour. Combining symbolic and numerical calculations turns out to
be very useful for this study because the equations of motion are not integrable.
The validity of the results obtained is demonstrated by means of the simulation of
motion of the swinging Atwood machine with the computer algebra system Math-
ematica (see Ref. [7]) that is used for doing all relevant symbolic and numerical
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Figure 1: The swinging Atwood machine.

calculations and visualization of the results.

1 Equations of Motion

We consider here a generalized model of the simple Atwood machine when the
body of mass m1 is allowed to swing in a plane while the other body of mass
m2 is constrained to move along a vertical (see Fig. 1). Such a system has two
degrees of freedom and its geometrical configuration can be described in terms
of two variables, for example, an angle of the pulley rotation ψ , and an angle ϕ
determining deviation of the thread from a vertical. Note that the length L of the
thread between the body m1 and the point, where the thread departs from pulley,
is given by the relationship L = L0 +R(ϕ−ψ), where L0 is its initial value, R is a
radius of the pulley, and initial values of ψ and ϕ are assumed to be equal (ψ0 =
ϕ0). Assuming the thread doesn’t slip on the pulley, we obtain r = r0+R(ψ−ψ0),
where r0 is an initial length of the thread between the body m2 and the pulley.

The Lagrangian of the system can be written in the form

L =
1
2

m1 (L0 +R(ϕ−ψ))2 ϕ̇2 +
1
2
(
I0 +(m1 +m2)R2) ψ̇2

−m1g(Rsinϕ− (L0 +R(ϕ−ψ))cosϕ)+m2gRψ , (2)

where the dot denotes differentiation with respect to time, and I0 is a moment of
inertia of the pulley. Using Eq. (2) and doing standard symbolic calculations, we
obtain the equations of motion in the form

ψ̈ =
R

I0 +(m1 +m2)R2

(
g(m2−m1 cosϕ)−m1(L0 +R(ϕ−ψ))ϕ̇2) , (3)
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Figure 2: Motion of the swinging Atwood machine in case of m1 = m2.

ϕ̈ =
1

L0 +R(ϕ−ψ)

(
2Rψ̇ϕ̇−gsinϕ−Rϕ̇2) . (4)

One can readily see that in case of absence of oscillations, when ϕ ≡ 0, Eq. (4)
is satisfied identically, while Eq. (3) takes the form

ψ̈ =
gR(m2−m1)

I0 +(m1 +m2)R2 . (5)

Obviously, it determines the uniformly accelerated motion of the system and gen-
eralizes Eq. (1) to the case of nonzero mass of the pulley.

2 Main results

Taking into account planar oscillations of the body m1 complicates the equations of
motion significantly (see Eqs. (3)-(4)) and their general solution cannot be found
in an analytical form. However, choosing some realistic values of the system pa-
rameters, we can find the corresponding numerical solution for different initial
conditions and to get some ideas on possible motion of the system.

At first we consider the case of equal masses (m1 = m2) and assume that the
bodies are at rest. As a vertical initial velocity of the bodies induces only their uni-
formly accelerated motion without oscillations we give the body m1 a small initial
velocity in a horizontal direction. Due to the fact that both bodies have the same
mass and are initially in equilibrium, it seems to be quite natural to assume that the
system should move in the neighborhood of its equilibrium position. However, this
equilibrium position turns out to be unstable and the system moves away from the
equilibrium even for very small values of initial velocity.

Actually, solving Eqs. (3)-(4)) with the initial conditions ψ(0)= ψ̇(0)=ϕ(0)=
0, ϕ̇(0) = 0.1, we obtain a solution shown in Fig. 2. One can readily see that arising
oscillation of body m1 results in a clockwise rotation of the pulley and movement
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Figure 3: Motion of the swinging Atwood machine in case of m1 < m2.

of the bodies in vertical direction. Amplitude of oscillation decreases with time
and the term in the right-hand side of Eq. (3) tends to zero as it should be in case of
the absence of oscillation and equal masses of the bodies. Thus, due to oscillation
of the body m1 a transformation of its initial horizontal momentum into vertical
motion of the bodies takes place. A physical reason of such transformation is an
increase of a tension of the thread due to oscillation of the body m1 and appearance
of the centrifugal force m1Lϕ̇2. Computing an average value of the net force in
the right-hand side of Eq. (3) shows that it really becomes smaller than zero when
body m1 oscillates, in spite of the equal masses of the bodies.

Note that the thread tension depends on amplitude of the body m1 oscillation.
If the amplitude is quite small and the mass of body m2 is greater than mass m1
the net force in the right-hand side of Eq. (3) may become positive. Then the
pulley starts to rotate counterclockwise and the thread length L between the body
m1 and pulley decreases. The amplitude of oscillation and the thread tension starts
to grow up and if the masses difference m2−m1 is less than some critical value
the net force in the right-hand side of Eq. (3) becomes negative again. As a result
angular velocity ψ̇ of the pulley changes the sign and the system starts to move
in opposite direction. Then amplitude of oscillation decreases again and when its
value becomes small enough angular velocity ψ̇ changes the sign and the process
repeats. Thus, we can observe a quasi-periodic motion of the swinging Atwood
machine (see Fig. 3). This result is quite unexpected and it should be taken into
account when the Atwood machine is used for measuring the gravity acceleration.

3 Conclusions

In the present talk we have analyzed an influence of oscillation on the Atwood
machine motion in the simplest case when only one body is permitted to oscillate
in a plane. Nevertheless, we have shown that even such oscillation can completely
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modify a motion of the system, while the simple Atwood machine demonstrates
only the uniformly accelerated motion of the bodies. Of course, a mass and size
of the pulley and changing the length L between the body m1 and pulley owing
to winding the thread on the pulley affect on the system motion, as well. Doing
necessary calculation, we have shown that these factors only change an inertness
of the system and modify oscillation of the body m1 but do not change qualitatively
the system behaviour.

It should be noted that there are many physical problems which seem to be quite
simple although the corresponding mathematical models are rather complicated to
be solved and analyzed by hand. But application of the modern computer algebra
systems such as Wolfram Mathematica, for example, helps a lot in analyzing such
problems and promotes development of physical intuition and better understanding
of the subject.
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There are a number of mathematical tools which, with the help of computer
algebra, provide powerful techniques for the solution of nonlinear evolutions in
mathematical physics. The generalized differential operator method, first intro-
duced in [1], has been successfully applied for the construction of solitary solutions
to equations in mathematical physics [2, 3]. In this talk, we consider the use of this
method to construct more general closed-form analytical solutions.

Since the wave variable substitution x = ξ −at transforms nonlinear evolution
equations into ordinary differential equations, we consider the following initial
value problem:

y′′xx = P
(
x,y,y′x

)
; y = y(x;c,s, t) , y(c;c,s, t) = s, y′x (c;c,s, t) = t. (1)

The generalized differential operator for (1) reads D := Dc + tDs +P(c,s, t)Dt .
Denoting p j(c,s, t) := D js, the general solution to (1) can be expressed as the

series y = y(x;c,s, t) = ∑+∞
j=1

(x−c) j

j! p j(c,s, t). We show that if f (x) = ∑+∞
j=1

q j
j! x j

is an arbitrary analytical function and the sequence p̂ j =
p j
q j

is a linear recur-
ring sequence of order n [4], the solution to (1) can be written in closed form
as y = ∑n

k=1 λk f (αk−βk (x− c)), where λk,αk,βk ∈ R are constants.
The outlined algorithm is a powerful tool for the construction of closed-form

solutions to nonlinear evolution equations in mathematical physics.
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The existence of central configurations in the N-body problem is connected
with two type of parameters, masses of the bodies, which are physical parameters,
and positions of the bodies as geometrical parameters. The main goal concerning
central configurations is to determine the values (mi,qi), i = 1, . . . ,N of the param-
eters for which such arrangement of the N point masses exists. The well known
list of classical central configurations of Euler and Lagrange has been completed
by B. Elmabsout [1]. He has added a configuration consisting of 2n equal point
masses, located at the vertices of two regular concentric n-gons, while the point
mass with nonzero mass m0 lies in the center of these polygons. He has proved
that such configuration exists if and only if these two polygons are homothetic, or
differ by an angle of π/n.

The bifurcation’s problem is the second one which is connected with the degen-
erate central configurations and for which lots of interesting questions arise. The
authors which have dealed with bifurcations in the n-body problem are M.Sekiguchi
[4] and J.Lei, M.Santoprete [5]. They have analyzed a highly symmetrical rosette
configuration of 2n+ 1 point masses; Sekiguchi has considered 2n point masses
with mass m situated at the vertices of two different coplanar and concentric reg-
ular n-gons, whilst Lei, Santoprete have analized 2n point masses, for which n
particles with m1 mass are located at the vertices of n-gon and n particles with the
mass m2 lie at the vertices of another n-gon. Both n-gons are regular, concentric
and rotated of an angle π

n . The mass m0 lies at the center of masses. Sekiguchi has
established that if n≥ 3 and µ < µc, where the parameter µ controls bifurcations,
then there exist three central configurations, otherwise only one for µ ≥ µc. J.Lei
and M.Santoprete have shown that if n ≥ 3 then there exists a degenerate central
configuration and a bifurcation for value of the parameters µ,ε .

Assume that m j ∈ R+ ( j = 1, ...,N) and q 6= q′ are distinct radii of two con-
centric regular polygons. We deal with a new class of central configurations in
the N-body problem. By (2,N) we understand the configuration which consists of
n point masses m1,m2, . . . ,mn situated at the vertices of the regular n-gon, and of
2n point masses m

′
1,m

′
2, . . . ,m

′
2n located at the vertices of the regular (2n)-gon, so,

N = 3n.
The existence of such configuration has been shown numericaly by E.A.
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Figure 1. Configuration (2,N).

Grebenikov [2] and has been established in the case n = 2 by A. Siluszyk [3]. In
our work we deal with a family of central configurations of n point masses, when
n = 2. If there exists a constant λ such that [6]

m−1 ∂U
∂ρ

= λρ, (1)

then the configuration ρ = (q1,q2, . . . ,qN) ∈
{

R2 \∆
}

is called a central config-
uration in the N-body problem; here U = ∑1≤i< j≤N

mim j
ri j

, ri j =
∣∣q j−qi

∣∣, ∆ ={
ρ : qi = q j, i 6= j

}
and m = diag [m1,m2, . . . ,mN ]. Any central configuration gives

relative equilibrium which rotates in the plane with constant angular velocity ω and
remains congruent to itself for all times. We assume that ∑N

i=1 miqi = 0, i.e., the
center of mass of our system is located at the origin, moreover, we know [6] that
λ = U(ρ)

I(ρ) , where I(ρ) = ρT mρ means the moment of inertia. The set of equiva-
lence classes of central configurations are determined by critical points of U(ρ)|X ,
where X =

{
R2 \∆ : I(ρ) = 1

}
, I = ∑N

i=1 miq2
i [7]. Moreover the critical points

which are degenerated, i.e. the Hessian D2(U(ρ)|X) at such points has a nontrivial
nullspace, give us an equivalence class of degenerated central configurations.

We deal with configuration of the type (2,N) with any natural N and m1,m2,m3 >
0, q,q′ > 0. Then we have:
Theorem 1. ([3]) For any natural N and any real numbers m1 > 0, and q, r > 0
(r = q′

q ) a central configuration of type (2,N) exists if and only if




m2 = r2

(κ1−κ6)(κ1−4r3(κ2+κ4)+4r4(κ3+κ5)+κ6)
(−16r5(κ2−κ4)κ5+

+16r4(κ2κ4−κ2
4 +κ5(κ3−κ5))−16r3κ4(κ3−κ5)+

−r(−κ2
1 −4κ4κ6 +κ1(4κ2 +κ6))+4κ1κ3−4κ5κ6)m1,

m3 = r2

(κ1−κ6)(κ1−4r3(κ2+κ4)+4r4(κ3+κ5)+κ6)
(16r5κ3(κ2−κ4)+

−16r4(κ2(κ2−κ4)+κ3(κ3−κ5))+16r3κ2(κ3−κ5)+
+r(κ1(κ1−4κ4−κ6)+4κ2κ6)+4(κ1κ5−κ3κ6))m1,

(2)
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(here, the sums in the right hand side do not depend on k). The elements κs,
s = 1, ..,6 for any k = 1, . . . ,n are expressed by [3]:





κ1 =
n
∑
j=1

1∣∣∣sin π(k− j)
n

∣∣∣
,

κ2 =
n
∑
j=1

1

(1+r2−2r cos( 2π( j−k)
n + π

n ))
3
2
,

κ3 =
n
∑
j=1

cos( 2π( j−k)
n + π

n )

(1+r2−2r cos( 2π( j−k)
n + π

n ))
3
2
,

κ4 =
n
∑
j=1

1

(1+r2−2r cos( 2π( j−k)
n + 2π

n ))
3
2
,

κ5 =
n
∑
j=1

cos( 2π( j−k)
n + 2π

n )

(1+r2−2r cos( 2π( j−k)
n + 2π

n ))
3
2
,

κ6 =
n
∑
j=1

1∣∣∣sin( 2π( j−k)
2n + π

2n )
∣∣∣
.

(3)

Here, we consider the relative equilibrium of six bodies; such configuration con-
sists of (mi,qi), i= 1, ...,6 point masses, two of them with equal masses m1 situated
at the ends of a segment having lenght 2q, while other two pairs of masses m2 and
m3 are located at the vertices of a square whose side is q′

√
2. Moreover, the ver-

tices of this square are on the axises of symmetry of the segment. The Newtonian
potential and the moment of inertia for the configuration of the type (2,6) are given
by:
{

U =
m2

1
q ((1

2 +
µ2+ν2

2r )+4 µ√
1+r2 +2ν( 1√

(r−1)2
+ 1√

(r+1)2
)+2
√

2 µ ν
r ),

I = 2m1q2(1+ r2(µ +ν)).
(4)

for parameters µ = m2
m1

> 0 and ν = m3
m1

> 0, r = q′
q .

Theorem 2. Suppose, that (2,6) is configuration of six bodies with q,q′ > 0 as
mutual distances corresponding to |Om1|, |Om2| = |Om3|, respectively. Then for
all m1,m2,m3 > 0 there exists at least one central configuration of the type (2,6).

Solving the equation ∇U(ρ)+ 1
2 σ∇I(ρ) = 0 with respect to unknown q,r from (4),

we obtain in the plane I = 1 the equation U ′r · I′q−U ′q · I′r = 0. The solutions of this
equation give us all central configurations of the (2,6).
Proposition 1. For any m1 > 0 there exists at least one r∗ for which the configu-
ration of the type (2,6) is the equivalence class of a degenerated central configura-
tion.

Computer Assisted Proof methods are applied to obtain the main results of our
report. These methods represent a new technique for obtaining rigorous results
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concerning the global dynamics of nonlinear systems of the equations (see, e.g., P.
Zgliczynski [8]). Below we present the number of critical points for r∗ and critical
masses µ∗,ν∗ (here, we put m1 = 0.001):

r∗ critical masses µ∗,ν∗ number of c.p.
0.70582611533? µ∗ = 58.38984663223665?, 8

ν∗ = 0.944757994652664?
0.6226157? µ∗ = 30.07078175550046?, 12

ν∗ = 2.359914736266285?
0.5025690268698576? µ∗ = 3.18858∗1013, 14

ν∗ = 3.18858∗1013

0.5646596968686869? µ∗ = 22.45513293937953?, 16
ν∗ = 5.061034347849054?

9.3445? µ∗ = 15.117653893458127?, 20
ν∗ = 0.017734428734047708?

Table 1: Number of critical points for given distances r∗ and masses µ∗,ν∗.

Figure 2. The degenerate central configuration for r∗ = 0.70582611533?,
µ∗ = 58.38984663223665? and ν∗ = 0.944757994652664?.

The change which is presented by Table 1 and Figure 2 expresses an exchange
of the number of solutions 16 for 8, 12, 14 and 20 in the equation U ′r ·I′q−U ′q ·I′r = 0.

In our studies we apply a few theoretical facts concerning interval arithmetic.
Using a theorem and some methods it is possible to find rigorous bounds on roots
of nonlinear equation. We use Sage arbitrary precision real intervals, in which an
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interval [a,b] is written as a standard floating-point number with a question mark,
where question mark can be interpreted as an error.
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1 Statement of the problem

Let us consider a system of three mutually attracting spherical celestial bodies
T0, T1 and T2 of masses

m0 = m0(t), m1 = m1(t), m2 = m2(t) (1)

varying anisotropically with different rates (law of masses variation is arbitrary)
(Refs. [1])

ṁ0

m0
6= ṁ1

m1
6= ṁ2

m2
. (2)

On the basis of Meshcherskiy equation (Refs. [2]), we can write the equations of
motion of three-body problem with variable masses in the presence of reactive
forces in the absolute coordinate system in the form

m j~̈R j = grad~R j
U + ṁ j~Vj, U = f

(
m0m1

R∗01
+

m0m2

R∗02
+

m1m2

R∗12

)
,

where~u j are the absolute velocities of the separating particles,

~Vj =~u j− ~̇R j 6= 0, j = 0, 1, 2, (3)

are the relative velocities of the separating particles, ~R j are the radius vectors of the
center of the spherical bodies, ~Ri j are the distances between the centers of the spher-
ical bodies, f is the gravitational constant. Following L.G. Lukyanov (Refs. [3]),
we assume that the reactive forces are applied to the center of the respective spher-
ical bodies. Usually in the observational astronomy the laws of the mass change
(see Eqs. (1, 2)) and the relative velocities of the separating particles (see Eqs. (3))
can be determined experimentally for specific celestial bodies. Therefore, we as-
sume that the values of m j(t), ~Vj, j = 0, 1, 2, are known (see Eqs. (1, 3)).
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It should be noted that in general case of the three-body problem with variable
masses changing anisotropically in the different rates there is no any integral of
motion. Therefore, the problem under consideration is investigated by methods
of the perturbation theory (Refs. [1], [4, 5, 6]), and with the use of analytical
calculations system Mathematica (Refs. [7]).

2 Equations of Motion in Terms of the Delaunay Elements

Using the Jacobi coordinates, we can rewrite the equations of motion in the form

µ1~̈r1 = grad~r1U +~F1, µ2~̈r2 = grad~r2U− (2ν̇1~̇r1 + ν̈1~r1)+~F2.

where reduced masses are given by

µ1 =
m1m0

m0 +m1
6= const, µ2 =

m2(m0 +m1)

m0 +m1 +m2
6= const, ν1 =

m1

m0 +m1
6= const.

The functions

~F1 = ~F1(F1x,F1y,F1z) = ~F1(t) =
ṁ1

m1
~V1−

ṁ0

m0
~V0 6= 0,

~F2 = ~F2(F2x,F2y,F2z) = ~F2(t) =
(

ṁ2

m2
~V2−

ṁ0

m0
~V0

)
−ν1

(
ṁ1

m1
~V1−

ṁ0

m0
~V0

)
6= 0,

are considered known and given.
To apply the perturbation theory it is convenient to rewrite the equations of

motion in terms of the analogues of the second system of the Poincare elements.
The first step in such transformation is to write the equations of motion in terms of
the osculating elements of the aperiodic motion on the quasi-conic section using
the Delaunay coordinates (see Refs. [4]). Then investigation of the secular per-
turbations of the Delanay elements is reduced to solving the following system of
non-autonomous differential equations

ξ̇i =
∂R∗isec

∂ηi
, ṗi =

∂R∗isec
∂qi

,

η̇i =−
∂R∗isec

∂ξi
, q̇i =−

∂R∗isec
∂ pi

.
(4)

where R∗isec are perturbation functions (Refs. [4, 5, 6]), ξi, ηi, pi, qi are analogues
of the second system of the Poincaré elements (Refs. [1]).
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In the present paper we consider the expansion of the perturbing function in
terms of small quantities m1, m2, e1, e2, i1, i2 up to the second order inclusively
(Refs. [4, 5, 6]). Then the secular expressions for R∗1sec, R∗2sec in the analogues of
the second system of the Poincaré elements take the form (Refs. [5, 6])

R∗1sec =
1
γ2

1
· β̃ 4

1

2µ10Λ2
1
+F01 +F12sec1 +Fρ1sec+Φ1sec,

R∗2sec =
1
γ2

2
· β̃ 4

2

2µ20Λ2
2
+F02 +F12sec2 +Fρ2sec+Vsec+Φ2sec,

(5)

F01=−
b1γ2

1a2
1

2ψ1
− f

m1m2

γ2ψ1a2
, F12sec1=

f
ψ1

[
m1m2

r12

]

sec
, Fρ1sec=−

3b1γ2
1a2

1
4Λ1ψ1

(ξ 2
1+η2

1),

F02=−
b2γ2

2a2
2

2ψ2
− f

m1m2

γ2ψ2a2
, F12sec2=

f
ψ2

[
m1m2

r12

]

sec
, Fρ2sec=−

3b2γ2
2a2

2
4Λ2ψ2

(ξ 2
2+η2

2),

Vsec =−9a1a2µ2γ2(2γ̇1ν̇1 + γ1ν̈1)

14
√

Λ1
√

Λ2ψ2
(ξ1ξ2 +η1η2),

Φ1sec =
3a1γ1(t)
2ψ1
√

Λ1

{
−F1x(t)ξ1 +F1y(t)η1 +

F1z(t)√
Λ1

[(−ξ1q1 +η1 p1)]

}
,

Φ2sec =
3a2γ2(t)
2ψ2
√

Λ2

{
−F2x(t)ξ2 +F2y(t)η2 +

F2z(t)√
Λ2

[(−ξ2q2 +η2 p2)]

}
.

Analysis of the expressions obtained (see Eqs. (4, 5)) shows that the equations
of the secular perturbations in the presence of reactive forces (in the case when
masses changing anisotropically) are not splitted into two systems with respect to
the elements ξi, ηi and pi, qi.

The main purpose of this paper is to identify the explicit form of the equations
(see Eqs. (4)) and to find their approximate analytical solutions using by Picard
method. On the basis of these solutions we can obtain an explicit form of the
equations of the analogues of the orbital elements.

3 Approximate Analytical Solutions

Using expressions (5), we can write the equations of motion in explicit form (see
Eqs. (4))

ξ̇1 = K5 +K6 p1 +2K1η1 +K3η2, η̇1 = K4−K6q1 +2K1ξ1 +K3ξ2,

ξ̇2 = K′5 +K′6 p2 +2K′2η2 +K′3η1, η̇2 = K′4−K′6q2 +2K′2ξ2 +K′3ξ1,
(6)
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ṗ1=−K6ξ1+2ψ∗1 (t)
(

q1

Λ1
− q2√

Λ1Λ2

)
, q̇1=K6η1+2ψ∗1 (t)

(
p1

Λ1
− p2√

Λ1Λ2

)
,

ṗ2=−K′6ξ2+2ψ∗2 (t)
(

q2

Λ2
− q1√

Λ1Λ2

)
, q̇2=K′6η2+2ψ∗2 (t)

(
p2

Λ2
− p1√

Λ1Λ2

)
.

(7)

In this formulation due to the anisotropical change of the masses and therefore
adding of the reactive force new terms appear which have the form

K4 =−
3a1F1x(t)γ1(t)

2ψ1
√

Λ1
, K5 =

3a1F1y(t)γ1(t)
2ψ1
√

Λ1
K6 =

3a1F1z(t)γ1(t)
2ψ1Λ1

,

K′4 =−
3a2F2x(t)γ2(t)

2ψ2
√

Λ2
, K′5 =

3a2F2y(t)γ2(t)
2ψ2
√

Λ2
K′6 =

3a2F2z(t)γ2(t)
2ψ2Λ2

,

and the values K1, K2, K3, K′1, K′2, K′3 were obtained in (Refs. [6]).
Using the method of Picard we can write the solutions of the equations (see

Eqs. (6, 7)) as follows

3k (t) =3k (t0)+
∫ t

t0
Π∗∗i (t,3k (t0))dt, (8)

where Π∗∗i (t,3k) are the right-hand sides of the equations (see Eqs. (6, 7)), 3k are
the elements ξi, ηi, pi, qi, and 3k0=3k (t0) are their values at the initial time.

The solutions (see Eqs. (8)) allow to analyze the evolution of the analogues
of eccentricities ei, inclinations ii, argument of pericenters ωi and motions of the
longitude of the ascending nodes Ωi, the longitude of pericenters πi given by

e2
i =
32

ξi
+ 32

ηi

Λi
, sin2 ii =

32
pi
+ 32

qi

Λi
,

Ωi =−arctg
3qi

3pi

, πi =−arctg
3ηi

3ξi

, ωi = πi−Ωi, i = 1,2.

It should be noted that all of the analytical calculations have been done with
the use of the system Wolfram Mathematica (Refs. [7]).

4 Conclusion

In the paper a general problem of three mutually attracting spherical celestial bod-
ies with variable masses changing anisotropically in different rates is considered.
A system of eight differential equations of the first order describing the secular
perturbations of the orbital elements is obtained in terms of the analogues of the
second system of the Poincaré elements in the presence of reactive forces. Approx-
imate analytical solutions of these equations are found by the method of Picard. On
the basis of these solutions it is possible to analyze the evolution of the analogues
of orbital elements of the bodies that will be done if the next paper.
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Developing Competences in Higher Mathematics in a CAS
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1. Competency-based Objectives as a Challenge to the University Culture

At the Technical University of Sofia the teaching and learning of Higher math-
ematics aims at the synergy of two modes of learning: traditional mode and tech-
nology supported mode. The effect of synergy of their advantages as well as the
danger of synergy of their drawbacks need attention. Any combination of these
two modes is referred to as blended learning. There exist many different versions
of their combination as a result of teachers’ creativity in the design and develop-
ment of learning scenarios. Harmonized and successful scenarios will be further
produced by teachers: it takes time and requires experience.

The term ’competence or competency’ is widely used in varying ways. The
use depends on the context: competence has different emphasis in business pro-
cesses than in formal education organizations or in theoretical discussion. The
term ’key competences’ appears in the guidelines of the Bologna Process, the Eu-
ropean frame of reference for the reform of higher education ( [1, 2]). In Refs. [4]
the principal practices and approaches with regard to the development and assess-
ment of individual competencies have been reported. In the light of the current and
future impact of this rapidly evolving field on the Competency Frameworks , it is
expected mathematics teachers to update the principles and approaches in mathe-
matics education in order to reflect the latest evolutions. Various frameworks have
been developed to aid in the development of competencies outlining what gradu-
ates should know and be able "to do" as a result of their education [3].

The term ’competency’ aims at the identity of the student and his/her delib-
erate action while dealing with complex tasks and challenges. It has multiple
layers and is applied as competence-in-something, including both cognitive and
non-cognitive dimensions [1]. Its cognitive meaning designates subject-related
and general cognitive abilities up to comprehension and problem-solving, whereas
its action-based meaning contains cognitive but also motivational, emotional, so-
cial and value-related components. Key competences [2] encompass generative,
context-independent abilities and are closely related to action competences.
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2. Developing Competences in Higher Education

Competences are part of today’s curricula in higher education. They are the ob-
jective of a contemporary education: some are explicit learning objectives, others
are implicitly contained in studying. The re-orientation of the curricula towards
outcome and competency makes students autonomous responsible subjects in the
teaching-learning-assessment (TLA) process. TLA have to go beyond declarative
knowledge and skills and lead to procedural competences of problem solving. Both
teachers and students face each other in new roles in the TLA process: the teachers
as ’facilitators’ - demanding and encouraging the students, the students as active
partners. Both sides purposefully work to achieve the educational objectives.

The shift from teaching to learning provides for a frame of orientation and de-
velopment, that it brings to the fore the freedom of the individual learner that is
inherent in the studying process. Competence-based objectives assure more free-
dom compared to knowledge-based goals. As an ability of handling knowledge,
competences can be seen as an open integral of various possible learning contents.

3. A Combined Learning Environment for the Acquisition of Competences
in Higher Mathematics

The integrative and additive support with CAS incorporated in blended learn-
ing can help lead the students to a connection with subject-specific competences.
Lectures, seminars and laboratory classes in Mathematics are to connect key com-
petences with mathematics-related competences through extended learning envi-
ronments. Depending on the assessment model CAS can often come to the rescue
- the student can use the entire potential of CAS during the semester for differ-
ent purposes of each assessment tasks in both models: continuous assessment and
formative assessment with elements of continuous.

In order to be effective, a combined learning environment is to aim at com-
petences beyond knowledge: self-exploring and self-reflecting as well as being
opened up for communication and feedback.

As a demonstration of the above mentioned issues the students’ work on a set of
tasks - guided by teachers, will be presented. One such task suitable for individual
task, independent learning or coursework is the following:

Task 1. Determine the values of the real parameter m ∈ R for which the equa-
tion

f (x) = (2−m)x3−3mx2−3mx+2−m = 0 (1)

has a double root. This type of tasks could bring to the fore the student con-
scious activity. Learning and assessment activities as well as competences and key
competences (such like Life Long Learning) will be discussed.
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4. Conclusion

There is "no way back", i.e. no education, progress and development without
technology. Digital mathematics exists and digital resistance is not appropriate.
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Normally when you want to use modern technology in the classroom, you are
looking for exercises for those it is easier to solve them using the technology.

In my talk I want to discuss an opportunity to deal with the curriculum on a
higher level. This means that you do not have to change the curriculum but you
have to change the point of view. The main issue will be the functional aspect
of mathematical ideas. For example if you discuss the square function you can
start with the universal form of the square function and then the students will be
able to find out the influence of the three variables by themselves. Functions are
represented by equations, tables or graphs. Using technology it is quite easy to
change between those representations.

It will not be possible to discuss the whole curriculum. Therefore I will put
my focus on the curriculum for year 7 up to year 9/10 and will give an idea, what
is possible using technology. The way through the curriculum will start with the
percentage calculation and end with exponential and trigonometric functions. The
helpful modern technology will be the ClassPad 400.

To give an impression I will describe some examples. First I want to show how
linear equations can be solved by using the ClassPad or any other CAS.

We start with the equation 2x+3= 0,5x−2 (see fig. 1). You put the equation in
brackets and put the conversion behind. For students it is helpful to do this because
they only have to think about the way of conversation and the calculator will do the
calculation. Each part of the equation is the term of a linear function. Therefore
you can easily show the corresponding graph. The solution of the equation is the
x-value of the point of intersection. The y-value changes. So it is necessary to
discuss the connections between changes in algebra and geometry. The following
mistake is quite popular:

3x+4 = 7|−3

x+4 = 4

The CAS will show the student that his idea will lead to: 3x+ 1 = 4. So the
CAS will help to prevent those kinds of mistakes.

The next example will show the connection between a constructed curve and
the square function.
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Figure 1: Solving linear equations

Figure 2: Constructing a parabolic curve
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Figure 3: Analysing the data

The rectangle ABCD is constructed (see fig. 2). The point E is put on the
line AD and a parallel to the diagonal AC is drawn. F is the point of intersection
and is connected with the point B of the rectangle. The point G is the point of
intersection between the line BF and the parallel to the line DC through E. You
will get the parabolic curve by animation of the point E. The question is whether it
is true that you have got really a parabolic curve. The different coordinates of the
point G are saved by the ClassPad. Therefore it is possible to work with them in
the spreadsheet (see fig. 3).

This is not a proof of course, but it gives the students an idea of working with
data. The proof has to be done afterwards in the classroom. And the question
whether a proof is necessary or not must be put up for discussion.

The last example will deal with a problem for older students. We want to get a
formula for the curvature of a graph of a function. Therefore you can start with a
special function and a special point.

We discuss the graph of the square function f (x) = x2 and the point (0/0). A
circle is constructed with centre A, which is variable on the y-axis, and the point
B(0/0). The students can find out that the circle and the parabolic curve have one
or three common points. The crossing-point is of special interest. This leads to the
definition of what is meant by the curvature of a graph.

In the situation of the crossing-point the following equations must be true:
Square function: f (x) = x2

Part of the circle: c(x) = r−
√

r2− x2
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Figure 4: Parabolic curve and responding circle

The three equations:

f (0) = c(0) f ′(0) = c′(0) f ′′(0) = c′′(0)

You can generalize those three equations to any function and any point and a CAS
like the ClassPad will be able to create the formula.

58



Applications of CAS in the Teaching and Learning of
Discrete Mathematics

M. Durcheva1, E. Varbanova2

1 Technical University of Sofia, Bulgaria, mdurcheva66@gmail.com
2 Technical University of Sofia, Bulgaria, elvar@tu-sofia.bg

Discrete Mathematics is a compulsory course in the curriculum of the Bache-
lor Degree Program at the Faculty of Applied Mathematics and Informatics of the
Technical University of Sofia (TUS). Discrete structures are taught also to engi-
neering students at TUS.

As it is reported in Refs. [1, 2]), the following competences of the above men-
tioned students are to be developed: thinking mathematically; reasoning mathe-
matically; posing and solving mathematical problems; modeling mathematically;
representing mathematical entities; handling mathematical symbols and formal-
ism; communicating in, with, and about mathematics; making use of aids and
tools. How could applications of CAS contribute to this educational goal? It is
often necessary to manipulate big data in discrete mathematics, mainly for the pur-
pose of combinatorics, recurrence relations, formal logic, Boolean algebra. For
that reason formulas have very limited range of use. The application of CAS can
help expand these limits significantly. The most important thing is how learning
can be enhanced by the use of CAS.

Concurrent implementation of pedagogy and technology requires considera-
tion of current practices, including the activities and expectations of learners and
teachers. Technology allows students to work with more complex and realistic
models since work within the model is supported by technology and even the
setup of models can be facilitated by technology. In engineering programs, models
are often only partially visible, so students need to learn to work with technology
where the underlying model is not known to them. This requires knowledge about
strategies for checking one’s understanding of the workings of the program and
also for checking the results.

In this paper our experience in application of CAS MAPLE for modeling dis-
crete structures is represented. Some procedures for calculating combinations with
repetition and variations with repetition in case of arbitrary restrictions on appear-
ance of elements are considered. The result is the list of the allowed number of
appearances of the element in the polynomial involved in the generated function
(see Refs. [4]). Some conclusions are visualized. Solving recurrence equations
with MAPLE ( Refs. [3])) is also discussed.
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A Transparent Rule Based CAS to support Formalization
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Algebra is an important and highly complicated subject of schools mathematics
that can be structured according to various dimensions of analysis, e.g. it comprises
different kinds of activities [2] and structures that obey different linguistic systems
[3]. This paper is written in the spirit of that last reference and takes the linguistic
view of mathematics to include syntactical, semantical and pragmatic aspects of
the algebraic language. Syntactical aspects of algebra can easily be handled by
computer algebra systems (CAS). However, there is evidence (e.g. [4] but many
others) that students have great difficulty to understand what a CAS does and how
its output is to be interpreted. Thus, we conducted a small developmental research
project that aimed at producing a prototype of a CAS that is as transparent to stu-
dents as possible. We hope that students can understand how this system works
completely and furthermore, it is hoped that they can use it to formalise their math-
ematical knowledge by making the system more powerful by giving additional
rules. So the ideas is to extend Papert’s idea of the computer as a trainee to the
realm of computer algebra.

The system developed is called SCAS (simple syntactical CAS, doubling the
S in the acronym was avoided for obvious reasons) aims to support the learning
of syntactical aspects of algebra as well to provide a simple mental model of what
a computer algebra system (CAS) is and how it works. The basic use of SCAS
is similar to other CAS: You enter an expression and the system answers with an
output. E.g. if you enter 2*x+y+x+3 then the system answers 3*x+y+3.

SCAS is a rule based term rewriting system [1]. Of course, modern CAS are
not (completely) rule based as many operations have much more efficient algorith-
mic solutions than those possible by term rewriting. Nevertheless, we believe that
this gives a good mental model of the syntactic way a CAS treats mathematical
expressions.

The following simple rules govern the behaviour of the system:

• All expressions are represented by binary trees (e.g. a+b+c is interpreted as
a+(b+c))

• There is a list of rewrite rules. A rule consists of a pattern, possibly a con-
dition, and a replacement. A handy notation is pattern→replacement. The
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system goes through this list of rules and with each rule it checks if it can
be applied to any sub-expression of the current expression. If so it checks if
the condition of the rule is satisfied, and if this is the case the expression is
replaced.

• This process is repeated until no applicable rule is in the rule list. The final
expression is send to the output.

Students can turn on or of indivudal rules like A-A→ 0 or rule groups (like
that for expanding). Moreover, they can enter new rules. The idea is to give them
the opportunity to formalize their knowlede e.g. about derivatives. The following
screen shot shows the user interface.

The talk will discuss the design ideas and show the system as well as further
didactical questions.
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The GUI CATO – how natural usage of CAS with CATO
modified the mathematical lectures and the interface itself

H.-D. Janetzko1,
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CATO is a German user interface for different computer algebra systems writ-
ten in Java. The author develops CATO as a response to the significant difficulties
faced by those engineers and students who only sporadically use computer algebra
systems. The usage of CAS in mathematical lectures should be an integral part of
mathematical instructions. However, difficulties arise for students when lecturers
employ CAS only once or twice a week in their lecture. In the author’s experience,
the usage of CAS is often perceived by the students as an unnecessary further bur-
den. Using CATO, the general user interface for CAS, there are no obstacles for the
students, also for the weaker. The author describes some experiences using CATO
linked with Mathematica, Maxima or the mathematical toolbox of MATLAB.

Previous approaches and considerations

There are many reasons for the usage of a computer algebra system in teaching
mathematics (see, for example [1] or general [3]. But the usage of CAS in a math-
ematical lecture can distract from the mathematics itself, for example [4].

The demand for better designs of user interfaces for computer algebra systems
is almost as old as the systems themselves. Kajler has described and developed his
ideas for a perfect user interface in various works and elaborated these in further
works (for example [5]). Kajler has postulated that well-designed computer algebra
interfaces should afford intuitive access. As such, they should enable the entry
of commands with more than one parameter by a two-dimensional layout. This
prevents syntactic and structural errors. In addition, all templates and masks should
follow the convention of operating from left to right. Intuitive interfaces should
also apply conventional mathematical notations, and decouple the surface from the
computer algebra systems. The interface should be serviced independently, and
regularly developed and updated. Ideally, it should understand a range of computer
algebra systems.

The author himself has used various computer algebra systems in his mathe-
matics courses at the University of Applied Sciences (HTWG) in Konstanz, begin-
ning with Maple, followed by Mathematica, and finally Maxima. His experiences
of students’ occasional usage of CAS in mathematics courses are complex; he has
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observed that the experience is not necessarily positive for all students. Only some
students are fascinated by the usage of a CAS, and independently explore its poten-
tial. A larger proportion of students accepts CAS, but learns only those commands
it considers necessary to prepare for upcoming examinations. Enough students
treat the learning of the vocabulary, syntax and grammar required for the usage of
CAS as an unwelcome burden, and consequently gives up on mathematics. The
majority, therefore, never see the opportunities provided by computer algebra as a
mathematical aid, [2].

The author wants to balance the difficulties of learning to use a computer al-
gebra system with the benefits of using it. He has developed an interface to use
a computer algebra system without distraction from mathematics, called the Com-
puter Algebra Taschenrechner (Calculator) Oberfläche (surface) or CATO for short.
In his intention, students should be able to successfully use CATO, even if their
knowledge of mathematics was limited.

The usage of CATO

The author uses CATO in the courses Mathematics One and Two in the Bachelor
of Electrical Information Technology degree program. The University of Applied
Sciences does not offer a general “Introduction to Computer Algebra” course. Con-
sequently, the author introduces students to the use of CATO in his first lecture,
after describing what a computer algebra system is, and why it makes sense to use
it. His students use CATO in the computer lab during the first week of lectures to
calculate three examples: differentiating, solving an equation, and plot a function.
Once they have done this, they grasp the concept and the structure of CATO, and
are able to use CATO without explicitly learning it (for example Janetzko 2015).
The students (including the weaker ones) are confident that CAS with CATO is no
further obstacle to pass the exam. They believe the structures of CATO create no
additional difficulties to use CAS.

Launching CATO, the student sees a surface like a graphical pocket calculator
with an input and an output window on the left hand. Below them there are several
menus. All commands can be selected via packages and menus. The commands
are grouped in packages or sub-packages. The packages group related commands
together: The menu with all packages is located at the bottom left. If one package
is selected, the commands of the selected package will be loaded in the menu right
next to it. For example, if the student selects the package “statistics” on the highest
hierarchy level, several statistic related subpackages will be shown in the menu
right next to the first one. After selecting a subpackage like “normal distribution”
or “descriptive statistics”, the commands of this one will be loaded in the third
menu at the bottom right next to the second menu.
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After selecting a command with more than one parameter, the student gets a
new input window with one row for every parameter. Each multi-parameter com-
mand has its own input window.

For example, the window of the command “n-th derivative” has three input
lines: “function”, “variable”, “n =”. The order of the input line is always indepen-
dent of the used CAS. CATO itself sorts the input according to the respective CAS.
(Additional a short description of the command is a part of this extra window.)

Other concepts realized in CATO

In writing CATO, the author has developed, adopted, and implemented many ideas
and concepts for ease-of-use. Some ideas can be found in the papers of Kajler.
As the author’s primary aim was to allow casual use of computer algebra in his
lectures, he has also integrated changes based upon his teaching experience with
Maple, Mathematica, and Maxima. Additional modifications have been the result
of student feedback.

When the author developed the basic concepts of CATO, he envisioned some
commands being contained in more than one package. For example, the command
“definition of a vector” is contained in the package “definitions” and in the pack-
age “linear algebra”. Some years ago, CATO was enabled to collect the last 20,
the last 50, or the last 100 commands residing in a new package. (There was no
modification to the internal structures of CATO needed, because of the possibility
of one command being member in more the one package.) The author believed it
would be a simplification to repeat the same command. But the students meant it
was too complicated. So the author extended CATO with the menu and package
“chronicle”, it collects all command during a session. The menu “chronicle” is a
part of CATO since the change to version 1.2.

Later, the students wanted to save, export and later to import (with a new name)
the package “chronicle” at the exam. Their desire was to win some seconds at the
exam having a list of all previously used commands.

Like a CAS, CATO has a log containing all command executions and corre-
sponding results. In some cases, students wanted to have more extensive descrip-
tions of the commands in the detailed input window and the log. For commands
with more than one parameter, the description in the log and in the input window
is usually more extensive than its name in the package. In contrast to normal CAS,
in CATO there is a difference in the usage – selection – and the application – input
of the parameters – of a command. The author could satisfy all requests for better
or more extensive descriptions without modifying the internal structures of CATO
and furthermore without modifying the command in the package menus.
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Modification in the lessons

The exam in the computer lab consists of two parts: Part one is without any aid.
The students receive it at first and when one of them believe, he has solved all
tasks, he submits this part. Part two is with aid (naturally with documents), the
student can and should use CATO with one CAS at the PC. Of course, there is no
connection to the Internet.

Using CATO, teaching has been modified in the desired way. The author can
use CAS for more and more illustrative examples, often examples helping to an-
swer some comprehension questions. Furthermore, very long calculations can be
shorted to the crucial parts. Priorities are newly settled as shown in the following
old exercise:

We consider a bottling plant for milk. The milk in the bottles can described by
normal distribution with µ = 1001 ml and σ = 1.3 ml. Describe the probability to
get a bottle with less than 998 ml!

Without CAS you need the quantil of the N(0,1) distribution from a table and
the transformation rule of Gauß. But applying CAS the solution is only one (cor-
rect) command. Consequently, we need a new exercise:

We can describe the bottling plant for milk in the following way: 5 % of
the bottles content less than 997.5 ml and 2.8 % content more than 1002.3 ml.
Determine µ and σ !

To solve this new kind of exercises, students need a deeper understanding of
quantiles and can solve more realistic exercises.

Some changes in students’ behaviour

After the eighth to tenth week of lecture, most students explored themselves in-
dependently the possibilities of CATO connected with a CAS. This never occurred
previously by using a CAS without CATO. The author was able to note the fact; the
students questioned the command set of CATO or the cryptic results of the CAS.

The author has of course always questioned in his lectures the potential and
the limits of CA by appropriate examples. Only since using CATO there were
reactions of students.

Sometimes there are moments in which the teacher must presuppose some-
thing and some students have knowledge gaps. The reaction of these students was:
“CATO schafft es schon!” (“CATO makes it!”). They are apparently confident
that such issues would be assessed only in the exam part with aids and they could
bridge their knowledge gaps by CATO commands.

By allowing CATO with a CAS in the exam part with aids, students were able
to succeed the exam in Mathematics II despite of significant gaps in Mathematics
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I. Whether this is in general useful, you have to consider yourself in dependence of
the lecture goals.

Conclusions

In the author’s experience, it makes sense to teach mathematics integrating occa-
sional usage of computer algebra systems. The author can only reflect his own ex-
perience and describe similar experiences of other teachers, who also used CATO
in connection with a CAS. There were no evaluations on student achievement using
CATO and a CAS compared with other students for various reasons. The author
was the only teacher in this field, who allowed CAS as an aid. The author was
an external lecturer. Therefore, there was possibility for parallel lectures, one with
CATO and CAS, even without CATO and CAs. Additionally, it would be inap-
propriate to compare with the lectures before CATO existed, since the usage of
CAS highly increased and the content of the lecture changed accordingly. There
remains only the usual lecture evaluations in comparison to evaluations of lectures
organized by other faculty members, but obviously there are too many other influ-
encing factors.

Currently there are approximately 550 commands for Maxima, 550 commands
for Mathematica (version 4.0 or higher), 450 commands for the Mathematical tool-
box of MATLAB, 300 commands for Maple (version 9.5 or higher), 350 commands
for MuPAD 3, 250 commands for Yacas and 150 commands for MATLAB. In ad-
dition, there are more than 50 CATO internal commands. Currently, the German
CATO is translated to English and French. Free trial versions of CATO can be
downloaded from the author’s website at any time, http://www.computeralgebra.biz
(also some links or references to articles about CATO).
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1 Introduction

Many mathematics teachers at collegiate level use LATEX to write materials for dis-
tribution to their classes. As is well known, LATEX can typeset complex mathe-
matical formulas. On the other hand, it has poor ability to create figures. One
possibility might be to use a third-party package, such as TiKZ. However, TiKZ
coding is complicated and is not easy to read even for the following simple figure.

y = sinx
y = x

x

y

O

Figure 1 A simple example

TiKZ can in fact produce figures of great complexity, but its power comes at
the cost of a steep learning curve. In order to provide a system for easy creation of
publication quality figures, the first author has developed KETpic, the first version
of which was released in 2006. KETpic is a macro package of mathematical soft-
ware such as Maple, Mathematica, Scilab and R. The recent version uses Scilab
mainly and R secondarily.

The flow of generating and inserting graphs with KETpic is as follows.

1. KETpic and Scilab commands are listed in a Scilab editor and executed by
Scilab.

2. Scilab generates a LATEX file composed of codes for drawing figures.
3. That file can be inserted into a LATEX document with \input command.
4. The document can be compiled to produce a pdf file.

Scripts for Figure 1 are as follows.
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Setwindow([-7.5,7.5],[-2,2]);
Setax(7,"se");
gr1=Plotdata("sin(x)","x");
gr2=Plotdata("x","x","Num=1");
Openfile("figsin");

Drwline(gr1,gr2);
Expr([2.5,1],"e","y=\sin x",[2,1.5],"e","y=x");

Closefile(’1’);

Scripts of KETpic are far more readable than those of TiKZ, and the simplicity
of the scripts provides for a simple method of inserting figures into LATEX.

However, it is cumbersome to write all scripts in the Scilab editor first. In
particular, mathematics teachers who are not used to mathematical software may
find KETpic hard to use. One of the long-standing plans for KETpic has been to
write a graphical user interface(GUI) for it.

2 Development of KETCindy

Cinderella[1] is a dynamic geometry software(DGS), and was developed by Gebert
and Kortenkamp. The first author had been searching for the possibility of collab-
orating KETpic and Cinderella with Kortenkamp, and the first version of KETCindy
was released in September, 2014. Cinderella works as GUI of KETCindy. It has
two screens for the display of figures and for the editor of CindyScript, which is a
programming language of Cinderella. To draw a figure,

1. Put geometric components such as points and segments on the display.

2. Describe scripts for drawing a figure and generating of LATEX graphic codes.

3. Press two buttons on the display to execute batch processing of Scilab, LATEX
compiling and viewing PDF sequentially.

Then you can get the objective figure of LATEX.

Figure 2 Screens of Cinderella

So far, KETCindy can generate various types of figures or tables as follows.
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Figure 3 Geometric Figure
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Figure 6 Bézier Curve

3D figures such like the followings can be produced by KETCindy.
Xyzax3data("","x=[-5,5]","y=[-5,5]","z=[-4,4]");
polydt=Readobj("r02.obj",["size=-3.5"]);
VertexEdgeFace("1",polydt,["Pt=fix","Edg=nogeo"]);
Nohiddenbyfaces("1","phf3d1",[],["do"]);

x
y

z

x
y

z

x y

z

Figure 7 Polyhedron Figure 8 Surface

KETCindy is downloadable from http://ketpic.com/?lang=english.
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3 Calling CASs from KETCindy

Recently, we implemented functionality to call CASs such as Maxima and FriCAS.
In this section, we introduce the functionality and show some application in math-
ematics education.

The flow and chart are as follows.

KETCindy

Scilab LATEX

Mathematical Softwares

ãSource File
ãBatch File

Returned Results (textfile)

Use in KETCindy

Figure 9 Chart of KETCindy

1. To generate the shell file to call a CAS

2. To execute the file

3. To return the result as text

4. To use the result in KETCindy

5. To produce the PDF file

We give an example to find points of contact of two curves.

A

P Q
x

y

O
Figure 10

Mxfun("1","solve",["[y=x^2, x^2+(y-1)^2=3/4]","[x,y]"],[""]);
P=parse(mx1)_1; Q=parse(mx1)_2;
Plotdata("1","x^2","x");
Circledata("1",[A,P]);
Listplot("1",[P,A,Q]);
Letter([A,"ne","A",P,"sw","P",Q,"se","Q"]);

The use of a computer algebra system is required for use with KETCindy and
in keeping with the open-source nature of the project, we choose an open-source
system. Of the many available, we are most interested in Maxima and FriCAS,
being open-source version of once commercial software: Macysma and IBM Ax-
iom respectively. Maxima is written in Lisp and C, and can run on any system
which supports those languages. In particular, Maxima can run under MS Win-
dows, Linux, and MacOS. There are even versions of portable systems such as
Android. Maxima, formally, is a “term-rewriting” system, where by a system of
rules (which the user can add to or change) a term can be rewritten in another form.
Thus there are formal rules for symbolic differentiation, for applying integral trans-
forms, for linear algebra, and so on.

FriCAS is a fork of the CAS Axiom, which was released as open-source by
IBM when it became clear it was losing its market share. In comparison to all
other CAS’s today, FriCAS is strongly typed: each expression, variable or other
object belongs to a particular type, or nest of types. The use of types allows for
overwriting of operations, so that, for example, the outcome of a multiplication ’x
* y’ will depend on the types of x and y. The nesting of types means that you can
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define, for example, square matrices of polynomials over a finite field, and having
defined that type you automatically have operations available: an inverse of such
a matrix, for example, will produce an output object of the same type. The use
of types is confusing for the beginner, but in fact provides immense power for the
exploration of mathematical systems. In that sense FriCAS probably has greater
depth than any other system, although it loses out on breadth.

For systems which are to be used as black boxes: question in, answer out, Max-
ima may be preferred because of its breadth. But for a system where mathematical
precision and rigour are required, FriCAS is the best choice. FriCAS however
works best under Linux, so its use in a Windows system requires either some Unix
subsystem (such as Cygwin) or the use of a docker container.

Here we give an example of use of Maxima and FriCAS with KETCindy.
fun="((1-cos(t))/(1/2-cos(t)))^(1/2)";
Mxfun("1","integrate",[fun,"t"]); //by Maxima (inadequate)
Frifun("2","integrate",[fun,"t"]); // by Fricas
Mxtex("2",fri2); // Maxima can generate LaTeX form

The result by Fricas is
∫ √

1− cos t
1
2 − cos t

dt = −arctan




(4 cos t +1)
√

2 cos t−2
2 cos t−1

4 sin t


.

Note that FriCAS implements a nearly complete version of the Risch algorithm
for symbolic integration; thus its integration routines are amongst the strongest of
any current CAS.

4 Conclusion and Future Work

Printed materials are often used in mathematics classes at collegiate level, and
high quality figures are indispensable in such materials. KETCindy makes it easy
to produce and insert them. The samples in this paper show that the symbolic com-
putation capability of a CAS can enhance the graphics capability of the KETCindy
system. CASs are also useful to produce examples and problems embedded into
materials, for example, when we put matrices for Gaussian elimination. Other
possibilities of their collaborative use in education should be pursued.
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Simplex algorithm is taught at universities in framework of different academic
courses, for example Linear Programming, Mathematical Programming or Opera-
tion Research. One aspect of the teaching of this algorithm is to present a geometric
interpretation of simplex steps. Some attempts to visualization simplex method us-
ing CAS were taken in papers [1, 4, 5]. In this article, the authors propose some
new approach to this subject through the use of expanded Simplex Tableau. This
Tableau, for each of simplex step contains: current simplex table for this step, graph
of feasible region for standard form of LP problem with current vertex of simplex
path, current level set of objective function corresponding to this step (hyperplanes
: lines in 2D, planes in 3D), axis with current value of objective function for this
step. The presentation was prepared using Mathematica. We present examples for
2D and 3D feasible regions. One of them is presented below.

Example.
Let us visualize simplex steps for the following LP problem in standard form (in
R2):

Maximize z = 3x1 +2x2

Subject to x1− 3x2 ≤ 2

x1− x2 ≤ 4

5x1− x2 ≤ 36

−4x1 +
5
2

x2 ≤ 5

−x1 + 4x2 ≤ 16

x2 ≤ 9

xi ≥ 0 for i = 1,2.
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Corresponding to it canonical form is:

Maximize z = 3x1 +2x2

Subject to x1− 3x2 + x3 = 2

x1− x2 + x4 = 4

5x1− x2 + x5 = 36

−4x1 +
5
2

x2 + x6 = 5

−x1 + 4x2 + x7 = 16

x2 + x8 = 9

xi ≥ 0 for i = 1,2, . . . ,8

Feasible region for this LP problem (in standard form) is presented in each Fig-
ure 1–5. It is convex polyhedral set with vertices at: v1 = (0,0),v2 = (2,0),v3 =
(5,1),v4 = (8,4),v5 = (9,9),v6 = (6.5,9),v7 = (2.5,6),v8 = (0,2). In each Figure
1–5 we present expanded Simplex Tableau for subsequent vertices of simplex path.
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bs.vrs x1 x2 x3 x4 x5 x6 x7 x8 bi

x3 1 -3 1 0 0 0 0 0 2

x4 1 -1 0 1 0 0 0 0 4

x5 5 -1 0 0 1 0 0 0 36

x6 -4
5

2
0 0 0 1 0 0 5

x7 -3 4 0 0 0 0 1 0 16

x8 0 1 0 0 0 0 0 1 9

obj.fc -3 -2 0 0 0 0 0 0 0

z H0,0L = 0

z

z = 3 x1 + 2 x2 = 0

x1

x2

v1

v2

v3

v4

v5v6

v7

v8

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Figure 1: First expanded Simplex Tableau.
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bs.vrs x1 x2 x3 x4 x5 x6 x7 x8 bi

x1 1 -3 1 0 0 0 0 0 2

x4 0 2 -1 1 0 0 0 0 2

x5 0 14 -5 0 1 0 0 0 26

x6 0 -

19

2
4 0 0 1 0 0 13

x7 0 -5 3 0 0 0 1 0 22

x8 0 1 0 0 0 0 0 1 9

obj.fc 0 -11 3 0 0 0 0 0 6

z H0,0L = 0

z H2,0L = 6

z

3 x1 + 2 x2 = 0 3 x1 + 2 x2 = 6

v1

v2

v3

v4

v5v6

v7

v8

x1

x2

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

Figure 2: Second expanded Simplex Tableau.
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bs.vrs x1 x2 x3 x4 x5 x6 x7 x8 bi

x1 1 0 -

1

2

3

2
0 0 0 0 5

x2 0 1 -

1

2

1

2
0 0 0 0 1

x5 0 0 2 -7 1 0 0 0 12

x6 0 0 -

3

4

19

4
0 1 0 0

45

2

x7 0 0
1

2

5

2
0 0 1 0 27

x8 0 0
1

2
-

1

2
0 0 0 1 8

obj.fc 0 0 -

5

2

11

2
0 0 0 0 17

z H0,0L = 0

z H2,0L = 6

z H5,1L = 17

z

3 x1 + 2 x2 = 0 3 x1 + 2 x2 = 6 3 x1 + 2 x2 = 17

v1

v2

v3

v4

v5v6

v7

v8

x1

x2

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Figure 3: Third expanded Simplex Tableau.
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bs.vrs x1 x2 x3 x4 x5 x6 x7 x8 bi

x1 1 0 0 -

1

4

1

4
0 0 0 8

x2 0 1 0 -

5

4

1

4
0 0 0 4

x3 0 0 1 -

7

2

1

2
0 0 0 6

x6 0 0 0
17

8

3

8
1 0 0 27

x7 0 0 0
17

4
-

1

4
0 1 0 24

x8 0 0 0
5

4
-

1

4
0 0 1 5

obj.fc 0 0 0 -

13

4

5

4
0 0 0 32

z H0,0L = 0

z H2,0L = 6

z H5,1L = 17

z H8,4L = 32

z

3 x1 + 2 x2 = 0 3 x1 + 2 x2 = 6 3 x1 + 2 x2 = 17

3 x1 + 2 x2 = 32

v1

v2

v3

v4

v5v6

v7

v8

x1

x2

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Figure 4: Forth expanded Simplex Tableau.
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bs.vrs x1 x2 x3 x4 x5 x6 x7 x8 bi

x1 1 0 0 0
1

5
0 0

1

5
9
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Figure 5: Fifth expanded Simplex Tableau.

The fifth expanded Simplex Tableau is optimal. We have: zmax = z(9,9) = 45.
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Real-time animated dynamic geometry in the classrooms
by using fast Gröbner basis computations

Z. Kovács1
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The third millennium renaissance of elementary geometry by harnessing soft-
ware applications in the classroom is already a history. By introducing dynamic
geometry systems like The Geometer’s Sketchpad, Cabri or Cinderella the high
number of mechanical numerical computations enabled students to make their own
experiments with geometric objects easy.

Today’s computers go one step forward. Not only fast numerical computations
are available, but symbolical commands help, for instance, to expand or factorize
expressions or solve equations or even equation systems.

Nevertheless, application of symbolic computations in dynamic geometry re-
mained an unexplored field for many years. Recent researches in the direction to
compute Gröbner bases significantly faster than earlier1, opened the road to manip-
ulate on tens of equation systems in several variables within a second. Thus now it
is possible to create real-time animations based on purely symbolic computations.
Such real-time animations include computing locus or envelope equations for ge-
ometry constructions on various software platforms like native Java programs, web
applications or mobile/tablet solutions.

In this scientific work the state of the art will be demonstrated in the GeoGebra
dynamic mathematics tool which fully connects computer algebra and dynamic
geometry. By computing and visualizing the algebraic equation of a non-trivial
locus 29 frame per second (FPS) can be reached on an Intel(R) Core(TM) i7-
2620M CPU @ 2.70GHz desktop computer (8 GB RAM installed, Ubuntu Linux
14.04.4). The same benchmark reaches 13 FPS as a web application in Google
Chrome 49.0.2623.110.

Classroom application of the used technology is mainly on discovering general
properties of geometry diagrams. GeoGebra—like many other DGS tools—makes
it possible to construct a figure by using objects like points, lines or circles, and
then, for example, GeoGebra’s LocusEquation command calculates the equation
of a locus (given by the tracer and mover points) and plots that as an implicit curve.
When the user drags the free points of the diagram, the locus equation will be au-
tomatically recomputed using heavy symbolic computations, but due to the effec-
tivity of the calculations, the equation will be obtained very quickly. Finally the

1See [10, 9] for two studies among the open source computer algebra systems.
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implicit curve will be plotted by using numerical methods, based on the symbolical
form of the equation. (See [8] for a more detailed explanation.)

A similar scenario is to create the envelope equation of a set of output paths
while the moving point is bound to another object. (An envelope is a curve that is
tangent to each member of the family of the output paths at some point.) Obtaining
the envelope is possible by using the Envelope command in GeoGebra. More on
this topic can be found in [7].

Recently another form of the LocusEquation command was introduced in Ge-
oGebra, namely which calculates the locus of the free point such that a Boolean
condition is satisified. This new form is also known as implicit locus equation. Due
to the possibility to its direct use in the education, this third forms seems to be the
most frequently used method to harness symbolic computations under the hood in
a dynamic geometry experiment. For example, a natural way to discover Thales’
theorem in the classroom is to construct a triangle ABC with GeoGebra, and then
type the command LocusEquation[a ⊥ b,C]. In this way the circle with diam-
eter AB will be immediately obtained and quickly redrawn when the free points A
or B are dragged (Fig. 1).

All the three visualization activities above are common in using computational
algebraic geometry to manipulate on coordinates of points, and their output is al-
ways an algebraic curve which is computed by—roughly speaking—eliminating
some variables in the algebraic translation of the geometric construction. The elim-
ination process is performed by the best available open source implementations,
notably the standalone CAS Singular and the embedded system Giac.

The need to use symbolic computations instead of numerical ones in certain
dynamic geometry visualization tasks is well discussed in the literature, see [5],
section 3 for more details. All of the mentioned visualization activities are of the
same kind.

The LocusEquation command was introduced in 2010 in GeoGebra’s devel-
opment version by the pioneer work of Botana’s, Abánades’, Escribano’s and Ar-
beo’s [4, 6], to translate the geometric construction into an algebraic equation sys-
tem. The elimination step was implemented by outsourcing the computations to
the computer algebra system JAS first, and later to Reduce, Singular and recently
to Giac [10]. The visualization step of the locus equation as an implicit curve was
implemented by Birklbauer and Drakulić [3] in 2011. Further improvements on
the LocusEquation command were based on the joint work of the pioneers, and
Montes’ and Recio’s [2].

Envelope support was added later by Botana and the author [5] in 2013. Im-
plementation of the implicit locus equation was achieved by Abánades, Botana,
Kovács, Recio and Sólyom-Gecse in 2016 (see [1] for a collection of examples).
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Figure 1: An imaginary classroom discovery of Thales’ theorem while dragging
point B from (3,1) to (4,3). Tracing is switched on for point B and implicit curve
d. Here the animation reaches an average of 50 FPS for this simple theorem in
desktop version of GeoGebra 5.0.237.0.
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Familiarizing students with definition of Lebesgue integral
- examples of calculation directly from its definition using
Mathematica
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“Young man, in mathematics you
don’t understand things. You just
get used to them”

John von Neumann

In popular books of calculus, for example [1, 2], we can find many examples
of Riemann integral calculated directly from its definition. The aim of these ex-
amples is to familiarize students with the definition of Riemann integral. But we
cannot find analogical examples for Lebesgue integral. In this article, with simi-
lar aim but for Lebesgue integral definition, we present the following examples of

calculation directly from its definition:
∫ 1

0
x2 dm(x),

∫ 1

0
xk dm(x),

∫ π/2

0
sinxdm(x),

∫ b

a
exp(x)dm(x),

∫ π

0
ln(1−2r cosx+r2)dm(x), where dm(x) denotes the Lebesgue

measure on the real line. We calculate sums, limits and plot graphs of needed
simple functions using Mathematica. The two following definitions of Lebesgue
integral are used in this article:

Let (R,M,m) be measure space, where M is σ− algebra of Lebesgue measur-
able subsets in R, and m- Lebesgue measure on R.

Let f : R→ R be measurable nonnegative function (we’ve omitted the defini-
tion of Lebesgue integral for simple real measurable functions).

Definition 1. (See [3, 5, 6, 7, 8])
∫

f dm(x) = sup
{∫

sdm(x) : 0≤ s≤ f ,s simple measurable function
}
. (1)

Definition 2. (See [4, 9, 10]) Let sn be nondecreasing sequence of nonnegative
simple measurable functions such that lim

n→∞
sn(x) = f (x) for every x ∈ R. Then:

∫
f dm(x) = lim

n→∞

∫
sn dm(x). (2)
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Example. Let consider the function: f (x) = sinx,x ∈ [0,π/2). For the rest of this
example we will restrict our consideration to x ∈ [0,π/2).

We will calculate
∫ π/2

0
sinxdm(x) applying directly definition 1.

Consider

sn(x) =
2n−1

∑
k=0

sin
(

k
2n+1 π

)
χ[ k

2n+1 π, k+1
2n+1 π

)(x), for x ∈ [0,π/2), n = 1,2, . . .

and s̄n(x) = s̄n =
2n

∑
k=1

sin
(

k
2n+1 π

)
χ[ k−1

2n+1 π, k
2n+1 π

)(x), for x ∈ [0,π/2), n = 1,2, . . ..

Using Wolfram Mathematica we get the following Figures 1, 2:

x

y

Π

8

Π

4

3 Π

8

Π

2

1

2

1

s1HxL = s2HxL
s2HxL
s1HxL
sinHxL

Figure 1: Graphs of functions f , s1,s2. We can see that s1(x)≤ s2(x) for x∈ [0,π/2).
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Figure 2: Graphs of functions f , s2,s3. We can see that s2(x)≤ s3(x) for x∈ [0,π/2).

It is clear that sn, s̄n are sequences of nonnegative simple measurable functions and
that sn ≤ f and s̄n ≥ f on [0,π/2) for all n = 1,2, . . ..

Using Wolfram Mathematica we get:

Listing 1: Mathematica code:
In[1]=Sum[Sin[Pi k/2^(n+1)], {k, 0, 2^n−1}] Pi/2^(n+1)//Simplify
Out[1]=2^(−2−n)Pi(−1+Cot[2^(−2−n)Pi])

In[2]=Limit[%,n−>Infinity]
Out[2]=1

So

an =
∫

sn dm)x) =
2n−1

∑
k=0

sin
kπ

2n+1 ·
1

2n+1 π = 2−2−nπ(−1+ cot(2−2−nπ))→ 1 (3)

Similarly

Listing 2: Mathematica code:
In[3]=Sum[Sin[Pi k/2^(n+1)], {k, 1, 2^n}] Pi/2^(n+1)//Simplify
Out[3]=2^(−2−n)Pi(1+Cot[2^(−2−n)Pi])
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In[4]=Limit[%,n−>Infinity]
Out[4]=1

So

ān =
∫

s̄n dm(x) =
2n

∑
k=1

sin
kπ

2n+1 ·
1

2n+1 π = 2−2−nπ(1+ cot(2−2−nπ))→ 1 (4)

Of course we could use the following formulae:
n

∑
k=1

sin(kx) =
sin n+1

2 xsin n
2 x

sin x
2

and

lim
x→0

sinx
x

= 1 instead of the code in Listings 1 and 2 to get the results in formulae

(3) and (4).

Using formulae (3) and (4), basic properties of least upper, greatest lower bounds
and of Lebesgue integral of simple measurable functions we will prove in our talk
that:

sup
{∫

sdm(x) : 0≤ s≤ f ,s simple measurable function
}
≥ 1 (5)

and
sup
{∫

sdm(x) : 0≤ s≤ f ,s simple measurable function
}
≤ 1. (6)

Inequalities (5) and (6) give

sup
{∫

sdm(x) : 0≤ s≤ f ,s simple measurable function
}
= 1,

which means that
∫

f dm(x) =
∫

sinxdm(x) = 1.

Let calculate
∫

sinxdm(x) applying directly definition 2.

We can see that sn(x)≤ sn+1(x) for x ∈ [0,π/2) and for all n = 1,2, . . .. In Figures
1 and 2 we can see that s1(x)≤ s2(x) and s2(x)≤ s3(x) for x∈ [0,π/2). W can also
see that lim

n→∞
sn(x) = sin(x) for all x ∈ [0,π/2). So sn is nondecreasing sequence of

nonnegative simple measurable functions and sn converges pointwise to f .

So by formula (3) and directly by definition 2 we get
∫

sinxdm(x) =
∫

f dm(x) =

lim
n→∞

∫
sn dm(x) = lim

n→∞
an = 1.
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Parametric definite integrals or, in other words, sequences of definite integrals,
are important in various fields of mathematics and applied science. They are part
of a standard curriculum for undergraduates, both in mathematics and science cur-
ricula.

In engineering science, such a parametric integral is often plotted as a family
of curves depending on the parameter. A more efficient approach is to derive a
mathematical formula for these integrals.

In most cases, an induction formula is found, using standard methods of inte-
gration, then methods for studying sequences are applied to derive a closed form
for the integral, i.e. a form giving the integral as a function of the parameter. The
easiest situation is encountered when, after the first integration step, the integrated
term is equal to 0. Such a feature makes the usage of a telescopic method very
efficient, whence formulas involving factorials and double factorials.

Sometimes, the integrand is too complicated for a regular student to be suc-
cessful in computing the integral, even for small values of the parameter. In that
case, a Computer Algebra System (CAS) may be used to perform the computation
for a certain range of values of the parameter. A sequence of real values is created
and used to conjecture a general formula. Now, instead of discovering a closed for-
mula from scratch, the conjecture has to be proven. It is generally easier to check
a conjecture than to derive a formula from scratch. Finding a good conjecture
relies often on the usage of other Information and Communication Technologies
(ICTs), such as online databases, in particular the Online Encyclopedia of Integer
Sequences [5]. It provides formulas, references to literature, but also source code
for the usage of a CAS. See also [3]. Searching these databases is valuable also
for cases where the student can compute the integral, as it enables finding new
connections with other mathematical fields.

Several Computer Algebra Systems, such as Maple, contain tutorials in order
to help the user to perform specific tasks, for topics belonging to undergraduate
syllabi (methods of integration, methods for the solution of differential equations,
etc.).

For a given exercise, a built-in tutorial may propose different hints. Each one
leads to a different pathway towards a solution, and the obtained expressions may
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look different: a combinatorial expression, an infinite series, etc. Various identities
have been proven by that way: integral identities, combinatorial identities, integral
presentations of combinatorial objects, etc. For example, integral presentations of
Catalan numbers are derived in [2] and of Stirling numbers in [4].

Numerous examples deal with a positive integer parameter, but it happens that
the parameter is not limited to integers, but may be a non integer real number. Prob-
lems may appear with the possibilities of the CAS, depending on the mathematical
theorems which have been implemented. For example, many CAS have hard time
with the integral Ir =

∫ π/2
0

1
1+tanr x dx, when the parameter r is not an integer. Even

if r is an integer, but not so small, the CAS may renounce to compute. Conversely,
some CAS compute the integral with the general parameter and show that Ir =

π
4

for every positive real r, using a theorem which appears rarely in textbooks (see
[1]) .

In this talk, we show examples where a joint work with paper-and-pencil, CAS
and online databases enable to derive important identities. As a byproduct, the us-
age of different ICTs enhances the existence of bridges between different domains
of knowledge, in particular between continuous and discrete objects. We will show
also an example where three different expressions obtained for the same parametric
trigonometric integral (with non integer parameter) yield information for a problem
in soil stability.
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MATHCHECK2: Combining SAT and CAS
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A recent important movement is the incorporation of modern solvers for sat-
isfiability problems into suitable computations coming from the field of computer
algebra. Projects like SC2 [4] and publications like [1] demonstrate that the interest
is coming from both academia and industry.

A great benefit of a combination of Computer Algebra Systems (CAS) and
SAT solvers comes from the complementary strengths of both types of tools when
utilized in synergy: The sophisticated search procedures and heuristics of modern
SAT solvers combined with the domain specific knowledge provided by CASs.

With MATHCHECK [5], Vijay Ganesh and his student Edward Zulkoski pre-
sented the successful application of such a combination to problems coming from
Graph theory, where they verified the Savage-Ruskey conjecture [7] up to a bound
that has not been reached before. With MATHCHECK2 [6], we extended the func-
tionality to deal with problems coming from combinatorics, in particular the search
for practically relevant Hadamard matrices [2, 3]. Using state of the art techniques,
we were able to scale to dimensions that were considered challenging before and
found at least 160 Hadamard matrices, that had no equivalent entry in the MAGMA-
database of Hadamard matrices.

By creating MATHCHECK2, we learned a structured approach on how to effec-
tively use the SAT and CAS combination to counterexample/verify more mathe-
matical statements in the future. We will report on our experiences, our results, and
our vision how MATHCHECK2 may assist mathematicians to feasibly leverage the
capabilities of SAT solvers together with computer algebra systems in their daily
work to find non-trivial counter-examples or verifications for certain statements.
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Abstract

Back and forth converters between two document formats are said to be
conservative if the following holds: given a source document D, its conver-
sion D′, a locally modified version M′ of D′ and the back conversion M of
M′, the document M is a locally modified version of D. We will describe
mechanisms for the implementation of such converters, with the LATEX and
TEXMACS formats as our guiding example.

A.M.S. subject classification: 68U15, 68U35, 68N99
Keywords: Conservative document conversion, LATEX conversion, TEXMACS,

mathematical editing

1 Introduction

The TEXMACS project [10, 7] aims at creating a free scientific office suite with an
integrated structured mathematical text editor [8], tools for graphical drawings and
presentations, a spreadsheed, interfaces to various computer algebra systems, and
so on. Although TEXMACS aims at a typesetting quality which is at least as good
as TEX and LATEX [14, 15], the system is not based on these latter systems. In
particular, a new incremental typesetting engine was implemented from scratch,
which allows documents to be edited in a wysiwyg and thereby more user friendly
manner. This design choice made it also possible or at least easier to use TEXMACS
as an interface for external systems, or as an editor for technical drawings. How-
ever, unlike existing graphical front-ends for LATEX such as LYX [2] or SCIENTIFIC

WORKPLACE [23], native compatibility with LATEX is not ensured.
Since LATEX is still the standard for scientific publications in areas such as math-

ematics, physics and computer science, good compatibility between TEXMACS and
LATEX is a major issue. Several use cases are possible in this respect. For the publi-
cation of papers, good converters from TEXMACS to LATEX are a prerequisite. New
TEXMACS users also would like to import their old LATEX papers into TEXMACS. The
most complex types of conversion arise when a TEXMACS user collaborates with a
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person who refuses to use anything else but LATEX. In that case, there is a need for
lossless converters between both formats.

Unfortunately, TEX and LATEX do not really provide a data format, but rather
a programming language. Furthermore, unlike most other existing programming
languages, the TEX system does not provide a formal grammar for the set of parsable
documents. Moreover, the TEX syntax can be self-modified at run-time and many
basic TEX/LATEX capabilities are built upon syntactic tricks. This makes it ex-
tremely hard (or even impossible in practice) to design lossless converters between
LATEX and essentially different formats. Current software for conversions from
LATEX [5, 4, 13, 1, 18, 2, 17, 21, 16, 19, 20, 6, 11] therefore involves a lot of heuris-
tics; we refer to section 3 for a quick survey of existing approaches.

Nevertheless, even if we accept that the conversion problem is hard in general,
we would like our heuristic converters to address some important practical use
cases. For instance, assume that Alice writes a LATEX document and sends it to her
colleague Bob. Now Bob makes a minor correction in the LATEX document using
TEXMACS and sends it back to Alice. Then Alice would like to recover her original
LATEX document except for the minor change made by Bob (which might possibly
be exported in the wrong way). Converters between LATEX and TEXMACS which
admit this property will be called conservative.

There are several approaches to the implementation of conservative convert-
ers. First of all, we might re-implement our converters from scratch while taking
into account the additional requirement. However, it took a lot of work and effort
to develop the existing heuristic converters, so this option is not particularly nice
from the implementers’ perspective. Another idea would be to “hack” some parts
of the existing code and turn it into something more conservative. Nevertheless,
the existing converters are extremely complex; in particular, they cover numerous
kinds of irregularities inside LATEX. Adding an additional layer of complexification
might easily break existing mechanisms.

Therefore, we want to regard the current converters between LATEX and TEXMACS
as black boxes. The aim of this paper is to describe conservative converters on top
of these black boxes, which are currently under development. In particular, we
guarantee that failure of the conservative converters only occurs in cases of fail-
ure of the original converters. Although our techniques were only tested for con-
versions between TEXMACS and LATEX, it is likely that they can be used for other
formats as well.

The first major ingredient for our converters (see section 4) is to generate,
along with the main conversion, a correspondence between well chosen parts of
the source document and their conversions in the target document. In particular,
we want to track the image of each paragraph in the source document. Ideally
speaking, assuming that we have a nice parse tree for the source document, we
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want to track the images of all subtrees. In order to construct such correspon-
dences, we will add markers to the source document, convert the marked source
document, and finally remove the markers from the obtained marked target docu-
ment. Optionally, we may want to verify that the addition and removal of markers
does not disrupt the conversion process and that we obtain the same final document
as in the case of a plain conversion.

For the conservative conversion itself, there are several approaches, which will
be described in section 5. Our current implementations are mainly based on the
“naive” approach from sections 5.1 and 5.2, which directly attempts to substitute
unaltered document fragments by their original sources, when performing a back-
conversion of a modified converted document. We are also experimenting with
more elaborate approaches for which modifications are regarded as patches and
where the idea is to lift the conversion process to such patches.

2 The LATEX and TEXMACS document formats

2.1 The TEX and LATEX formats

As we mentioned in the introduction, TEX [14] is really a programming language
rather than a data format. The main emphasis of TEX is on presentation and type-
setting quality. TEX programs are strings with a highly customizable syntax; the
set of TEX primitives can also easily be extended with user defined macros. We re-
call that LATEX [15] is a set of macros, built upon TEX. It is intended to provide an
additional layer of structural markup, thereby allowing for a limited degree of pre-
sentation/content separation. It inherits both advantages and disadvantages from
the TEX system.

One of the major disadvantages of TEX and LATEX is that it is hard or even
impossible to write reliable converters to other formats. For instance, in a recent
case study on existing LATEX to MATHML converters [24], it turned out that the
success rates of these converters varied between 2% and 54%, when applied to
a large document base downloaded from ArXiv, and looking at the mathematical
formulas only. There are numerous reasons for this poor performance. Let us
briefly mention the main ones:

Lack of formal syntax. TEX documents do not comply to any well defined syn-
tax, since the syntax can be modified at run time. For instance, it is rather easy
to typeset an HTML snippet such as <a href="#ex1" >example </a > in the
intended way using suitable TEX code. And, even though LATEX widely advertises
structured syntax, many LATEX packages actually tweak TEX syntax in order to in-
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clude external material (such as source code, algorithms, graphics) or to provide
syntactic sugar, allowing to write code such as foo!42!bar!!+++ (xcolor pack-
age) or ?[l]f*_ijˆkl? (tensid package). As a consequence, all existing parsers
(except TEX-based parsers) are only able to correctly parse subsets of valid TEX
documents.

Lack of semantics. The semantics of certain LATEX language constructs (such as
\csname or \expandafter) may be hard to specify, and even harder to translate
into other data formats. Indeed, it’s quite usual to see code such as \def\b{\begin}
or \def\wd{\widehat} in real life LATEX documents, which becomes meaningless
when translated into a non-macro language (here, respectively due to the loss of the
delimiter and to the loss of arity). LATEX is also dramatically lacking in “public in-
terfaces”. So much so that many customisations are done using side effects, by
redefining internal macros. So again, all existing translators are only able to trans-
late subsets of valid TEX documents.

Lack of orthogonality. LATEX, as a document format, is dramatically lacking
in orthogonality. Numerous packages are mutually incompatible and numerous
document classes provide different macro naming conventions, making code non
portable between classes (e.g. the declaration \newtheorem{thm}{Theorem}may
be used with the article class, but is forbidden with elsart). Numerous macros suffer
from arbitrary limitations (e.g. a paragraph cannot end inside a \texttt argument;
the nesting level in lists is limited to 4, etc.). Each document class defines its very
own scheme for defining metadata and title pages. The characters <, > and |
behave very differently depending on the preamble. Etc. All these irregularities
make it difficult to build generically valid LATEX documents.

2.2 The TEXMACS format

The TEXMACS document format is based on trees: all TEXMACS documents or doc-
ument fragments should be thought of as trees [9]. Of course, such trees can be
serialized as strings in different ways: as XML documents, as SCHEME expres-
sions (S-expressions), etc. In what follows, we will represent TEXMACS trees using
S-expressions. Figure 1 shows an example of a TEXMACS snippet.

In the example, the concat tag stands for “horizontal concatenation” and its
children expect “inline content”. Another important primitive which will be used
in subsequent examples is document; this tag is used for “vertical concatenation”
and it provides “block content”.
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A formula: Corresponding tree: Corresponding S-expression:

x+ 1
2 +
√

y+ z latexconv-tex-1-eps-converted-to.pdf

(math
(concat

"x+"
(frac "1" "2")
"+"
(sqrt "y+z")))

Figure 1: An insight of the TEXMACS format.

3 Traditional converters for LATEX

3.1 Existing approaches

Not so surprisingly, the interoperability with LATEX is an asymmetric problem. Con-
version to LATEX is considered the easier problem, since we are free to restrict our-
selves to a subset of LATEX. However, even this problem is quite non trivial, due
to lack of orthogonality and arbitrary restrictions inside LATEX (see section 2.1).
Nevertheless, conversion from LATEX to other formats is indeed the most difficult
problem, usually. Although the techniques described in this paper work both ways,
we will therefore use this harder direction for our examples.

The main obstacle when converting LATEX documents to other formats is that
arbitrary LATEX documents are hard to parse. One way to bypass this problem is to
let TEX do the parsing for you. Some existing converters which use this approach
are TEX4HT, LXIR, HERMES and LATEXML [5, 13, 1, 18]. The underlying princi-
ple is to build an overloaded DVI document [3, 22] with additional markup which
delimits the scope of a set of interesting macros. Then, via an external program, it
is possible to rebuild a tree reflecting the structure of the original document. This
alternative has the very benefit of exploiting the TEX parser without rewriting it,
but it has also major concerns:

1. It supposes that you installed a complete TEX distribution (usually large in
size), whose version is compatible with the one required by the source.

2. It only works for complete documents, and not for code snippets.

3. User defined macros are expanded and thereby lose their semantics.

Concerning the last point, we agree with [12]: “macro expanding then translating is
best suited to display and does not provide converted documents suitable for further
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use”, so this strategy does not fit our needs. Also, even if we could preprocess
sources in order to protect user defined markup, the two first concerns are too
restrictive for our project.

The remaining strategy is to parse the LATEX source files ourselves. This ap-
proach has been followed by software such as LYX, HEVEA, PLASTEX, TRAL-
ICS, PANDOC, LATEX2HTML, PERL LATEX::PARSER, HYPERLATEX, TTH, etc.
[2, 4, 17, 21, 16, 19, 20, 6, 11] Once the document parsed, a tree is generated and
is transformed in order to comply with the target format definition.

3.2 Traditional conversion from LATEX to TEXMACS

The existing LATEX to TEXMACS converter uses a custom TEX/LATEX parser, with the
ability to conserve the semantics of user defined macros. Many filters are applied to
the parsed LATEX document in order to get a suitable TEXMACS tree. Some example
transformations which are applied are the following:

• expansion of “dangerous” macros, such as \def\b{\begin};

• cutting the source file into small pieces, thereby reducing the risk of serious
parse errors due to (text/math) mode changes;

• many local and global tree rewritings (whitespace handling, basic normal-
izations and simplifications, renaming nodes, reordering children, migrating
label definitions, extracting metadata, etc.);

• adding semantics to mathematical content (disambiguation of operators and
whitespace, matching delimiters, etc.);

• (optionally) compile the LATEX document with the preview package in order
to import hard-to-parse document fragments as pictures.

Due to the combined complexity of these transformations, we cannot make certain
useful assumptions on the behavior of our converter, especially:

(non) Linearity The conversion of a concatenation of snippets might not be the
concatenation of the conversion of the snippets.

(non) Locality Local changes inside snippets may result in global changes.

(non) Time invariance Two conversions of the same document at different times
might result in different results. This is for instance due to time stamping by
external tools involved in the conversion of pictures.
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3.3 Traditional conversion from TEXMACS to LATEX

The converter from TEXMACS to LATEX does not have to cope with the LATEX parsing
problem. Nevertheless, arbitrary restrictions inside LATEX and the general lack of
orthogonality make the production of high quality LATEX documents (including pre-
served semantics of user defined macros) harder than it seems. The LATEX export
process is based on the following general ideas:

• converting the document body tree into a LATEX syntax tree;

• building the preamble by tracking dependencies and taking into account all
document style options;

• writing the preamble and the body.

Again, and for similar reasons as above, useful properties such as linearity, locality
and time invariance cannot be guaranteed.

4 Correspondence between subdocuments

4.1 Basic principles

One important prerequisite for conservative converters is our ability to maintain
the correspondence between parts of the source document and their images in the
target document. When writing conservative converters from scratch, this corre-
spondence can be ensured by design. In our setting, since traditional converters are
already written, we consider them provided as if they were black boxes, indepen-
dant from our conservative converters. Then, the key idea in order to maintain the
correspondence between source and target is to add markers to the source docu-
ment before doing the conversion. More precisely, we extend the source and target
formats with one new special tag for marking text, say marker. Two design choices
have now to be made.

First of all, the marker tag can either be punctual or scoped. In the first case,
the tag takes a unique identifier as its single argument. In the second case, the tag
takes the marked text as its additional second argument (for large multi-paragraph
fragments of LATEX, this requires marker to be an environment). For unparsed
LATEX source documents, substrings which correspond to logical subexpressions of
the parse tree can be hard to determine. Consequently, punctual markers are most
adequate for the initial conversions from LATEX to TEXMACS. Nevertheless, using
a post treatment, we will show in section 4.2 below that punctual markers may be
grouped by pairs into scoped markers, while taking advantage of the tree structure
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of the generated TEXMACS document. For conversions from TEXMACS to LATEX, we
may directly work with scoped markers.

Secondly, we have to decide on the granularity of our conservative converters:
the more markers we use, the more locality will be preserved for small changes.
However, not all subtrees of the parse tree of the source document necessarily give
rise to valid subexpressions of the target documents. Moreover, in the case of
conversions from LATEX to TEXMACS, we have no direct access to the parse tree of
the source document, so appropriate places for markers have to be chosen with care.
At least, we need to mark all paragraphs. More sophisticated implementations will
also mark macro definitions in the preamble, cells of tables, and several well chosen
commands or environments.

Example 1 In Figure 2, we have shown a simple example of added punctual mark-
ers inside a LATEX source document. The granularity is slightly better than a purely
paragraph based marking with which the markers 4 until 9 would be suppressed.
Nevertheless, an even better granularity could for instance be obtained by putting
markers around the b and c of the fraction. As a post treatment we typically group
the punctual markers by pairs into scoped markers. In this case, the pairs are (1,2),
(3,10), (4,7), (5,6), (8,9) and (11,12).

First paragraph.

%Some comments
\begin{remark}
Some mathematics
\[ a+\frac{b}{c}. \]

More text.
\end{remark}

Last paragraph.

 

\marker{1}First paragraph.\marker{2}

%Some comments
\marker{3}\begin{remark}

\marker{4}Some mathematics
\[ \marker{5}a+\frac{b}{c}.\marker{6} \]\marker{7}

\marker{8}More text.\marker{9}
\end{remark}\marker{10}

\marker{11}Last paragraph.\marker{12}

Figure 2: Rudimentary example of a marked LATEX source document body.

4.2 Grouping punctual markers by pairs

In order to transform matching pairs of punctual markers inside LATEX source doc-
uments into scoped markers, we will make use of the tree structure of the marked
TEXMACS target document obtained after conversion.

Roughly speaking, for every subtree which starts with marker i and ends with
marker j, we declare that (i, j) forms a matching pair. More precise implementa-
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tions should carefully take into account the special nature of certain tags such as
concat and document. For instance, we may use the following algorithm:

• any concat tag or document tag starting and finishing by a marker is re-
placed by the corresponding pair;

• any child of a concat tag or a document tag which is framed by two markers
is replaced by the corresponding pair;

• any concat tag or document tag with only one child which is a pair is re-
placed by the pair;

• any remaining marker is removed.

Example 2 For the simple document from Example 1, the TEXMACS conversion of
the marked document would be as follows:
(document

(concat (marker "1")) "First paragraph." (marker "2")))
(marker "3"))
(remark

(document
(concat (marker "4")) "Some mathematics")
(equation*

(document (concat (marker "5")) "a+" (frac "b" "c") "." (marker "6")))))
(marker "7"))
(concat (marker "8")) "More text." (marker "9")))))

(marker "10"))
(concat (marker "11")) "Last paragraph." (marker "12"))))

The pairs (1,2), (5,6), (8,9) and (11,12) are detected as matching pairs of markers
of inline content, whereas the pair (3,10) is detected as matching pair of block
content. The pair (4,7) does not match, but the matching algorithm can be further
tweaked to better handle this kind of situations.

At a second stage, we may organize the matching pairs into a dag: a pair (i, j)
will be a descendent of a pair (p,q) whenever the source string corresponding to
(i, j) is included in the source string corresponding to (p,q). We will say that the
dag is well formed if it is actually a tree and whenever the source strings corre-
sponding to two different children of the same node never intersect.

Example 3 For our example document, and adding an implicit pair (0,13) for the
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root, the dag of matching pairs is a well formed tree:

latexconv-tex-2-eps-converted-to.pdf

Example 4 Certain tags, such as figure, may produce badly formed trees:

\begin{figure}
\marker{2}\caption{\marker{3}Legend\marker{4}}
Some text.\marker{5}
\end{figure}

↓

(big-figure
(concat

(marker "2"))
"Some text."
(marker "5")))

(concat
(marker "3"))
"Legend"
(marker "4"))))

 latexconv-tex-3-eps-converted-to.pdf

In unfavourable cases, such as Example 4, the dag of matching pairs does not
yield a well formed tree. In such cases, we keep removing offending matching pairs
until we do obtain a well formed tree. At the end of this process, we are ensured
that marked subdocuments do not overlap in non structured ways, i.e. other than
via inclusion. Consequently, it is possible to transform the document with punctual
markers into a document with scoped markers.

Example 5 Applying the final transformation to Example 2, we obtain the doc-
ument below. Of course, the names of our scoped identifiers can be replaced by
simple numbers.
(document

(marker "1:2" "First paragraph.")
(marker "3:10"

(remark
(document

"Some mathematics"
(equation*

(document (marker "5:6" (concat "a+" (frac "b" "c") ".")))))
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(marker "8:9" "More text.")))
(marker "11:12" "Last paragraph." ))

4.3 Detection and reparation of irregularities

In most cases, removal of the markers from the conversion of a marked source
document yields the same result as the direct conversion of the source document,
modulo some normalization, such as merging and removing concat tags. How-
ever, this is not always the case. Let us give a few examples of how this basic
principle may fail.

Example 6 When putting markers inside certain special tags, such as verbatim,
the markers may not be converted as expected:

\begin{verbatim}
Some text.
\end{verbatim}

 
\begin{verbatim}
\marker{1}Some text.\marker{2}
\end{verbatim}

↓

(verbatim
"\marker{1}Some text.\marker{2}")

Example 7 The conversion of certain LATEX documents may involve some restruc-
turing which is incompatible with the marking algorithm. For instance, TEXMACS
only allows for modified text properties of block content if the modified prop-
erties apply to a succession of entire paragraphs. LATEX also allows emphasized
text which starts in the middle of a paragraph, runs over several subsequent para-
graphs, and then ends in the middle of another paragraph. When importing this
kind of ill structured emphasized text, we therefore restructure the emphasized text
into three separate parts. However, such transformations often interfere in unpre-
dictable ways with the marking process.

In order to guarantee that our marking and unmarking mechanisms never dete-
riorate the quality of the converters, we may use the following simple procedure:
convert the source document both with and without the marking/unmarking mech-
anism. If the results are the same, then return the result. Otherwise, keep locating
those markers which are responsable for the differences and put them into a black-
list. Now keep repeating the same process, while no longer inserting the markers
in the blacklist during the marking procedure. In the worst case, this process will
put all markers on the blacklist, in which case conversion with and without the
marking/unmarking mechanism coincide.
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4.4 Conservative storage of documents

In order to allow for subsequent conservative back and forth conversions, the result
of a conservative conversion should contain additional information on how the re-
cover the original source file. More precisely, when converting a source document
D from format A into format B, the target document will consist of a quadruple
(D′, D̄, D̄′,λ ), where

• D′ is the target document of format B.

• D̄ is the marked source document which gave rise to the marked version D̄′

of the target document.

• λ is a mapping which associates snippets from one of the two formats A or
B to every identifier for a marked subdocument.

If our target format is TEXMACS, then we simply store D̄, D̄′ and λ as attachments
to TEXMACS files. If LATEX is our target format, then, by default, we put D̄, D̄′ and λ
inside a comment at the end of the document. Alternatively, we may store D̄, D̄′ and
λ in a separate file, which will be consulted whenever we convert a modification of
the target document back to A. The last strategy has the advantage that we do not
clobber the converted file. However, one will only benefit from the conservative
converters when the LATEX reimportation is done on the same computer and via the
same user account.

Remark 1 Instead of specifying λ as a separate mapping, it also possible to suf-
fix identifiers for marked subdocuments by a letter for the original format of the
marked text.

Example 8 When importing the LATEX source file from Examples 1 and 5 into
TEXMACS, the mapping λ will associate “LATEX” to each of the identifiers 1:2,
3:10, 5:6, 8:9, 11:12. If the LATEX source file was a modified version of the
result of exporting a TEXMACS file to LATEX, then the mapping λ will associate
TEXMACS to every node of the tree, except for those nodes which correspond to
substrings in which modifications took place.

5 Conservative conversion

5.1 The naive approach

Let us return to the main problem of conservative conversion. Alice has written a
document D in format A, converts it to format B and gives the resulting document
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D′ to Bob. Bob makes some modifications and sends a new version M′ back to
Alice. How to convert the new version back to format A while conserving as much
as possible from the original version for the unmodified parts?

Let us first describe a naive solution to this problem. We will assume that the
format B is enriched with one new unary tag invariant, with an expression of
format A as its unique argument. The conversion from B to A of such a tag will be
precisely this argument.

In the light of the section 4.4, Bob’s new version contains a marked copy D̄
of Alice’s original version as well as its marked conversion D̄′ to format B. Now
for every subdocument S′ occurring in M′ which corresponds to a marked sub-
document of D̄′ (and which is maximal with this property), we replace S′ by an
invariant tag which admits the subdocument S in D corresponding to S′ as its
argument. We finally convert the obtained document from B to A using our slightly
adapted black box converter.

Example 9 Assume that Bob adds two more dots to the paragraph More text. in
Example 2. Then the subdocuments corresponding to the pairs of markers (1,2),
(5,6) and (11,12) still occur in the new document. Since (8,9) corresponds to a
subdocument of (3,10), we only declare the subdocuments corresponding to (1,2),
(5,6) and (11,12) to remain invariant. More precisely, we perform the conversion

(document
(invariant "First paragraph.")

(remark
(document

(invariant "Some mathematics
\[ a+\frac{b}{c}. \]")

"More text..."))
(invariant "Last paragraph."))

 

First paragraph.

\begin{remark}
Some mathematics

\[ a+\frac{b}{c}. \]

More text...
\end{remark}

Last paragraph.

Notice the change of indentation and the disappearance of the comment.

5.2 Fine tuning of the naive approach

A few additional precautions are necessary in order to make the naive approach
fully work. First of all, during the replacement procedure of subdocuments S′

of M′ by invarianted subdocuments S of D, some subdocuments S′ of M′ might
correspond to several marked subdocuments S1, . . . ,Sn of D. In that case, we first
investigate some of the context in which S′ occurred, such as the first k = 1,2, . . .
marked subdocuments before and after S′. In many cases, there will be only one
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subdocument Si which will both correspond to S′ and its context. If such a preferred
match Si cannot be found for S′, then we renounce replacing S′ by an invariant tag.

Secondly, the conversion algorithms are allowed to be context dependent. For
instance, ordinary text and mathematical formulas are usually not converted in the
same way. When replacing subdocuments S′ of M′ by invarianted subdocuments S
of D, we thus have to verify that the context of S′ in M′ is similar to the context of
S′ in D′.

Some other improvements can be carried out in order to further improve the
quality of naive conservative conversions. For instance, in Example 9, we observed
that the comment before the remark is lost. This would not have been the case if
Bob had only modified the last paragraph. It is good practice to detect adjacent
unchanged portions of text and keep the comments in the corresponding parts of
the original source file, but it may be difficult to achieve.

Additional ad hoc techniques were used to solve others problems. For instance,
certain editors automatically damage the line breaking of LATEX source code. This
issue has been addressed by normalizing whitespace before testing whether two
subdocuments are identical.

5.3 Patch based conservative conversions

Another strategy towards conservative editing is to determine the changes between
the conversion S′ of Alice’s version and Bob’s version D′ in the form of a “patch”
π ′, and then try to convert this patch π ′ into a patch π that can be applied to S.
Before anything else, this requires us to fix formats A] and B] for the description of
patches for the formats A and B.

For instance, LATEX documents are strings, so LATEX patches could be sets of
triples (i, j,R), where (i, j)∈N2 corresponds to a substring of the source string and
R stands for a replacement string for this substring. This language might be further
extended with pairs ((i1, . . . , in),σ) ∈ Nn×Sn, where (i1, . . . , in) is an n-tuple of
positions 06 i1 < · · ·< in6 l of the source string (of length l) and σ a permutation.
The patch then applies the permutation σ to the substrings (0, i1),(i1, i2), . . . ,(in, l)
of the source string.

Similar patches can be used for TEXMACS trees, by operating on the children of
a node instead of the characters in a string. In TEXMACS, we also implemented a few
other types of elementary patches on trees for the insertion or removal of new nodes
and splitting or joining nodes. However, we have not yet used these more complex
kind of patches in our conservative converters. In general, we notice that richer
patch formats lead to more conservative converters, but also make implementations
more complex.

Let us study the most important kind of patches π ′ which simply replaces a
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subdocument X ′ of D′ by Y ′. If X ′ is marked inside D̄′, with X as the corresponding
source in D, then we take π to be the replacement of X by contextual conversion Y
of Y ′ into format A. This contextual conversion of Y ′ is obtained by performing a
marked conversion of M′ into format A and then look for the conversion of Y ′ as a
subdocument of M′.

Example 10 Assume again that Bob adds to more dots to the paragraph More
text. in Example 2. Then π ′ is the patch which replaces subtree "More text."
by "More text...". This subtree "More text." corresponds to the pair of
markers (8,9) and to the unique substring More text. in the original source doc-
ument. Consequently, π will be the patch which replaces this substring by More
text..., which leads to the conservative conversion
First paragraph.

%Some comments
\begin{remark}
Some mathematics
\[ a+\frac{b}{c}. \]

More text...
\end{remark}

Last paragraph.

5.4 Fine tuning of the patch based approach

Several things have to be fine tuned for the patch based approach. Example 10 is
particularly simple in the sense that the patch π ′ which replaces "More text."
by "More text..." replaces a subtree by another tree. More generally, we have
to consider the case when a succession of children of a subtree is replaced by a
sequence of trees. This occurs for instance when inserting or deleting a certain
number of paragraphs. For special types of nodes (such as the TEXMACS document
tag for successions of paragraphs), we know how the node behaves under conver-
sions, and we can devise an ad hoc procedure for computing the patch π . In general
however, we may have to replace π ′ by a less fine grained patch which replaces the
entire subtree by a new tree.

A similar situation arises when the patch π ′ replaces as subdocument X ′ of D′

which is not marked inside D̄′, or when the subdocument Y ′ of M′ does not lead
to marked subdocument D of the marked conversion of M′ into format A. In these
cases as well, a simple solution again consists of replacing π ′ by a less fine grained
patch which replaces a larger subtree by another tree.
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Example 11 In Example 2, assume that Bob replaces the numerator b of the frac-
tion by x. This corresponds to a patch π ′ which does not operate on a marked
subtree of D̄′. Nevertheless, the patch which replaces the marked subtree (concat
"a+" (frac "b" "c")) by (concat "a+" (frac "x" "c")) does admit the
required form.

5.5 The combined approach

The quality of conservative converters can be further enhanced by combining the
naive and patch based approaches. Assume that M′ is obtained from D′ through
the application of a set π ′1, . . . ,π ′n of independent patches (i.e., acting on disjoint
subdocuments of D′). If n > 0, then we will reduce the general “patch conversion”
problem to a problem of the same kind but with a strictly smaller number of patches
n′.

Consider a subdocument S′ of D′ with the following properties:

• The subdocument is marked inside D̄′ and corresponds to the subdocument
S of D.

• At least one of the patches π ′i applies to a part of S′.

• S′ admits no strictly smaller subdocuments satisfying the same properties.

Let T ′ be the result of applying all relevant patches π ′i to S′. Now apply the marked
version of the naive conversion techniques from sections 5.1 and 5.2 to M′. This
will yield a conservative contextual conversion T of T ′ into format A.

We now consider the new “source document” D∗ obtained from D through the
replacement of S by T . Similarly, we consider the new “conversion” D′∗ obtained
from D′ through the replacement of S′ by T ′. These replacements admit marked
versions which basically change nothing outside S and S′ and remove all markers
strictly inside S and S′. This completes our reduction of the general “patch con-
version” problem to one with strictly less patches (namely, all remaining patches
which did not apply to S′). In practice, several non overlapping subdocuments S′

can be treated in a single iteration, so as to increase the efficiency.

6 Conclusion

Conservative converters should make collaborations easier between people who are
working with different authoring tools. Although we only considered conversions
between TEXMACS and LATEX here, our methods should also be useful for other
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formats. We also notice that the approach generalizes in a straightforward way to
the documents which are written using three or more different tools or formats.

The implementations inside TEXMACS have only started quite recently and some
time will still be needed for testing and maturing. Nevertheless, our first experi-
ences are encouraging. Currently, we are still struggling with conservative conver-
sions of user defined macros and metadata such as title information. Nevertheless,
we are confident that a suitable solution can be worked out even for complex con-
version challenges of this kind, by finetuning the grain of our marking algorithm,
and through the progressive integration of the patch based approach.
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Math Web Search Interfaces and the Generation Gap of
Mathematicians

A. Kohlhase1

1 University of Applied Sciences, Neu-Ulm, Germany

New technologies and interfaces are changing the way users engage with tech-
nology, mathematicians are no exception. In a previous study we found some in-
teresting attitudes/practices of professional mathematicians with respect to search
interfaces, that sets them apart from other web searchers. In a nutshell, this study
explores whether and if so, how math search interfaces are distinctly perceived by
younger and older mathematicians and we offer first design implications.
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Collaborative Computer Algebra Shell

M. Minimair1

1 Seton Hall University, South Orange, New Jersey, USA, minimair@shu.edu

Even though team work is very common in applied computer algebra, mathe-
matics and scientific research, software for computational mathematics often lacks
sufficient support for collaborators [2] who want to solve problems together. The
current ongoing project focuses on enhancing collaborative use of computer alge-
bra shells [1] by multiple users connected online. The collaborative shell environ-
ment, devoloped by the project, is based on the Jupyter/iPython framework [4, 5]
and tightly integrates chat messages [3] with mathematical command execution.
This integration enables the collaborators to interact while jointly developing com-
putational scripts and serves to document the collaborative process when solving
problems.
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Computing Betti numbers of Veronese subrings with
Pommaret bases

Matthias Fetzer1

1 Universität Kassel, Germany, fetzer@mathematik.uni-kassel.de

Involutive bases, and in particular Pommaret bases, are a tool which is useful
from both a computational-algorithmic perspective as well as from a theoretical
perspective. We describe a Pommaret basis for the Veronese subrings S(d) given by
S(d) = k[xµ | degxµ = d] ⊆ k[x0, ...,xn], i.e. a Pommaret basis of an ideal I where
S(d) ∼= R/I for the polynomial ring R in

(n+d
d

)
variables. From this construction,

the theory of involutive bases immediately gives alternative proofs for some known
properties of Veronese subrings as a corollary, such as their Castelnuovo-Mumford
regularity and the fact that they are Cohen-Macaulay.

We combine the Pommaret basis with discrete algebraic Morse theory as pre-
sented in [1] to obtain a (non-minimal) free resolution. This construction enables
us to give a formula for one non-vanishing Betti number of S(d) in each row of the
Betti table. This result holds without any restriction on d. Our formula generalises
a result from [2], where Ein and Lazarsfeld had given a similar statement, if d is
sufficiently large. They conjectured that these Betti numbers are the first nonzero
Betti numbers in each row. Additionally, our result has a relatively simple com-
binatorial interpretation: The non-vanishing statements for the Betti numbers in
question translate to the existence of certain sets of multiindices of degree d.
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Some computational elements of fractal topology based on
HSF structures

C. Alemán, F. Cappelli, P. Real

H.S.T. Informatics Engineering, University of Sevilla (Spain) real@us.es

In [1], a kind of dense skeleton in terms of semi-directed graphs installed on the
connectivity graph of fractal polyhedra, called Homological Spanning Forest (HSF,
for short) is used for homotopically representing them. This research open a door
to new topics within the areas of Fractal Topology [2] and Topological Recognition
[3]. We here redesign the classical box-counting algorithm of fractal topology for
digital images in terms of HSF notions and ideas.
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An implementation of effective homotopy of fibrations 1

A. Romero1, J. Rubio1, F. Sergeraert2

1 University of La Rioja, Spain, {ana.romero,julio.rubio}@unirioja.es
2 Université Joseph Fourier,France, francis.sergeraert@ujf-grenoble.fr

Abstract

In this paper, we present a new module for the Kenzo system which
makes it possible to compute the effective homotopy of the total space of a
fibration, using the well-known Serre exact sequence. The programs are writ-
ten in Common Lisp and require the definition of new classes and functions
and in particular include a new module for working with finitely generated
Abelian groups. The chosen representation is that of a free presentation by
means of a matrix in canonical form.

1 Introduction

Inspired by the fundamental ideas of the effective homology method (see [RS02]),
in [RS12] a new effective homotopy theory was defined trying to allow the com-
putation of homotopy groups of spaces. The most important notion is that of a
solution for the homotopical problem of a Kan simplicial set, which consists of
four algorithms describing in a constructive way the homotopy groups of a space,
which is said to have effective homotopy. As in the case of effective homology, the
idea consists in beginning by considering some spaces whose effective homotopy
can be directly determined, and then different constructors of Algebraic Topology
should produce new spaces with effective homotopy. As a first result in this re-
search, in [RS12] we developed a theoretical algorithm to determine the effective
homotopy of the total space of a fibration from the effective homotopies of the fiber
and the base space.

In this work we present an implementation of the algorithm in [RS12] by means
of a new module for the Kenzo system [DRSS99], consisting of about 4000 lines of
Common Lisp code available at http://www.unirioja.es/cu/anromero/research2.html.
In particular, it includes new structures and functions for working with finitely
generated Abelian groups and computing kernels, cokernels and central extensions
which are then used to implement the well-known Serre long exact sequence. The
chosen representation for groups is that of a free presentation by means of a matrix
in canonical form.

1This work has been partially supported by Ministerio de Economía y Competitividad, Spain,
projects MTM2013-41775-P and MTM2014-54151.
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2 A Kenzo module for finitely generated Abelian groups

As a necessary ingredient for the computation of the effective homotopy of the
total space of a fibration, a new Kenzo module has been developed dealing with
finitely generated Abelian groups. It consists of about 800 lines of code containing
functions to construct groups and morphisms of groups and computing kernels,
cokernels and central extensions. The chosen representation for groups is that of
a free presentation by means of a matrix in canonical form. The reason why we
prefer this representation to other options such as a list of divisors or a general
matrix is to facilitate subsequent calculations.

Let G be a finitely generated Abelian group. The fundamental theorem of
finitely generated Abelian groups asserts that G can be decomposed in a unique
way as a direct sum of the form Z/β1⊕ ·· · ⊕Z/βr ⊕Zα where each βi divides
βi+1. This makes it possible to represent a group uniquely by means of a matrix
MG : G1 = Zr→ G0 = Zr+α

MG =




β1 · · · 0
. . .

0 · · · βr

0 · · · 0
...

0 · · · 0




(1)

where the number of rows with all entries equal to zero at the bottom of the matrix
is given by α .

As said before, a group could also be represented by any general matrix, but
the restriction of being a sparse matrix in canonical form is included to facilitate
calculations on groups which will be necessary later. To this aim, a function called
canonical-representation is provided computing the canonical form of a gen-
eral matrix N : N1→ N0 and returning a new matrix N′ : N′1→ N′0 as the one in (1).
The canonical matrix N′ is obtained by computing the Smith normal form of N and
removing rows and lines corresponding to 1’s and columns corresponding to 0’s in
the diagonal. The function also returns two matrices R : N′0→ N0 and R′ : N0→ N′0
describing the relations between the original and the new generators (obtained also
by means of the Smith normal form algorithm).

A morphism of finitely generated Abelian groups is then defined by means of
two matrices which must commute with the matrices defining source and target
groups. In this case the matrices can have as entries any integer number and no
restriction is considered.

120



Let f : A→ B be a morphism between two Abelian groups of finite type, given
by matrices M0 : A0→ B0 and M1 : A1→ B1, and let us suppose that the groups A
and B are represented respectively by matrices MA : A1 → A0 and MB : B1 → B0.
The cokernel and kernel of f correspond respectively to the homology groups in
degrees 0 and 1 of the bicomplex:

A1


 MA

M1




−→ A0⊕B1

[
M0 −MB

]

−→ B0 (2)

The cokernel is computed by considering the 1-degree differential matrix
[M0 −MB] ≡ D1 and computing its canonical form by means of our function
canonical-representation. The new function cokernel inputs a morphism of
finitely generated abelian groups f : A→ B and returns a finitely generated abelian
group C and a matrix P : B0 → C0 where C0 is the target of the matrix of the re-
turned group C. The matrix P corresponds to the projection B→C = Coker, which
will be necessary later.

Similarly, the new function kernel inputs a morphism of finitely generated
abelian groups f : A→ B and returns a finitely generated abelian group K and a
matrix I : K0 → A0 where K0 is the target of the matrix of the returned group K.
The matrix I corresponds in this case to the inclusion K = ker→ A which will also
be necessary later.

Let 0 → A → E → C → 1 be a central extension of two finitely generated
Abelian groups A and C. It is well-known (see [Bro82, Ch. VI.3]) there ex-
ists a set-theoretic map γ : C×C → A which satisfies γ(g,0) = 0 = γ(0,g) and
γ(g+h,k) = γ(h,k)− γ(g,h)+ γ(g,h+ k).

In addition, the initial extension is equivalent to another extension

0→ A→ A×γ C→C→ 1

where the elements of A×γ C are pairs (a,c) with a ∈ A and c ∈C, and the group
law is defined by

(a1,c1)(a2,c2)≡ (a1 +a2 + γ(c1,c2),c1 + c2).

The set-theoretic map γ is called the 2-cocycle of the extension, since it corresponds
to a map γ : K(C,1)2 → A in the second group of cohomology H2(C,A), where
K(C,1) is an Eilenberg-MacLane space [May67, Ch.V].

Let us suppose that the groups A and C are represented respectively in Kenzo
by means of the matrices MA : A1→ A0 and MC : C1→C0. We consider a cocycle
defined as a function γ : C0×C0→ A0. The central extension E is then defined by
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means of a block matrix M′E : A1 +C1→ A0 +C0:

M′E =

[
MA Mγ
0 MC

]
(3)

The matrix Mγ is obtained as follows. For each gi generator of C1, we consider
the element at the position (i, i) of the matrix MC, di. The column i of the matrix
Mγ is then defined by the element

Mγ(i) =−(γ(gi,gi)+ γ(2∗gi,gi)+ · · ·+ γ((di−1)∗gi,gi))

The proof that the given matrix M′E corresponds to a free presentation of the
central extension E ∼= A×γ C can be found in http://www.unirioja.es/cu/
anromero/cer.pdf.

But let us observe now that M′E is not necessarily in canonical form and there-
fore it could not be used for our implementation of groups. To solve this problem,
our function canonical-representation is applied to obtain the canonical form
of the matrix M′E , producing a new matrix ME : E1 → E0 which is valid for the
definition. Our new Kenzo function central-extension returns the new group
E ∼= A×γ C and two matrices H : E0→ A0 +C0 and H ′ : A0 +C0→ E0 which cor-
respond to the relations between the generators of the final group E and the set
A0 +C0.

3 Outcomes

Using the programs for working with finitely generated Abelian groups presented
in the previous section, a new Kenzo module has been developed for the computa-
tion of the effective homotopy of the total space of a fibration. The implementation
follows directly the proof presented in [RS12] (making use in particular of the
Serre long exact sequence) and includes 4000 lines of code.

As an example of calculation of our programs, we consider the first steps of the
Postnikov tower [May67, Ch.V] for the 2-sphere S2. They can be built in Kenzo
by means of the following statements:

>(progn
(setf p2 (k-zp 0 2))
(setf ch4 (chml-clss p2 4))
(setf f3 (z-whitehead p2 ch4))
(setf pfib3(twop-kanfibration f3))
(setf p3 (sorc (fibr1 pfib3))))

[K735 Kan-Simplicial-Set-with-Effective-Homotopy]
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The result is a Kan simplicial set with effective homotopy, stored in the variable
p3, which corresponds to the total space of a fibration with twisting operator f 3 :
K(Z,2)→K(Z,3). The effective homotopy of this space is directly built by Kenzo
from the effective homotopies of the base and the fiber, so that the homotopy groups
of p3 can be determined. We can observe that they correspond to πi(S2) for i≤ 3.

>(homotopy-group p3 1)
NIL
>(homotopy-group p3 2)
Component Z
>(homotopy-group p3 3)
Component Z

The process can be iterated and the space p j of the tower satisfies πi(p j) ∼=
πi(S2) for i≤ j. The following Kenzo code shows the result π6(S2)∼= Z/12.

>(progn
(setf ch5 (chml-clss p3 5))
(setf f4 (zp-whitehead 2 p3 ch5))
(setf pfib4 (twop-kanfibration f4))
(setf p4 (sorc (fibr1 pfib4)))
(setf ch6 (chml-clss p4 6))
(setf f5 (zp-whitehead 2 p4 ch6))
(setf pfib5 (twop-kanfibration f5))
(setf p5 (sorc (fibr1 pfib5)))
(setf ch7 (chml-clss p5 7))
(setf f6 (zp-whitehead 12 p5 ch7))
(setf pfib6 (twop-kanfibration f6))
(setf p6 (sorc (fibr1 pfib6))))

[K1430 Kan-Simplicial-Set-with-Effective-Homotopy]
>(homotopy-group p6 6)
Component Z/12Z
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Motion planning of robot arms with combinatorial
restrictions

Jesús González1, Bárbara Gutiérrez2, and Sergey Yuzvinsky3

1 Cinvestav, México, jesus@math.cinvestav.mx
2 Cinvestav, México, bgutierrez@math.cinvestav.mx
3 University of Oregon, yuz@uoregon.edu

We construct multitasking motion planners for automated systems whose space
of states are homotopy equivalent to a polyhedral product space based on punctured
spheres, e.g. robot arms with restrictions on the possible combinations of simulta-
neously moving nodes. Our construction is shown to be optimal by explicit coho-
mology calculations. The multitasking motion planning problem for other families
of polyhedral product spaces is also determined.
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Computing a new topological feature for grey-level 2D
digital images: the topological hole tree

F. Díaz del Río (1), D. Onchis (2), P. Real (1)

(1) H.S.T. Informatics Engineering, University of Sevilla (Spain). fdiaz@atc.us.es, real@us.es

(2) Faculty of Mathematics, University of Vienna (Austria). darian.onchis@univie.ac.at

A computational framework for a new homotopy representation of a grey-level
2D digital image called topological hole tree is developed here. The computa-
tional advantages of this feature with regards to the well-known component tree
structures (see, for example, [2, 3]) are showed in some applications like, for ex-
ample, computing the RAG of a presegmented image or performing registration
or retrieval. A parallel algorithm designed in [1] for computing HSF topological
models is the core of the computation of the topological hole tree. Some experi-
ments for understanding and extending the notion of topological hole tree to a 3D
digital image are also given.
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Bases for Modules of Difference-Operators by Gröbner
Reduction

C. Fürst1, G. Landsmann1

1Johannes Kepler University Linz, Austria, Research Institute for Symbolic Computation (RISC)

At the ISSAC 2015 conference, the authors have introduced the notion of
Gröbner Reduction as an axiomatic approach to Gröbner bases techniques of
filtered free modules [1]. Let R be a ring containing a field K, let F be a free R-
module such that N is a submodule of F . The reduction relation −→ is called a
Gröbner Reduction for N provided that

1. f −→ h⇒ f ≡ h (mod N);

2. −→ is a noetherian relation, i.e. every reduction sequence terminates in a
finite number of steps;

3. The irreducible elements I in F build a monomial K-linear subspace, i.e. for
all f ∈ F we have f ∈ I⇒ supp( f )⊆ I;

4. I∩N = 0, i.e. every non-zero element is reducible;

5. For all r ∈ Np:
f ∈ Fr ∧ f −→ h⇒ h ∈ Fr.

In that general setting, given a filtered module Mr (derived from a filtration Rr

of the ring R), it is possible to compute the dimension of Mr viewn as K-vector
space. In [2] it is shown that related ideas have been considered in literature for
modules over non-commutative rings. The interplay of modules of this type (e.g.
it is possible to model a differential ring by a particular Ore-algebra), confirm that
a common theory might be applicable to modules over certain non-commutative
rings. From that, it is possible to review

• Reduction with Respect to Several Term Orderings [3] for modules over
the ring of Ore-polynomials;

• Relative Reduction [4] for modules over difference-differential rings;

• (x,∂ )-Reduction [5] for modules over Weyl-algebras,

under the aspect of Gröbner Reduction.

128



Recently, the authors have tried to view reduction in a more abstract setting.
Precisely, if we have an ordered set (Y,≤) and an R-module M we consider a
function rk : M→ Y . We say that u reduces to v provided that

u−→ v :⇐⇒∃g ∈ G⊆M ∃a ∈ A⊆ R : v = u−ag∧ rk(v)< rk(u). (1)

Let now N := RG. A reduction defined by the data (G,A, rk)

• is noetherian;

• satisfies f −→ h⇒ f ≡ h (mod N).

We can show, that under this assumptions the following holds.

Theorem. Let (G,A, rk) define the reduction relation (1). Then

• I∩N ⊆ 0⇔ N = Z where Z := { f ∈ N : f −→? 0};

• M = N + I;

• The irreducibles I build a monomial K-vector space.

In this talk, we want to report on research results that we are currently developing,
and give an idea how the idea of Gröbner bases over modules can be unified in a
way that a common theory applies for computation of (vector-space) dimension for
filtered modules over filtered rings.
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Difference algebra aided discretization of quasilinear
evolution equations
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Let ∂x be the derivation operator w.r.t. x and R := Q(a1, . . . ,ai){u} be the or-
dinary differential polynomial ring over the parametric field Q(a1, . . . ,ai) of con-
stants. Here we consider a class of quasilinear evolution equations of the form

ut = aum +F(um−1, . . . ,u1,u) , 0 6= a ∈Q , m ∈ N>0 , (1)

where uk := ∂ k
x u (0 ≤ k ≤ m), u0 := u and F ∈ R is a differential polynomial of

the order m−1 in ∂x (denotation: ord(F) = m−1) such that there is a differential
polynomial P ∈R satisfying

F = ∂xP =
m−2

∑
k=0

uk+1
∂P
∂uk

. (2)

Given F , one can algorithmically verify whether or not such P exists and construct
it in the case of existence. The equality (2) means that (1) admits the conservation
law form

ut = ∂x (aum−1 +P) , P ∈R , ord(P) = m−2 . (3)

The set of evolution equations admitting the polynomial conservation law (3)
contains most of classical evolution equations, e.g., the Korteveg-de Vries (KdV)
equation and KdV hierarchy, the Burgers equation and Burgers hierarchy, the Kura-
moto-Sivashinsky equation, the Burgers-Huxley equation, etc., and their various
generalizations (cf. [1]). All these equations have exact solutions that are useful in
analysis of numerical methods for their solving.

To discretize equation (3), we follow the approach of paper [2] and convert the
equation into the equivalent integral form

∮

Γ
(P+aum−1)dt +udx = 0 , (4)

where Γ is an arbitrary singly connected integration contour. Using the standard
notation un

j = u(tn,x j) for the grid function and the Cartesian grid with tn+1−tn = τ ,
x j+1− x j = h we choose the rectangular integration contour as a “control volume”
(cf. [2]) and add m−2 integral relations
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Figure 1: Basic integration contour

∫ x j+1

x j

uk+1 dx = uk(t,x j+1)−uk(t,x j) , k = 1, . . . ,m−2 . (5)

Now, to discretize (4) we apply a numerical evaluation method to the contour
integral (4) in order to express it in terms of the grid functions and also (possibly
different) numerical evaluation methods to the integrals in the left-hand sides of (5).
Thereby, we obtain a system of difference equations containing un

j ,u1
n
j , . . . ,um−1

n
j .

The last step in generation of a finite difference approximation (FDA) to (1) is
algebraic elimination of the grid functions u1

n
j , . . . ,um−1

n
j , which correspond to the

proper partial derivatives of u, from the discrete system obtained. Such elimination
can be done by means of the MAPLE package LDA [3] which is freely available
(http://wwwb.math.rwth-aachen.de/Janet/).

We illustrate the above described approach by example of the KdV equation

ut +uxxx +6uux = 0 . (6)

Its integral conservation law form for the contour Γ of Figure 1 reads
∮

C
(uxx +3u2)dt +udx = 0 . (7)

To approximate numerically the contour integral, we apply the trapezoidal rule
to the integration over t as well as to the integration over x. For numerical approx-
imations of the integral relations we apply the trapezoidal rule for the integration
of ux and the midpoint rule for the integration of uxx. This leads to the difference
approximation to (6) which is outputted by the following MAPLE code shown in
Figure 2 with P := 3u2. The output is the left-hand side of the FDA to (6) written
in the conventional form as

un+1
j −un

j

τ
+

(Pn+1
j+1 −Pn+1

j−1 )+(Pn
j+1−Pn

j−1)

4h
+

+
(un+1

j+2−2un+1
j+1 +2un+1

j−1−un+1
j−2)+(un

j+2−2un
j+1 +2un

j−1−un
j−2)

4h3 = 0 .
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Figure 2: Construction of FDA to KdV with MAPLE

Since the obtained FDA to (6) has quadratic nonlinearity (due to P = 3u2) in
the grid function on the next time layer, in order to construct a numerical solution
we use the following approximate linearization

v2
k+1 = v2

k+1− v2
k + v2

k = (vk+1− vk)(vk+1 + vk)+ v2
k ≈ vk+1 ·2vk− v2

k .

By taking this linearization into account, we implemented a numerical proce-
dure for construction of a solution to KdV in Python 2.7 freely downloadable from
the Web page https://www.python.org/download/releases/2.7/. Figure 3
demonstrates the time evolution of numerical solution in the domain x ∈ [0,200]
with h = 0.4 and τ = 0.2 and for the initial value (Cauchy) problem with the initial
data

u(t = 0) := f (x,0,0.4)+ f (x−20,0,0.2)

where

f (x, t,κ) :=
2κ2

cosh2 [κ(x−4κ2t)]

is the exact one-soliton solution to (6). As Figure 3 shows, the constructed numer-
ical solution reveals a behavior inherent to localized solutions of KdV.
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Figure 3: Dynamics of solution to KdV
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Difference Dimension Quasi-polynomials
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Let K be a (not necessarily inversive) difference field of zero characteristic
with basic set of translations σ = {α1, . . . ,αm} that are assigned rational weights
w1, . . . ,wm, respectively. Let T denote the free commutative semigroup generated
by σ and for any transform τ = αk1

1 . . .αkm
m ∈ T , let

ordw τ =
m

∑
i=1

wiki.

Furthermore, for any r ∈ N, let Tw(r) = {τ ∈ T | ordw τ ≤ r}.
In this talk we present the following result.

Theorem. With the above notation, let L = K〈η1, . . . ,ηn〉 be a difference field
extension of K generated by a finite set η = {η1, . . . ,ηn} and for any r ∈ N, let
Lr = K(∪n

i=1Tw(r)ηi). Then there exists a quasi-polynomial Φη |K(t) such that

(i) Φη |K(r) = tr.degK Lr for all sufficiently large r ∈ N.

(ii) degΦη |K ≤ m.

(iii) Φη |K is an alternative sum of Ehrhart quasi-polynomials associated with
rational conic polytopes. The leading coefficient of the quasi-polynomial Φη |K
is a constant that does not depend on the set of difference generators η of the
extension L/K. Furthermore, the coefficient of tm in Φη |K is equal to the difference
transcendence degree of L/K.

This theorem generalizes the corresponding result on difference dimension
polynomials introduced in [3] (see also [4] where properties and applications of
difference dimension polynomials are discussed). The quasi-polynomial Φη |K is
called the difference dimension quasi-polynomial associated with the extension
L/K and the system of difference generators η .

Note that the existence of Ehrhart-type dimension quasi-polynomials associ-
ated with weighted filtrations of differential and inversive difference modules was
established by C. Dönch in his dissertation [1]. C. Dönch also proved the exis-
tence of dimension quasi-polynomials associated with finitely generated differen-
tial and inversive difference field extensions (see [1, Theorem 3.1.13]) using the
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technique of weight Gröbner bases in the associated modules of Kähler differen-
tials. This method, however, cannot be applied to a non-inversive difference field
extension, since in this case there is no natural difference module structure of the
corresponding module of Kähler differentials. In order to prove the above theorem,
we apply the technique of characteristic sets (with respect to a ranking that respects
the weighted order of transforms) and the following proposition that generalizes
Kolchin’s result on dimension polynomials of subsets of Nm (see [2, Chapter 0,
Lemma 16]).

Let ≤P denote the product order on Nm (m ∈ N, m ≥ 1), that is a partial order
such that (a1, . . . ,am) ≤P (b1, . . . ,bm) if and only if ai ≤ bi for i = 1, . . . ,m. Let
w1, . . . ,wm be fixed non-negative rational numbers and for any a = (a1, . . . ,am) ∈
Nm, let ord wa = w1a1 + · · ·+wmam.

If A ⊆ Nm and r ∈ N, then A(r) will denote the set of all a = (a1, . . . ,am) ∈ A
such that a1 + · · ·+am ≤ r. Furthermore, if A⊆ Nm, then VA will denote the set of
all m-tuples v = (v1, . . . ,vm) ∈ Nm that are not greater than or equal to any m-tuple
from A with respect to ≤P. (Clearly, an element v = (v1, . . . ,vm) ∈ Nm belongs to
VA if and only if for any element (a1, . . . ,am)∈ A there exists i∈N,1≤ i≤m, such
that ai > vi.)

Proposition. With the above conventions, for any set A ⊆ Nm, there exists a
quasi-polynomial ωA(t) in one variable t such that

(i) ωA(r) = Card VA(r) for all sufficiently large r ∈ N.

(ii) deg ωA ≤ m.

(iii) deg ωA = m if and only if A = /0.

(iv) ωA = 0 if and only if (0, . . . ,0) ∈ A.

With the notation of the theorem, one can use the above proposition to express
the quasi-polynomial Φη |K(t) as an alternative sum of quasi-polynomials of the
form ωA(t) where A ⊆ Nm. It allows one to obtain methods of computation of
difference dimension quasi-polynomials based on known algorithms for computing
Ehrhart quasi-polynomials of rational polytopes. We will give some corresponding
examples and discuss an interpretation of a difference dimension quasi-polynomial
as the strength of a system of difference equations with weighted translations. Such
systems arise, in particular, from finite difference approximations of systems of
PDEs with weighted derivations (see, for example, [5] and [6]).
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Gröbner basis driven construction of a new s-consistent
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The quality of a numerical solution to a partial differential equation (PDE) or
to a system of PDEs obtained by the finite difference method is determined by
the underlying finite difference approximation (FDA) to the PDE(s). It is a chal-
lenging problem to construct a FDA which inherits or mimics at the discrete level
the fundamental properties of the original PDE(s) such as topology, symmetries,
conservation laws, maximum principle, etc. Such FDAs are called compatible or
mimetic (cf. [2]).

In [7], for linear PDE systems and regular (Cartesian) grids, the necessary con-
dition for compatibility of FDA, s(strong)-consistency, was established. This con-
dition admits an algorithmic verification via difference Gröbner bases. It was gen-
eralized in [3, 6, 8] to polynomially-nonlinear systems of PDEs.

Let F be a finite set of differential polynomials, { f = 0 | f ∈ F} be the cor-
responding PDE system, F̃ be the set of difference polynomials such that set
{ f̃ = 0 | f̃ ∈ F̃} forms a FDA to the PDE system on a chosen (regular) solution
grid. Then FDA is called s-consistent if

(∀g̃ ∈ JF̃K) (∃g ∈ JFK) [ g̃ is FDA to g ]

where JF̃K and JFK is respectively the perfect difference ideal (cf. [9]) generated
by F̃ and the perfect differential ideal generated by F̃ .

By applying the approach of paper [5] to the two-dimensional Navier-Stokes
equations describing the unsteady motion of an incompressible viscous liquid of
constant viscosity





f1 := ux + vy = 0 ,

f2 := ut +uux + vuy + px− 1
Re ∆u = 0 ,

f3 := vt +uvx + vvy + py− 1
Re ∆v = 0 .

(1)

where (u,v) is the velocity field, p is the pressure, the constant Re is the Reynolds
number, we constructed in [4] two s-consistent FDAs to (1). Below we refer to
these FDAs as to FDA2 and FDA3. In [1] we showed the numerical superiority
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of FDA2 over two other FDAs that are not s-consistent. In doing so, we used the
exact solution [10] to (1)

u =−e−
2t
Re cos(x)sin(y), v = e−

2t
Re sin(x)cos(y), p =−1

4
e−

4t
Re (cos(2x)+ cos(2y)). (2)

and the grid with temporal spacing τ and the spatial spacing h for both x and y.
In this talk we propose a new FDA that we obtained in the following way. We

have started with a direct difference approximation of the single equations (1). In
the conventional notations

un
j,k := u(nτ,x j,yk), vn

j,k := v(nτ,x j,yk), pn
j,k := p(nτ,x j,yk)

for the grid functions u,v, p such approximation reads

un
j+1,k−un

j−1,k

2h
+

vn
j,k+1− vn

j,k−1

2h
= 0 ,

un+1
j,k −un

j,k

τ
+

(un
j+1,k)

2− (un
j−1,k)

2

2h
+

vn
j,k+1un

j,k+1− vn
j,k−1un

j,k−1

2h
+

pn
j+1,k− pn

j−1,k

2h

− 1
Re

(un
j+1,k−2un

j,k +un
j−1,k

h2 +
un

j,k+1−2un
j,k +un

j,k−1

h2

)
= 0 ,

vn+1
j,k − vn

j,k

τ
+

(vn
j,k+1)

2− (vn
j,k−1)

2

2h
+

un
j+1,kvn

j+1,k−un
j−1,kvn

j−1,k

2h
+

pn
j,k+1− pn

j,k−1

2h

− 1
Re

(vn
j+1,k−2vn

j,k + vn
j−1,k

h2 +
vn

j,k+1−2vn
j,k + vn

j,k−1

h2

)
= 0 .

(3)

Aiming to obtain a time-independent equation with linear leading monomial
in the variable p in order to solve numerically the FDA, we have performed a
difference Gröbner basis computation with pure lexicographic ordering with p >
u > v and ∂t > ∂x > ∂y. We have obtained then a finite difference Gröbner basis
consisting of 5 elements where we have found an equation of the required form,
namely

pn
j+2,k−2pn

j,k + pn
j−2,k

4h2 +
pn

j,k+2−2pn
j,k + pn

j,k−2

4h2

+
(un

j+2,k)
2−2(un

j,k)
2 +(un

j−2,k)
2

4h2 +
(vn

j,k+2)
2−2(vn

j,k)
2 +(vn

j,k−2)
2

4h2

+2
un

j+1,k+1vn
j+1,k+1−un

j+1,k−1vn
j+1,k−1−un

j−1,k+1vn
j−1,k+1 +un

j−1,k−1vn
j−1,k−1

4h2

+
2

Re

−un
j+2,k +4un

j+1,k−4un
j−1,k +un

j−2,k−un
j+1,k+1−un

j+1,k−1 +un
j−1,k+1 +un

j−1,k−1

4h3

+
2

Re

−vn
j,k+2 +4vn

j,k+1−4vn
j,k−1 + vn

j,k−2− vn
j+1,k+1− vn

j−1,k+1 + vn
j+1,k−1 + vn

j−1,k−1

4h3 = 0 .

(4)
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Figure 1: Dynamics of numerical error

It is interesting to note that this computer-generated difference equation is in
fact the approximation of the following differential equation

(pxx + pyy)+2(u2
x +uxvy +uyvx + v2

y +u(uxx + vxy)+ v(uxy + vyy))+

− 1
Re

(uxxx +uxyy + vxxy +6vyyy) = 0.

One can check that this equation belongs to the differential ideal generated by the
Navier-Stokes equations (1) which provides the s-consistency of a new scheme
FDA1 that we have obtained by joining the equation (4) to the difference system
(3).

Figure 1 demonstrates dynamics of the numerical errors in computation of pres-
sure p for the three difference approximations, FDA1 and two s-consistent FDAs
(FDA2 and FDA3) constructed in [4], and for the Cauchy problem with initial data
taken according to (2). As one can see from the figure, the numerical behavior of
FDA1 is much better than that of FDA2 and FDA3. In doing so, FDA3 reveals
instability. The errors in u and v have similar behavior.
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Binomial partial difference ideals
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In [1], we present some basic concepts and properties of binomial difference
ideals. A natural question is that what about the partial difference case? The main
difference between the ordinary difference case and the partial difference case is
that in partial difference case, the difference operators may have relations and the
algorithms for the ordinary difference case can not be used directly.

Let F be a partial difference field, and σ1, . . . ,σm be m partial difference oper-
ators. F is said to be inversive if for any i such that σia ∈ F implies a ∈ F . Let
Θ be the multiplicative closed set with unit of these m partial difference opera-
tors. Let Y = {y1, . . . ,yn} be n difference indeterminates. Then, the elements of
F{Y} = F [Θy:

j j = 1, . . . ,n] are called partial difference polynomials over F in Y ,
and F{Y} itself is called the partial difference polynomial ring over F in Y . A
partial difference polynomial ideal I in F{Y} is an ordinary algebraic ideal which
is closed under transforming, i.e. σi(I) ⊂ I for any i. If I also has the property
that for any 1 ≤ i ≤ m, σia ∈ I implies that a ∈ I , it is called a reflexive partial
difference ideal. And a prime partial difference ideal is a partial difference ideal
which is prime as an ordinary algebraic polynomial ideal.

Since if F is not algebraically closed, Bentsen [2] show that one irreducible
polynomial may has no solution in its extension field. In order to avoid this, F is
assumed to be algebraically closed, inversive and of characteristic zero. We intro-
duce the following useful notation. Let x1, . . . ,xm be m algebraic indeterminates
and p = ∑ck1,...,km ∏m

i=1 xki
i ∈ Z[x1, . . . ,xm]. For a in any over field of F , denote

ap = ∏(σ ki
i a)ck1,...,km .

For instance, if m = 2, then ax2
1+2x2−1 = (σ2

1 a)(σ2a)2/a. It is easy to check that for
p,q ∈ Z[x1, . . . ,xm], and a,b in any over field of F , we have

ap+q = apaq,apq = (ap)q,(ab)p = apbp. (1)

For f = ( f1, . . . , fn)
τ ∈ Z[x1, . . . ,xm]

n, we define Y f = ∏n
i=1 y fi

i . Y f is called a
Laurent partial difference monomial in Y and f is called its support.

A Laurent partial difference polynomial over F in Y is an F-linear combination
of Laurent partial difference monomials in Y . Clearly, the set of all Laurent par-
tial difference polynomials form a commutative partial difference ring under the
obvious sum, product, and the partial difference operators σi, where all Laurent
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partial difference monomials are invertible. We denote the partial difference ring
of Laurent partial difference polynomials with coefficients in F by F{Y±}.

A polynomial ideal I is called binomial if it is generated by polynomials with
at most two terms. By a Laurent partial difference binomial in Y , we mean a partial
difference polynomial with two terms, that is, aY f1 +bY f2 where a,b∈F∗=F \{0}
and f1, f2 ∈ Z[x1, . . . ,xm]

n. A Laurent partial difference binomial of the following
form is said to be in normal form

p = Y f− cf (2)

A Laurent partial difference ideal is called binomial if it is generated by Laurent
partial difference binomials. Then, we have

Lemma 1 Let I be a Laurent binomial partial difference ideal and

L(I) := {f ∈ Z[x1, . . . ,xm]
n |∃cf ∈ F∗ s.t.Y f− cf ∈ I}. (3)

Then L(I) is a Z[x1, . . . ,xm] modular, which is called the support modular of I.

This lemma means that the properties of a Laurent binomial partial difference
ideal is related to its support modular.

Based on this lemma and the partial characteristic set method [3], we may
decompose the zero set of a Laurent binomial partial difference ideal I into a set of
prime ideals with their characteristic set are strong irreducible. Moreover, let m be
the monomial set in x1, . . . ,xm, if we denote by LS = {f∈Z[x1, . . . ,xm]

n|∃c∈Z,g∈
m,s.t.cg ∈ L}.

Theorem 1 Let I be a Laurent binomial partial difference ideal, L its support mod-
ular, and LS the saturation of L. Then {I} is either [1] or can be written as the inter-
section of Laurent reflexive prime binomial partial difference ideals whose support
modular is LS.

Definition 1 Let L be a Z[x1, . . . ,xm]-module in Z[x1, . . . ,xm]
n.

• L is called Z-saturated if, for any a ∈ Z and f ∈ Z[x1, . . . ,xm]
n, af ∈ L implies

f ∈ L.

• L is called x-saturated if, for any f ∈ Z[x1, . . . ,xm]
n, xif ∈ L implies f ∈ L for

any i.

• L is called saturated if it is both Z- and x- saturated.

Then, we have the following result
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Theorem 2 If F is algebraically closed and inversive, I is a non-trivial Laurent
binomial partial difference ideal and L its support modular, then

(a) L is Z-saturated if and only if I is prime;

(b) L is x-saturated if and only if I is reflexive;

(c) L is saturated if and only if I is reflexive prime.

Also, we have algorithms to check whether a given Z[x1, . . . ,xm] modular L
is Z-saturated(x-saturated) or not, and in the negative case, to compute the Z-
saturation(x-saturation) of L.

Using these algorithms, we can decompose the zero set of a binomial partial
difference ideal I into the union of the zero set of reflexive prime binomial partial
difference ideals.
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Given a system of polynomial difference equations F = 0,F = f1, . . . , fr, it is
often difficult to determine if the system has a solution, let alone what the solutions
are. Difference algebraically, this problem becomes one of determining member-
ship in the perfect difference ideal generated by F . A membership test for the
perfect difference ideal generated by a finite collection of difference polynomials
can also be used to test for difference algebraic dependencies of other difference
polynomials. It is thus essential to have algorithmic methods for determining mem-
bership in a perfect difference ideal, and to have complexity estimates for them.

An algorithm to solve this problem was developed in [1]. Given a finite system
of difference polynomials over the field of rational functions with automorphism
mapping f (x) ∈ Q(x) to f (x+1) ∈ Q(x), the algorithm ultimately produces what
the authors call a Ritt-Wu decomposition of the zero set of the given system. The
authors show that this algorithm will either output a useful decomposition of the
zero set to solve the system or indicate that the system has no solution. This then,
in addition, allows us to test for membership in the perfect difference ideal gener-
ated by a finite collection of difference polynomials.

For a complexity bound on this algorithm, we seek a bound on the orders of
the difference polynomials produced at each step of the algorithm in terms of the
original system. One of the key steps of the algorithm involves the computation of
difference ascending chains associated to the given collection of difference polyno-
mials. In this talk, we will present the first known theoretical upper bound for the
orders of the ascending chains produced in this algorithm. The bound depends on
the number of difference variables, the order and degree of the original system, and
the number of elements in the original system. We achieved this bound by proving
an effective version of the well-known result by Ritt and Doob which showed that
every strictly decreasing sequence of difference ascending chains is finite.
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Maple packages for the analysis of linear systems of
partial difference equations and applications
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This talk reviews work by the speaker and coauthors on Maple packages for the
analysis of linear systems of partial difference equations and related applications
[6, 11, 7, 8, 2].

The Maple package LDA [6, 8] has been developed by V. P. Gerdt and the
speaker since 2005. It implements algorithms for computing involutive bases [4]
for linear difference ideals and, more generally, for submodules of finitely gen-
erated free left modules over (not necessarily commutative) rings of difference
operators with coefficients in a difference field of characteristic zero.

A first application is the symbolic generation of finite difference schemes for
linear PDEs [6, 8]. An elementary integration method is applied to the integral
of the corresponding conservation equation, and in the resulting difference equa-
tions the partial derivatives of the unknown function are eliminated in favor of the
unknown function itself. Following this idea, standard difference schemes for the
Laplace, heat, wave, and advection equations and several difference schemes for
the Burgers’ and Falkowich-Kármán equations have already been generated sym-
bolically in [5]. A second application is the reduction of Feynman integrals, which
satisfy certain linear recurrence relations. Another application is a formal compu-
tational check of consistency of finite difference approximations of linear systems
of PDEs [7].

The Maple package OreModules [2] has been developed by F. Chyzak, A. Qua-
drat and the speaker since 2003. It implements methods of module theory and
homological algebra for Ore algebras. Modules over rings of difference operators
form a special case to which these methods can be applied. The available proce-
dures allow checks for various structural properties of systems of linear difference
equations using an algebraic analysis approach, cf., e.g., [1, 10, 12, 13], for in-
stance, controllability and parametrizability of the behavior.

Both Maple packages LDA and OreModules are freely available [6], [2].
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Solution to the Cauchy Problem of Difference Equation
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Algorithms for computing rational generating functions of solutions of one-
dimensional difference equations are well-known and easy to implement. We pro-
pose an algorithm for computing rational generating functions of solutions of two-
dimensional difference equations in terms of initial data of the corresponding initial
value problems. The crucial part of the algorithm is the reconstruction of infinite
one-dimensional initial data on the basis of finite input data. The proposed tech-
nique can be used for the development of similar algorithms in higher dimensions.
We furnish examples of implementation of the proposed algorithm.

The one-dimensional case is well-studied (see [1, 2]) due to the absence of
geometric obstacles. In [3], A. Moivre considered the power series

f (0)+ f (1)z+ . . .+ f (k)zk + . . .

with the coefficients f (0), f (1), . . . satisfying the difference equation

cm f (x+m)+ cm−1 f (x+m−1)+ . . .+ c0 f (x) = 0, x = 0,1,2 . . . , (1)

where cm 6= 0, and c j ∈C are constants. He proved that this series always represents
a rational function (De Moivre’s Theorem, [3]).

In the multidimensional case, which is not adequately explored (see [4, 5, 6, 7]),
the rational generating functions are the most useful class of generating functions
according to the Stanley’s hierarchy (see [8]). A broad class of two-dimensional se-
quences that lead to rational generating functions is well-known in the enumerative
combinatorics. For example, one can consider the problem of finding a number of
lattice paths, the problem on generating trees with marked labels, Bloom’s strings,
a number of placement of the pieces on the chessboard etc. (see [9, 10, 11]).

Generating functions for multiple sequences with elements which could be ex-
pressed in terms of rational, exponential functions or gamma function, form a wide
class of hypergeometric-type functions [12, 13]. Their study leads to the prob-
lem of solving overdetermined systems of linear equations with polynomial coef-
ficients.

A multidimensional analogue of the De Moivre Theorem was formulated and
proved in [15]. We now give some definitions and notations that we will need for
formulating the main result.
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Let x = (x1, . . . ,xn) ∈ Zn, where Zn = Z× . . .×Z is the n-dimensional integer
lattice. Let A = {α} be a finite set of points in Zn. Let f (x) be a function of integer
arguments x = (x1, . . . ,xn) with constant coefficients cα . By a difference equation
with respect to the unknown function f (x) we call the equation of the form

∑
α∈A

cα f (x+α) = 0. (2)

In the present work we consider the case when the set A belongs to the posi-
tive octant Zn

0 = {(x1, . . . ,xn),xi ∈ Z,xi ≥ 0, i = 1, . . . ,n} of the integer lattice and
satisfies to the condition:

There exists a point m = (m1, . . . ,mn) ∈ A such that for any α ∈ A the inequal-
ities

α j ≤ m j, j = 1,2, . . . ,n (3)

hold.
Denote the characteristic polynomial of (2) by

P(z) = ∑
α∈A

cαzα = ∑
α∈A

cα1,...,αnzα1
1 · · ·zαn

n .

The generating function (or the z-transformation) of the function f (x) in integer
variables x ∈ Zn

0 is defined as follows:

F(z) = ∑
x≥0

f (x)
zx+I , where I = (1, . . . ,1).

Define the «initial data set» for the difference equation (2) that satisfies the
condition (3), as follows:

X0 = {τ ∈ Zn,τ ≥ 0, τ 6≥ m}.

Here 6≥ means that the point τ belongs to the complement of the set defined by the
system of inequalities

τ j ≥ m j, j = 1, . . . ,n.

The initial value problem is set up as follows: we need to find the solution f (x)
of the difference equation (2), which coincides with a given function ϕ(x) on X0:

f (x) = ϕ(x), x ∈ X0. (4)

It is easy to show (see, e.g., [6]), that if the condition (3) holds, then the initial
value problem (2), (4) has the unique solution. The solvability of the problem (2),
(4) without the constraints (3) has been studied in [4].
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We now proceed with some more notations that we will need later on.
Let J = ( j1, . . . , jn), where jk ∈ {0,1}, k = 1, . . . ,n, be an ordered set. With

each such set J we associate the face ΓJ of the n-dimensional integer parallelepiped
Πm = {x ∈ Zn : 0≤ xk ≤ mk,k = 1, . . . ,n} as follows:

ΓJ = {x ∈Πm,xk = mk, if jk = 1,and xk < mk, if jk = 0}. (5)

For example, Γ(1,...,1) = {m} and Γ(0,...,0) = {x ∈ Zn,0≤ xk < mk, k = 1, . . . ,n}.
It is easy to check that Πm =

⋃
J

ΓJ and for any J,J′ the corresponding faces do

not intersect: ΓJ ∩ΓJ′ = /0.
Let Φ(z) = ∑

τ≥0.τ 6≥m

ϕ(τ)
zτ+I be the generating function of the initial data of the

solution of (2), (4). With each point τ ∈ ΓJ we associate the series

Φτ,J(z) = ∑
y≥ 0

ϕ(τ + Jy)
zτ+Jy+I ,

and with each face ΓJ we associate the series

ΦJ(z) = ∑
τ∈ ΓJ

Φτ,J(z).

If we extend the domain of ϕ(x) by zero on Zn
+ \X0, then the generating function

of the initial data can be written down as the sum

Φ(z) = ∑
J

ΦJ(z) = ∑
J

∑
τ∈ΓJ

Φτ,J(z).

Theorem 1. The generating function F(z) of the solution of the problem (2),(4)
under the assumption (3) and the generating function Φ(z) of the initial data are
connected by the formula

P(z)F(z) = ∑
J

∑
τ∈ΓJ

Φτ,J(z)Pτ(z), (6)

where Pτ(z) = ∑
α≤m,α 6≤τ

cαzα are polynomials.

For n = 1 it is easy to verify the statement of the Theorem 1.
For n = 2 Theorem 1 was proved in [14] in connection with studying the ra-

tional Riordan arrays. For n > 1 the proof was given in [15]. The properties of
generating function of solutions of a difference equation in rational cones of inte-
ger lattice were studied by T. Nekrasova (see, e.g., [16]).

Theorem 1 yields the following multidimensional analog of the De Moivre
Theorem that is essential for the construction of algorithm:
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Theorem 2. The generating function F(z) of the solution of the initial value
problem (2), (4) under the assumption (3) is rational if and only if the generating
function Φ(z) of the initial data is rational.

The proof of Theorem 2 was given in [15].
For n = 1 the expression for the generating function consists of a finite number

of terms, which makes the corresponding algorithm and computational procedure
trivial. In this case the input data consists of two finite sets of numbers, namely:
coefficients of the difference equation and the initial data. The output data of the
algorithm is a rational function.

In the case when n> 1, the initial data set X0 is infinite. For n= 2 the algorithm
for computing the generating function F(z) can be reduced to computation of a
finite number of one-dimensional generating functions of sequences with elements
along the coordinate axes. These elements are uniquely determined by coefficients
of the corresponding one-dimensional difference equation and by finite set of the
corresponding initial data (that is different for each sequence).

We use theorem 1 for the development some algorithms for computing rational
generation functions in the lattice paths problem, the level generation trees problem
in the dimension higher than two.

Example. Bloom studies the number of singles in all 2x x-length bit strings [11],
where a single is any isolated 1 or 0, i.e. any run of length 1. Let r(x,y) be the
number of x-length bit strings beginning with 0 and having y singles. Apparently
r(x,y) = 0 if x < y.

In [11] D. Bloom proves that r(x,y) is a solution to the Cauchy problem

r(x+2,y+1)− r(x+1,y+1)− r(x+1,y)− r(x,y+1)+ r(x,y) = 0

with the initial data ϕ(0,0)= 1,ϕ(1,0)= 0,ϕ(x,0)=ϕ(x−1,0)+ϕ(x−2,0), x≥
2,ϕ(0,y) = 0, y≥ 1,ϕ(1,1) = 1,ϕ(1,y) = 0, y≥ 2.

The result is the generating function of the considered initial value problem:

F(z,w) =
z−1

z2w− zw−w− z+1
.
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Computing difference algebraic relations among solutions
of linear differential equations
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While the classical Picard-Vessiot theory is concerned with the algebraic rela-
tions among the solutions of linear differential or difference equations, the param-
eterized Picard-Vessiot theory deals with algebraic relations among the solutions
and their transformations under various operations like differentiation, shifting or
scaling.

For example, the solution Jα(x) of Bessel’s differential equation

x2y′′+ xy′+(x2−α2)y = 0

satisfies the difference algebraic relation

xJα+2(x)−2(α +1)Jα+1(x)+ xJα(x) = 0.

This relation is witnessed by the associated Galois group, which is a difference
algebraic groups, i.e., a group defined by difference equations. We will provide
a computational perspective on how to compute these groups and find the corre-
sponding difference algebraic relations.
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Bistability— or more generally multistationarity—has important consequences
on the capacity of signaling pathways to process biological signals. Bistable
switches can act as memory circuits storing the information needed for later stages
of processing [19]. The response of bistable signaling pathways show hysteresis,
namely dynamic and static lags between input and output. Because of hystere-
sis, one can have in the same time sharp, all or nothing response and protection
against chatter noise. Bistability of signaling usually occurs as a result of acti-
vation of upstream signaling proteins by downstream components [2]. A differ-
ent mechanism for producing bistability in signaling pathways was proposed by
Kholodenko [14]. In this mechanism the cause of bistability are multiple phospho-
rylation/dephosphorylation cycles that share enzymes. A simple, two steps phos-
phorylation/dephosphorylation cycle is capable of ultrasensitivity, a form of all or
nothing response with no hysteresis (Goldbeter-Koshland mechanism). In multiple
phosphorylation/dephosphorylation cycles, enzyme sharing provides competitive
interactions and positive feedback that ultimately leads to bistability.

Algorithmically the task is to find the positive real solutions of a parameter-
ized system of polynomial or rational systems, since the dynamics of the network
is given by polynomial systems—arising from mass action kinetics—or rational
functions—arising in signaling networks when some some intermediates of the re-
action mechanisms are reduced. Due to the high computational complexity of this
task [10] considerable work has been done to use specific properties of networks
and to investigate the potential of bistability (or more general, multistationarity) of
a biological network out of the network structure and only to determine whether
there exist certain rate constants such that there are multiple steady states instead
of coming up with a semi-algebraic description of the range of parameters yielding
this property. These approaches can be traced back to the origins of Feinberg’s
chemical reaction network theory (CRNT) whose main result is that networks of
deficiency 0 have a unique positive steady state for all rate constants [9, 5]. For
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clever ways to use CRNT and other graph theoretic methods to determine in con-
trast the potential of multiple positive steady states we refer to [4, 16, 11] and to
[12] for a survey.

However, given a bistable mechanism it is important to compute the bistability
domains in parameter space, namely the parameter values for which there are more
than one stable steady states. The size of bistability domains gives the spread of
the hysteresis and quantifies the robustness of the switches. For this purpose the
work of Wang and Xia [15] is relevant: they used symbolic computation tools
to determine the number of steady states and their stability of several systems—
and they reported results up to a 5-dimensional system using specified parameter
values—but their method is extensible to parametric questions. However, we are
not aware of work on higher-dimensional systems for this context.

In this paper we use an 11-dimensional model of a mitogen-activated protein
kinases (MAPK) cascade [14] as a case study to investigate properties of the sys-
tem and algorithmic methods towards the goal of semi-algebraic descriptions of
parameter regions for which multiple positive steady states exist.

The MapK Network and the Arising System of Polynomials. The model of the
MAPK cascade we are investigating can be found in the Biomodels database [13]
as number 26 and is given by the following set of differential equations. We have
renamed the species names into x1, . . . ,x11 and the rate constants into k1, . . . ,k16 to
facilitate reading:

ẋ1 = k2x6 + k15x11− k1x1x4− k16x1x5

ẋ2 = k3x6 + k5x7 + k10x9 + k13x10− x2x5(k11 + k12)− k4x2x4

ẋ3 = k6x7 + k8x8− k7x3x5

ẋ4 = x6(k2 + k3)+ x7(k5 + k6)− k1x1x4− k4x2x4

ẋ5 = k8x8 + k10x9 + k13x10 + k15x11− x2x5(k11 + k12)− k7x3x5− k16x1x5

ẋ6 = k1x1x4− x6(k2 + k3)

ẋ7 = k4x2x4− x7(k5 + k6)

ẋ8 = k7x3x5− x8(k8 + k9)

ẋ9 = k9x8− k10x9 + k11x2x5

˙x10 = k12x2x5− x10(k13 + k14)

˙x11 = k14x10− k15x11 + k16x1x5

Using the left-null space of the stoichiometric matrix under positive conditions
as conservation constraint [8] we obtain the following three linear conservation
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constraints:

x5− k17 + x8 + x9 + x10 + x11 = 0,

x4− k18 + x6 + x7 = 0,

x1− k19 + x2 + x3 + x6 + x7 + x8 + x9 + x10 + x11 = 0,

where k17, k18, k19 are new constants computed from the initial data.

Computing complex solutions using homotopy solvers We estimate all param-
eters except k19 with values from Biomodels database as follows:

k1 = 0.02, k4 = 0.032, k7 = 0.045, k9 = 0.092, k15 = 0.086,

k2 = 1, k3 = 0.01, k5 = 1, k6 = 15, k8 = 1,

k10 = 1, k11 = 0.01, k12 = 0.01, k14 = 0.5, k13 = 1,

k16 = 0.0011, k17 = 100, k18 = 50.

Using the homotopy solver Bertini [1] we obtained the following results using
for k19 different parameter values found in the literature: For the parameter values
as above and k19 = 500 we obtained 6 solutions, of which 3 were positive real
solutions. For k19 = 200, a single positive solutions was obtained.

Determination of Parametric Multiple Steady States. Our focus to analyze
the system for multiple positive steady states is on methods based on real quan-
tifier elimination, which directly can deal with the quest of multiple positive real
solutions even in the presence of parameters. Although the method can handle ar-
bitrary numbers of parameters in principle, only one parameter has been left free
to come up with feasible computations.

Using a combination of Redlog [7, 17, 18, 6] and Qepcad B [3] we have ob-
tained the following results (using the estimates for the parameters except of k19 as
above):

1. For all positive choices of k19—extending to infinity—there is at least one
positive solution for (x1, . . . ,x11).

2. There is a breaking point β around k19 = 409.253 where the system changes
its qualitative behavior. We have exactly computed β as a real algebraic
number. For k19 < β there is exactly one positive solution for (x1, . . . ,x11).
For k19 > β there are at least 3 and at most 311 positive solutions for
(x1, . . . ,x11).
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The overall computation time for this parametric analysis has been les than
5 minutes.

Determining the Stability of the Fixed Points. For the numeric approximations
of the fixed points we numerically computed the eigenvalues of the Jacobian using
Maple. For k19 = 200 the single positive fixed point could be shown to be stable
in this way, whereas for k19 = 500 one of the three positive fixed points could be
shown to be unstable whereas two could be shown to be stable. Hence for k19 = 500
the system is indeed bistable.

A verification of the stability of the fixed points using the exact real algebraic
numbers and the Routh-Hurwitz criterion seems to be out of range of current meth-
ods for this example.

Conclusion and Future Work. Although the goal of semi-algebraic description
of the range of some parameters yielding bistable behavior could not be achieved
for the 11-dimensional system, which was used for the case study, our case study
shows that one is not too far off.

As there are many very relevant systems having dimensions between 10 and 20
it seems to be worth the effort to enhance the algorithmic methods and to come up
with improved implementations of them to solve this very important applications
problem for symbolic computation. In addition to improving the real quantifier
elimination methods, which can deal with the question of positive real solutions
in a parametric way directly, using methods that deal with complex solutions first
(such as Gröbner bases or regular chain methods) are a topic of future research.
A challenge for the latter methods are the parametric determination of the positive
real solutions out of the descriptions of the complex solutions.
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We study the planar Lotka-Volterra differential system of competition between
two competing species having a saddle in the first quadrant. We show that, under
certain conditions on the parameters of the system, one of the separatrices of the
saddle divides the first quadrant in two, and hence depending on the initial condi-
tions one of the species will extinct because the ω-limits are attracting nodes on
the axes. We study the probability of the species of surviving depending on the
initial choice of the parameters, providing an index κ .
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The sequences of the greedy branching or greedy trajectories are a special kind
of infinite paths of Bratteli-Vershik diagrams provided by a certain Markov pro-
cess. In these trajectories, the edge connecting two adjacent levels corresponds to
the maximum transition probability of Markov process. There is an important spe-
cial case of such process named the Plancherel process on 2D Young graph. The
greedy trajectories of this dynamical system allows to investigate the asymptotics
of the maximum dimensions of irreducible representations of symmetric group.
The similar trajectories on the Schur graph allows to obtain the similar results for
maximum dimensions of projective representations of symmetric group.

We present the results of a computer investigation of asymptotics for maxi-
mum dimensions of linear and projective representations of the symmetric group.
This problem reduces to the investigation of standard and strict Young diagrams
of maximum dimensions. We constructed some sequences for both standard and
strict Young diagrams with extremely large dimensions [2]. These sequences pro-
vide the estimations of maximum normalized dimension of Young diagrams. These
estimations are agreed with the Vershik conjecture [1] about the existence of the
limit of maximum normalized dimensions of 2D Young diagrams. Note that this
conjecture has not been proved yet. We studied the growth and oscillations of the
normalized dimension function in sequences of Young diagrams. Our approach is
based on analyzing the finite differences of their normalized dimensions [3]. This
analysis also allows us to give much more precise estimation of the hypothetical
limit constants.

There are no known exact analogue of the plancherel process for the case of 3D
Young diagrams. However, there is a special process on 3D Young graph which
supposedly has the property of asymptotical centrality instead of exact central-
ity. We present the results of computer investigation of greedy trajectories cor-
responding to this process. Some geometric properties of Young diagrams along
these trajectories will be presented as well. Also we present a special package for
manipulations with 2D and 3D Young diagrams and Young tableaux which was
developed in the frame of this work.

This work was supported by grant RSF 14-11-00581.

160



References
[1] A. M. Vershik and S. V. Kerov. "Asymptotic behavior of the maximum and generic dimen-

sions of irreducible representations of the symmetric group." Funktsional. Anal. i Prilozhen.,
19(1):25-36, 1985.

[2] Vasilyev N. N., Duzhin V. S. Building Irreducible Representations of a Symmetric Group
S(n) with Large and Maximum Dimensions. Informatsionno-upravliaiushchie sistemy [Infor-
mation and Control Systems], 2015, no. 3, pp. 17-22 (In Russian). doi:10.15217/issn1684-
8853.2015.1.17

[3] Vasiliev N. N., Duzhin V. S. A Study of the Growth of the Maximum and Typical Normalized
Dimensions of Strict Young Diagrams, 216 Journal of Mathematical Sciences 53-64 (2016).
http://doi.org/10.1007/s10958-016-2887-x

161



Symbolic Dynamics, Mixing and Entropy in the
Three-Body Problem

A. Mylläri 1, V. Orlov2 , A. Chernin 3, T. Mylläri1

1 St. George’s University, Grenada, West Indies, amyllari@sgu.edu
2 Sobolev Astronomical Institute, St. Petersburg State University, Russia
3 Sternberg Astronomical Institute, Moscow State University, Russia,

We use symbolic dynamics in the equal mass free-fall three-body problem.
Different methods to construct (in the process of numerical integration of trajecto-
ries) symbolic sequences allow one to demonstrate (and illustrate on the Agekian-
Anosova map) mixing, estimate entropies (Shannon, Markov and others), plot bi-
nary collision curves, etc.

We use Agekian-Anosova map (see Fig. 1) for the partitioning. It was used
to specify initial conditions so that to consider all possible configugurations: two
bodies are placed in the points (-0.5; 0) and (0.5; 0), then to consider all possible
geometric configurations, the third body should be placed inside the region D (Fig.
1). The system is projected to the region D according to the relative distances be-
tween bodies. There are six different projections possible, thus we get sequences
constructed from the alphabet {1; 2; 3; 4; 5; 6}. We also used partitions of the
homology region D into 3 and 4 parts, having alphabet of 3 and 4 symbols corre-
spondingly. A second approach is to fix some dynamical states (binary encounters,
triple encounters etc.) during the evolution of the triple system. We used double
and triple encounters to construct two more sequences with alphabets {1; 2; 3}.

Figure 2 shows typical distribution of entropy. To illustrate sensitivity to initial
conditions, one can plot a sequence of images visualizing consequently first, sec-
ond, third, etc. symbol in the sequence. Example (corresponding to 24th symbol in
the sequence) is given on the Figure 3.
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Figure 1: The Agekian-Anosova map (homology region D).

Figure 2: Values of the (Shannon) entropy in different parts of the Agekian-
Anosova map are represented by different colors. Low values are shown in blue;
high values are shown in light brown.
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Figure 3: Sensitivity to initial conditions: different colors correspond to different
symbol #24 in the symbolic sequence.
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In the qualitative theory of planar polynomial differential systems, there are
lots of results on their topological structures. But there are only few class of planar
polynomial differential systems whose globally topological phase portraits were
completely characterized. We consider quasi–homogeneous polynomial differen-
tial systems for their global dynamics. Homogeneous systems are a class of spe-
cial quasi–homogeneous systems. Many papers have characterized phase portraits
of homogeneous polynomial vector fields. Recently, García et al [2] provided
an algorithm to compute quasi–homogeneous but non–homogeneous polynomial
differential systems with a given degree and obtained all the quadratic and cu-
bic quasi–homogeneous but non–homogeneous vector fields. Aziz et al [1] char-
acterized all cubic quasi–homogeneous polynomial differential equations which
have a center. Liang et al [3] classified all quartic quasi–homogeneous but non–
homogeneous differential systems, and obtained all their topological phase por-
traits. Until now the topological phase portraits of all quintic quasi–homogeneous
but non–homogeneous differential systems have not been settled. We [4] first char-
acterize all quasi–homogeneous but non–homogeneous planar polynomial differ-
ential systems of degree five, and then among which we classify all the ones having
a center at the origin. Finally we characterize the global topological phase portraits
of quintic quasi–homogeneous but non–homogeneous differential systems.
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Similar to the way degenerate singular points of planar curves are desingular-
ized, so can singularities of vector fields in the plane

X = f (x,y)
∂
∂x

+g(x,y)
∂
∂y

be desingularized. The idea is to apply a singular change of coordinates so that in
the new set of coordinates, the singular point becomes more elementary and the
dynamics around the singular points becomes better understandable. This idea is
universal and need not be restricted to the plane, however in the plane there is a
result on the finiteness of the desingularization process for analytic vector fields.
This means that after a number of steps that could be carried out by a computer,
the singular points is replaced by an invariant locus containing at most a finite
number of semi-elementary singular points. This shows that the local study of
singular points can be automated. Singular points can be found numerically in the
case of polynomial X , and in that case, the study can be completed with a study at
infinity by means of a so-called Poincaré compactification or Poincaré-Lyapunov
compactification. We illustrate the implementation with P4 and briefly discuss P5.
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Local invariant sets of analytic vector fields
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In the theory of autonomous ordinary differential equations invariant sets play
an important role. In particular, we are interested in local analytic invariant sets
near stationary points. Invariant sets of the differential equation correspond to
invariant ideals of the associated derivation in the power series algebra. Poincaré-
Dulac normal forms are very useful in studying semi-invariants and invariant ide-
als. We prove that an invariant ideal with respect to a vector field, given in normal
form, is already invariant with respect to the semisimple part of its Jacobian at
the stationary point. This generalizes a known result about semi-invariants, that is
invariant sets of codimension 1. As an application, we consider polynomial sys-
tems and bound the total degree of possible polynomial semi-invariants under some
generic conditions.
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In [3], polynomially nonlinear state-space systems

ẋ(t) = f (x(t))+g(x(t)) ·u(t), y(t) = h(x(t)) (1)

and given algebraic varieties were considered. A variety V is said to be controlled
invariant w.r.t. (1) if we can find a polynomial state feedback law u(t) = α(x(t))
that causes the closed loop system ẋ(t) = ( f + gα)(x(t)) to have V as an in-
variant set. If this task can be achieved by a polynomial output feedback law
u(t) = β (y(t)), then V is called controlled and conditioned invariant. In this talk,
we want to generalise this concept from polynomial systems to rational ones and
also allow the feedback law to be rational. We give algebraic conditions for a va-
riety to be controlled (and conditioned) invariant for rational control systems and
algorithms (using methods from the theory of Gröbner bases), which may decide
this and produce corresponding state (or output) feedback laws.

References
[1] C. Schilli, E. Zerz and V. Levandovskyy, Controlled and conditioned invariant varieties for

polynomial control systems with rational feedback, Submitted to: Proceedings of the 22nd
international symposium on mathematical theory of networks and systems, 2016.

[2] C. Schilli, E. Zerz and V. Levandovskyy, Controlled and conditioned invariant varieties for
polynomial control systems, Proceedings of the 21st international symposium on mathematical
theory of networks and systems, pp. 1691-1698, 2014.

[3] E. Zerz and S. Walcher, Controlled invariant hypersurfaces of polynomial control systems,
Qualitative theory of dynamical systems, vol. 11, pp. 145-158, 2012.

168



Elementary and Darboux first integrals for planar
polynomial vector fields

J. Llibre1, C. Pantazi2, S. Walcher3

1 Universitat Autònoma de Barcelona, Spain, jllibre@mat.uab.cat
2 Universitat Politecnica de Catalunya, Spain, chara.pantazi@upc.edu
3 Lehrstuhl A für Mathematik, RWTH Aachen, Germany, walcher@mathA.rwth.aachen.de

It is well known (due to Singer’s results) that the existence of an elementary
first integral (over the field of rational functions) for a planar polynomial vector
field implies the existence of a first integral of a special form and also the existence
of a particular integrating factor of Darboux type. In this talk we present rather
general conditions that guarantee that the existence of an elementary first integral
yields to the existence of a Darboux first integral. Moreover, we provide a complete
characterization of such vector fields. Additionally, we provide some exceptional
cases of vector fields which admit elementary first integral constructed by algebraic
functions of degree two or three.
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Limit cycles in planar polynomial systems

J. Torregrosa

Universitat Autònoma de Barcelona, Spain torre@mat.uab.cat

A particular version of the 16th Hilbert’s problem is to estimate the number,
M(n), of limit cycles bifurcating from a singularity of center-focus type. The prob-
lem to finding lower bounds for M(n) for some concrete n can be done studying
the cyclicity for different weak-foci or centers. Since a weak-focus with high order
is the most current way to produce high cyclicity, we present systems with few
monomials with the highest known weak-focus order. Christopher in [1] proved
that under some assumptions the linear parts of the Lyapunov constants with re-
spect to the parameters give the cyclicity of an elementary center. We will show a
new approach, namely parallelization, to compute the linear parts of the Lyapunov
constants. More concretely, it is showed that parallelization computes these linear
parts in a shorter quantity of time than other traditional mechanisms. Christopher’s
approach can be applied also to the weak-focus case. For even n, the studied poly-
nomial system of degree n was the one obtained by [5] where the highest weak-
focus order is n2+n−2 for n = 4,6, . . . ,18. Moreover, we provide a system which
has a weak-focus with order (n−1)2 for n≤ 12. We also show by concrete exam-
ples that, in some families, this approach is so powerful and the cyclicity can be
obtained in a simple computational way. To show the power of this approach, we
study the cyclicity of the holomorphic center ż = iz+ z2 + z3 + · · ·+ zn under gen-
eral polynomial perturbations of degree n, for n ≤ 13. We prove that the cyclicity
of the holomorphic center is n2 + n− 2. This result give the highest lower bound
for M(6),M(7), . . . ,M(13) among the existing results.
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In 2001, Moulin-Ollagnier [1, 2] classified all families of two dimensional
Lotka-Volterra systems which have invariant algebraic curves. Twenty-five fam-
ilies of such curves were found using an essentially algebraic search. Our interest
is to re-evaluate these families in terms of their geometric behavior. Although we
are not able to provide a complete geometric proof of Moulin-Ollagnier’s result, we
are able to give geometric necessary conditions for the possible families of curves
of low degree and, in some of these cases, can also prove the sufficiency of these
conditions in purely geometric terms. The talk will be in two parts: the first will
give the background and some of the tools used and the second will give more de-
tailed examples. We will also show how this geometric understanding can be used
to extend the classification of integrable critical points in Lotka Volterra systems
started in [3]. This latter application is joint work with Zhaoxia Wang [4].
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In 2001, Moulin-Ollagnier [1, 2] classified all families of two dimensional
Lotka-Volterra systems which have invariant algebraic curves. Twenty-five fam-
ilies of such curves were found using an essentially algebraic search. Our interest
is to re-evaluate these families in terms of their geometric behavior. Although we
are not able to provide a complete geometric proof of Moulin-Ollagnier’s result, we
are able to give geometric necessary conditions for the possible families of curves
of low degree and, in some of these cases, can also prove the sufficiency of these
conditions in purely geometric terms. The talk will be in two parts: the first will
give the background and some of the tools used and the second will give more de-
tailed examples. We will also show how this geometric understanding can be used
to extend the classification of integrable critical points in Lotka Volterra systems
started in [3]. This latter application is joint work with Zhaoxia Wang [4].
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In this talk, we will discuss singularities of differential equations (as opposed
to singularities of solutions of differential equations) using a geometric approach.
A differential equation is considered as a submanifold of a jet bundle and a point on
this submanifold is a singularity, if it is a critical point for the restricted projection
to the base manifold. Thus one may consider this as a special case of the theory of
singularities of smooth maps between manifolds [1].

An important geometric structure on a differential equation is its Vessiot dis-
tribution [2] and singularities can be characterised by changes in its properties. In
the case of ordinary differential equations, the Vessiot distribution is generally one-
dimensional and thus locally generated by a single vector field. At a regular sin-
gularity the distribution becomes vertical (but remains one-dimensional), whereas
at an irregular singularity its dimension jumps. One can show that generically any
vector field that generates the Vessiot distribution outside an irregular singularity
vanishes when continued to the singularity [3].

In the talk we will show how the analysis of the local solution behaviour around
an irregular singularity can thus be reduced to the analysis of a stationary point of
an autonomous dynamical system. We will furthermore discuss the special case of
a quasi-linear system (which is dominant in applications) [4]. Here we will first
show that the Vessiot distribution becomes projectable and thus the problem can
be considered at a lower order. Furthermore, we will show that this fact allows for
genuine quasi-linear phenomena not present in general fully non-linear equations.
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In this talk, we will discuss the existence and non-uniqueness of solutions of
intial value problems for quasi-linear ordinary differential equations where the ini-
tial condition corresponds to a singular point of the equation.
In the literature there are many publications (e.g. [2] and [3]), even monographs
[1], where the authors solve this problem with analytic methods, such as fixed-
point theorems or sub- and super-solutions, for quasi-linear differential equations
of orders one and two. In this talk we will use for our analysis the differential
geometric approach presented by Werner M. Seiler in A Dynamical Systems Ap-
proach to Singularities of Ordinary Differential Equations, that is, we will consider
a quasi-linear differential equation as a submanifold of a jet bundle equipped with
a geometric structure, the Vessiot distribution. Singular points on the differential
equation are critical points for the restricted projection to the base manifold. They
can be characterised by changes in the properties of the Vessiot distribution.
In the case of a quasi-linear differential equation, the Vessiot distribution is pro-
jectable to the next lower jet bundle and we will work there. In this situation, points
where properties of the projected Vessiot distribution change will be called impasse
points to distinguish them from singular points on the differential equation. For us
a generalised solution will be an invariant one-dimensional submanifold with re-
spect to a generator of the projected Vessiot distribution.
In this talk, we are interested in the behaviour of generalised solutions of a quasi-
linear differential equation near an impasse point. More precisely, we will dis-
cuss the existence and non-uniqueness of generalised solutions starting at or going
through such a point. We will place emphasis on impasse points where the pro-
jected Vessiot distribution vanishes, since they are stationary points of the corre-
sponding dynamical system. We will apply methods from the theory of dynamical
systems to examples of quasi-linear differential equations of orders one and two to
analyse there the behaviour of their generalised solutions. In addition we will treat
the special case of an autonomous second order quasi-linear differential equation.

References
[1] R.R. Agarwal, D. O’Regan, Singular Differential and Integral Equations with Applications,

Kluwer, Dordrecht, 2003.

174



[2] Jianfeng Liang, A singular initial value problem and self-similar solutions of a nonlinear
dissipative wave equation, Journal of Differential Equations, 246, pp. 819-844 (2009).

[3] Pavol Brunovsky, Ales Cerny, Michael Winkler, A singular differential equation stemming
from an optimal control problem in financial economics, arXiv:1209.5027.

175



S7
Information Services for

Mathematical Software, Models,
and Research Data

176



Information services for mathematical research data

W. Sperber1

1 FIZ Karlsruhe, Berlin, Germany, wolfram@zentralblatt-math.org

Publications are the classical means of mathematical information and commu-
nication containing also some classes of mathematical research data, especially
models and objects But the advent of the computer has changed the situation. Typ-
ically, mathematical software is an own object not contained in publications. But
the use of mathematical software becomes more and more important. Informa-
tion services for mathematical software and other research data are challenging for
some reasons:

• Mathematical software is written in a formal language and requires special
data formats.

• Mathematical software is dynamic.

• Widely accepted standards for the description and content analysis, main-
taining and archving of information about mathematical software are miss-
ing.

The talk discusses the spectrum of mathematical research data and a method to
build information services for mathematical research data, the so-called publication-
based approach. It seems to be that the publication-based approach is an effective
means for the development of some information services for mathematical research
data, especially directories and search engines. The concept bases on the fact that
mathematical software is often accompanied by publications. This can be used to
identify references to mathematical research data as well as to gain and evaluate
information about mathematical research data via mathematical publications. The
possibilities and limits of the publication-based approach are analyzed.
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The swMATH service for mathematical software - state of
the art and perspectives

Hagen Chrapary1, Winfried Neun2
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2 Zuse Institute Berlin (ZIB), Berlin, Germany, neun@zib.de

The swMATH service is an open access portal for mathematical software and
linked objects (benchmarks, data sets, languages, web services). It provides in-
formation on more than 13,000 items in all mathematical fields and lists nearly
125,000 scientific publications citing the software. We compare the swMATH in-
formation about Computer Algebra Software (CAS) with similar Web resources in
symbolic computation, e.g. Wikipedia, SIGSAM or the German Computer Alge-
bra Special Interest Group. The focus is on automatically generated information
from our publication-based approach. As an example we present a software profile,
which provides summarized information based on the Mathematical Subject Clas-
sification (MSC) tags of articles in the zbMATH database. An overview of open
problems and next steps towards a better embedding of swMATH into scholarly
communication will be given. We illustrate our concept with an online demonstra-
tion.
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The SYMBOLICDATA Project – a Community Driven
Project for the CA Community

H.-G. Gräbe
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1 Introduction

A central phenomenon of the emerging digital age is the increasing importance of
a sustainably and reliably available digital interconnection infrastructure for many
areas of every day life. This distinguishes the digital age from the computer age
that focused on penetration of every day life with compute power rather than in-
terconnectedness. With “ubiquitous computing” such a penetration with compute
power reached a high level of saturation, but is in no way at its end as is demon-
strated by the development of modern sensor and actor systems as “cyber-physical
systems” and its applications within “industry 4.0”.

During the last years the sensibility to the importance of investments also into
a modern digital research infrastructure remarkably increased. It was continuously
discussed on the “big” stage of research politics between different stakeholders,
see e.g., [11, 12]. The disposition to invest into the development of an appropriate
digital infrastructure heavily depends on the visibility of the demand, whereas the
demand develops with the productiveness of the available infrastructure – a typ-
ical chicken-and-egg problem, that can only be addressed in the socio-technical
context of a problem-aware community. Such a community should have a good
understanding of the importance of the advancement of its own research infras-
tructure and the ability to set up a socio-communicative process to coordinate the
development of its own demands and activities in the desired direction.

Digital infrastructures are not only well suited to exchange research data and
make it publicly available, but also proved valuable as technical basis of “social
networks” to promote such socio-communicative coordination processes. Nowa-
days in many cases different channels and means are used for these purposes, but it
is due time to combine conceptually and also in practice both aspects of a research
infrastructure.

With the advancement of the SYMBOLICDATA Project towards a Computer
Algebra Social Network (CASN) we pursued such a concept in a specific context
for several years. We started to investigate questions of intra- and intercommunity
communication in correlation with practical aspects of the community driven de-
velopment of a decentrally organized, distributed semantic-aware digital research
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infrastructure within the specific research domain of symbolic and algebraic com-
putations (CA) coarsely defined by the MSC 2010 classification code 68W30 –
a medium sized scientific community, that splits into a number of subcommuni-
ties. These CA subcommunities are organized around special research topics and
in many cases already managed to organize and consolidate their own intracom-
munity digital research infrastructures.

In our talk we address relevant questions, observations, and experience of our
endeavor to develop and provide technical means to support the emergence of a
digital research infrastructure on the intercommunity level. We discuss lessons to
be learned from these activities and hurdles and obstructions to generalize intra-
community experience to an intercommunity level within the CA domain.

We propose to deploy a special RDF-based architecture of CASN nodes oper-
ated by different CA subcommunities and CA groups along the rules of the Linked
Open Data Cloud [8]. To ensure interoperability, this should be accompanied by a
strong social intercommunity communication process to develop a common data
architecture of data models and its ontological standards of representation based
on well established semantic web concepts and using standard semantic web tech-
nology.

2 The SYMBOLICDATA Project as Community Project

The allocation of resources for a sustainably available research infrastructure seems
to be a great challenge in particular to smaller scientific communities. The SYMBO-
LICDATA Project witnesses the peaks and troughs of such efforts. It grew up from
the Special Session on Benchmarking at the 1998 ISSAC conference in a situation
where the research infrastructure built up within the PoSSo [10] and FRISCO [3]
projects – the Polynomial Systems Database – was going to break down. After
the end of the projects’ fundings there was neither a commonly accepted process
nor dedicated resources to keep the data in a reliable, concise, sustainably and dig-
itally accessible way. Even within the ISSAC Special Session on Benchmarking
the community could not agree upon a further roadmap to advance that matter.

At those times almost 20 years ago most of the nowadays well established con-
cepts and standards for storage and representation of research data did not yet exist
– even the first version of XML as a generic markup standard had to be accepted by
the W3C. It was Olaf Bachmann and me who developed during 1999–2002 with
strong support by the Singular group concepts, tools and data structures for a struc-
tured representation and storage of this data and prepared about 500 instances from
Polynomial Systems Solving and Geometry Theorem Proving to be available within
this research infrastructure, see [1].
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The main conceptual goal was a nontechnical one – to develop a research in-
frastructure that is independent of (permanent) project funding but operates based
on overheads of its users. This approach was inspired by the rich experience of the
Open Culture movement “business models” to run infrastructures. During the last
ten years with Open Access, Open Data and the emerging semantic web the general
understanding of the importance of such community-based efforts to develop com-
mon research infrastructures matured. This development was accompanied with
conceptual, technological and architectural standardization processes that had also
impact on the development of concepts and data structures within the SYMBOLIC-
DATA Project.

In 2009 we started to refactor the data along standard Semantic Web concepts
based on the Resource Description Framework (RDF). With SYMBOLICDATA ver-
sion 3 released in September 2013 we completed a redesign of the data along
RDF based semantic technologies, set up a Virtuoso based RDF triple store and
an SPARQL endpoint as Open Data services along Linked Data standards [8], and
started both conceptual and practical work towards a semantic-aware Computer
Algebra Social Network [5].

In March 2016 version 3.1 of the SYMBOLICDATA tools and data was released.
On the level of research tools and data the new release contains new resource de-
scriptions (“fingerprints” in the notion of [5]) of remotely available data on transi-
tive groups (Database for Number Fields of Gunter Malle and Jürgen Klüners [7])
and polytopes (databases of Andreas Paffenholz [9] within the polymake project
[4]), a recompiled and extended version of test sets from integer programming –
work by Tim Römer (normaliz group [2]) – and an extended version of the SDEval
benchmarking environment – work by Albert Heinle [6].

The main development is coordinated within the SYMBOLICDATA Core Team
(Hans-Gert Gräbe, Ralf Hemmecke, Albert Heinle) with direct access to our public
github account https://github.com/symbolicdata. We refer to the SYMBO-
LICDATA Wiki [13] for more details about the project and the new release.

3 The CA Community and its Subcommunities

During the last years the SYMBOLICDATA Project adjusted its focus to address
more general technical and social aspects of a semantically enriched research in-
frastructure within the domain of Computer Algebra based on RDF for representa-
tion of intercommunity and relational information. Such a change of the focus had
its impact on several earlier design decisions of the data store itself.

Enlarging the database of SYMBOLICDATA we gained the following experi-
ence:
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• The CA community consists of several subcommunities with own concepts,
notational conventions, semantic-aware tools and established communica-
tion structures.

There is no need to duplicate such structures but to support the subcommu-
nities to enrich semantically these communication processes.

• We provide structural metadata (“fingerprints” in the notion of [5]) of the
different data sets at our central RDF store but not necessarily duplicate the
data itself.

Thus we rely on sustainably available research infrastructures of CA sub-
communities and restrict our activities to a central search and filter service
on the metadata level to find and identify data. This service is based on
a generic semantic web concept, the SPARQL query language, and can be
operated via our SPARQL endpoint.

• RDF is a useful and meanwhile well established standard for metadata and
relational information, but there is no need and one cannot expect from CA
subcommunities to give up established notational conventions in favor of
RDF or XML markup for their primary sources.

4 About the CASN Architecture

The CASN subproject tries to embed aspects of the maintenance of the SYMBO-
LICDATA data store into a more general process of formation of a semantically
enriched social network of academic communication within the CA community in
the sense of a (social) “web of people”.

A first roadmap towards such a CASN and our experimental setting was de-
scribed in [5] and developed further during the last years. We try not to “reinvent
the wheel” but to address step by step the already existing “CA memory” – a huge
number of very loosely related web pages about conferences, meetings, working
groups, projects, private and public repositories, private and public mailing lists etc.
Hence the main focus towards CASN is to develop a framework based on modern
semantic technologies for a decentralized network that increases the awareness of
the different parts of that already existing “CA network”.

We realized that this network itself is an “overlay network” that connects a
greater number of research networks of individuals around special topics with own
lightweight research infrastructures. It is an interesting challenge for semantic con-
cepts to support the requirements of intercommunity communication to exchange
semantic content on different levels and different levels of detail.

As a coarse architectural concept to establish such a network we propose
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• to operate a central RDF store with SPARQL endpoint providing the full
bandwidth of Linked Open Data services and

• to convert nodes of the “CA memory” into CASN nodes providing part of
their data in structured RDF format for easy access and exchange.

SYMBOLICDATA version 3.1 is a first step in that direction since several data from
the formerly separate CASN RDF store are now integrated within the SYMBOLIC-
DATA main RDF store and the experimental setting of the semantic support of the
website of the German Fachgruppe [14] was reorganized as a first CASN node.
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Benchmarks for and Quality Evaluation of CAS

Albert Heinle1

1 University of Waterloo, Waterloo, Ontario, Canada

The symbolic computation community designs and implements algorithms on
a regular basis, solving problems coming from a variety of topics. Quite often
improvements on existing implementations are presented, and their advantages are
illustrated with tables of computation timings.

The inputs chosen for these timings are usually either obtained by random gen-
eration, or by selection from examples in the literature. This is absolutely ac-
ceptable practice if an implementation for an algorithm is the only one available.
However, it becomes hard to evaluate the quality of multiple implementations of
the same algorithm, if every developer team presents the resource consumption of
their program using individually chosen inputs.

In many sub-areas of the symbolic computation community, we are in the sit-
uation that we can pick from a great selection of implementations. Yet, there is
no community-wide agreed-upon set of inputs, with which the performance of ev-
ery new and existing implementation can be evaluated in a fair and independent
way. Hence, the assessment of new software is currently difficult for reviewers and
developers.

After having a unified set of inputs, the other great challenge is to find a way
to create and verify the presented timings in a transparent and reproducible way.

Other communities have already introduced such benchmarking practice, and
for industry-relevant software this is a must. For example, one of the most rigorous
and well thought-through framework was developed by and for the Satisfiability
community (SAT / SMT), namely STAREXEC1.

Databases containing relevant examples can be found throughout our com-
munity. Hence, we are close to being able to establish a good benchmarking
practice. We will discuss current challenges and identified needs of the com-
puter algebra community, and present the benchmarking framework SYMBOLIC-
DATA:SDEVAL2.

1https://www.starexec.org
2http://wiki.symbolicdata.org/SDEval

184



S8
Algebraic and Algorithmic
Aspects of Differential and
Integral Operator Session

185



Algebraic Theory of Linear Partial Differential Algebraic
Equations
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We discuss general, i. e. also under- and overdetermined, systems of linear par-
tial differential equations (sometimes also called linear partial differential alge-
braic equations) using algebraic techniques like Gröbner or involutive bases. The
main emphasis is on the construction of formally well-posed initial value problems
where for every choice of formal power series as initial data a unique formal power
series solution exists. This problem is essentially equivalent to finding complemen-
tary combinatorial decompositions for monomial modules. In addition, we show
how the theory of Gröbner bases for ideals of linear differential operators leads
natural to index concepts that can be directly defined for systems of partial differ-
ential equations without the need to reduce first to ordinary differential algebraic
equations (e. g. via semi-discretisations or integral transforms).
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It is well known that for a first order system of linear difference equations with
rational function coefficients, a solution that is holomorphic in some left half plane
can be analytically continued to a meromorphic solution in the whole complex
plane. The poles stem from the singularities of the rational function coefficients
of the system. Just as for systems of differential equations, not all of these sin-
gularities necessarily lead to poles in a solution, as they might be what is called
removable. In our work, we show how to detect and remove these singularities and
further study the connection between poles of solutions, removable singularities
and the extension of numerical sequences at these points.
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Deciding Rational Solvability of First-Order Algebraic
Ordinary Differential Equations
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The question of determining general solutions of an algebraic ordinary differ-
ential equation (AODE) has a long history, dating back to the work of L. Fuchs
and H. Poincaré. Rational general solutions have been investigated by Feng and
Gao ([2]), Chen and Ma ([1]) and Ngô and Winkler ([7]). Consider F(x,y,y′) = 0,
a first-order AODE, where F is an irreducible polynomial in three variables over
an algebraically closed field K. Replacing y′ by a new indeterminate z, we ob-
tain an algebraic equation F(x,y,z) = 0 which defines a plane algebraic curve
C := {(a,b) ∈ A2(K(x)) |F(x,a,b) = 0} over the field K(x) of algebraic func-
tions. We call it the corresponding algebraic curve. A parametrization of C is
a rational map P : A1(K(x))→ C such that the image of P is dense in C with re-
spect to Zariski topology. If furthermore P is a birational equivalence, it is called
a proper parametrization. It is well-known that exactly the curves of genus 0 are
parametrizable. A parametrization is represented as a pair of rational functions, say
P =(p1(t), p2(t)), with coefficients in K(x). If the curve C is parametrizable, then
it has a proper parametrization P whose coefficients lie in an algebraic extension
field of K(x) of degree at most 2 over K(x). A parametrization is called optimal if
its coefficients lie in an algebraic extension field of lowest algebraic extension de-
gree. In [4, 8] we find algorithms for computing optimal parametrizations over the
rational numbers Q as well as Q(x). We have extended this optimal parametrization
algorithm to work over K(x), and we see that a rational curve defined over K(x)
can always be parametrized over K(x).

A rational solution of the differential equation F(x,y,y′) = 0 is a rational func-
tion y(x) ∈ K(x), such that F(x,y(x),y′(x)) = 0. A solution y(x) of the AODE is
called a strong rational general solution, if y = y(x,c) ∈ K(x,c)\K(x) where c is a
transcendental constant over K(x).

We show that if the differential equation F(x,y,y′) = 0 has a strong rational
general solution, then its corresponding curve is of genus 0. Furthermore, if the
corresponding algebraic curve of the differential equation F(x,y,y′) = 0 is of genus
0, and P = (p1, p2) ∈ K(x, t)2 is an optimal parametrization, then there is a one-
to-one correspondence between strong rational general solutions of the differential
equation F(x,y,y′) = 0 and strong rational general solutions of a quasi-linear asso-
ciated AODE. Since the associated AODE is of first order and of first degree, we
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know by Fuchs [3] that it admits a strong rational general solution only if it is a
linear or a Riccati equation. A linear equation of order one can be solved easily by
integration. For Riccati equations, we refer to a complete algorithm for finding all
rational solutions provided by Kovacic [6]. Hence, a complete decision algorithm
for the existence of a strong rational general solution of a first-order AODE can be
given.
Example. (Example 1.537 in Kamke [5]) We consider the differential equation
F(x,y,y′) = (xy′ − y)3 + x6y′ − 2x5y = 0. Its corresponding curve has a strong
rational parametrization

P(t) =
(
− t3x5− t2x6 +(t− x)3

t3x5 ,−2t3x5−2t2x6 +(t− x)3

t3x6

)
.

Hence, the associated differential equation with respect to P is ω ′ = 1
x2 ω(2ω−x).

This is a Riccati equation and we can determine a rational general solution ω(x) =
x

1+cx2 . Hence, the differential equation F(x,y,y′) = 0 has the rational general solu-
tion y(x) = cx(x+ c2).
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Difference-Differential Dimension Polynomials and their
Invariants

Alexander Levin

The Catholic University of America, USA, levin@cua.edu

Let K be an inversive difference-differential field of zero characteristic with
basic sets of derivations ∆ = {δ1, . . . ,δm} and automorphisms σ = {α1, . . . ,αn}
(any two mapping from the set ∆∪ σ commute). Let Θ and Γ denote the free
commutative semigroup generated by ∆ and free commutative group generated by
σ , respectively. The orders of elements θ = δ k1

1 . . .δ km
m ∈Θ and γ = α l1

1 . . .α ln
n ∈ Γ

are defined as

ord θ =
m

∑
i=1

ki and ord γ =
n

∑
j=1
|l j|,

respectively. Furthermore, for any r ∈ N, we set

Θ(r) = {θ ∈Θ | ord θ ≤ r} and Γ(r) = {γ ∈ Γ | ord γ ≤ r}.
Let Λ be the semigroup of all power products λ = δ k1

1 . . .δ km
m α l1

1 . . .α ln
n (ki ∈N, l j ∈

Z). We define the orders of λ with respect to the sets ∆ and σ as ord∆ λ = ∑m
i=1 ki

and ordσ λ = ∑n
j=1 |l j|, respectively, and set

Λ(r,s) = {λ ∈ Λ | ord∆ λ ≤ r, ordσ λ ≤ s} (r,s ∈ N).

In what follows, ”difference” always means ”inversive difference” (that is, we con-
sider both positive and negative powers of the basic translations αi). Furthermore,
we will use prefixes ∆-, σ - and ∆-σ - instead of adjectives ”differential”, ”differ-
ence” and ”difference-differential” , respectively. If η = {η1, . . . ,ηp} is a finite
subset of a ∆-σ -field extension of K, we write K〈η〉 for the ∆-σ -field extension of
K generated by η (as a field, K〈η〉 = K({λ (ηi) |λ ∈ Λ, 1 ≤ i ≤ p}) ). The differ-
ential (∆-) and inversive difference (σ -) field extensions of K generated by the set
η are denoted by K〈η〉∆ and K〈η〉σ , respectively.

With the above notation, as it is shown in [4], there exist polynomials
χ∆

η |K(t), χσ
η |K(t) ∈Q[t] such that

χ∆
η |K(r) = σ - tr.degK K〈Θ(r)η〉σ and χ∆

η |K(r) = ∆- tr.degK K〈Γ(r)η〉∆
for all sufficiently large r ∈ N. (If M is a subset of Θ or Γ, then Mη denotes the
set {µ(ηi) |µ ∈M, 1≤ i≤ p}.) Furthermore, it is proved in [1] that there exists a
polynomial in two variables ψη |K(t1, t2) ∈Q[t1, t2] such that

ψη |K(r,s) = tr.degK K({λ (ηi) | ord∆ λ ≤ r, ordσ λ ≤ s, 1≤ i≤ p})
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for all sufficiently large r,s ∈ N.

These polynomials (called dimension polynomials of the ∆-σ -field extension
L = K〈η〉 associated with the system of ∆-σ -generators η), generally speaking,
depend on the set η . However, they carry certain invariants that are independent
of η and therefore characterize the extension L/K itself. In this talk we will de-
scribe these invariants in terms of differential, difference and difference-differential
transcendence degrees and Krull-type dimension of field extensions. We will also
discuss methods of computation of dimension polynomials and generalizations of
the results on their invariants to the case of a difference-differential field extension
with arbitrary partition of basic sets of derivations and translations. (The existence
of the corresponding multivariate dimension polynomials was proved in [2] and [3,
Section 4.2].)
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Thomas Decomposition and Nonlinear Control Systems
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This talk presents joint work with Markus Lange-Hegermann. We apply the
Thomas decomposition technique to nonlinear control systems, in particular to the
study of the dependence of the system behavior on parameters. Thomas’ algorithm
is a symbolic method which splits a given system of nonlinear partial differential
equations into a finite family of so-called simple systems which are formally inte-
grable and define a partition of the solution set of the original differential system.
Different simple systems of a Thomas decomposition describe different structural
behavior of the control system in general. We give a short introduction to the
Thomas decomposition method and show how notions such as invertibility, ob-
servability and flat outputs can be studied. A Maple implementation of Thomas’
algorithm is used to illustrate the techniques on explicit examples.

References
[1] T. Bächler, V. P. Gerdt, M. Lange-Hegermann and D. Robertz, Algorithmic Thomas Decom-

position of Algebraic and Differential Systems, J. Symbolic Comput. 47, 10, pp. 1233–1266
(2012).

[2] T. Bächler and M. Lange-Hegermann, AlgebraicThomas and DifferentialThomas:
Thomas decomposition of algebraic and differential systems, freely available at
http://wwwb.math.rwth-aachen.de/thomasdecomposition.

[3] G. Conte, C. H. Moog and A. M. Perdon, Nonlinear control systems, vol. 242 of Lecture Notes
in Control and Information Sciences, Springer, London, 1999.

[4] S. Diop, Elimination in control theory, Math. Control Signals Systems 4, 1, pp. 17–32 (1991).
[5] S. Diop, Differential-algebraic decision methods and some applications to system theory, The-

oret. Comput. Sci. 98, 1, pp. 137–161 (1992).
[6] M. Fliess and S. T. Glad, An Algebraic Approach to Linear and Nonlinear Control, in: H. L.

Trentelman and J. C. Willems (eds.), Essays on Control: Perspectives in the Theory and its
Applications, pp. 223–267, Birkhäuser, Boston, 1993.

[7] M. Fliess, J. Lévine, P. Martin and P. Rouchon, Flatness and defect of non-linear systems:
introductory theory and examples, Internat. J. Control 61, 6, pp. 1327–1361 (1995).

[8] V. P. Gerdt, On decomposition of algebraic PDE systems into simple subsystems, Acta Appl.
Math. 101, 1-3, pp. 39–51 (2008).

[9] M. Lange-Hegermann and D. Robertz, Thomas decompositions of parametric nonlinear con-
trol systems, in: Proceedings of the 5th Symposium on System Structure and Control, Greno-
ble, France, pp. 291–296, 2013.

192



[10] M. Lange-Hegermann and D. Robertz, Thomas Decomposition and Nonlinear Control Sys-
tems, submitted for publication.

[11] H. Nijmeijer and A. van der Schaft, Nonlinear dynamical control systems, Springer, New
York, 1990.

[12] V. Levandovskyy and E. Zerz, Obstructions to genericity in study of parametric problems in
control theory, in: H. Park and G. Regensburger (eds.), Gröbner bases in control theory and
signal processing, vol. 3 of Radon Ser. Comput. Appl. Math., pp. 127–149. Walter de Gruyter,
Berlin, 2007.

[13] J.-F. Pommaret, Partial differential control theory, vol. 530 of Mathematics and its Applica-
tions, Kluwer, Dordrecht, 2001.

[14] J.-F. Pommaret and A. Quadrat, Formal obstructions to the controllability of partial differen-
tial control systems, in: Proceedings of IMACS, Berlin, Germany, vol. 5, pp. 209–214, 1997.

[15] D. Robertz, Formal Algorithmic Elimination for PDEs, vol. 2121 of Lecture Notes in Mathe-
matics, Springer, Cham, 2014.

[16] J. M. Thomas, Differential Systems, vol. XXI of American Mathematical Society Colloquium
Publications, American Mathematical Society, New York, N. Y., 1937.

193



Polylogarithms at the multi-indices of non-positive integers
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Abstract

We extend the definition and construct several bases for polylogarithms
LiT , where T are recognizable, by a finite state (multiplicity) automaton and
of alphabet X = {x0,x1}1. The kernel of the “polylogarithmic map” Li• is
also characterized and provides a rewriting process which terminates to a
normal form. We mostly concentrate on the algebraic aspects of this exten-
sion.

As a matter of fact, the interest of rational series is twofold: algebraic and
analytic. Firstly (from the algebraic point of view) they are closed under shuffle
products and the shuffle exponential of letters (and their linear combinations, see
the paragraph about the algebra “star of the plane”) is precisely their Kleene star.
On the other hand the growth of their coefficients is tame2 [9, 23, 24] and, as
such, their associated polylogarithms can be (in the domain Dom(Li)) rightfully
computed [15, 19, 21, 22]. Doing this, we recover many functions (as the simple
polynomials), forgotten in the straight algebra of polylogarithms. Let us, now, go
into details, using the notations of [1, 26].

1. We denote Crat〈〈X〉〉 the closure of C〈X〉 by rational operations {+,conc, ∗}
[1]. This space is closed by shuffle product and, for any a0,a1 ∈ C, one has

(a0x0 +a1x1)
∗ = (a0x0)

∗ tt(a1x1)
∗

∆tt ((a0x0 +a1x1)
∗) = (a0x0 +a1x1)

∗⊗ (a0x0 +a1x1)
∗.

In here, we denote S∗ = ∑n≥0 Sn,∀S ∈ C〈X〉. By the Kleene-Schützenberger theo-
rem, a power series S belongs to Crat〈〈X〉〉 iff it is recognizable by an automaton ad-
mitting a linear representation (β ,µ,γ) of dimension n≥ 1, with β ∈Mn,1(C),γ ∈
M1,n(C),µ : X∗ 7→Mn,n(C) (a multiplicative morphism). For any w ∈ X∗, one has
〈S | w〉= β µ(w)γ (see [1, 6]).

1The space of rational series considered here is (C〈X〉tt Crat〈〈x0〉〉tt Crat〈〈x1〉〉,tt ,1X∗), it is a
subspace of Dom(Li).

2i.e. for such a rational series S over X , their exists a real K > 0 and a positive real morphism
χ such that, for any word w over the monoid X∗, the coefficient | 〈S | w〉 | is majorated by K× χ(w)
[6, 9, 23, 24].
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2. We consider also the differential forms ω0(z) = z−1dz, ω1(z) = (1− z)−1dz and
denote Ω the cleft plane C\ (]−∞,0]∪ [1,+∞[) and λ (z) the rational fraction z(1−
z)−1 belonging to the differential ring C := C[z,z−1,(1− z)−1], endowed with the
differential operator ∂z := d/dz and with the element 1Ω : Ω→ C, as unit (i.e., for
any z ∈Ω,1Ω(z) = 1).

In continuation of [7, 9], the principal object of the present work is the poly-
logarithm function, well defined for any r-uplet (s1, . . . ,sr) ∈ Cr,r ∈ N+ and for
any z ∈ C such that |z |< 1, as follows

Lis1,...,sr(z) := ∑
n1>...>nr>0

zn1

ns1
1 . . .nsr

r
and

Lis1,...,sr(z)
1− z

= ∑
N≥0

Hs1,...,sr(N) zN ,

where the arithmetic function Hs1,...,sr : N→ Q is called harmonic sum and is ex-

pressed by Hs1,...,sr(N) := ∑
N≥n1>...>nr>0

1
ns1

1 . . .nsr
r
.

By analytic continuation [11, 27] and after a theorem by Abel, for any r ≥ 1, if
(s1, . . . ,sr)∈ {(s1, . . . ,sr)∈Cr|∀m= 1, . . . ,r;∑m

i=0 ℜ(si)>m}, one obtains polyzeta values
as follows

ζ (s1, . . . ,sr) := lim
z→1

Lis1,...,sr(z) = lim
N→∞

Hs1,...,sr(N).

This is no more valid in the divergent cases and requires the renormalization of the cor-
responding divergent polyzetas. It is already done for the case of polyzetas at positive
multi-indices [3, 4, 5, 23] and it is done [10, 13, 25] and completed in [7, 9] for the case of
non-positive multi-indices.

To study the polylogarithms at non- positive (negative) multi-indices, one relies on
[7, 9] (resp. [18, 20]). Let Y = {yk}k≥0 and Y0 = {y0}tY be the alphabets.

1. the (one-to-one) correspondence between the multi-indices (s1, . . . ,sr) ∈ Zr
≤0 (resp.

Nr
≥1) and the words ys1 . . .ysr (resp. xs1−1

0 x1 . . .x
sr−1
0 x1) in Y ∗0 (resp. X∗x1 +1X∗ ),

2. indexing polylogarithms by words ys1 . . .ysr ∈ Y ∗0 : Li−ys1 ...ysr
= Li−s1,...,−sr .

Moreover, one obtains the polylogarithms at positive indices as image by the following
isomorphism of the shuffle algebra [18], Li• : (C〈X〉,tt ,1X∗) −→ (C{Liw}w∈X∗ ,×,1Ω),
such that3,

xn
0 7−→ logn(z)/n!, xn

1 7−→ logn((1− z)−1)/n!, xs1−1
0 x1 . . .x

sr−1
0 x1 7−→ Li

x
s1−1
0 x1...x

sr−1
0 x1

.

Extending over the set of rational power series on non commutative variables when possi-
ble, see discussion after (1), as follows

with S = ∑
n≥0
〈S | xn

0〉xn
0 + ∑

k≥1
∑

w∈(x∗0x1)kx∗0

〈S | w〉 w,

3With the section chosen below, one has xn
0 7−→

(
log(z)− log(z0)

)n
/n!.
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one defines LiS(z) = ∑
n≥0
〈S | xn

0〉
logn(z)

n!
+ ∑

k≥1
∑

w∈(x∗0x1)kx∗0

〈S | w〉Liw . (1)

Some of these sums do not converge for the topology of compact convergence 4 and we
will call Dom(Li), the space of series for which 〈|Li | | |S |〉 is convergent 5. The morphism
Li• is not injective, but {Liw}w∈X∗ are still linearly independant over C [22, 23].

Example 1 i. 1Ω = Li1X∗ = Lix∗1−x∗0tt x∗1 .

ii. λ = Li(x0+x1)∗ = Lix∗0tt x∗1 = Lix∗1−1.

iii. C = C[Lix∗0 ,Li(−x0)∗ ,Lix∗1 ].

iv. C {Liw}w∈X∗ = {LiS |S ∈ C[x∗0]ttC[(−x0)
∗]ttC[x∗1]ttC〈X〉}.

Let us consider also the operators, acting on C {Liw}w∈X∗ [24]:

∂z = d/dz,θ0 = zd/dz,θ1 = (1− z)d/dz,

∀ f ∈ C , ι(z0)
0 ( f ) =

∫ z

z0

f (s)ω0(s) and ι1( f ) =
∫ z

0
f (s)ω1(s).

Here, the operator ι(z0)
0 is well-defined then one can check easily that [7, 9, 21, 22]

1. The subspace C {Liw}w∈X∗ is closed under the action of {θ0,θ1} and {ι0, ι1} 6.

2. The operators {θ0,θ1, ι0, ι1} satisfy in particular,

θ1 +θ0 =
[
θ1,θ0

]
= ∂z and ∀k = 0,1,θkιk = Id,

[θ0ι1,θ1ι0] = 0 and (θ0ι1)(θ1ι0) = (θ1ι0)(θ0ι1) = Id.

3. θ0ι1 and θ1ι0 are scalar operators within C {Liw}w∈X∗ , respectively with eigenvalues
λ and 1/λ , i.e. (θ0ι1) f = λ f , and (θ1ι0) f = (1/λ ) f .

4. Let w = ys1 . . .ysr ∈ Y ∗ (then πX (w) = xs1−1
0 x1 . . .x

sr−1
0 x1) and u = yt1 . . .ytr ∈ Y ∗0 .

The functions Liw and Li−u satisfy

Liw = (ιs1−1
0 ι1 . . . ιsr−1

0 ι1)1Ω, Li−u = (θ t1+1
0 ι1 . . .θ tr+1

0 ι1)1Ω,

ι0 LiπX (w) = Lix0πX (w), ι1 Liw = Lix1πX (w),

θ0 Lix0πX (w) = LiπX (w), θ1 Lix1πX (w) = LiπX (w),

θ0 Lix1πX (w) = λ LiπX (w), θ0 Lix1πX (w) = LiπX (w) /λ .
4For example, (1) gives a series 〈Li | x∗0x1〉 which is not convergent.
5we denote by |T |, the extension, term by term of the function z 7→|z |, i.e.,

|T |= ∑
w∈X∗

| 〈T | w〉 | w.

6Here, we state the identities for indifferently for ι0 = ι(z0)
0 or the classic ι0, see [7, 9, 14].
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Here, we explain the whole project of extension of Li•, study different aspects of it, in
particular what is desired of ιi, i = 0,1. The interesting problem in here is to study what is
expected of the sections ιi, i = 0,1. In fact, we will use this construction to extend Li• to
C {Liw}w∈X∗ and, after that, we extend it to a much larger rational algebra.
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Rankin-Cohen algebras were defined by Zagier [Z], who reprised the role of
differential operators in the theory of modular forms, central in the 19th century
but “surprisingly little (...) in more modern investigations”. In brief, for f (τ) and
g(τ) two modular forms of weights k, l respectively, on some group Γ⊂PSL(2,R),

let D be the differential operator
1

2πı
d

dτ
, given the expansion of the modular forms

in τ , where
1

2πı
d

dτ
= q

d
dq

, q = e2πıτ as usual. The n-th Rankin-Cohen bracket

(so named by Zagier, after R.A. Rankin who studied the derivations on modular
forms and H. Cohen who gave examples) of f and g is the only bilinear differential
operator of degree 2n that acts on the graded vector space of modular forms on Γ,
and is defined as follows (denoting Dr f by f (r) for a form f ):

[ f ,g]n(τ) = ∑
r+s=n

(−1)r
(

n− k+1
s

)(
n− l +1

r

)
f (r)(τ)g(s)(τ).

Zagier pursues the study of the algebraic structure that this operation gives to the
ring of modular forms viewed as a differential module, observing that it is “not
clear how far we would have to go to get the first relation or how much further
to ensure that all subsequent relations obtained would be consequences of ones
already found”. Instead of determining the relations, he proposes the abstract con-
cept of a Rankin-Cohen differential algebra and gives a “partial structure theorem”.

In this work, we propose to use Symbolic Computation to detect minimal sets
of relations for the case study of Γ(7), the modular group of the Klein curve,
the only algebraic curve of genus three with the largest possible group of auto-
morphisms, motivated by the first-named author’s Ph.D. Thesis [Farr], which uses
techniques that allow us to deal explicitly with certain modular forms.

We apply the theory of Gröbner bases (as in [EGÔP]) to control the weight
of the relations, and then perform a search (implemented in Maple syntax) for
complete, minimal sets ot relations weight-by-weight; in consequence, our results
only reach a(ny) finite given weight, but these relations are of interest, given the
large number of open problems that concern the Klein curve (more specifically
stated below).
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Then, in order to further exploit the power of computation, we propose to study
Rankin-Cohen differential algebras over finite fields; indeed, when giving their ab-
stract definition in [Z], “We will suppose the ground field K to be of characteristic
0 (in our examples it is usually Q or C) although it is clear that the theory makes
sense in any characterisitc or, for that matter, even if we work over Z rather than
a field.” Since our strategy is to reduce cusp forms modulo a prime p, we assume
that p does not divide the level [CFW], therefore p 6= 7 throughout.

1 Wronskians

The problem of determining the set of Weierstrass points on curves of arithmetic
interest, such as the Fermat curves xN +yN + zN = 0 and the modular curves X(N),
remains unsolved for all but a few values of N.

Klein’s curve, unique in genus three with maximum number of automorphisms,
is an object of current interest, studied in one or the other of its several presenta-
tions. As a covering of P1, [FK1, VII.3], it is a Riemann surface M given by the
algebraic equation

w7 = z(z−1)2.

The function z is ramified (of ramification number 7) at the points 0, 1 and ∞, and
we set: P0 = z−1(0), P1 = z−1(1), Q = z−1(∞), and consider the following di-

visors: (z) =
P7

0
Q7 , (dz) =

P6
0 P6

1
Q8 , (w) =

P0P2
1

Q3 . Per this calculation, the differentials

dz
w3 , (z−1)

dz
w5 , (z−1)

dz
w6

have divisors P3
0 Q, P0P3

1 , P1Q3, hence give a basis for Ω1(M). Using this
basis we can find an embedding of M in P2 [FK1, III.10]. In fact, if we set
w = −XY−1, z− 1 = X3Y−2 we find that the projective equation for the alge-
braic curve M is the quartic: X3Y +Y 3Z +Z3X = 0.

We can immediately conclude from the divisors of the differentials that the
points P0, P1 and Q are Weierstrass points of weight 1. We turn to the Wron-
skian of to finish the search for the Weierstrass points. We recall that, denoting
W ( f1, . . . , fg) the Wronskian determinant for a basis f1(z), . . . , fr(z) of the canoni-
cal linear system, |K|, with associated linear series L (K), over an algebraic curve
X of genus g ≥ 2, in a local coordinate z, the zeros of W ( f1, . . . , fg)(dz)g(g+1)/2

are the Weierstrass points for the curve X , the multiplicities of the zeros being
their Weierstrass weights [M, VII.4]. Using the function z above as a local co-
ordinate, since we already took into account the points over 0, 1 and ∞ where it
ramifies, we compute W (z) = 3!(z3− 8z2 + 5z+ 1)/(z8(z− 1)5) The polynomial
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p(z) = z3−8z2 +5z+1 has three distinct real roots, each of which corresponds to
7 distinct points on M. Thus M has 24 Weierstrass points, each of weight one.

We now consider a second method for finding the ordinary Weierstrass points,
as in [R]. When X(Γ) is the modular curve Γ�H ∗, for Γ a subgroup of finite
index in SL2(Z) and H ∗ the upper half plane with the cusps of Γ adjoined, the
set of weight-2 cusp forms for Γ, S2(Γ), is isomorphic to the set of holomorphic
1-forms for the Riemann surface. Thus to build a Wronskian for Γ�H ∗ we may
use a basis f1, f2, . . . , fg for S2(Γ), the Wronskian W ( f1, f2, . . . , fg) being a modular
form of weight g(g+1) for Γ.

The Klein curve X is isomorphic to the modular curve X(7), with Γ = Γ(7).
Since Γ(7) is normal in SL2(Z), this Wronskian is a modular form for SL2(Z)
itself, with character detρ , for ρ the natural representation of SL2(Z) on the space
of cusp forms of weight 2 for Γ. The choice of basis only affects the Wronskian
by a nonzero complex multiple, while we are only concerned about its zeros; to
eliminate the dependence on the choice of basis entirely we may require that the
first nonzero coefficient in the Fourier expansion of the Wronskian at the cusp at ∞
be 1. Thus we can talk about the Wronskian for Γ�H ∗.

In general, if the ramification index of Γ in SL2(Z) is r at ∞, we can express the
Fourier expansion of W (z) at ∞ as

W (z) = ∑
n≥n0

ane2πinz/r, an0 = 1.

For the case of X(7), g = 3, so W (z) is a cusp form of weight 12. The character
factors through SL2(Z)/{±1}Γ(7), hence is trivial, thus W (z) is a cusp form for
SL2(Z) itself. The only possibility is that W (z) = ∆, the “modular discriminant:

∆ = (2π)12q
∞

∏
r=1

(1−qr)24. Since ∆ is never zero on H , we find that the Weier-

strass points are the cusps.
The Wronskian for the pluricanonical series, L (nK), n≥ 2 (associated to |nK|)

gives the higher-order Weierstrass points [FK1, III.5]. In the pluricanonical case,
the Wronskian for a modular curve X(Γ) is an automorphic form of weight (2n−
1)2g(g−1)/2 [FK2, 3.1].

Using the model for X(7) given by w7 = z(z− 1)2, we have found bases for
the pluricanonical series L (nK) for X . Indeed, we observed that for 2 ≤ n ≤ 5,
pairwise multiplication of the elements of our previously found basis for L (K)
leads to exactly dimL (nK) = (2n− 1)(g− 1)− 1 independent differentials. For
example for n = 2, pairwise multiplication of the basis elements of L (K) above
led to

{ 1
w6 ,

1
wz(z−1)

,
1

zw3 ,
1

w2z(z−1)
,

1
w4z

,
1

w5z
}.
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To use these Wronskians in the Rankin-Cohen algebra, we must find their q-
expansion: our strategy is to first identify them as automorphic forms constructed
from theta constants [FK2, III.2]; then use classical identities to embed (as Klein
did) the curve in P2 [FK2, III.8.4]; and lastly, use an algebraic map to convert
P2-coordinates into the meromorphic functions w,z on the curve as the 7-sheeted
cover; retracing our steps, we have written the pluricanonical Wronskians as classi-
cal automorphic forms, and can Fourier-expand them. As Zagier notes, a “canoni-
cal” Rankin-Cohen algebra can be generated by a form in degree four and a degree-
2 differentiation; our Wronskians are of course of higher degree, but he also con-
siders, for comparison, a homogeneous generator F of arbitrary degree, provided
it is not a zero-divisor, so our case study is a legitimate example of his theory.

2 Finite Fields

Modular forms in positive characteristic (we are only considering reduction of co-
efficient modulo a prime p, not Katz’ theory which has an algebro-geometric def-
inition and may give rise to non-liftable forms, an unsettled issue) still present
challenges, such as the structure of their Hecke algebra [BK]. The Hecke operator
makes sense in characteristic p, but others do not exist in characteristic zero, par-
ticularly “multiplication by the Hasse invariant”; the “theta operator” ϑ is defined
in characteristic zero, in fact it is precisely what we called D following [Z], where
it “destroys modularity” [K], but in positive characteristic it raises the weight by

p+1: this ϑ := q
d
dq

acts formally on the q expansion of the discriminant ∆ and the

Eisenstein series E4, E6, and these can be chosen as generators of the (graded) ring
of modular forms. In the recent monograph [K], the author implements some such
operations in computation, using both MAGMA and its open-source counterpart
SAGE, primarily with the goal of computing Fourier coefficients.

We propose to use our case-study Γ(7) and computation in characteristic p 6=
7 (over a finite field or its algebraic closure), not only to study the structure of
Rankin-Cohen algebras, but also with the goal of computing “theta cycles”: these
are specific to positive characteristic, and arise as follows. The multiplication f 7→
A f , where A is the Hasse invariant, in characteristic p raises the weight by p−1 and
leaves the q-expansion unchanged: the smallest weight in which a form f appears
is called its “filtration” w( f ). Since w(ϑ p f ) = w(ϑ f ), one can attach to any mod p
modular form f a (p− 1)-tuple of integers,

(
w(ϑ f ),w(ϑ 2 f ), ...,w(ϑ p−1 f )

)
, and

this is called its theta cycle. These were investigated by J. Tate and classified by
N. Jochnowitz in her thesis: they have applications to estimates on the number of
local components of Hecke algebras. We study the action of the Rankin-Cohen

202



brackets on theta cycles: this might give us an extra handle on the relations of
Rankin-Cohen algebras in characterisitc p.

3 Conclusions

Our underlying theme is that the use of differential operators in the theory of mod-
ular forms, especially as regards their dual nature as algebro-geometric or number-
theoretic objects, should be revived in the spirit of the nineteeth century and made
powerful by means of symbolic computation. We use cusp forms over the Klein
curve, obtain a relationship between the algebraic and modular aspects, and compu-
tationally obtain explicit identities for the little-known Rankin-Cohen differential
(graded) algebras; in positive characteristic, even over finite fields, our case-study
potentially aids the quest for the structure of the Hecke algebra. Further motivation
for using the Klein curve is a computational study of its differential-Galois aspects
(when viewed as an algebraic cover) [SU], which can be related to the algebraic
Wronskians, and which we plan to relate to its cusp forms, particularly in positive
characteristic since the previous work was carried out over the complex numbers.
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Ore algebras are a well-established algebraic tool for an algorithmic treatment
of many common cases, like differential and difference operators. However, inte-
gral operators cannot be constructed that way, for example. We use our two-level
generalization [2] of Bergman’s basis-free setting in tensor algebras [1] that allows
for smaller reduction systems and tends to make computations more efficient. In
this setting, we present a heuristic analog of Buchberger’s algorithm for computer-
assisted construction of Gröbner bases starting from basic identities of operators.
We illustrate it and the package TenReS [3] using integro-differential operators
with linear substitutions as example. These operator algebras have applications to
delay equations [4] and address the univariate case of [5].
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Differential algebras with a right inverse of their derivation are a generalization
of integro-differential algebras where the induced evaluation is not required to be
multiplicative. Using our new two-level tensor setting for algebras of linear op-
erators, we systematically rediscover identities, e.g. integration by parts, in these
generalized integro-differential algebras. This is done by a completion process
similar to Buchberger’s algorithm starting just from the algebraic axioms. We also
illustrate how other formulas, like the Taylor formula or variation of constants, can
be proven in this operator framework.
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Classical left regular left quotient ring of a ring and its
semisimplicity criteria

V. V. Bavula

University of Sheffield, UK, v.bavula@sheffield.ac.uk

Let R be a ring, C and L be the set of regular and left regular elements of R (C⊆
L). Goldie’s Theorem is a semisimplicity criterion for the classical left quotient
ring Ql,cl(R) :=C−1R. Semisimplicity criteria are given for the classical left regular
left quotient ring ′Ql,cl(R) := L−1R. As a corollary, two new semisimplicity criteria
for Ql,cl(R) are obtained (in the spirit of Goldie).
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Computer Algebraic Analysis: Achievements, Perspectives
and Directions
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Computer Algebraic Analysis widely uses tools from ring and module theory,
from homological algebra and from dimension theory by particularly emphasiz-
ing the algorithmic component of the computations and the role of implementa-
tion of algorithms in computer algebra systems. In the realm of systems of lin-
ear partial functional operators with polynomial coefficients, Gel’fand-Kirillov di-
mension, Ore localization with associated torsion and closure, and decomposition
of modules such as equidimensional filtration and a decomposition, arising from
the generalized factorizing Gröbner algorithm find numerous applications. On the
other hand, many special functions, appearing as modules over mentioned alge-
bras of operators, can be viewed as representation of modules in certain functional
spaces.

The description of special functions in [1] is given over algebras of operators
with rational coefficients in the arguments. We recognize those algebras as Ore
localizations of algebras with polynomial coefficients and aim at the augmented
description of special functions (obtained with the tools, described above), which
is valid in a much broader context.

In the talks by J. Hoffmann, N. Kruff, J. Nüßle, C. Schilli (RWTH Aachen,
Germany) and A. Heinle (University of Waterloo, Canada) many particular topics
of the presented program and implementations in SINGULAR:PLURAL [2] will be
discussed in details. In my talk I will outline the state of the art, summarize and
present open questions.
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rings

C. Schilli1, V. Levandovskyy2

1 Lehrstuhl D für Mathematik, RWTH Aachen University, Germany,
christian.schilli@math.rwth-aachen.de
2 Lehrstuhl B für Mathematik, RWTH Aachen University, Germany,
viktor.levandovskyy@math.rwth-aachen.de

The purity filtration of modules is an important tool originating from homological
algebra. It gives structural properties of a module (such as equidimensional sub-
modules and their homological grades) and has numerous applications, e. g. in
solving or simplifying systems of linear partial functional equations.
Based on the work [1], we will define the purity filtration, show some of its prop-
erties and give an algorithm, which allows us to compute the purity filtration of a
finitely presented module over an Auslander regular ring. If the ground ring is also
Cohen-Macaulay, the purity filtration gives additional insights on the structure of
the module (concerning Gel’fand Kirillov dimension), which also will be pointed
out. Finally, we will illustrate this theory with some examples, computed with our
implementation [2] and give interpretations of the results.
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There exist many classifications of commutative integral domains with respect
to factorization properties of their elements. Anderson et al. [AA92, AAZ90,
AM96, And97] have coined certain terminology like finite factorization domain
(FFD), half factorization domain (HFD), idf-domain and bi-factorization domain
(BFD). Furthermore, they studied the connection between all these different types
of domains with respect to implication. A recent paper [BS15] generalizes these
notions to non-commutative rings, with applications to maximal orders in central
simple algebras and the semigroup of non zero-divisors of the ring of n×n upper
triangular matrices over a commutative domain. No algorithm for factorization has
been proposed.

We study noncommutative domains with a view towards algorithms for fac-
torizing concrete elements. In a recent publication [BHL14], a generalization of
the term finite factorization domain, which applies to non-commutative rings, has
been established. Namely, we consider factorizations up to multiplication with
central units of the algebra. Necessary conditions on a given ring to be an FFD
have also been formulated, leading to the result that among many other, the ubiqui-
tous G-algebras (which are Noetherian domains) are FFDs. As a consequence, the
problem formulation “find all distinct factorizations of an element in a G-algebra”
becomes viable, since the output is expected to be finite.

An algorithm that finds all possible factorizations for an element in a G-algebra
G with minor assumptions on the underlying field K has been established [HL16].
With this, one is able to generalize other algorithms, which were exclusively used
for commuatative rings before. An example is the “Factorized Gröbner Basis”
algorithm. However, the structure of the output of this algorithm in the non-
commutative case has no direct interpretation as in the commutative case. We
conjecture a strong connection to a decomposition of a solution space, when view-
ing elements in G-algebras as operator equations.

Our presentation will serve as an introduction into non-commutative finite fac-
torization domains, provide an overview of the status quo of the factorization prob-
lem for G-algebras and its applications, and finishes with a vision on future ex-
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ploration possibilities in the area of characterizing factorization properties in non-
commutative integral domains.
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Localizing a commutative ring at a multiplicatively closed subset is an im-
portant and well-understood tool in the study of commutative rings. For non-
commutative domains, the concept of Ore localization at (left) Ore sets introduced
by Øystein Ore ([1]) is a generalization that retains most of the properties of clas-
sical localization. Its most prominent application in the context of algebras of
operators is the formalism of passing from polynomial to rational coefficients.

Building on previous results in the commutative setting well-known to Zariski
and Samuel ([3]), we present a new canonical form for Ore sets that gives full
insight into the structure of the associated localization and its units.

As a further application of Ore sets we introduce the concept of local torsion
of modules over (non-commutative) domains, which results in a finer description
of the torsion structure of a module.

In the case of finitely presented modules, local torsion is closely related to S-
closure, i. e. the closure of submodules of free modules with respect to an Ore
set, which is an instance of a more general construction that also encompasses the
canonical form for Ore sets above.

Furthermore, we show a connection between S-closure and contraction of ide-
als in the localization to the unlocalized ring. There are several algorithmic ap-
proaches to the latter, most notably Weyl closure ([2]). We expand the algorithmic
toolbox by a variation of a commutative algorithm that computes S-closure in a
restricted setting which is of importance in the theory of D-modules.
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Let K be a field, K[x] = K[x1, . . . ,xn] the polynomial ring in n variables and
R :=K[x][∂ ; id,δ ] an Ore extension of K[x] with a derivation δ . This is an algebraic
model for linear ODEs with the xi taking the role of coefficient functions and δ
modelling the derivative of those functions. Here the elements and ideals in R
represent ODEs and systems of ODEs respectively. In this setting the contraction
ideal

Cont(I) := (K[x]\{0})−1I∩R

for an ideal I ⊆ R is the largest ideal in R that has the same solutions as I (on a
suitably chosen open subset of the complex plane). The problem of computing the
contraction ideal for a given ideal I has been solved e.g. in the Weyl algebra (see
[1]) under the name of Weyl closure, but the general case remains unsolved.

If we restrict ourselves to principal ideals 〈 f 〉 ⊆ R it is enough to consider the
local closure

Clp( f ) := {p−k}〈 f 〉∩R

at the leading ∂ -coefficient p of f . This relates to the problem of desingularization
of differential operators, which has for example been considered (for K[x] = K[x1])
by [2] or for a fixed maximal degree of the desingularizing operator by [3].

We will present an approach that can be used in the general case to compute all
elements h ∈ R such that 1

p h f ∈ R for a given p ∈ K[x], i.e. all desingularizing op-
erators that have degree 1 in 1

p . Such h have some significance as Clp( f ) is strictly
larger than 〈 f 〉 if and only if the set of all h ∈ R with 1

p h f ∈ R is strictly larger than
pR. This means that we can test whether p is removable from f . Furthermore if p
is removable from f there is always a p-removing operator of minimal degree in ∂
that has the form 1

p h.
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The global and local Bernstein-Sato polynomial of a given multivariate poly-
nomial f ∈ K[x1, . . . ,xn] where K is of characteristic zero, plays an important role
in D-module theory and in singularity theory, to name a few. We are interested in
computing the local Bernstein-Sato polynomial of a given polynomial at a given
point p ∈ Kn. Although several algorithms for its computation are already known,
we will present a new algorithm that uses Ore localizations. Theoretically, our al-
gorithm needs to employ product localizations. However, we prove that it suffices
to work in another localization which is algorithmically easier to handle. Finally,
we provide an algorithmic approach to compute the local Bernstein-Sato polyno-
mial at a point, given via algebraic but non-rational coordinates. Applying this
algorithm, it is possible to compute local Bernstein-Sato polynomials using sym-
metry arguments.
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Intelligent Geometry + Dynamic Geometry
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The pursue of an “Intelligent and Dynamic Geometry Book” should involve
the study of how current developing methodologies and technologies of mathemat-
ical (e.g. geometry) knowledge representation, management, and discovery can be
incorporated effectively into the education of the future.

Just as Doron Zeilberger pointed out in the Plane Geometry: An Elementary
Textbook By Shalosh B. Ekhad (Circa 2050),1 a geometry book from the future
should be a computer program, in which all the theorems can be automatically dis-
covered (and of course proved) by computer and beautiful illustrations can be auto-
matically generated and dynamically modified. Such a prospect motivates studies
on how to represent and manage digitised geometric knowledge on computer.

The geometry book of the future should be adaptive, correct, collaborative,
visual and intelligent. Adaptive because the contents would adapt to the curriculum
and reader. Correctness of the proofs would be ensured by computer checking.
It will allow collaborative work an its contents would be collaboratively formed
using a knowledge base open to contributions. Statements and proofs should be en-
lighted by dynamic geometry sketches and diagrams. The book will be intelligent,
the reader can ask closed or open questions, and can ask for proof hints. The book
would also provide interactive exercises with automatic correction.

Such a blended-learning Cloud platform, freely available in all standard com-
putational platforms and devices, collaborative, adaptive to each and every user’s
profiles, would bring together a whole new generation of mathematical tools with
impact in all levels of education.

To realise such book we must build a network of experts, increasing the con-
nections between several research communities, such as: mathematical knowledge
management; computer theorem proving and discovery; education, aggregating
expertise in areas such as Proofs in a Learning Context; Interfaces & Searching;
Tools Integration; Learning Environments in the Cloud.

1http://www.math.rutgers.edu/~zeilberg/GT.html
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sketchometry [1] is a free interactive geometry system with a focus on (but not
restricted to) touch devices. The main distinctive feature of sketchometry in com-
parison with other interactive geometry systems is its ability to recognize sketches
by the user. These strokes are converted into geometric objects.

Internally, sketchometry is based on JessieCode and JSXGraph [2,3]. JSX-
Graph is a comprehensive library for interactive geometry in the web browser,
JessieCode [4] is a special purpose programming language for handling JSXGraph
objects. It has been introduced to simplify the input of geometric constructions and
for security reasons. Both projects are maintained by the developers of sketchom-
etry.

In the talk, we will explain how the innovative user interaction of sketchometry
is realized and give an overview how these three systems are used with requiring
varying levels of sophistication.
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Many authors have used different approaches to conics using dynamic geome-
try systems (DGS). The easiest one would be to introduce the equations and pro-
duce a plot. Moreover, the DGS GeoGebra [1] directly provides tools (with an icon
in the ToolBar) that constructs the conic:

• given five points on it,

• given either the two foci and a point on the conic or the focus and the directrix
of the conic (depending on which conic is considered).

But the prettiest approach is possibly the constructive one that uses properties
of the conics to draw them (such as the gardener’s method to draw ellipses). This
method also allows the user to obtain automatically the equation of the conic from
the given elements (given, for instance, in the case of the ellipse, the coordinates
of the foci and the sum of distances to the foci).

The arrival of 3D DGS such as Calques 3D [2] or GeoGebra 5 allows to extend
the constructive methods mentioned above to cuadrics of revolution, substituting
circumferences by spheres and lines by planes. Although more complex and labo-
rious than in the 2D case, they allow to obtain both plots and equations of ellip-
soids of revolution, paraboloids of revolution and hyperboloids of revolution. The
elimination step requires of the internal use of effective algebraic methods that are
hidden to the end user.

We believe that automatically obtaining the equations of these simple cuadrics
as suggested could be eye-catching and motivating for students at their first en-
counter with this kind of surfaces.
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Managing the constraints of technology for an automated
study of envelopes
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1 Introduction

We propose a short survey of issues we had to deal with when studying various
questions in Differential Geometry using different Information and Communica-
tion Technologies (ICT). The mathematical topic we address here is envelopes of
parameterized families of curves or surfaces. We met similar constraints for other
items, such as isoptic curves of a plane curve (see [2]). As far as possible, and
for the sake of simplicity, we give 2D examples when 3D occurrences are similar.
More details will be given during the oral presentation.

The study of parametric families of curves and surfaces (in what follows, we
will call them varieties) in 2D and 3D spaces and their (possible) envelopes has a
great interest in mathematics and its applications: Geometrical Optics and Theory
of Singularities, robotics and kinematics, rigid motion in 2-space and in 3-space,
collision avoidance, soil depollution, etc. In a recent work [3], we showed how
envelopes can be studied with paper-and-pencil together with both a Computer
Algebra System (CAS) and a Dynamical Geometry System (DGS). All the ICTs
have their own constraints (see [6] and [1]), and we had to deal with some of them.
In our talk, we will present constraints appearing when studying envelopes, using
both a CAS and a DGS.

Our main goal is the study 1-parameter families of curves in 2D space (resp. sur-
faces in 3D space); we will call them varieties. They may have an implicit presen-
tation, of the form f (x,y, t) = 0 (resp. f (x,y,z, t) = 0), where f is a function of
3 (resp. 4 variables), x,y (resp. x,y,z) are the coordinate system and t is a real
parameter. A variety may have also a parametric presentation, in which the coor-
dinates x,y (resp. x,y,z) are functions of one real parameter (for curves) and 2
parameters (for surfaces).

2 Visualization problems

First we describe general visualizations problems appearing both in 2D and in 3D.
If the variety is given by a rational parametrization, the equations may be trans-

218



formed into polynomial equations, then Gröbner bases algorithms provide the re-
quired implicitization. For example, let C be the plane curve given by the following
presentation:

x = t3 + t2−2

y = t3 + t +1

Here are some rows of Maple code for our purpose. First we transform the
given parametrization of C into polynomials and consider them as generating an
ideal J =< x− t3− t2 + 2,y− t3− t− 1 > in R[x,y, t]. Then using an elimination
order, we compute a polynomial defining the curve C by an implicit equation.

> restart; with(plots); with(PolynomialIdeals);
> F1 := x-t^3-t^2+2; F2 := y-t^3-t-1;
> J := ‘<,>‘(F1, F2);
> JE := EliminationIdeal(J, {x, y});

Using the implicitplot command, we obtain Figure 1 (a), and with parametric plot
we obtain Figure 1 (b); the difference in quality is evident. In both cases, we used
the standard number of points of the command (of course, increasing the number
of computed points improves the plot quality).

(a) Implicit Plot (b) Parametric Plot

Figure 1: Two plots of the same curve

This inaccuracy may be even greater when dealing with curves and surfaces in
3D space, as we will see in the next example. Consider the unit sphere, which has
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implicit equation x2 + y2 + z2 = 1, and a parametric representation is given by

x = cosusinv
y = sinusinv
z = cosv

(1)

where u and v are real parameters.
Consider Figure 2, it shows two plots of the unit sphere. Plot (a) has been

obtained using an implicit representation, plot (b) using a parametric presentation.
The difference in quality is evident. Increasing the number of cells of the mesh
will not improve the visual effect of the implicit plot; the display will appear more
black.

(a) Implicit Plot (b) Parametric Plot

Figure 2: Two plots of the unit sphere

The parametrization we used for the unit sphere is trigonometric. This variety
has also rational parameterizations, for example:

x = 2v(1−u2)
(1+u2)(1+v2)

y = 4uv
(1+u2)(1+v2)

z = 1−v2

1+v2

, (2)

where u and v are real parameters. Both parameterizations provide the same plot
quality.

Equations 2 may be transformed into polynomial equations, then Gröbner base
code will provide an implicit equation for the sphere. The algorithms which are
used are clearly irrelevant for the trigonometric parametrization 1. Automatic
derivation of an implicit equation is harder in this case.
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Switching between a non rational parametrization and a rational one, and switch-
ing between parametric and implicit representations are a non trivial issue. In order
to address this last question, algorithms have been developed for approximate im-
plicitization (see [4] and [5]).

3 Automated study of envelopes

Let be given a family of plane curves by an equation of the form f (x,y, t) = 0,
where t is a real parameter. An envelope of the family, if it exists, is a curve
tangent to every curve in the family. It can be shown (see [3]) that this envelope is
the solution set of the system of equations

{
f (x,y, t) = 0
∂ f
∂ t f (x,y, t) = 0

. (3)

A first approach with a DGS (we used GeoGebra) yields an experimental study of
the possible envelope. For example, Figure 3 shows the experimental study of the
family of circles of radius 1.5, centered on the parabola whose equation is y = x2.

Figure 3: Family of circles centered on a parabola

The plot has been performed drawing one circle, then using the mouse to move
the center along the parabola (with the Trace On option). The circles are not uni-
formally dispatched, the "gaps" being function of the speed of hand motion with
the mouse. Anyway, two envelope components appear: the external one seems
smooth, the internal one seems to have cusps and a double point. The same con-
struction may have been performed using the slider bar. In this case, the circles
are more uniformly dispatched. Nevertheless, even by that way, the plot may not
show exactly what we expect; see the nephroid in [3]. Figure 3 shows a dynamical
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construction, leading to the conviction (not a proof) that an envelope exists, and
how it looks like (if it exists), namely 2 components, singular points, etc. In order
to have an analytic description (either implicit or parametric or both) for the enve-
lope a CAS can be used. A first pathway for this study is to use the standard solve
commands of the CAS. For the above example, the code reads as follows:

> restart; with(plots);
> f := (y-t^2)^2+(x-t)^2-(3/2)^2;
> derf := diff(f, t);
> solve(‘and‘(f = 0, derf = 0), [x, y]);

The result reads as follows, enhancing the conviction that the envelope has two
components

[
x =− t(2t2

√
4t2 +1+3)√
4t2 +1

+2t3 + t,y =
1
2
· 2t2
√

4t2 +1+3√
4t2 +1

]

[
x =− t(2t2

√
4t2 +1+3)√
4t2 +1

+2t3 + t,y =
1
2
· 2t2
√

4t2 +1+3√
4t2 +1

]

Of course, if 1.5 is entered instead of 3/2, the result looks "less elegant". Any-
way, a plot of the curve may not be obtained in one shot, but has to be plotted as
the union of separate plots. Still less elegant is the result, when a trigonometric
parametrization is used for the circles.

Because of the square roots, this parametrization requires some work in order
to try and transform it into a rational one, and then into a polynomial one. Anyway,
with CAS assisted computations it is possible to differentiate the functions x(t),y(t)
and then look for singular points, whence determining the cusps which appeared
in the experimental plot. Using a polynomial presentation, which is not always
possible, then using an elimination order, could be less efficient for discovering
singularities.

If the defining equations of the problem are polynomial, the problem can be
automated and treated using Gröbner bases algorithms: an implicit equation is ob-
tained. The same visualization problem as described in Section 2 appears: the plot
obtained with an implicitplot or implicitplot3d command may be non accurate,
because of the choice of the mesh and the required interpolations, as shown in
figure 4. This issue has been studied in [8].

As far as visualization is concerned, transition to parameterized families of sur-
faces in 3-dimensional space is critical (for a precise definition and how to manage
that, see [7]). In the new setting, the dynamical features we used previously are
not available anymore: no slider bar is available, and moving a point as we did
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Figure 4: Non accurate plot

in 2D seems irrelevant. The experimental work based on Dynamical Geometry is
impossible (we wish that further developments in CAS and DGS will provide this
feature in the next future). Here the standard procedures of a CAS have to be used.
In particular, if the data is polynomial, Gröbner bases algorithms can be used. We
recalled already that rational data can be transformed into a polynomial setting.

The transition to parameterized families of curves and surfaces in 3D space
rely on the same techniques. For a 1-parameter family of surfaces, the defining
equations for an envelope are now:

{
f (x,y,z, t) = 0
∂ f
∂ t f (x,y,z, t) = 0

(4)

New issues have to be dealt with: the general visualization problems, the avail-
ability of appropriate features in the software, etc. For the family of planes given
by the equation x+ ty+ t2z = t3, where t is a real parameter, an envelope can be
found, shown in Figure 5. A cuspidal edge appears, as for every 1-parameter fam-
ily of planes. In order to understand the surface visually, dynamical features of the
software are a must. Otherwise, at least two stills pictures have to been plotted.
Actually the plot may be revolved with the mouse. In particular, the structure of
the envelope as a ruled surface can be revealed visually using technology. In [8],
we mentioned the influence of the choice of the mesh for plotting surfaces in 3D
space on understanding the situation. For example, in Figure 5, tangents to the
cuspidal edge generate the plot; this is a central feature of such an envelope.

The same work may be performed for 2-parameter families of surfaces. For
example, consider the family of planes given by the equation x+(a+b)y+(a2 +
b2)z = a3+b3, where ua,b are real parameters. Here are a few rows of Maple code
for an automated study of this envelope:
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Figure 5: Exploration of the envelope of a family of planes

> restart; with(plots); with(PolynomialIdeals);
> f := x+(a+b)*y+(a^2+b^2)*z-a^3-b^3;
> daf := diff(f, a); dbf := diff(f, b);
> K := ‘<,>‘(f, daf, dbf);
> KE := EliminationIdeal(K, {x, y, z});
> IdealInfo[Generators](KE);
> F:=%[1];

The result is the following polynomial:

F(x,y,z) =−729x3−1458x2yz+432y3x−324z3x2−540z2y2x

+288y4z−288z4xy+136z3y3−32z6x+16y2z5.

Implicit plot of this polynomial provides the displays in Figure 6.
A qualitative analysis reveals the existence of a cuspidal edge, and that the gen-

erators of the surface appear as curves tangent to the cuspidal edge. Actually the
1-parameter family described previously is a subfamily of the present 2-parameter
family (e.g. for b = 0). Such a study provides an opportunity to discover new top-
ics beyond the scope of the regular undergraduate curriculum, sometimes together
with applications to practical situations. New computation skills with technology
may be developed, in particular for the experimental aspect of the work (e.g., ex-
ploring the existence of cusps, as in Figure 1b). For this, the availability in the
software of a slider bar is a central issue. Moreover, ability to switch between
different registers of representation may be improved, within mathematics them-
selves (parametric vs implicit) and with the computer (algebraic, graphical, etc.).
Anyway, we must be aware that the transition form 2D to 3D is a critical one, as
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(a) Implicit Plot (b) Parametric Plot

Figure 6: Exploration of the envelope of a 2-parameter family of planes

the technology does not provide as many dynamical tools in 3D as in 2D, and the
visualization skills of students are generally much better in 2D than in 3D .

The algebraic engine we used in different CAS was the commands based on
computations of Gröbner bases in order 1) to solve the given system of equations,
which yields a parametric representation of the envelopes, and 2) to look for an
implicitization of this parametric representation. When such an implicitization is
not to be found, algorithms exist for an approximate implicitization (see [4] and
[5]).
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About Giac’s Gröbner basis and ideal elimination
computation

B. Parisse1
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Automatic theorem proving is obviously an interesting feature in geometry
softwares (cf. [3] and references therein), conversely classical geometry theorems
may be used to check correctness and speed of the computing kernel of a CAS.
In this talk, we will focus on Giac Groebner basis algorithm (based on [2] and
[1]) and elimination algorithm, which plays a preponderant role in geometry au-
tomatic theorem proving and we will discuss correctness vs. speed (probabilistic
vs. deterministic algorithm choice).
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What does ‘without loss of generality’ mean?

J. Davenport1
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When one goes from a geometrical statement to an algebraic statement, the
immediate translation is to replace every point by a pair of coordinates. A statement
with N points is then a statement with 2N variables, and the complexity of tools
like cylindrical algebraic decomposition is doubly exponential in the number of
variables. Hence one says ‘without loss of generality, A is at (0,0)’ and so on.
How might one automate this, or turn it into a procedure (and possibly even a
formal proof).
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Towards higher-degree quantifier elimination
by virtual substitution
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We give an overview of methods and implementations of real quantifier elim-
ination (QE) and variants and their application to various geometric problems in-
cluding automated proving, computational geometry, and constructive solid ge-
ometry. Variants include generic QE, which produces non-degeneracy conditions,
and extended QE, which produces sample point with satisfiable existential prob-
lems. We furthermore highlight recent research on theoretical foundations and
implementation techniques for virtual substitution-based QE, which have to po-
tential to lead to significant progresses with geometric applications in the near fu-
ture. All discussed methods are available with the free and open-source system
Reduce/Redlog under a very liberal Free-BSD license.
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On multivariable asymmetric public-key cryptography
based on simultaneous algebraic Riccati equations over
finite fields
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Many encryption schemes based on Multivariable Quadratic Equations (MQE)
over finite fields were suggested in the last three decades and many were broken
(see [1]). Apparently, the broken systems were based on some hidden structure,
which on one hand enabled the efficient invertibility of the system, but on the other
hand was found to be vulnerable to algebraic attacks. Almost all the MQE based
encryption schemes that were proved to be insecure, share the common drawback
that some quadratic forms associated to their central maps have low rank (see [2])
and therefore are vulnerable to the Min-Rank Attack (see [3]). On the other hand,
the belief that random quadratic systems are hard to solve on average (see [4],
[5] and references therein), points towards designing trap-door primitives based on
randomness, which raises difficulties in designing immune invertible primitives.
Little was done in this direction in the context of asymmetric public-key cryptog-
raphy (see [4]).

An overview of Multivariate Public-Key Cryptography (MPKC) is given in
[6], where the authors call for a unifying framework for cryptanalysis of MPKC
systems in order to build confidence in their security. They also point out to po-
tential applications of such systems in the realm of limited computing power (e.g.
in Radio Frequency Identification Devices (RFID) and in Wireless Sensing (WS)),
where other cryptographic systems (e.g. RSA, ELGAMAL, ECC) are irrelevant. A
summary of the main developments in the cryptanalysis of multivariate cryptosys-
tems is given in [7] and [5].

Let F denote any finite field. Non-symmetric Algebraic Riccati Equation (ARE)
over F is an equation of the form:

XCX +XD−AX−B = 0, (1)

where A,B,C,D are m×m,m×n,n×m,n×n matrices and the solution X is a m×n
matrix over F. The complexity of computing X is equivalent to the complexity of
the constrained generalized eigenvalue-eigenvector problem defined by:

T
[

X
I

]
=

[
X
I

]
L, (2)
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where

T =

[
A B
C D

]
, (3)

and L = CX +D is n× n matrix. The Non-symmetric Simultaneous Algebraic
Riccati Equations problem (NSARE) is the following: given t quadruples

(Ai,Bi,Ci,Di) , i = 1, . . . , t, (4)

find X such that all the equations:

XCiX +XDi−AiX−Bi = 0, (5)

are satisfied simultaneously for i = 1, . . . , t. The NSARE is known to be NP-
complete over any finite field and NP-hard over any infinite field (see [8]).
It follows that any set of multivariable polynomial equations can be reduced (by
polynomial-time reduction) to the NSARE problem (the converse is obvious) and
thus any encryption scheme based on multivariable polynomial set of equations can
be crypt-analyzed to vulnerabilities by investigating the related equivalent NSARE
problem.

Based on the NSARE problem, pubic-key encryption schemes were defined,
with the following features (see [8]):

1. The security of the systems is based on provable NP-complete problem.

2. The suggested schemes fit to the age of post-quantum cryptography.

3. The systems involves truly (pseudo) random choice of the coefficients
of the core equations.

4. The suggested scheme is very flexible in the ability of matching the security
level to the needs and to the given computing power.

5. The suggested systems fit to the realm of limited-power computing devices
since they involve only matrix summation and multiplication (matrix
inversion is made once for the whole system life).

6. The suggested systems has a very fast encryption and decryption time.
It has several magnitudes of improvement over the RSA
for equivalent level of security.
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7. The suggested schemes are highly parallelizable in parallel software
or hardware and thus the encryption and decryption time
can be speeded-up to a fantastic time.

Finally, the urgent call for new multivariable public-key cryptosystems (see
[9]) and the call for a unifying framework for cryptanalysis of MPKC systems (see
[6]) are also fulfilled by this research.
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Is it hard to retrieve an error-correcting pair?
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Code-based cryptography is an interesting alternative to classic number-theory
Public-Key Cryptosystems (PKC) since it is conjectured to be secure against quan-
tum computer attacks. Many families of codes have been proposed for these cryp-
tosystems. One of the main requirements is having high performance t-bounded
decoding algorithms which is achieved in the case the code has a t-error-correcting
pair (ECP). The class of codes with a t-ECP is proposed for the McEliece cryp-
tosystem. The hardness of retrieving the t-ECP for a given code is considered.
To this end we have to solve a large system of bilinear equations. Two possible
induction procedures are considered, one for sub/super ECP’s and one by punctur-
ing/shortening. In both procedures in every step only a few bilinear equations need
to be solved.

1 Notation and Prerrequisites

By Fq, where q is a prime power, we denote a finite field with q elements. An [n,k]
linear code C over Fq is a k-dimensional subspace of Fn

q. We will denote the length
of C by n(C ), its dimension by k(C ) and its minimum distance, d(C ).

Given two elements a and b on Fn
q, the star multiplication is defined by coor-

dinatewise multiplication, that is, a∗b = (a1b1, . . . ,anbn). Then, A∗B is the code
in Fn

q generated by {a∗b | a ∈ A and b ∈ B}.
The standard inner multiplication of a and b on Fn

q is defined by a · b =

∑n
i=1 aibi. Now A⊥ B if and only if a ·b = 0 for all a ∈ A and b ∈ B.

Definition 1 Let C be an Fq-linear code of length n. The pair (A,B) of Fqm-linear
codes of length n is called a t-error correcting pair (ECP) for C if the following
properties holds:

E.1 (A∗B)⊥C,

E.2 k(A)> t,

E.3 d(B⊥)> t,

E.4 d(A)+d(C)> n.

Broadly speaking: given a positive integer t, a t-ECP for a linear code C ⊆ Fn
q

is a pair of linear codes (A,B) satisfying that A ∗ B ⊆ C⊥ together with several
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inequalities relating t and the dimensions and (dual) minimum distances of A, B and
C. Furthermore note that if the fourth property (E.4) is replaced by the statements
presented below then, again (A,B) is a t-ECP for C and the minimum distance of
such linear code is at least 2t +1.

E.5 d(A⊥)> 1 or equivalently A is a non-degenerated code,

E.5 d(A)+2t > n.

Error-correcting pairs (ECP) were introduced and studied in [4, 7, 8], as a general
algebraic method of decoding linear codes. It was shown that an [n,n−2t,2t +2]
code has a t-error correcting pair if and only if it is a Generalized Reed-Solomon
code [6]. The concept of an ECP is instrumental in the polynomial attack of the
McEliece cryptosystem that uses algebraic geometry codes [2].

2 The McEliece PKC system using ECP’s

The class of codes with a t-ECP is proposed for the McEliece cryptosystem [5].
The hardness of retrieving the t-ECP for a given code is considered. To this end
we have to solve a large system of bilinear equations [3, 1]. Two possible in-
duction procedures are considered, one for sub/super ECP’s and one by punctur-
ing/shortening. In both procedures in every step only a few bilinear equations need
to be solved.

Let P(n, t,q) be the collection of pairs (A,B) such that there exist a positive
integer m and a pair (A,B) of Fqm-linear codes of length n that satisfy the conditions
E.2, E.3, E.5 and E.6.

Let C be the Fq-linear code of length n that is the subfield subcode that has the
elements of A∗B as parity checks

C = Fn
q∩ (A∗B)⊥

Then the minimum distance of C is at least 2t +1 and (A,B) is a t-ECP for C
Let F (n, t,q) be the collection of Fq-linear codes of length n and minimum

distance d ≥ 2t +1.
Consider the following map

ϕ(n,t,q) : P(n, t,q) −→ F (n, t,q)
(A,B) 7−→ C

The question is whether this map is a one-way function.
We treat the entries of the generator matrices of the the pair of codes (A,B)

as variables Xi j and Yi j. The condition (A ∗B) ⊥ C becomes a system of bilinear
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equations. We will apply the F5-method to find Gröbner basis for a solution [3,
1]. The puncturing and shortening procedure that was used in [6] will reduce the
number of variables.
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Binary puzzle is a sudoku-like puzzle with values in each cell taken from the
set {0,1}. We look at the mathematical theory behind it. A solved binary puzzle is
an n×n (n even) binary array that satisfies the following conditions:

1. No three consecutive ones and also no three consecutive zeros in each row
and each column,

2. Every row and column is balanced, that is the number of ones and zeros must
be equal in each row and in each column,

3. Every two rows and every two columns must be distinct.
Figure 1 is an example of initial setting of a binary puzzle. There is only

one solution satisfying all three conditions which can be seen in Figure 2. Binary
puzzles can be seen as constrained arrays [3]. One can also see this array from an
erasure correcting point of view [2].

This paper focuses on solving binary puzzles. Solving binary puzzle is proven
to be an NP-complete problem[1]. We devise and compare three approaches for
finding its solution. The first solves straightforwardly by means of exhaustive
search. The second idea, transforms the problem into a SAT problem, then we
solve using a SAT solver. The third approach construct a set of polynomial equa-
tions over F2 representing the three conditions for a solved binary puzzle. The
variables in the system of equations correspond to all cells in the puzzle. Hence

Figure 1: Unsolved Puzzle Figure 2: Solved Puzzle
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the solution for the equation system is a solution for the puzzle and it can be ob-
tained by computing its Gröbner basis.

From a complexity point of view, solving the puzzle straightforwardly is more
efficient in terms of execution time. The comparison between the three methods in
solving the puzzle of various sizes is given in the Table 1. All the computation is
done in SageMath 7.0.

Table 1: Comparison of execution time (in seconds) for each method.

Size SAT Goebner basis Exhaustive search
Pre-comp. Solver Pre-comp. Solver

4×4 0.01 0.05 0.02 0.05 0.01
6×6 0.14 0.26 0.11 0.06 0.16
8×8 1.58 2.20 0.53 0.13 0.12

10×10 12.31 16.45 3.30 8.69 0.48
12×12 85.43 107.80 47.80 4.55 3.89
14×14 - - - - 94.32
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Let Fq = GF(q) denote the finite field with q elements, where q = pe, p prime.
Let Fn

q be the vector space of dimension n over Fq. The Hamming distance between
vectors w, v ∈ Fn

q, denoted by d(w,v), is the number of coordinates in which w
and v differ. A code C over Fq of length n is a nonempty subset of Fn

q. The
elements of C are called codewords. The minimum distance of a code is the smallest
Hamming distance between any pair of distinct codewords. A code C over Fq is
called linear if it is a linear space over Fq and, it is called K-additive if it is a
linear space over a subfield K ⊂ Fq. The dimension of a K-additive code C over
Fq is defined as the number k such that qk = |C|. Note that k is not necessarily
an integer, but ke is an integer, where q = |K|e. Two codes C1, C2 ⊂ Fn

q are said
to be permutation equivalent if there exists a permutation σ of the n coordinates
such that C2 = {σ(c1,c2, . . . ,cn) = (cσ−1(1), . . . ,cσ−1(n)) : (c1,c2, . . . ,cn)∈C1}, [2],
[6]. Without loss of generality, we shall assume, unless stated otherwise, that the
all-zero vector, denoted by 0, is in C.

Two structural parameters of (nonlinear) codes are the dimension of the linear
span and the kernel. The linear span of a code C over Fq, denoted by R(C), is the
subspace over Fq spanned by C, that is R(C) = 〈C〉. The dimension of R(C) is
called the rank of C and is denoted by rank(C). If q = pe, p prime, we can also
define Rp(C) and rankp(C) as the subspace over Fp spanned by C and its dimen-
sion, respectively. The kernel of a code C over Fq, denoted by K (C), is defined as
K (C) = {x ∈ Fn

q : αx+C = C for all α ∈ Fq}. If q = pe, p prime, we can also
define the p-kernel of C as Kp(C) = {x ∈ Fn

q : x+C =C}. Since we assume that
0 ∈C, then K (C) is a linear subcode of C and Kp(C) is an Fp-additive subcode.
We denote the dimension of the kernel (resp., p-kernel) of C by ker(C) (resp.,
kerp(C)). These concepts were first defined in [9] for codes over Fq, generalizing
the binary case described previously in [1], [8]. In [9], it was proved that the code C
over Fq can be written as the union of cosets of K (C) (resp., Kp(C)), and K (C)
(resp., Kp(C)) is the largest such linear code over Fq (resp., Fp) for which this is
true. Moreover, it is clear that K (C)⊆Kp(C).

A generalized Hadamard (GH) matrix H(q,λ ) = (hi j) of order n = qλ over
Fq is a qλ × qλ matrix with entries from Fq with the property that for every i, j,
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1≤ i< j≤ qλ , each of the multisets {his−h js : 1≤ s≤ qλ} contains every element
of Fq exactly λ times. It is known that since (Fq,+) is an abelian group then
H(q,λ )T is also a GH matrix, where H(q,λ )T denotes the transpose of H(q,λ )
[5]. An ordinary Hadamard matrix of order 4µ corresponds to a GH matrix H(2,λ )
over F2, where λ = 2µ .

Two GH matrices H1 and H2 of order n are said to be equivalent if one can
be obtained from the other by a permutation of the rows and columns and adding
the same element of Fq to all the coordinates in a row or in a column. We can
always change the first row and column of a GH matrix into zeros and we obtain
an equivalent GH matrix which is called normalized. From a normalized Hadamard
matrix H, we denote by FH the code over Fq consisting of the rows of H, and CH

the one defined as CH =
⋃

α∈Fq
(FH +α1), where FH +α1 = {h+α1 : h∈ FH} and

1 denotes the all-one vector. The code CH over Fq is called generalized Hadamard
(GH) code. Note that FH and CH are generally nonlinear codes over Fq.

To check whether two GH matrices are equivalent is known to be an NP-hard
problem. However, we can use the invariants related to the linear span and kernel
of the corresponding GH codes in order to help in their classification, since if two
GH codes have different ranks or dimensions of the kernel, the GH matrices are
nonequivalent.

The rank and dimension of the kernel for ordinary Hadamard codes over F2
have been studied. Specifically, lower and upper bounds for these two parameters
were established, and the construction of an Hadamard code for all allowable ranks
and dimensions of the kernel between these bounds was given [10], [11]. More-
over, the rank and dimension of the kernel for each nonisomorphic Z2Z4-linear
Hadamard code were also established [12]. The Z2Z4-linear codes are the Gray
map image of Z2Z4-additive codes, which are subgroups of Zα

2 ×Zβ
4 . Some of

these results have been generalized to GH codes over Fq [3]. In this paper, we con-
tinue studying the rank and dimension of the kernel for GH codes over Fq. Now,
we focus on an specific family of GH codes, namely the GH additive codes, that
is, additive codes obtained from GH matrices.

1 Kronecker sum construction

A standard method to construct GH matrices from other GH matrices is given by
the Kronecker sum construction [7], [13]. That is, if H(q,λ ) = (hi j) is any qλ×qλ
GH matrix over Fq, and B1,B2, . . . ,Bqλ are any qµ × qµ GH matrices over Fq,
then the matrix in Table 1 gives a q2λ µ × q2λ µ GH matrix over Fq, denoted by
H ⊕ [B1,B2, . . . ,Bn], where n = qλ . If B1 = B2 = · · · = Bn = B, then we write
H⊕ [B1,B2, . . . ,Bn] = H⊕B.
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H⊕ [B1,B2, . . . ,Bn] =




h11 +B1 h12 +B1 · · · h1n +B1
h21 +B2 h22 +B2 · · · h2n +B2

...
...

...
...

hn1 +Bn hn2 +Bn · · · hnn +Bn




Table 1: Kronecker sum construction

Let Sq be the normalized GH matrix H(q,1) given by the multiplicative table
of Fq. As for ordinary Hadamard matrices over F2, starting from a GH matrix
S1 = Sq, we can recursively define St as a GH matrix H(q,qt−1), constructed as
St = Sq⊕ [St−1,St−1, . . . ,St−1] = Sq⊕St−1 for t > 1, which is called a Sylvester GH
matrix.

2 Generalized Hadamard Fp-additive codes

In this section, we state some new results on generalized Hadamard additive codes.

Proposition 2.1 Let H(q,λ ) be a GH matrix over Fq, where q = pe, p prime, and
e > 1. Let n = qλ = pts such that gcd(p,s) = 1. Then

(i) If CH is an Fp-additive code, then s = 1.

(ii) The code CH is an Fp-additive code if and only if

rankp(CH) = kerp(CH) = 1+ t/e.

(iii) If CH is an Fp-additive code and ker(CH) = k, then

e+ t− k
e−1

≤ rank(CH)≤ 1+ t− (e−1)(k−1).

(iv) If CH is an Fp-additive code and ker(CH) = k, then k = 1+ t/e when CH is
linear over Fq (t is a multiple of e), or 1≤ k ≤ bt/ec otherwise.

We introduce a new construction of GH codes which allows us to guarantee
that the obtained code CH of length n = pt is Fp-additive, has kernel of minimum
dimension 1, and maximum rank t +1.

Proposition 2.2 For q = pe, p prime, and any t > e > 1, there exists a GH matrix
H(pe, pt−e) such that CH is an Fp-additive code over Fpe of length n = pt with
ker(CH) = 1 and rank(CH) = t +1.
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Example 2.3 In this example, we construct a GH matrix H(22,2) such that CH is
an F2-additive code over F22 of length n = 23 with ker(CH) = 1 and rank(CH) = 4.
We begin with the GH matrix H(23,1) given by the multiplicative table of F23 ,
where ω is a primitive element in F23 and ω3 = ω +1.

H(23,1) =




0 0 0 0 0 0 0 0
0 1 ω ω2 ω3 ω4 ω5 ω6

0 ω ω2 ω3 ω4 ω5 ω6 1
0 ω2 ω3 ω4 ω5 ω6 1 ω
0 ω3 ω4 ω5 ω6 1 ω ω2

0 ω4 ω5 ω6 1 ω ω2 ω3

0 ω5 ω6 1 ω ω2 ω3 ω4

0 ω6 1 ω ω2 ω3 ω4 ω5




(1)

Next, we write each entry of the matrix (1) using coordinates over F2 and projecting
over F22 . By Proposition 2.2, we obtain the GH matrix H(22,2), where α is a
primitive element in F22 and α2 = α + 1. Note that 0̄ = (0,0,0) = (0,0) = 0,
1̄ = (1,0,0) = (1,0) = 1, ω = (0,1,0) = (0,1) = α , ω2 = (0,0,1) = (0,0) = 0,
ω3 = (1,1,0) = (1,1) = α2, ω4 = (0,1,1) = (0,1) = α , ω5 = (1,1,1) = (1,1) =
α2, ω6 = (1,0,1) = (1,0) = 1.

H(22,2) =




0 0 0 0 0 0 0 0
0 1 α 0 α2 α α2 1
0 α 0 α2 α α2 1 1
0 0 α2 α α2 1 1 α
0 α2 α α2 1 1 α 0
0 α α2 1 1 α 0 α2

0 α2 1 1 α 0 α2 α
0 1 1 α 0 α2 α α2




(2)

Proposition 2.4 For q= pe, p prime, and any t ≥ e> 1, there exists a GH Fp-additive
code CH over Fq of length n = pt with ker(CH) = k if and only if

(i) k = 2 when t = e,

(ii) k ∈ {1, . . . ,bt/ec} when e - t,

(iii) k ∈ {1, . . . , t/e+1}, otherwise.

Corollary 2.5 For q = p2, p prime, and any t ≥ 2, there exists a GH Fp-additive
code CH over Fq of length n = pt with ker(CH) = k and rank(CH) = t+2−k if and
only if k is any of the allowable parameters given by Proposition 2.4.
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Example 2.6 For q = 4, we have the following results:

• If n = 4, there is only one GH matrix H(4,1) over F4 having rank(CH) =
rank2(CH) = ker(CH) = ker2(CH) = 2. Therefore, CH is a linear code and
an F2-additive code, which corresponds to the Sylvester GH matrix S1 = S4.

• If n = 8, there is only one GH matrix H(4,2) over F4 having rank(CH) =
4 and ker(CH) = 1. Therefore, CH is nonlinear over F4. However, it has
rank2(CH) = ker2(CH) = 2.5, so it is an F2-additive code.

• If n = 16, it is known that there are 226 nonequivalent GH matrices H(4,4)
over F4 [4], which satisfy that (rank(CH),ker(CH)) ∈ {(3,3),(4,2),(4,1),
(5,2),(5,1),(6,1),(7,1),(8,1)} [3]. Moreover, if we focus on the F2-additive
codes, we have that they must satisfy rank2(CH)= ker2(CH)= 3. In this case,
(rank(CH),ker(CH))∈ {(3,3),(4,2),(5,1)}. The first one corresponds to the
Sylvester GH matrix S2, which is also linear over F4.
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Let R a be finite chain ring of nilpotency index s, S the Galois extension of R
of rank m, and G the group of ring automorphisms of S fixing R. We will denote
by L (S`) (resp. L (R`)) the set of S-linear codes (resp. R-linear codes) of length
`. There are two classical constructions that allow us to build an element of L (R`)
from an element B of L (S`). One is the restriction code of B which is defined
as ResR(B) := B ∩ R`. The second one is based on the fact that the trace map
TrSR = ∑

σ∈G
σ is a linear form, therefore it follows that

TrSR(B) :=
{
(TrSR(c1), · · · ,TrSR(c`)) |(c1, · · · ,c`) ∈B

}
, (1)

is an R-linear code. The relation between the trace code and the restriction code
will be given by a generalization of the celebrated result due to Delsarte [2]

TrSR(B
⊥ϕ ′ ) = ResR(B)⊥ϕ , (2)

where ⊥ϕ and ⊥ϕ ′ denote the duality operators associated to the nondegenerate
bilinear forms ϕ : R`×R`→ R and ϕ ′ : S`×S`→ S respectively defined as follows.
Let be a and b in S`, their Euclidian inner product is defined as (a,b)E = a1b1 +
a2b2 + · · ·+ a`b`, and if m is even their Hermitian inner product is defined as
(a,b)H = (σ m

2 (a),b)E. Note that (−,−)E is a nondegenerate symmetry bilinear
form.
For all a in S` and b in R`, TrSR ((a,b)E)=

(
TrSR(a),b

)
E , and if m is even, TrSR ((a,b)H)=

TrSR ((a,b)E) , since TrSR
(
σ m

2 (a)
)
= TrSR(a). Throughout the paper ϕ = (−,−)E and

if m is even ϕ ′ = (−,−)H, otherwise ϕ ′ = (−,−)E. It is clear that

ϕ(b,TrSR(a)) = ϕ(TrSR(a),b) = TrSR(ϕ
′(a,b)), for all a ∈ S` and b ∈ R`. (3)

A finite commutative ring R with identity is called a finite chain ring if its ideals
are linearly ordered by inclusion R form a chain R) Rθ ) · · ·) Rθ s−1 ) Rθ s = {0}.
The set Γ(R) = Γ(R)∗ ∪ {0} is a complete set of representatives of R modulo θ
and each element a of R can be expressed uniquely as a θ -adic decomposition
a = γ0(a)+ γ1(a)θ + · · ·+ γs−1(a)θ s−1. Therefore we have a valuation function of
R, defined by ϑR(a) := min{t ∈ {0,1, · · · ,s}|γt(a) 6= 0} and a degree function of
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R, defined by degR(a) := max{t ∈ {0,1, · · · ,s}|γt(a) 6= 0}, for each a in R. We will
assume that ϑR(0) = s and degR(0) =−∞.

An R-linear code of length ` is a R-submodule of R`, and the elements of B
are called codewords. From now on we will assume that all codes are of length `
unless stated otherwise.

Let R and S be two finite chain rings with residue fields Fq and Fqm respectively.
We say that S is an extension of R and we denote it by S|R if R ⊆ S and 1R = 1S.
AutR(S) will denote the group of automorphisms of S which fix the elements of R.

Note that the map σ : a 7→
s−1
∑

t=0
γt(a)qθ t for all a ∈ S, is in AutR(S) and throughout

of this paper G will be the subgroup of AutR(S) generated by σ . For each subgroup
H of G one can define the fixed ring of H in S as

FixS(H) :=
{

a ∈ S
∣∣∣∣ρ(a) = a, for all ρ ∈ H

}
.

Definition 1 The ring S is a Galois extension of R with Galois group G if

1. FixS(G) = R and

2. there are elements α0,α1, · · · ,αm−1;α∗0 ,α∗1 , · · · ,α∗m−1 in S such that

m−1

∑
t=0

σ i(αt)σ j(α∗t ) = δi, j,

for all i, j = 0,1, · · · , |G|−1(where δi, j = 1S if i = j, and 0S otherwise).

Let A be a matrix in Sk×` and A[i :] the i-th row of A; A[: j] the j-th column of
A; A[i; j] the (i, j)-entry of A.

1. The valuation function of A is the mapping ϑA : {1, · · · ,k} → {0,1, · · · ,s},
defined by

ϑA(i) := ϑS(A[i :]) := min{ϑS(A[i; j]) |1≤ j ≤ `}.

2. The pivot of a nonzero row A[i :] of A, is the first entry among all the entries
least with valuation in that row. By convention, the pivot of the zero row is
its first entry.

3. The pivot function of A is the mapping ρ : {1, · · · ,k} → {1, · · · , `}, defined
by

ρ(i) := min
{

j ∈ {1; · · · ;`}|ϑS(A[i; j]) = ϑi

}
.
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Note that the pivot of the row A[i :] is the element A[i,ρ(i)]. Let ρ be a ring
automorphism of S, it is clear that the pivot function and valuation function of the
matrices A and (ρ(A[i; j]))1≤i≤k

1≤ j≤`
provide the same values.

Definition 2 (Matrix in row standard form) A matrix A ∈ Sk×` is in row stan-
dard form if it satisfies the following conditions

1. The pivot function of A is injective and the valuation function of A is increas-
ing,

2. for all i ∈ {1, · · · ,k}, there is ϑi ∈ {0,1, · · · ,s−1} such that A[i;ρ(i)] = θ ϑi

and A[i :] ∈ (θ ϑiS)` and

3. for all pairs i, t ∈{1, · · · ,k} such that t 6= i, then either i> t and degR (A[t;ρ(i)])<
ϑi or A[i;ρ(t)] = 0.

Let A ∈ Sk×` be a nonzero matrix, we say that a matrix B ∈ Sk×` is the row
standard form of A if B is in row standard form and B is row-equivalent to A.
Since the set of all generator matrices of any S-linear code B is a coset under
row equivalence, it follows that B has a unique generator matrix in row standard
form that will be denoted by RSF(B). As usual we define the type of a linear
code as follows. Let B be an S-linear code of length `. Denoted by θ ϑi the i-
th pivot of RSF(B). The type B is the (s + 1)-tuples (`;k0,k1, · · · ,ks−1) where
kt := |{ϑi |ϑi = t}|. Clearly the S-rank of B and the number of codewords of B,
are

rankS(B) =
s−1

∑
t=0

kt , and |B|= q
m
(

s−1
∑

t=0
kt(s−t)

)

.

Let S|R be a Galois extension of finite chain ring with Galois group G. The
Galois group G acts on L (S`) as follows; Let B in L (S`) and σ in G

σ(B) =

{
(σ(c0),σ(c1), · · · ,σ(c`−1))

∣∣∣∣(c0,c1, · · · ,c`−1) ∈B

}
. (4)

A linear code B over S is called Galois invariant if σ(B) = B for all σ ∈ G.

Theorem 3 Let B be an S-linear code and A ∈ Sk×` a generator matrix of B.
Then the following facts are equivalent.

1. B is Galois invariant.

2. RSF(B) in Rk×`.

246



Corollary 1 Let B be a linear code over S, B is Galois invariant if and only if
RSF(B) = RSF(Res(B)).

Corollary 2 Let B be a linear code over S of the type (`;k0,k1, · · · ,ks−1). Then
the following conditions are equivalent.

1. B is Galois invariant,

2. ResR(B) is of type (`;k0,k1, · · · ,ks−1).

For all B1, B2 ∈L (S`), B1 ∨B2 = B1 +B2 is the smallest S-linear code con-
taining B1 and B2, note that

(
L (S`);∩,∨

)
is a lattice. Let E be a subset of S`,

we define the extension code of E to S, denoted Ext(E ), as the code form by all
S-linear combinations of elements in E .

Proposition 1 The operators

L (S`)
TrSR;ResR
�
Ext

L`(R) (5)

are lattice morphisms. Moreover,

Ext(C⊥) = Ext(C )⊥ and TrSR(Ext(C )) = ResR(Ext(C )) =C for all C ∈L`(R).

Definition 4 (Galois closure and Galois interior) Let B be a linear code over S.

1. The Galois closure of B, denoted by B̃, is the smallest linear code over S,
containing B, which is Galois invariant,

B̃ :=
⋂{

T ∈L (S`)
∣∣∣∣T ⊆B and T Galois invariant

}
.

2. The Galois interior of B, denoted
◦
B, is the greatest S-linear subcode of B,

which is Galois invariant,

◦
B :=

∨{
T ∈L (S`)

∣∣∣∣T ⊇B and T Galois invariant
}
.

A map JG : L (S`)→L (S`) is called a Galois operator if JG is an morphism of
lattices such that

1. JG(JG(B)) = JG(B) and
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2. for all B in L (S`) the code JG(B) is Galois invariant.

The Galois closure and Galois interior are indeed Galois operators and
◦̃
B =

◦
B,

◦
B̃ = B̃. From Definition 4, it follows that B is Galois invariant if and only if

B̃ =
◦
B.

Proposition 2 If B is a linear code over S then
◦(

B⊥
)
=
(
B̃
)⊥

.

Lemma 5 Let B be a linear code over S. Then
◦
B = Ext(ResR(B)) =

⋂
σ∈G

σ(B).

For any B in L
(
S`
)
, we consider L (B) the lattice of S-linear subcode of B.

Let us define

Stab : L (B) → Sub(G)
T 7→ Stab(T ),

and
FixB : Sub(G) → L (B)

H 7→ ∩
σ∈H

σ(B),

where Stab(T ) =

{
σ ∈ G

∣∣∣∣σ(c) = c, for all c ∈T

}
.

Let H a subgroup of G, we say that B is H-invariant if FixB(H) = B. Note
that FixB(H) is an H-interior of B. From Lemma 5 it follows that

FixB(H) = Ext(ResT(B)),

where T= FixS(H). Moreover FixB(Stab(B)) = B and Stab(FixB(H)) = H.
Therefore we have a Galois correspondence on L (B) as follows.

Theorem 6 For each B in L
(
S`
)
, the pair (Stab;FixB) is a Galois correspon-

dence between B and G.
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We can associate to each linear code C defined over a finite field the matroid
M[H] of its parity check matrix H. For any matroid M one can define its gener-
alized Hamming weights which are the same as those of the code C . In [2] the
authors show that the generalized Hamming weights of a matroid are determined
by the N-graded Betti numbers of the Stanley-Reisner ring of the simplicial com-
plex whose faces are the independent set of M. In this talk we go a step further.
Our practical results indicate that the generalized Hamming weights of a linear
code C can be obtained from the monomial ideal associated with a test-set for C .
Moreover, recall that in [3] we use the Gröbner representation of a linear code C
to provide a test-set for C .

Our results are still a work in progress, but its applications to Coding Theory
and Cryptography are of great value.

1 Notation and Prerequisites

We begin with an introduction of basic definitions and some known results. By N,
Z, Fq (where q is a primer power) we denote the set of positive integers, the set of
integers and the finite field with q elements, respectively.

Definition 1 A matroid M is a pair (E, I) consisting of a finite set E called ground
set and a collection I of subsets of E called independent sets, satisfying the follow-
ing conditions:

1. The empty set is independent, i.e. /0 ∈ I

2. If A ∈ I and B⊂ A, then B ∈ I

3. If A,B ∈ I and |A|< |B|, then there exists e ∈ B\A such that A∪{e} ∈ I

Let M = (E, I) be a matroid. A maximal independent subset of E is called
a basis of M. A direct consequence of the previous definition is that all bases
of M have the same cardinality. Thus, we define the rank of the matroid M as the
cardinality of any basis of M, denoted by rank(M). A subset E that does not belong
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to I is called dependent set. Minimal dependent subsets of E are known as circuits
of M. A set is said to be a cycle if it is a disjoint union of circuits. The collection
of cycles of M is denoted by C (M). For all σ ∈ E, the nulity function of σ is given
by n(σ) := |σ |− rank(Mσ ) with rank(Mσ ) = max{|A| | A ∈ I and A⊂ σ}, i.e. the
restriction of rank(M) to the subsets of σ .

Let us consider an m× n matrix A in Fq whose columns are indexed by E =
{1, . . . ,n} and take I to be the collection of subsets J of E for which the column
vectors

{
A j | j ∈ J

}
are linearly independent over Fq. Then (E, I) defines a matroid

denoted by M[A]. A matroid M = (E, I) is Fq-representable if it is isomorphic to
M[A] for some A ∈ Fm×n

q . Then the matrix A is called the representation matrix of
M. The following well known results describes the relation between the colleciton
of all cycles of a matroid M and its representation matrix.

Proposition 1 Let M = (E, I) be a Fq-representable matroid. Then C (M) is the
null space of a representation matrix of M. Furthermore, the dimension of C (M)
is |E|− rank(M).

Let ∆ be a simplicial complex on the finite ground set E. Let K be a field and
let x be the indeterminates x = {xe | e ∈ E}. The Stanley-Reisner ideal of ∆ is, by
definition,

I∆ = 〈xσ | σ /∈ ∆〉
The Stanley-Reisner ring of I∆, denoted by R∆, is defined to be the quotient

ring R∆ = K[x]
I∆

. This ring has a minimal free resolution as NE-graded module:

0 ←− R∆ ←− P0 ←− P1 ←− ·· · ←− Pl ←− 0

where each Pi is given by Pi =
⊕

α∈NE K[x](−α)βi,α . We write βi,α for the
NE-graded Betti Numbers of ∆.

1.1 Matroids and Simplicial complex

A matroid M = (E, I) is a simplicial complex whose faces are the independent
sets. Thus, IM := 〈xσ | σ ∈ C 〉 where C is the set of all circuits of M. Define
Ni = {σ ∈ N | n(σ) = d}.
Theorem 1 ([2]Theorem 1) Let M be a matroid on the ground set E. Let σ ⊂ E.
Then, βi,σ 6= 0 if and only if σ is minimal in Ni.

Definition 2 Let M = (E, I) be a matroid, we define the generalized Hamming
weights of M to be di = min{|σ | | n(σ) = i}.
Corollary 1 Let M be a matroid on the ground set E. Then,

di = min{d | βi,d 6= 0 for all 1≤ i≤ |E|− rank(M)} .
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1.2 Matroids and linear codes

An [n,k]q linear code C is a k-dimensional subspace of Fn
q. We define a generator

matrix of C to be a k×n matrix G whose row vectors span C , while a parity check
matrix of C is an (n− k)×n matrix H whose null space is C .

Let us denote by dH(·, ·) and wH(·) the Hamming distance and the Hamming
weight on Fn

q, respectively. We write d for the minimum Hamming distance of
the code C , which is equal to its minimum weight. Thus, the error correcting
capability of C is t =

⌊d−1
2

⌋
where b·c is the greatest integer function. For every

codeword c ∈ C its support, supp(c), is defined as its support as a vector in Fn
q, i.e.

supp(c) = {i | ci 6= 0}. We will denote by MC the set of codewords of minimal
support of C .

A test-set TC for C is a set of codewords such that for every word y ∈ Fn
q,

either y belongs to the set of coset leaders, or there exists an element t ∈ TC such
that wH(y− t)< wH(y).

Definition 3 The rth generalized Hamming weight of C denoted by dr(C ) is the
smallest support of an r-dimensional subcode of C . That is,

dr(C ) = min{supp(D) | D⊆ C and rank(D) = r}

In [3] the authors associate a binomial ideal to an arbitrary linear code provided
by the rows of a generator matrix and the relations given by the additive table of
the defining field.

Let X denote n vector variables X1, . . . ,Xn such that each variable Xi can be
decomposed into q−1 components xi,1, . . . ,xi,q−1 with i = 1, . . . ,n. A monomial in
X is a product of the form:

Xu = Xu1
1 · · ·Xun

n =
(

xu1,1
1,1 · · ·x

u1,q−1
1,q−1

)
· · ·
(

xun,1
n,1 · · ·x

un,q−1
n,q−1

)

where u ∈ Zn(q−1)
≥0 . The total degree of Xu is the sum deg(Xu) = ∑n

i=1 ∑q−1
j=1 ui, j.

When u = (0, . . . ,0), note that Xu = 1. Then, the polynomial ring K[X] is the set
of all polynomials in X with coefficients in K.

Recall that the multiplicative group F∗q of nonzero elements of Fq is cyclic.
A generator of the cyclic group F∗q is called a primitive element of Fq, i.e. Fq

consist of 0 and all powers from 1 to q− 1 of that primitive element. Let α be
a primitive element of Fq. We define by RXi , the set of all the binomials on the
variables Xi associated to the relations given by the additive table of the field Fq =〈
α j | j = 1, . . . ,q−1

〉
∪{0}, i.e.

RXi =
{
{xi,uxi,v− xi,w | αu +αv = αw} ∪ {xi,uxi,v−1 | αu +αv = 0}

}
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with i = 1, . . . ,n. Note that there are
(q

2

)
different binomials in RXi . We define RX

as the ideal generated by the union of all binomial ideals RXi , i.e. RX =
〈
∪n

i=1RXi

〉

We will use the following characteristic crossing functions. These applications
aim at describing a one-to-one correspondence between the finite field Fq with q
elements and the standard basis of Zq−1, denoted as Eq = {e1, . . . ,eq−z} where ei

is the unit vector with a 1 in the i-th coordinate and 0’s elsewhere.

∆ : Fq −→ Eq∪{0} ⊆ Zq−1 and ∇ : Eq∪{0} −→ Fq

1. The map ∆ replaces the element a = α i ∈ Fq by the vector ei and 0 ∈ Fq by
the zero vector 0 ∈ Zq−1.

2. The map ∇ recovers the element α j ∈ Fq from the unit vector e j and the zero
element 0 ∈ Fq from the zero vector 0 ∈ Zq−1.

These maps will be used with matrices and vectors acting coordinate-wise. Al-
though ∆ is not a linear function. Note that we have:

X∆a ·X∆b = X∆a+∆b = X∆(a+b) mod RX for all a,b ∈ Fn
q.

Let C be an [n,k]q linear code. We define the ideal associated to C as the
binomial ideal:

I(C ) =
〈{

X∆a−X∆b | a−b ∈ C
}〉
⊆K[X]

Given the rows of a generator matrix C , labelled by {w1, . . . ,wk} ⊆ Fn
q, we

define the following ideal:

I+(C ) =

〈 {
X∆(α jwi)−1

}
i=1,...,n

j=1,...q−1
∪ {RXi}i=1,...,n

〉
⊆K[X]

Theorem 2 [3][Theorem 2.3] I(C ) = I+(C )

Remark 1 In the binary case, given a generator matrix G∈Fk×n
2 of an [n,k]2-code

C and let label its rows by {w1, . . . ,wk} ⊆ Fn
2. We define the ideal associated to C

as the binomial ideal:

I+(C ) =
〈
{Xwi−1}i=1,...,k ∪

{
x2

i −1
}

i=1,...,n

〉
⊆K[X]

Now, let G = {g1, . . . ,gs} be the reduced Gröbner basis of the ideal I+(C ) with
respect to �, where we take � to be any degree compatible ordering on K[X] with
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X1 ≺ . . . ≺ Xn. By Lemma [3][Lemma 3.3] we know that all elements of G \RX
are in standard form, so for gi ∈ G \RX with i = 1, . . . ,s, we define

gi = X∆g+i −X∆g−i with X∆g+i � X∆g−i and g+i −g−i ∈ C .

Using [3][Proposition 4], we know that the set T =
{

g+i −g−i | i = 1, . . . ,s
}

is
a test-set for C .

Example 1 Consider the [6,3,2]2 binary code C defined by the following genera-
tor matrix:

G =




1 0 0 0 0 1
0 1 1 0 1 0
0 0 0 1 1 1


 ∈ F3×6

2

Let us label the rows of G by w1 and w2. By the previous theorem, the ideal
associated to the linear code C may be defined as the following ideal:

I+(C ) =
〈 {Xwi−1}i=1,2 ∪ {RXi}i=1,...,6

〉

=

〈 



x1x6−1
x2x3x5−1
x4x5x6−1



 ∪

{
x2

i −1
}

i=1,...,6

〉

If we compute a reduced Gröbner basis G of I+(C ) we obtained a test-set consist-
ing of 4 codewords:

TC = {(1,0,0,0,0,1),(0,1,1,0,1,0),(0,1,1,1,1,0,1),(0,0,0,1,1,1)}

For fuller discussion of this algebraic structure see [4, 1] and the references therein.
The connection between linear codes and matroids will turn out to be funda-

mental for the development of the subsequent results. Thus, a brief review will be
provided here.

Given an m× n matrix H in Fq, then H can be seen not only as the repre-
sentation matrix of the Fq-representable matroid M[H] but also as a parity check
matrix of an [n,k]-code C . Furthermore, there exists a one to one correspondence
between Fq-representable matroids and linear codes, since for any H,H ′ ∈ Fm×n

q ,
M[H] = M[H ′] if an only if H and H ′ are parity check matrices of the same code
C . This association enables us to work with Fq-representable matroids and linear
codes as if they were the same object and thus we can conclude some properties of
linear codes using tools from matroid theory and vice-versa.
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2 Our Conjecture

Let M = (E, I) be a matroid and C be the set of all circuits of M. Consider T
a collection of cycles of M with the following property:

⋃
τ∈C τ =

⋃
τ∈T τ . We

define the ideal IT = 〈xσ | σ ∈T 〉.
Conjecture 1 Let β ′i,α the NE-graded betti number of IT , related with the minimal

free resolution of R = K[X ]
IT

as NE-graded module. Then, we have a similar result
as Theorem 1 and Corollary 1.

If we talk about linear codes, the conjecture allows us to compute the set of
generalized Hamming weight of a linear code C using a Test-set for C , in other
words, by computing a Grobner basis of the ideal associated to C .

Corollary 2 Let TC be a test-set for the linear code C . Consider the monomial
ideal: ITC

= 〈xσ | σ ∈TC 〉. Let β ′i,α the NE-graded betti numbers of ITC
. Then,

di(C ) = min
{

d | β ′i,d 6= 0
}

for 1≤ i≤ n− k

Example 2 Now we use the same code of Example 1. In this case the support
of a test-set TC is given by: T = {{2,3,5},{2,3,4,6},{4,5,6},{1,6}} i.e. we
consider the ideal: IT = 〈x2x3x5,x2x3x4x6,x4x5x6,x1x6〉 ⊆ K[x1, . . . ,x6]. We get
the Betti diagram

1 2 3
1 1
2 2 1
3 1 4 2

Thus β ′1,2, β ′2,4 and β ′3,6 are the minimal β ′i,d 6= 0 with i = 1,2,3. Or equivalently,
d1 = 2, d2 = 4 and d3 = 6.
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SC2: Satisfiability Checking meets Symbolic Computation

Erika Ábrahám1, John Abbott11, Bernd Becker2, Anna M. Bigatti3, Martin
Brain10. Bruno Buchberger4, Alessandro Cimatti5, James H. Davenport6,
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Symbolic Computation and Satisfiability Checking are two research areas, both
having their individual scientific focus but sharing also common interests in the de-
velopment, implementation and application of decision procedures for arithmetic
theories. Despite their commonalities, the two communities are rather weakly con-
nected. The aim of our newly accepted SC2project (H2020-FETOPEN-CSA) is to
strengthen the connection between these communities by creating common plat-
forms, initiating interaction and exchange, identifying common challenges, and
developing a common roadmap from theory along the way to tools and (indus-
trial) applications. In this talk we report on the aims and on the first activities of
this project, and formalise some relevant challenges for the unified SC2community.
For more details, see www.sc-square.org/CSA/welcome.html.
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Satisfiability Modulo Theories: Where We Are, How We
Got Here, and Where We Could Go Next

M. Brain1

1 University of Oxford, UK martin.brain@cs.ox.ac.uk

This talk will introduce the field of Satisfiability Modulo Theories (SMT) from
the foundations, along with some of the history and culture of the field. Topics cov-
ered will include the SMT-LIB community initiative that ensures interoperability
between tools, historic and modern solver architectures, how the demands of soft-
ware verification have shaped and driven the fields, some of the ‘non-traditional’
algebras that are of interest and finally what problems need a new generation of
ideas and tools.
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Integration of a SAT Solver into Maple

S. Forrest1

1 Maplesoft Europe Ltd., Cambridge, UK, sforrest@maplesoft.com

Maple is a commercial computer algebra system developed and sold since 1988
by Maplesoft [1]. Its most recent major release, in March 2016, featured the aug-
mentation of existing tools for manipulating logical expressions with a link to Min-
iSat, a high-performing open-source SAT solver [2].

In this talk, we will discuss some design questions and technical issues en-
countered in the course of implementing this Maple–MiniSat integration, as well
as some additional ways Maple might make further use of a SAT oracle and the
promise offered by a possible future integration with an SMT solver.
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Implicitization with Groebner Bases: the well known
algorithm and algorithms which work

J. Abbott1, A. M. Bigatti2, L. Robbiano2
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2 Università degli Studi di Genova, {bigatti,robbiano}@dima.unige.it

We present new, practical algorithms for the hypersurface implicitization prob-
lem: namely, given a parametric description (in terms of polynomials or rational
functions) of the hypersurface, find its implicit equation.

Two of them are for polynomial parametrizations: one algorithm, “ElimTH”,
has as main step the computation of an elimination ideal via a truncated, homo-
geneous Gröbner basis. The other algorithm, “Direct”, computes the impliciti-
zation directly using an approach inspired by the generalized Buchberger-Möller
algorithm. Either may be used inside the third algorithm, “RatPar”, to deal with
parametrizations by rational functions.

Finally we show how these algorithms can be used in a modular approach,
algorithm “ModImplicit”, for avoiding the high costs of arithmetic with rational
numbers. We exhibit experimental timings to show the practical efficiency of our
new algorithms.
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Symbolic Computation: give and take for SC2

J. Abbott1

1 Universität Kassel, Germany jabbott@mathematik.uni-kassel.de

The aim of the SC2 project is promote collaboration between researchers in
Symbolic Computation and those in Satisfiability Checking. In this talk we shall
adopt the perspective of a researcher in Symbolic Computation, and look at aspects
of our expertise (both theoretical and practical) which we think are likely to be
useful to SC2, and also at expertise (and challenges) which we hope to acquire
from the collaboration. The intent is to identify promising directions rather than
“ready-to-eat” solutions; this in preparation for the open discussion session.

One clear challenge is achieving SMT compliance. An important point for
practical efficiency is incrementality: the SMT solver is likely to ask for the sat-
isfiability of many systems which have large subsets of generators in common.
Another novel aspect is producing an explanation for unsatisfiability: this means
determining a small subset which is unsatisfiable, so that the SMT solver can skip
large chunks of search space.

Symbolic computation tools likely to be useful (at least in theory) include poly-
nomial factorization, Gröbner bases, cylindrical algebraic decompositions. A sig-
nificant question will be how the practical efficiency of these techniques contributes
to overall computation time (at least on typical example problems).

In the case of a satisfiable system, what sort answer should be returned to the
SMT solver? In principle an exact sample point could be determined, but may be
an unwieldy set of algebraic numbers; often an “implicit” representation is more
compact.

There are also a number of low-level questions such as how to effect commu-
nication between the SMT solver’s “traversal engine”, and the “theory engine”,
namely the symbolic computation software. We mention also philosophical ques-
tions such as the acceptability of probabilistic/heuristic methods (where a signifi-
cant gain in speed is paid for by allowing a very small chance of error).
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Computation of Hilbert Schemes

M. Albert1

1 University of Kassel, Germany, albert@mathematik.uni-kassel.de

Hilbert schemes are a basic topic in Algebraic Geometry [1, 2]. Methods re-
lated to Gröbner bases are fundamental here, as Hartshorne’s proof of the connect-
edness of Hilbert schemes via generic initial ideals demonstrates [3]. For many
purposes, the explicit construction of Hilbert schemes is important. Classical ap-
proaches lead to prohibitively large equations. Newer ideas like Gröbner strata
[4, 5] lead to improvements, but do not provide open covers. Despite all advances,
it has remained a great challenge to construct Hilbert schemes even for very small
Hilbert polynomials.

A novel approach replacing Gröbner bases by J-marked bases [6, 7] was pro-
posed by the group of Margharita Roggero. For every strongly stable ideal J, one
obtains here a larger family which corresponds to an open subscheme and which
can be described by equations of low degree.

We have implemented several of the new algorithms in the computer algebra
system COCOALIB [8]. In the talk we are going to explain these algorithms and
give some ideas to improve these algorithms. In addition to that we present some
first practical experience which we have made during first computations. Further-
more we report some experiences which we have made when we tried to parallelize
these algorithms.
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In this talk, we present a relationship between Nœther normalization and involutive
bases. Based on a new definition of Nœther position called D-quasi stability [1]
we present an efficient algorithm based on the algorithm described by Seiler in [2]
(to transform an ideal into quasi stable position) to find, for a given homogeneous
ideal, a linear change of variables which transforms the ideal into Nœther posi-
tion. For this purpose, the type of linear changes we apply is the elementary linear
changes, i.e. at each iteration we make a linear change of the form xk 7→ xk + ax`
where the pair (xk,x`) presents an obstacle for being in Nœther position and a is
a random number. We have implemented the described algorithm in MAPLE and
illustrate its efficiency via a set of benchmark polynomials. In this direction, we
shall mention the work [3] due to Robertz in which he applied the cone decompo-
sition of the given ideal using Janet division to obtain also an sparse linear change
of variables for the Nœther normalization. Remark that the criterion to get Nœther
normalization described in [3] is not equivalent to Nœther position, however, our
new criterion is equivalent and this may lead to achieve a more sparse linear change
of variables.
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In this work, partial divided-difference equations and three-term recurrence
relations satisfied by the bivariate Askey-Wilson and the bivariate q-Racah polyno-
mials are computed. By using limiting processes, partial divided-difference equa-
tions and three-term recurrence relations are also provided for each of the following
families of orthogonal polynomials: the bivariate continuous dual q-Hahn, the bi-
variate Al-Salam-Chihara, the bivariate continuous q-Hahn, the bivariate q-Hahn,
the bivariate dual q-Hahn, the bivariate q-Krawtchouk, the bivariate q-Meixner, and
the bivariate q-Charlier polynomials. We obtain our results which are all new using
mainly the qsimpcomb algorithm implemented in Maple in the package qsum.mpl.
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In this work, fourth-order partial divided-difference equations satisfied by the
bivariate Racah and the bivariate Wilson polynomials are derived. From our re-
sult, we recover the difference equation satisfied by the bivariate Racah polynomi-
als given by J.S. Geronimo and P. Iliev. Moreover, we make a conjecture on the
form of the partial divided-difference equation satisfied by any multivariate Racah
or Wilson polynomials. To illustrate this conjecture, we consider the case of the
trivariate continuous Hahn polynomials.
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In 2003 Dohmen, Pönitz and Tittmann introduced a bivariate generalization
P(G;x,y) of the chromatic polynomial P(G;y). While the definition of the usual
chromatic polynomial strictly claimes, respectively, different colours for pairwise
non-adjacent vertices, the bivariate polynomial expands this set of colours by an-
other set without any restrictions. Let X = Y ∪Z with Y ∩Z = /0 be the set of all
available colours with |X |= x and |Y |= y. By a generalized proper colouring of G
we denote a map φ : V → X such that for all edges {u,v} ∈ E with φ (u) ∈ Y and
φ (v) ∈ Y φ (u) 6= φ (v) holds. In other words two adjacent vertices may only be
coloured in the same colour, if this is chosen from Z.

The computation of the chromatic polynomial of a graph is an NP-complete
problem. Consequently, this is also valid for the bivariate generalization of the
chromatic polynomial. A recursion formula, which was introduced by Averbouch,
Godlin and Makowsky in 2008, has exponential complexity. Hence, our aim is to
find efficient algorithms or formulas for the calculation of the bivariate chromatic
polynomial for special types of graphs. The following results will be presented.

We introduce partition formulas, which can be used to compute the bivariate
chromatic polynomial for arbitrary graphs. These formulas are very complex, but
they are also an easy method to prove more special but less complex formulas.

Some of those less complex methods are recursion-free equations for the com-
plete partite graphs K2,...,2 and K3,...,3 as well as a recursion formula for the more
general complete partite graph Kn1,...,nt with t ≥ 1 and ni ≥ 1 for all i ∈ {1, . . . , t}.

Finally, we will consider complete seperators in graphs. In the univarate case,
a complete seperator allows a simplification of the computation of the univariate
chromatic polynomial. We will show that this is much more difficult in the bivariate
case.

References
[1] I. Averbouch, B. Godlin and J. A. Makowsky, A most general edge elimination polynomial, in

Graph-Theoretic Concepts in Computer Science, Lecture Notes in Comput. Sci. 5344, pp.31-
42 (2008). http://link.springer.com/chapter/10.1007%2F978-3-540-92248-3_4

267



[2] K. Dohmen, A. Pönitz and P. Tittmann, A new two-variable generalization of the chromatic
polynomial, Discrete Math. Theor. Comput. Sci. 6, pp. 69-90 (2003). http://www.emis.de/
journals/DMTCS/volumes/abstracts/dm060106.abs.html

[3] M. Gerling, Eigenschaften chromatischer Polynome, Dissertation, Universität Kas-
sel. https://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:
34-2015110249265

268



Index
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