Übungszettel 8

- 45. Lösen Sie die Gleichungen über \mathbb{R}
 - (a) $\frac{1}{2} \ln(x+1) + 1 = \ln(\sqrt{x+3})$,
 - (b) $e^{2x} + e^x 6 = 0$.
- 46. Lösen Sie über \mathbb{R} die Gleichung

$$u^{x-2} = v^{x+3}$$

nach x auf. Bestimmen Sie dann die spezielle Lösung für $u=100\,$ und $v=10\,$.

- 47. Bestimmen Sie die Umkehrfunktionen von
 - (a) $f(x) = \ln(3x+5) + 2$, $x > -\frac{5}{3}$,
 - (b) $g(x) = \frac{e^x e^{-x}}{2} =: \sinh x , \quad x \in \mathbb{R} .$
- 48. Durch die Koordinatenformation

$$\widetilde{x}_1 = \cos \varphi \cdot x_1 + \sin \varphi \cdot x_2$$

 $\widetilde{x}_2 = -\sin \varphi \cdot x_1 + \cos \varphi \cdot x_2$

wird eine Drehung um den Winkel φ erzeugt.

- (a) Man drehe den Punkt $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ um den Winkel $\frac{\pi}{3} = 60^{\circ}$.
- (b) Man berechne die Koordinaten $\begin{pmatrix} x_1'' \\ x_2'' \end{pmatrix}$, wenn zuerst um φ und dann um ψ gedreht wird.
- 49. Gegeben sei die Ebene x+y+z=0im \mathbb{V}^3 . Geben Sie eine Orthonormalbasis der Ebene an.
- 50. (Quotientenregel)
 - (a) Seien u(x) und v(x) differenzierbar in einem Intervall I und sei $v(x) \neq 0$. Zeigen Sie, dass $\frac{u(x)}{v(x)}$ in I differenzierbar ist mit

$$\left(\frac{u(x)}{v(x)}\right)' = \frac{u'(x)v(x) - v'(x)u(x)}{v^2(x)}$$

(b) Leiten Sie die Funktion

$$f(x) = \frac{3x - 2}{x^2 + 3x - 1}$$

ab.