
Journal of Computational and Applied Mathematics 92 (1998) 103–108

Fourth-order di�erence equation for the associated classical
discrete orthogonal polynomials

M. Foupouagnignia;1;2, W. Koepf a;∗, A. Ronveauxb
aKonrad-Zuse-Zentrum f�ur Informationstechnik, Takustr. 7, D-14195 Berlin, Germany

bMathematical Physics, Facult�es Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium

Received 30 December 1997; received in revised form 11 March 1998

Abstract

We derive the fourth-order di�erence equation satis�ed by the associated order r of classical orthogonal polynomials
of a discrete variable.
The coe�cients of this equation are given in terms of the polynomials � and � which appear in the discrete Pearson

equation �(��) = �� de�ning the weight �(x) of the classical discrete orthogonal polynomials. c© 1998 Elsevier Science
B.V. All rights reserved.
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1. Introduction

The fourth-order di�erence equation for the associated Meixner and Charlier polynomials were
given for all r (order of association) in [6], using an explicit solution of the recurrence relation
built from the symmetry properties of this recurrence. On the other hand, the equation for the �rst
associated (r = 1) of all classical discrete polynomials was obtained in [10] using a useful relation
proved in [1].
In this work, we give a single fourth-order di�erence equation which is valid for all integers r

and for all classical discrete orthogonal polynomials. This equation is important in birth and death
processes [6] and also for some connection coe�cient problems [7].
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Let (Pn)n be a sequence of monic orthogonal polynomials of degree n with respect to the regular
linear functional L. (Pn)n satis�es the following second-order recurrence relation:

Pn+1(x) = (x − �n)Pn(x)− nPn−1(x); n¿1; n 6=0;
P0(x) = 1; P1(x) = x − �0:

The associated orthogonal polynomials of order r; P (r)n ; are de�ned by the shifted recurrence relation
(n→ n+ r in �n and n)

P (r)n+1(x) = (x − �n+r)P (r)n (x)− n+rP (r)n−1(x); n¿1;

P (r)0 (x) = 1; P (r)1 (x) = x − �r; r¿0:

When the family (Pn)n is classical (continuous), the polynomials Pn are solutions of the hypergeo-
metric equation

L2;0[y]≡ �(x)y′′(x) + �(x)y′(x) + �ny(x) = 0;

where � is a polynomial of degree at most two, � is a polynomial of degree one, and �n is a
constant [8].
From the following coupled second-order relations [2, 9]:

L2; r[P (r)n ] = Kr[P
(r+1)
n−1 ]

′; L∗2; r[P (r+1)n−1 ] = K
∗
r [P

(r)
n ]′ (1)

with

L2; r = �
d2

dx2
+ (x − �r) (r�′′ + �′) ddx + (�n − nr�

′′);

L∗2; r = �
d2

dx2
− [(x − �r) (r�′′ + �′)− 2�′] ddx + (�

∗
n − (n+ 1)r�′′);

K∗r =−[(2r − 1)�′′ + 2�′]; Kr =
{
r[(2r − 3)�′′ + 2�′] if r¿ 1;
0 if r = 0

(2)

in [11], using the representation of r and �r in terms of � and � the generic fourth-order di�erential
equation M (r)

4 (P
(r)
n (x)) = 0 satis�ed by the associated of any integer order r of the classical class

was derived, where

M (r)
4 = �2

d4

dx4
+ 5��′

d3

dx3
+ [−�2 + 2��′ + 3�′2 − (2n+ 4r)��′

+(4 + n− n2 + 4r − 2nr − 2r2)��′′] d
2

dx2

− 3
2
[2��′ + (2n− 2 + 4r)�′�′ − 2��′′ + (n2 − n− 4r + 2nr + 2r2)�′�′′] d

dx

+
1
4
{n(2 + n)[2�′ + (n+ 2r − 3)�′′][2�′ + (n+ 2r − 1)�′′]}: (3)
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In this letter we want to extend these results to the classical discrete class, i.e., the polynomials Pn of
Hahn, Hahn–Eberlein, Krawtchouk, Meixner, and Charlier, which are solutions of the second-order
di�erence equation

�(x)�3y(x) + �(x)�y(x) + �ny(x) = 0

with �y(x) = y(x + 1) − y(x) and 3y(x) = y(x) − y(x − 1). It turns out that the coe�cient �n
is given by 2�n = −n[(n − 1)�′′ + 2�′], see [8]. From the known relations between the recurrence
coe�cients �n; n and the polynomials � and � [5, 4],

�n=
−�(0) (�′ − �′′)− n(�′ + 2�′(0)) (�′ + (n− 1)�′′=2)

((n− 1)�′′ + �′)(n�′′ + �′) ; n¿ 0;

n=− n(�′ + (n− 2)�′′=2)
(�′ + (2n− 3)�′′=2)(�′ + (2n− 1)�′′=2)[�(�n−1) + �(�n−1)]; n¿ 1; (4)

�n=−�(0) + n�
′(0)− n2�′′=2

�′ + n�′′
; n¿ 0;

it is possible to write the corresponding Eqs. (1)–(3) again in terms of � and �; for the generic
classical discrete polynomials.

Proposition 1 (Foupouagnigni et al. [3]). The associated polynomials satisfy

Dr; n[P (r)n ] =Nr+1; n−1[P
(r+1)
n−1 ]; (5)

�Dr+1; n−1[P
(r+1)
n−1 ] = �Nr; n[P (r)n ]; (6)

where

Dr; n = a2T2 + a1T+ a0T0; Nr+1; n−1 = ã1T+ ã0T0; (7)

�Dr+1; n−1 = b2T2 + b1T+ b0T0; �Nr; n = b̃1T+ b̃0T0; (8)

a2 = k9;0; a1 =−k2;1k10;0; a0 = k11;0; ã1 = k4;0k10;0; ã0 =−k4;0k12;0 (9)

b2 = k9;0; b1 =−k5;1k10;0; b0 = k13;0; b̃1 = k6;0k10;0; b̃0 =−k6;0k14;0; (10)

T is the shift operator: TP(x) = P(x + 1); and the coe�cients ki; j are polynomials given by

ki;0(x) = ki(x) and ki; j(x) = ki(x + j) (11)

and (16).

2. Fourth-order di�erence equation for associated polynomials

Replacing T2P (r+1)n−1 given by (6) in the shifted Eq. (5), we obtain

[c3T3 + c2T2 + c1T+ c0](P (r)n ) = [c̃1T+ c̃0](P
(r+1)
n−1 ): (12)
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By the same process, using again T2P (r+1)n−1 given by (6) in the shifted Eq. (12), we obtain

[d4T4 + d3T3 + d2T2 + d1T+ d0](P (r)n ) = [d̃1T+ d̃0](P
(r+1)
n−1 ); (13)

where the polynomial coe�cients ci; c̃i; di and d̃i are easily computed from the coe�cients ai; ãi; bi
and b̃i.
Now, use of Eqs. (5), (12) and (13) gives the expected fourth-order di�erence equation satis�ed

by each P (r)n∣∣∣∣∣∣∣∣
a2T2P (r)n + a1TP (r)n + a0P (r)n ã1 ã0

c3T3P (r)n + c2T2P (r)n + c1TP (r)n + c0P (r)n c̃1 c̃0

d4T4P (r)n + d3T3P (r)n + d2T2P (r)n + d1TP (r)n + d0P (r)n d̃1 d̃0

∣∣∣∣∣∣∣∣
= 0; (14)

which can be written in the form
 4∑
j=0

Ij(r; n; x)Tj


P (r)n (x) = 0:

We have used Maple V Release 4 to compute the coe�cients Ij depending on r, n and x, and
after cancelling common factors, we obtain

I4 = k9;2(k10;0k10;1 − k12;0k12;1);

I3 = k10;2(k12;0(k2;3k12;1 + k13;1)− k10;0k10;1(k2;3 + k5;2)) + k9;1k10;0k12;2;

I2 = k10;1(k10;2(k10;0k10;1 + k13;0 − k5;1k12;0)− k9;1k10;0)− k12;1(k12;2k13;0 + k11;2k12;0); (15)

I1 = k10;0k12;2(k2;2k12;0 + k13;0) + k10;2k12;0(k9;0 − k10;0k10;1);

I0 = k9;−1(k10;1k10;2 − k12;1k12;2);
where the polynomials ki; j are given by (11) and

Er(x) = �(x)− �(�r)
2

+ r
�′

2
+ (r2 − r(1 + 2�r)− 2)�

′′

4
+ (r − 2)�

′(x)
2

− �′(0) r
2
;

Fr(x) =−�(�r)
2

− r �
′

2
− (r2 − r(3− 2�r))�

′′

4
+ (�′(x)− �′(0)) r

2
; (16)

�n = (2n− 1)�
′′

2
+ �′; k1(x) = �(x + 1) + En+r+1(x);

k2(x) = �(x + 1)− Fr(x); k3(x) = �n+r ; k4(x) =

{
r�r−1 if r¿1;

0 if r=0;

k5(x) = �(x + 1) + Er(x); k6(x) =−�r; k7(x) = �(x + 1)− Fn+r+1(x);
k8(x) =−n+r+1�n+r+1; k9(x) = k7(x + 1)k1(x + 1)− k3(x)k8(x);
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k10(x) = k7(x + 1) + k1(x); k11(x) = k2(x + 1)k2(x) + k4(x)k6(x);

k12(x) = k2(x + 1) + k5(x); k13(x) = k5(x + 1)k5(x) + k4(x)k6(x);

k14(x) = k5(x + 1) + k2(x):

The polynomials k3, k4, k6, k8 are constant with respect to the variable x and �r; r are given by (4).
If r=0, from (2), and (16) we have k4=K0=0. Then, N1; n−1 is equal to zero, thus the fourth-order

di�erence equation for the �rst associated P(1)n factorizes in the form [1, 3, 10] ( �A1T2 + �B1T +
�C1T0)(A1T2 + B1T+ C1T0)[P(1)n ] = 0:
For r = 0, if we are inside the Hahn class with � + � + 1 = 0 (discrete Grosjean polynomials),

from (2), (16), and [2, 9] we have K∗0 = 2k6 = 0. Then �N1; n is equal to zero and the di�erence
equation in this case reduces to the second-order di�erence equation �D1; n[P(1)n ] = 0.
Using the result of this letter, we have computed the coe�cients Ij for all classical polynomials

of a discrete variable, generalizing the results given in [6, 10].
For the Krawtchouk case for example, (�(x)= x; �(x)= (1=q)((1− q)N − x); the rth Krawtchouk

associated P (r)n with n+ r6N is annihilated by the following di�erence operator, where t is given
by t = r + x − 2xq+ qN − 5q− N + 2:

q(4 + x)(x + 3− N )(q− 1)(n− 2 + 4q+ 2t)T4 − (10xq+ nq− 6Nq
− 42q2 − 4xq3N − 2xN q+ 2x2q− 12q3N + 20xq3 + 4x2q3 + 28q3
− 3nq2 + 14q− 2t − n2q+ 18q2N + 6xq2N − 30xq2 − 6x2q2 + 3nt2
+ 2t3 − 6tq2 + n2t − nt + 6tq)T3 − (10xq− 8nq− 6Nq− 42q2
− 5nN q2 + 8xq2n− 4xq3N + 2x2nq2 + 5nN q+ 2xN qn+ n2
− 2xN q+ 2x2q− 12q3N + 20xq3 + 4x2q3 − 2xN q2n+ 28q3 + 6nq2
+ 14q− 2t − 8xqn− n3 − 4n2q+ 18q2N + 6xq2N − 30xq2 − 2x2nq
− 6x2q2 − 12nqt − 4x2qt − 6nt2 − 4t3 + 12tq2 − 12qt2 − 4n2t
+4nt − 12tq+ 6t2 − 10q2Nt − 16xqt + 16xq2t − 4xq2Nt + 4xN qt + 10Nqt + 4x2q2t)T2

+ (6xq+ 9nq− 4Nq− 12q2 − 4xq3N + 2n2 − 2xN q+ 2x2q− 8q3N + 12xq3 + 4x2q3 + 8q3
− 9nq2 + 4q− 2n− 4t − 3n2q+ 12q2N + 6xq2N − 18xq2 − 6x2q2
− 12nqt − 3nt2 − 2t3 − 18tq2 − 12qt2 − n2t + 7nt + 18tq+ 6t2)T
+ q(1 + x)(x − N )(q− 1)(2t + n):
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