Übungen Lineare Algebra II

SS 2004 10.05.04

Prof. Wolfram Koepf
Peter Horn

Blatt 3

Aufgabe 1 (Kreuzprodukt im \mathbb{R}^n): Wir haben in der Vorlesung das Kreuzprodukt $\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$ kennengelernt. Es gibt keine Verallgemeinerung der Form $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$, aber wir können eine Abbildung definieren:

$$\underbrace{\mathbb{R}^n \times \cdots \times \mathbb{R}^n}_{n-1\text{-mal}} \longrightarrow \mathbb{R}^n, \quad (v^{(1)}, \dots, v^{(n-1)}) \longmapsto v^{(1)} \times \cdots \times v^{(n-1)} := \sum_{i=1}^n (-1)^{i+1} \cdot \det(A_i) \cdot e_i$$

mit: $v^{(1)} \times ... \times v^{(n-1)}$ steht senkrecht auf jedem $v^{(i)}$, $1 \le i \le n-1$. Dabei ist $A := (v^{(1)}, ..., v^{(n-1)})^T$ und A_i ist die Matrix, die durch Streichen der *i*-ten Spalte aus A entsteht. Zeige:

a. Es gilt
$$\langle v^{(1)} \times \dots \times v^{(n-1)}, v \rangle = \det \begin{pmatrix} v_1 & \dots & v_n \\ v_1^{(1)} & \dots & v_n^{(1)} \\ \vdots & \ddots & \vdots \\ v_1^{(n-1)} & \dots & v_n^{(n-1)} \end{pmatrix}$$
. [4]

b. Das verallgemeinerte Vektorprodukt ist linear in jeder Komponente, also:

$$\begin{split} v^{(1)} \times \cdots \times v^{(i-1)} \times (v+w) \times v^{(i+1)} \times \cdots \times v^{(n-1)} &= \left(v^{(1)} \times \cdots \times v^{(i-1)} \times v \times v^{(i+1)} \times \cdots \times v^{(n-1)} \right) \\ &+ \left(v^{(1)} \times \cdots \times v^{(i-1)} \times w \times v^{(i+1)} \times \cdots \times v^{(n-1)} \right) \\ v^{(1)} \times \cdots \times v^{(i-1)} \times \lambda v \times v^{(i+1)} \times \cdots \times v^{(n-1)} &= \lambda \left(v^{(1)} \times \cdots \times v^{(i-1)} \times v \times v^{(i+1)} \times \cdots \times v^{(n-1)} \right). \end{split}$$

c. Es gilt
$$v^{(1)} \times \cdots \times v^{(n-1)} = 0 \iff v^{(1)}, \dots, v^{(n-1)}$$
 linear abhängig. [4]

d. Es gilt
$$\langle v^{(1)} \times \dots \times v^{(n-1)}, v^{(i)} \rangle = 0$$
 für $1 \le i \le n-1$. [3]

Aufgabe 2: Sei V ein endlich-dimensionaler \mathbb{K} -Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$ und v_1, \dots, v_r eine orthonormale Familie $\left(\text{d.h. } \langle v_i, v_j \rangle = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \right)$. Zeige: Es sind äquivalent:

- a. (v_1, \ldots, v_r) ist eine Basis von V.
- b. Für $v \in V$ gilt: Ist $\langle v_i, v \rangle = 0$ für alle i, so ist v = 0.
- c. Für $v \in V$ gilt: $v = \sum_{i=1}^{r} \langle v, v_i \rangle v_i$.
- d. Für alle $v, w \in V$ gilt: $\langle v, w \rangle = \sum_{i=1}^{r} \langle v, v_i \rangle \langle v_i, w \rangle$.
- e. Für alle $v \in V$ gilt: $||v||^2 = \sum_{i=1}^r |\langle v, v_i \rangle|^2$.

[15]

[4]

Abgabe bis 17. Mai 2004 11:00h in den Kästen im zweiten Stock.

[30]