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Abstract. In this article algorithmic methods are presented that have essen-
tially been introduced into computer algebra systems like Maple or Mathematica
within the last decade. The main ideas are due to Stanley and Zeilberger. Some
of them had already been discovered in the last century by Beke, but because
of their complexity the underlying algorithms have fallen into oblivion. We give
a survey of these techniques, show how they can be used to identify transcen-
dental functions, and present implementations of these algorithms in computer
algebra systems.

1 Algebraic Representation of Transcendental
Functions

How can transcendental function be represented by algebraic means? To give
this question another flavor: What is the main difference between the exponen-
tial function f(x) = ex and the function g(x) = ex + |x|/101000, that makes f
an elementary function, but not g, although f and g are numerically quite close
on a part of the real axis?

Or let’s consider an example of discrete mathematics: Why is the factorial
function an = n! considered to be the most important discrete function, and
not bn = n! + n/101000 or any other discrete function?

Although these examples refer to the most important continuous and discrete
transcendental functions, oddly enough the answers to the above questions are
purely algebraic: The exponential function f is characterized by any of the
following algebraic properties:

1. f is continuous, f(1) = e, and for all x, y we have f(x+ y) = f(x) · f(y);

2. f is differentiable, f ′(x) = f(x) and f(0) = 1;

3. f ∈ C∞, f(x) =
∞∑
n=0

an x
n with a0 = 1, and for all n ≥ 0 we have

(n+ 1) an+1 = an;

and the factorial function an is represented by any of the following algebraic
properties:

4. a0 = 1, and for all n ≥ 0 we have an+1 = (n+ 1) an;

5. the generating function f(x)=
∞∑
n=0

anx
n satisfies the differential equation

x2f ′(x) + (x− 1)f(x) + 1=0 with the initial condition f(0) = 1.
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(Note here that one could argue that property (1.) is not algebraic since the
symbol e is needed in the representation.) I do not know any method to represent
transcendental functions using functional equations, such as property (1.), but
I will show, why and how the other properties can be suitable for this purpose,
being mainly concerned with properties (2.) and (4.). In § 4 we consider, how
these representations can be viewed as purely polynomial cases.

Observe that the “generating function” of the factorial function is conver-
gent only at the origin, and therefore must be considered as a formal series. In
particular, a “closed representation” (whatever that should mean) of the gen-
erating function cannot be given. But this is not the main issue here. Rather
than working with the generating function itself, it is much better to work with
its differential equation which is purely algebraic (in fact, it is purely polyno-
mial). The same argument applies to the exponential and factorial functions
themselves. Rather than working with these transcendental objects, one should
represent them by their corresponding differential and recurrence equations.

The given properties are structural statements about the corresponding func-
tions. Any small modification (even changing the value at a single point) de-
stroys this structure. For example, the function g(x) = ex + |x|/101000 cannot
be characterized by a rule analogous to one of the properties (2.)–(3.). On the
other hand, the function h(x) = ex + x/101000 can be represented by the differ-
ential equation (x−1)h′′(x)−xh′(x)+h(x) = 0 with the initial values h(0) = 1
and h′(0) = 1 + 10−1000.

Therefore, the special (and common) fact about the exponential and fac-
torial functions is that they both satisfy a differential or recurrence equation,
respectively, that is homogeneous, linear, of order one, and has polynomial co-
efficients.

We can generalize this observation [42]: A continuous function of one variable
f(x) is holonomic, if it satisfies a homogeneous linear differential equation with
polynomial coefficients; we call such a differential equation also holonomic.

By linear algebra arguments, Stanley [36] showed that sums and prod-
ucts of holonomic functions and the composition with algebraic functions also
form holonomic functions. This can be seen as follows: Assume f and g sat-
isfy holonomic differential equations of order n and m, respectively. We con-
sider the linear space Lf of functions with rational coefficients generated by
f, f ′, f ′′, . . . , f (k), . . .. Since f, f ′, . . . , f (n) are linearly dependent by the given
holonomic differential equation and since by differentiation the same conclusion
follows for f ′, f ′′, . . . , f (n+1), and so on inductively, the dimension of Lf is ≤ n.
Similarly Lg has dimension ≤ m. We now build the sum Lf + Lg which is of
dimension ≤ n+m. As f+g, (f+ g)′, . . . , (f+g)(k), . . . are elements of Lf +Lg,
arbitrary n+m+ 1 many of them are linearly dependent. In particular, f + g
satisfies a holonomic differential equation of order ≤ n+m.

Similarly the product and composition cases can be handled. Note that
the above proof provides a construction of the resulting holonomic equation
by linear algebra techniques. It is remarkable that 100 years ago, Beke [4]–[5]
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already described these algorithms to generate holonomic differential equations
for the sum and product of f and g from the holonomic differential equations
of f and g. Hence, he had discovered algorithmic versions of Stanley’s results!

Analogously, a discrete function (sequence) of one variable is called holo-
nomic, if it satisfies a homogeneous linear recurrence equation with polynomial
coefficients. Such a recurrence equation is also called holonomic. Sums and
products of discrete holonomic functions are again holonomic, and there are
similar algorithms to calculate representing holonomic recurrence equations (s.
[34], [25]).

A function

f(x) =
∞∑
n=0

an x
n

represented by a power series is holonomic if and only if the corresponding power
series coefficient an is a holonomic sequence. The holonomic equations for f(x)
and an can be converted equating coefficients.

Note that these algorithms were implemented by Salvy and Zimmermann in
the gfun package of Maple’s share library [34]. I wrote a Mathematica imple-
mentation, SpecialFunctions, to be obtained by World Wide Web from the ad-
dress ftp://ftp.zib-berlin.de/pub/UserHome/Koepf/SpecialFunctions.
Examples of this implementation will be given later.

2 Identification of Transcendental Functions

Note that the notion of holonomy provides a normal form for a suitably large
number of transcendental functions, which can then be utilized for identification
purposes. The holonomic equation of lowest order corresponding to a holonomic
function constitutes such a normal form. Once we have calculated the normal
form of a holonomic function, the latter is identified: Two holonomic functions
are identical if and only if they have the same normal form, and satisfy the same
initial conditions.

But also without having access to the lowest order holonomic equations,
one can check whether two holonomic functions agree, since (by linear algebra,
e.g.,) it is easy to see whether two holonomic equations are compatible with
each other.

Therefore, we may ignore that ex, sinx, cosx, arctanx, arcsinx and others
form transcendental functions, and take only their holonomic differential equa-
tions f ′ = f , f ′′ = −f , f ′′ = −f , (1 + x2)f ′′ + 2xf ′ = 0, (x2 − 1)f ′′ + xf ′ = 0
etc. into account. From these differential equations, corresponding differen-
tial equations for sums and products can be generated by the above mentioned
technique, using only polynomial arithmetic and linear algebra. For example,
the function f(x) = arcsin2 x yields (x2 − 1)f ′′′ + 3xf ′′ + f ′ = 0. Note, how-
ever, that in the given case one can get even more: The resulting holonomic
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differential equation is directly equivalent to the holonomic recurrence equa-
tion n(1 + n)(2 + n)an+2 = n3an for the coefficients an of the Taylor series of

arcsin2 x =
∞∑
n=0

anx
n, and since this holonomic recurrence equation fortunately

contains only the two terms an+2 and an, it can be solved explicitly, and leads
to the representation

arcsin2 x =
∞∑
n=0

4n n!2

(1 + n) (1 + 2n)!
x2n+2

(compare [18], [41], [20]–[21]).
Note that not only a function like the Airy function Ai (x) (s. e. [1], (10.4))

falls under the category of holonomic functions, since it satisfies the simple
holonomic differential equation f ′′ − xf = 0, moreover the classical families of
orthogonal polynomials1 and many other special functions form holonomic func-
tions [1]. These depend on several variables, and we will discuss this situation
in § 4.

On the other hand, there are functions that are not holonomic, like the
tangent function tanx (s. [36], [25]). The identification problem for expressions
involving nonholonomic functions can only be treated after preprocessing the
input. If, for example, we want to verify the addition formula for the tangent
function

tan (x+ y) =
tanx+ tan y

1− tanx tan y

by the given method, then we have to replace all occurrences of the tangent
function by sines and cosines (which are holonomic) using the rewrite rule
tanx = sinx/ cosx. We can then generate a polynomial equation by multi-
plying both sides by the common denominator. This procedure results in the
equivalent representation

(cosx cos y − sinx sin y) sin (x+ y) = (cos y sinx+ cosx sin y) cos (x+ y) (1)

which is easily proved since the algorithms generate the common holonomic
differential equation f ′′(x) + 4f ′(x) = 0 with respect to x (or the common
holonomic differential equation f ′′(y) + 4f ′(y) = 0 with respect to y) for both
sides of (1) where the common initial values are f(0) = cos y sin y, and f ′(0) =
cos y2 − sin y2. Assume that for the initial value functions we had obtained
different representations (e.g. cos y sin y and sin(2y)/2). These could be verified
by the same technique.

In the Mathematica package SpecialFunctions (s. also [22]), the procedure
HolonomicDE[f,x] calculates the holonomic differential equation of f with re-
spect to the variable x using the known holonomic differential equations of the
primitive functions, and the sum and product algorithms by recursive decent

1As families of orthogonal polynomials they are not polynomials!
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through the expression tree. Here we call a function primitive if it is rational,
or whenever we use a separate symbol for it and a holonomic differential equa-
tion is known. Therefore the above mentioned functions (besides the tangent
function) are primitive.

The examples given are governed by the following Mathematica session:

In[1]:= <<SpecialFunctions‘

In[2]:= HolonomicDE[ArcSin[x]^2,x]

(3)

Out[2]= F’[x] + 3 x F’’[x] + (-1 + x) (1 + x) F [x] == 0

In[3]:= DEtoRE[%,F,x,a,n]

3

Out[3]= n a[n] - n (1 + n) (2 + n) a[2 + n] == 0

In[4]:= Series[ArcSin[x]^2,{x,0}]

k 2 + 2 k 2

4 x k!

Out[4]= Sum[------------------, {k, 0, Infinity}]

(1 + k) (1 + 2 k)!

In[5]:= HolonomicDE[AiryAi[x],x]

Out[5]= -(x F[x]) + F’’[x] == 0

In[6]:= HolonomicDE[AiryAi[x]^2,x]

(3)

Out[6]= 2 F[x] + 4 x F’[x] - F [x] == 0

In[7]:= HolonomicDE[Sin[x+y]*(Sin[x]Sin[y]-Cos[x]Cos[y]),x]

(3)

Out[7]= 4 F’[x] + F [x] == 0

In[8]:= HolonomicDE[Cos[x+y]*(Sin[x]Cos[y]+Cos[x]Sin[y]),x]

(3)

Out[8]= 4 F’[x] + F [x] == 0

In[9]:= HolonomicDE[Cos[y]*Sin[y],y]

(3)

Out[9]= 4 F’[y] + F [y] == 0
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In[10]:= HolonomicDE[Sin[2y]/2,y]

Out[10]= 4 F[y] + F’’[y] == 0

One difficulty that may arise with the method described is that in some in-
stances the sum and product algorithms will not generate the holonomic differ-
ential equation of lowest order, as in the above example for cos y sin y. In this
case, the normal form property is lost. In fact, the sum algorithm calculates
a holonomic equation that is valid for any linear combination af + bg rather
than the particular given sum f + g. As a simple example, we consider the sum√

1 + x+ 1√
1+x

satisfying the first order differential equation

2 (2 + x) (1 + x)F ′(x)− xF (x) = 0 .

This differential equation can be found using a method given in [20]–[21], whereas
the sum algorithm generates the second order differential equation

4 (1 + x)2
F ′′(x) + 4 (1 + x) F ′(x)− F (x) = 0 .

The reason for the existence of a differential equation of lower order is due to
the fact that the ratio of the two summands

√
1 + x and 1√

1+x
forms a rational

function.
Similarly, the sum of two consecutive Legendre polynomials Pn(x)+Pn+1(x)

satisfies the second order differential equation

(x− 1) (x+ 1)F ′′(x) + (x+ 1)F ′(x)− (n+ 1)2
F (x) = 0 ,

whereas the sum algorithm generates the differential equation

0 = (x− 1)2 (1 + x)2
F ′′′′(x) + 8 (x− 1) x (1 + x) F ′′′(x)

+2
(
−2 + 2n+ n2 + 6x2 − 2nx2 − n2 x2

)
F ′′(x)

−4n (2 + n) xF ′(x) + n (1 + n)2 (2 + n) F (x)

of fourth order, which is also valid for the difference Pn(x) − Pn+1(x) and for
any other linear combination.

For the verification of identities, this is not an important issue, since the
compatibility of two holonomic equations can be easily checked. This situation
is similar to proving a rational identity by pure polynomial arithmetic without
gcd computations (after having multiplied through by all denominators), and is
actually equivalent to a noncommutative polynomial division, see § 4.

In the case that the normal form is needed for a particular problem, a fac-
torization algorithm can be used, s. § 6.

For the discrete functions, the situation is quite similar. We call a function
primitive whenever we use a separate symbol for it and a holonomic recurrence
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equation is known. To these primitive functions, we add the rational functions
and the functions

(mn+ b)! ,
1

(mn+ b)!
(m ∈ Q) , and an (2)

whose holonomic recurrence equations are known, as primitive functions with
respect to the variable n. We consider the factorial function to be equivalent
to the Γ function Γ (a + 1) = a!, and declare binomial coefficients etc. also via
factorials. From the holonomic representations of the primitive functions the
holonomic equations for all sums and products can be established. E. g. the two
equations

(n− k + 1)2F (n+ 1, k)− (1 + n)2F (n, k) = 0 (3)

and
(k + 1)2F (n, k + 1)− (n− k)2F (n, k) = 0 (4)

for F (n, k) =
(
n
k

)2. Whereas these are simple consequences of the representation
of F (n, k) by factorials, the given procedure can be applied, for example, to the
more complicated function F (n, k) = n!+k!2

k to generate the two holonomic
equations

nF (n+ 2, k)− (1 + 3n+ n2)F (n+ 1, k) + (1 + n)2F (n, k) = 0

and

k(2+k)2F (n, k+2)−(1+k)(1+3k+k2)(3+3k+k2)F (n, k+1)+k(1+k)3F (n, k) = 0 .

Note that the given approach also covers all kinds of orthogonal polynomials
and special functions with respect to their discrete variables, see § 4.

In our Mathematica implementation SpecialFunctions, the procedure
HolonomicRE[a,n] calculates the holonomic recurrence equation of an with re-
spect to the variable n taking the known holonomic recurrence equations of the
primitive functions into account, and using the sum and product algorithms by
recursive decent through the expression tree. The above examples are governed
by the following Mathematica session:

In[11]:= HolonomicRE[Binomial[n,k]^2,n]

2 2

Out[11]= (1 + n) a[n] - (1 - k + n) a[1 + n] == 0

In[12]:= HolonomicRE[Binomial[n,k]^2,k]

2 2

Out[12]= (-k + n) a[k] - (1 + k) a[1 + k] == 0
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In[13]:= HolonomicRE[(n!+k!^2)/k,n]

2 2

Out[13]= (1 + n) a[n] + (-1 - 3 n - n ) a[1 + n] + n a[2 + n] == 0

In[14]:= HolonomicRE[(n!+k!^2)/k,k]

3

Out[14]= k (1 + k) (3 + k) a[k] -

2 2

> (1 + k) (1 + 3 k + k ) (3 + 3 k + k ) a[1 + k] +

2

> k (2 + k) a[2 + k] == 0

3 Hypergeometric Sums

Rather than having functions given as finite sums and products of primitive
expressions, an important class of functions, particularly in analysis and com-
binatorics, is given by infinite sums of products of terms of the form (2)

s(n) =
∑
k∈Z

F (n, k) . (5)

Then F (n, k) is an (m, l)-fold hypergeometric term. That is, both F (n +
m, k)/F (n, k) and F (n, k + l)/F (n, k) are rational functions with respect to
n and k for a certain pair (m, l) ∈ N2. For example, by (3)–(4) this is valid for
F (n, k) =

(
n
k

)2 with m = l = 1. We assume moreover that the sums (5) have
finite support, i.e., they are finite sums for each particular n ∈ N.

A modification [23] of the (fast) Zeilberger algorithm ([43], see also [27],
and [31]) returns a holonomic recurrence equation valid for s(n). Zeilberger’s
algorithm is based on a decision procedure for indefinite summation due to
Gosper [17]. In our example case, Zeilberger’s algorithm finds the holonomic
recurrence equation (1 + n) s(n + 1) = 2(1 + 2n) s(n) for s(n) =

∑
k∈Z

(
n
k

)2 =

n∑
k=0

(
n
k

)2 which fortunately has only two terms. Therefore, we are led to the

representation

s(n) =
n∑
k=0

(
n

k

)2

=
(2n)!
n!2

.

Even though, in general, the resulting recurrence equation has more than two
terms, this holonomic equation contains very important structural information
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about s(n). This may be used to show that a certain family of polynomials is
orthogonal or not [44], and can be an interesting property for numerical purposes
(compare [11]–[12]).

In particular, as described in the last section, the generated structural in-
formation can be used for the identification of a transcendental function that
is given as sum (5). Note that sums of type (5) in general form transcendental
functions with respect to the discrete variable n.

For example, to check the identity (compare [37])

n∑
k=0

(
n

k

)3

=
n∑
k=0

(
n

k

)2(2k
n

)
(6)

which is nontrivial since for n = 1 it reads 1 + 1 = 0 + 2, we need only to show
that both sums s(n) satisfy the common recurrence equation

(n+ 2)2s(n+ 2)− (16 + 21n+ 7n2)s(n+ 1)− (n+ 1)2s(n) = 0 (7)

which is the result given by Zeilberger’s algorithm. We also have the same initial
values s(0) = 1 and s(1) = 2, so we are done.

In Mathematica these computations are done by

In[15]:= HolonomicRE[Sum[Binomial[n,k]^2,{k,0,n}],n]

Out[15]= -2 (1 + 2 n) a[n] + (1 + n) a[1 + n] == 0

In[16]:= HolonomicRE[Sum[Binomial[n,k]^3,{k,0,n}],n]

2 2

Out[16]= -8 (1 + n) a[n] + (-16 - 21 n - 7 n ) a[1 + n] +

2

> (2 + n) a[2 + n] == 0

In[17]:= HolonomicRE[Sum[Binomial[n,k]^2*Binomial[2k,n],{k,0,n}],n]

2 2

Out[17]= -8 (1 + n) a[n] + (-16 - 21 n - 7 n ) a[1 + n] +

2

> (2 + n) a[2 + n] == 0

Note that the example shows that transcendental functions can come in quite
different disguises. Might the left or the right hand side of (6) be a preferable
representation? This question cannot be answered satisfyingly. A holonomic
recurrence equation like (7), defining the same transcendental function s(n), is
probably the simplest way to describe a function of a discrete variable, since
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it postulates how the values of the function can be calculated iteratively. Not
only is this a quite efficient way to calculate the values of s(n), but moreover
it is preferable to either of the two representations given in (6), since it gives a
unique representation scheme. This is what a normal form is about.

As a further example, we consider the function (α, β, γ ∈ N0, z,M, d ∈ R+)

V (α, β, γ) = (−1)α+β+γ · Γ(α+β+γ−d)Γ(d/2−γ)Γ(α+γ−d/2)Γ(β+γ−d/2)
Γ(α)Γ(β)Γ(d/2)Γ(α+ β + 2γ − d)Mα+β+γ−d

· 2F1

(
α+ β + γ − d , α+ γ − d/2

α+ β + 2γ − d

∣∣∣∣∣ z
)

(2F1 here represents Gauß’s hypergeometric function, see [1], Chapter 15), which
plays a role for the computation of Feynman-diagrams [15]2, for which Zeil-
berger’s algorithm generates the holonomic recurrence equation

0 = (α+ β − d+ γ) (2α− d+ 2 γ) V (α, β, γ)
+ αM (2α+ 2β − 2 d+ 4 γ − 2 z − 4α z − 2β z + 3 d z − 4 γ z) V (α+ 1, β, γ)
+ 2α (1 + α) M2 (z − 1) z V (α+ 2, β, γ)

and analogous recurrence equations with respect to the variables β and γ (see
[24]). These, in particular, can be used for numerical purposes.

Note that for the application of Zeilberger’s algorithm our Mathematica
program uses the Paule-Schorn implementation [31]. For the current example,
the output is given by

In[18]:= HolonomicRE[(-1)^(alpha+beta+gamma)*Gamma[alpha+beta+gamma-d]*

Gamma[d/2-gamma]*Gamma[alpha+gamma-d/2]*Gamma[beta+gamma-d/2]/

(Gamma[alpha]*Gamma[beta]*Gamma[d/2]*

Gamma[alpha+beta+2*gamma-d]*M^(alpha+beta+gamma-d))*

Hypergeometric2F1[alpha+beta+gamma-d,alpha+gamma-d/2,

alpha+beta+2*gamma-d,z],alpha,V]

Out[18]= (alpha + beta - d + gamma) (2 alpha - d + 2 gamma) V[alpha] +

> alpha M (2 alpha + 2 beta - 2 d + 4 gamma - 2 z - 4 alpha z -

> 2 beta z + 3 d z - 4 gamma z) V[1 + alpha] +

2

> 2 alpha (1 + alpha) M (-1 + z) z V[2 + alpha] == 0

2I am indebted to Jochem Fleischer who informed me about a misprint in formula (31) of
[15].
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4 Holonomic Systems of Several Variables

In [42], Zeilberger considered the more general situation of functions F of several
discrete and continuous variables. If we have d variables, and d (essentially in-
dependent) mixed homogeneous linear (partial) difference-differential equations
with polynomial coefficients in all variables are given for F , then F is called a
holonomic system (compare [6]–[8]). In most cases these holonomic equations
together with suitably many initial values declare F uniquely.

In particular, we concentrate on the situation, when the given system of
holonomic equations is separated, i.e. each of them is either an ordinary differ-
ential equation or a pure recurrence equation. These representing holonomic
equations can be generated by the method described in § 2 whenever F is given
in terms of sums and products of primitive functions.

For example, the Legendre polynomials F (n, x) = Pn(x) ([1], Chapter 22)
form a holonomic system by their holonomic differential equation

(x2 − 1)F ′′(n, x) + 2xF ′(n, x)− n(1 + n)F (n, x) = 0 (8)

and their holonomic recurrence equation

(n+ 2)F (n+ 2, x)− (3 + 2n)xF (n+ 1, x) + (n+ 1)F (n, x) = 0 , (9)

together with the initial values

F (0, 0) = 1 , F (1, 0) = 0 , F ′(0, 0) = 0 , F ′(1, 0) = 1 . (10)

Equations (8)–(10) therefore build a sufficient algebraic, even polynomial struc-
ture to represent the functions Pn(x) as we shall see now.

If we interpret the (partial) differentiations and shifts that occur as opera-
tors, and the representing system of holonomic equations as operator equations,
then these form a polynomial equations system in a noncommutative polyno-
mial ring. For a continuous variable x with differential operator D given by
DF (n, x) = F ′(n, x), the product rule implies D(xf)− xDf = f , and hence
the commutator rule Dx − xD = 1 is valid. Similarly for a discrete variable n
with the (forward) shift operator N given by NF (n, x) = F (n+ 1, x), we have
N(nF (n, x))− nNF (n, x) = (n+ 1)F (n+ 1, x)− nF (n+ 1, x) = F (n+ 1, x) =
NF (n, x), and therefore the commutator rule Nn− nN = N . Similar rules are
valid for all variables involved, whereas all other commutators vanish.

The transformation of a holonomic system given by mixed holonomic differ-
ence-differential equations represents an elimination problem in the noncom-
mutative polynomial ring considered, that can be solved by noncommutative
Gröbner basis methods ([3], [16], [19], [42], [45], [38]–[40]), [23]).

Hence, we need the concept of a Gröbner basis. If one applies Gauß’s al-
gorithm to a linear system, the variables are eliminated iteratively, resulting in
an equivalent system which is simpler in the sense that it contains some equa-
tions which are free of some variables involved. Note that connected with an
application of Gauß’s algorithm is a certain order of the variables.
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The Buchberger algorithm is an elimination process, given a certain term
order for the variables (a variable order is no longer sufficient), with which a
polynomial system (rather than a linear one) is transformed, resulting in an
equivalent system (i.e., constituting the same ideal) for which the terms that
are largest with respect to the term order, are eliminated as far as possible. Note
that—in contrast to the linear case—the resulting equivalent system may con-
tain more polynomials than the original one. Such a rewritten system is called
a Gröbner basis of the ideal generated by the polynomial system given. It turns
out that Buchberger’s algorithm can be extended to the noncommutative case
that we consider here [19] as long as the rewrite process using the commutator
does not increase the variable order.

As an example, we consider F (n, k) =
(
n
k

)
in which case we have the Pascal

triangle relation F (n + 1, k + 1) = F (n, k) + F (n, k + 1), together with the
pure recurrence equation (n + 1 − k)F (n + 1, k) − (n + 1)F (n, k) = 0 with
respect to n, say. These equations read as (KN − 1 − K)F (n, k) = 0, and
((n+ 1− k)N − (n+ 1))F (n, k) = 0 in operator notation, K denoting the shift
operator with respect to k. Therefore we have the polynomial system

KN − 1−K and (n+ 1− k)N − (n+ 1) . (11)

The Gröbner basis of the left ideal generated by (11) with respect to the lexi-
cographical term order (k, n,K,N) is given by{

(k + 1)K + k − n, (n+ 1− k)N − (n+ 1),KN − 1−K
}
,

i.e., the elimination process has generated the pure recurrence equation

(k + 1)F (n, k + 1) + (k − n)F (n, k) = 0

with respect to k.
We used the REDUCE implementation [28] for the noncommutative

Gröbner calculations of this article, but I would like to mention that there is also
a Maple package Mgfun written by Chyzak [10] (to be obtained from
http://pauillac.inria.fr/algo/libraries/libraries.html#Mgfun) which
can be used for this purpose.

As another example, we consider the Legendre polynomials. In operator
notation the holonomic equations (8)–(9) constitute the polynomials

(x2 − 1)D2 + 2xD− n(1 + n) and (n+ 2)N2 − (3 + 2n)xN + (n+ 1) . (12)

The Gröbner basis of the left ideal generated by (12) with respect to the lexi-
cographical term order (D,N, n, x) is given by{

(x2 − 1)D2 + 2xD − n(1 + n),

(1 + n)ND − (1 + n)xD − (1 + n)2, (13)

12



(x2 − 1)ND − (1 + n)xN + (1 + n), (14)

(1 + n)(x2 − 1)D − (1 + n)2N + x(1 + n)2, (15)

(n+ 2)N2 − (3 + 2n)xN + (n+ 1)
}
.

After the calculation of the Gröbner basis, for better readability I positioned
the operators D and N back to the right, so that the equations can be easily
understood as operator equations, again. By the term order chosen, the Gröbner
basis contains those equations for which the D-powers are eliminated as far as
possible, and (13)–(15) correspond to the relations

P ′n+1(x) = xP ′n(x) + (1 + n)Pn(x) ,

(x2 − 1)P ′n+1(x) = (1 + n) (xPn+1(x)− Pn(x)) ,

(x2 − 1)P ′n(x) = (1 + n) (Pn+1(x)− xPn(x)) (16)

between the Legendre polynomials and their derivatives.
If we are interested in a relation between the Legendre polynomials and

their derivatives that is x-free (which is of importance for example for spectral
approximation, see [9]), we choose the term order (x,D,N, n) to eliminate x
in the first place, and obtain a different Gröbner basis containing the x-free
polynomial

−(n+ 2)(n+ 1)D − (2n+ 3)(n+ 2)(n+ 1)N + (n+ 2)(n+ 1)N2D

equivalent to the identity

(2n+ 1)Pn(x) = P ′n+1(x)− P ′n−1(x)

for the Legendre polynomials (see e.g. [9], formula (2.3.16)).
Here, we present the REDUCE output for the above examples:

1: load ncpoly;

2: nc_setup({D,NN,n,x},{NN*n-n*NN=NN,D*x-x*D=1},left);

3: p1:=(x^2-1)*D^2+2*x*D-n*(1+n)$ % differential equation

4: p2:=(n+2)*NN^2-(3+2*n)*x*NN+(n+1)$ % recurrence equation

5: nc_groebner({p1,p2});

2 2 2 2

{d *x - d - 2*d*x - n - n,

2

d*nn*n - d*n*x - d*x - n - n,
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2

d*nn*x - d*nn - nn*n*x - 2*nn*x + n + 1,

2 2 2 2

d*n*x - d*n + d*x - d - nn*n + n *x - x,

2

nn *n - 2*nn*n*x - nn*x + n + 1}

6: nc_setup({x,D,NN,n},{NN*n-n*NN=NN,D*x-x*D=1},left);

7: result:=nc_groebner({p1,p2});

2 2 2 2

result := {x *d + 2*x*d - d - n - n,

2 2

x*d*nn - d*nn *n + d*n + d + 2*nn*n + 2*nn*n + nn,

2

x*d*n + x*d - d*nn*n + n + 2*n + 1,

2

2*x*nn*n + x*nn - nn *n - n - 1,

2 2 2 2 3 2

d*nn *n - d*nn *n - d*n - 3*d*n - 2*d - 2*nn*n - 3*nn*n - nn*n}

8: nc_setup({n,x,NN,D},{NN*n-n*NN=NN,D*x-x*D=1},left);

9: nc_compact(part(result,5));

2

- (2*n + 3)*(n + 2)*(n + 1)*nn + (n + 2)*(n + 1)*nn *d - (n + 2)*(n + 1)*d

We see, therefore, that by the given procedure new relations (between the bino-
mial coefficients, and between the derivatives of the Legendre polynomials) can
be discovered. The generation of derivative rules like (16), and the algorithmic
work with them is described in [23].

5 Holonomic Sums and Integrals

Analogously, with the method in the last section, holonomic recurrence equa-
tions for holonomic sums can be generated. Note that the idea to use recurrence
equations for the summand to deduce a recurrence equation for the sum is origi-
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nally due to Sister Celine Fasenmyer ([13]–[14], see [33], Chapter 14). Zeilberger
[42] brought this into a more general setting.

Consider for example

s(n) =
n∑
k=0

F (n, k) =
n∑
k=0

(
n

k

)
Pn(x) ,

then by the product algorithm, we find the holonomic recurrence equations

(n− k + 1)F (n+ 1, k)− (1 + n)F (n, k) = 0

and

(2+k)2F (n, k+2)−(3+2k)(n−k−1)xF (n, k+1)+(n−k)(n−k−1)F (n, k) = 0

for the summand F (n, k). The Gröbner basis of the left ideal generated by the
corresponding polynomials

(n−k+1)N−(1+n) and (2+k)2K2−(3+2k)(n−k−1)xK+(n−k)(n−k−1)

with respect to the lexicographical term order (k,N, n,K) contains the k-free
polynomial

(2+n)2K2N2−K(2+n)(3+2n)(K+x)N+(1+n)(2+n)(1+K2+2Kx) , (17)

which corresponds to a k-free recurrence equation for F (n, k). We use the order
(k,N, n,K) because then k-powers are eliminated as far as possible (since we
like to find a k-free recurrence), and N -powers come next in the elimination
process (since the recurrence equation obtained should be of lowest possible
order).

Because all shifted sums

s(n) =
∑
k∈Z

F (n, k) =
∑
k∈Z

F (n, k + 1) =
∑
k∈Z

F (n, k + 2)

generate the same function s(n), and since summing the k-free recurrence equa-
tion is equivalent to setting K = 1 in the corresponding operator equation
(check!), the substitution K = 1 in (17) generates the valid holonomic recur-
rence equation

(2 + n)s(n+ 2)− (3 + 2n)(1 + x)s(n+ 1) + 2(1 + n)(1 + x)s(n) = 0

for s(n).
In the general case, we search for a k-free recurrence equation contained in

a Gröbner basis of the corresponding left ideal with respect to a suitably chosen
weighted [30] (or lexicographical (k,N, n,K)) term order. For example, the
elimination problems described in [45] are automated by this procedure.
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On the other hand, it turns out that in many cases the holonomic recurrence
equation derived is not of the lowest order. In the next section, we will discuss
how this problem can be resolved.

Note that by a similar technique, holonomic integrals can be treated [2]. To
find a holonomic equation for

I(y) :=

b∫
a

F (y, x) dx

for holonomic F (y, x) with respect to the discrete or continuous variable y, cal-
culate the Gröbner basis of the left ideal constituted by the holonomic equations
of F (y, x) with respect to a suitably chosen weighted or the lexicographical term
order (x,Dy, y,Dx). We search for an x-free holonomic equation E contained
in such a Gröbner basis. In case, that F (y, a) = F (y, b) ≡ 0, and enough
derivatives of F (y, x) with respect to x vanish at x = a and x = b, by partial
integration it follows that the holonomic equation valid for I(y) is given by the
substitution Dx = 0 into E (see [2]).

As an example, we consider

I(n) :=

∞∫
−∞

e−x
2
Hn(x) dx ,

Hn(x) denoting the Hermite polynomials. The method of § 2 yields the holo-
nomic polynomials

2 (1 + n) +N2 − 2xN and D2 + 2 (1 + n) + 2xD

for the integrand. Note that since Hn(x) is an odd function for odd n, it is
immediately clear that I(n) = 0 in this case. However, what about even values
of n?

The Gröbner basis of the corresponding left ideal contains the two x-free
polynomials

N2 +N D and N n+ nD +D

so that setting D = 0 we get for I(n) the recurrence equation I(n + 1) = 0.
Indeed, this proves that I(n) = 0 for n ≥ 1.

As another example, we consider the Abramowitz functions ([1], 27.5))

A(n, y) :=

∞∫
0

xn e−x
2−y/x dx .

By the method in § 2 for the integrand F (n, y, x) = xn e−x
2−y/x we get the

three holonomic polynomials

x−N , −nx+ x2Dx + 2x3 − y and 1 + xDy .
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Using the term order (x,Dy, y,Dx), the differential equation

y A′′′(n, y)− (n− 1)A′′(n, y) + 2A(n, y) = 0 ,

and using (x,N, n,D), the recurrence equation

2A(n+ 3, y)− (n+ 2)A(n+ 1, y)− y A(n, y) = 0

is automatically generated by the given approach (compare [1], (27.5.1), (27.5.3)).
Finally, we mention that similarly an identity like ([1], (11.4.28))

∞∫
0

e−a
2 x2

xm−1 Jn(bx) dx =
Γ (n/2 +m/2) bn

2n+1 an+m Γ (n+ 1) 1F1

(
n/2 +m/2
n+ 1

∣∣∣∣∣− b2

4a2

)
(18)

(1F1 representing Kummer’s confluent hypergeometric function) for the Bessel
function is proved by the calculation of the common holonomic recurrence equa-
tion

0 = − (n+ 3) (n+m) b2I(n)
+2 (n+ 2)

(
4 a2n2 + 16 a2n+ 12 a2 − b2m+ b2

)
I(n+ 2)

+ (n+ 1) (n+ 4−m) b2I(n+ 4)

for the left and right hand sides of (18). Note that Zeilberger’s algorithm is not
directly applicable to the right hand side, but the extended version of [23] gives
the result.

6 Noncommutative Factorization and Holonomic
Normal Form

Note that neither the sum and product algorithms of § 2, nor Zeilberger’s algo-
rithm or its extension [23], nor the algorithms for holonomic sums and integrals
of § 5 can guarantee to present the holonomic equation N of lowest order, and
therefore the normal form searched for.

In [29]3 a Gröbner basis based factorization algorithm was introduced for
polynomials in noncommutative polynomial rings given by Lie bracket commu-
tator rules. This method is implemented in [28]. Given an expression f , and
a holonomic equation P of order m of f , one may find the normal form N of
f using this factorization algorithm by generating the right factors of the non-
commutative polynomial p corresponding to P, and checking if any of them, Q,
say, (having order l < m, say) and m − l derivatives (shifts) of Q are satisfied
by f at a certain initial point. In the affirmative case, Q is compatible with f ,
and corresponds to a valid holonomic equation for f .

3Due to a severe bicycle accident of Herbert Melenk, this paper is still unfinished.
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To present some examples, we consider Zeilberger’s algorithm first. An ex-
ample for which Zeilberger’s algorithm does not generate the holonomic recur-
rence equation of lowest order is given by the sum (see e.g. [31])

sn :=
n∑
k=0

(−1)k
(
n

k

)(
3k
n

)
for which the holonomic equation

2 (2n+ 3) sn+2 + 3 (5n+ 7) sn+1 + 9 (n+ 1) sn = 0 (19)

is generated. Note that there is an algorithm due to Petkovs̆ek [32] to find
all hypergeometric solutions of holonomic recurrence equations which could be
used as next step. However, we may also proceed as follows: The corresponding
noncommutative polynomial 2(2n+ 3)N2 + 3(5n+ 7)N + 9(n+ 1) is factorized
by implementation [28] as

2(2n+ 3)N2 + 3(5n+ 7)N + 9(n+ 1) = ((4n+ 6)N + 3(n+ 1)) (N + 3) .

The right factor N + 3 corresponds to the holonomic recurrence equation

Sn+1 + 3Sn = 0 , (20)

which, together with the initial value S0 = s0 = 1 uniquely defines a sequence
(Sn)n∈N0 . Since S1 = −3 turns out to be compatible with the given sum

s1 =
1∑
k=0

(−1)k
(

1
k

)(
3k
1

)
= −3 ,

and since (20) implies (19) (right factor!), the sequence sn, which is the unique
solution of (19) with s0 = 1 and s1 = −3, must equal Sn. From (20), however,
the closed form sn = (−3)n follows.

Similarly, for any particular d ∈ N, d ≥ 3, the identity

n∑
k=0

(−1)k
(
n

k

)(
dk

n

)
= (−d)n

can be established, for whose left hand side Zeilberger’s algorithm generates a
recurrence equation of order d− 1 (see [31]).

Whereas Petkovs̆ek’s algorithm finds hypergeometric solutions of holonomic
recurrence equations as in the example, and therefore not only verifies identities,
but generates closed-form results, our approach is more general in the follow-
ing sense. Factorizations with polynomial coefficients of ordinary holonomic
differential equations (see [4], [35] for other methods) as well as of any mixed
holonomic difference-differential equation can be calculated.
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We give an example of that type for the sum algorithm: Consider the differ-
ence of successive Gegenbauer polynomials h(x) = C

(−1/2)
n+1 (x)−C(−1/2)

n (x) that
were used in [26]. Here the summand f(x) := C

(−1/2)
n (x) satisfies the holonomic

equation
(x2 − 1) f ′′(x) + (n− n2) f(x) = 0 ,

and the sum algorithm yields the fourth order equation

(x2 − 1)
2
h′′′′(x)+4x (x2−1)h′′′(x)−2 (n2−1)(x2−1)h′′(x)+n2 (n2−1)h(x) = 0

for h(x). The implementation [28] finds (besides others) the noncommutative
factorization(

(x2 − 1)D2 + (1 + x)D − n2
)(

(x2 − 1)D2 − (1 + x)D + (1− n2)
)

of the corresponding noncommutative polynomial, whose right factor

(x2 − 1)D2 − (1 + x)D + (1− n2)

turns out to be compatible with the given function h(x). That is, the corre-
sponding differential equation and two derivatives thereof are satisfied by h(x),
at x = 1. Therefore the holonomic normal form of h(x) is the corresponding
differential equation

(1− n2)h(x)− (1 + x) h′(x) + (x2 − 1)h′′(x) = 0

that was a tool in [26]. This result can also be obtained by the method given
in [20]–[21].

To evaluate the integrals

In :=

∞∫
−∞

xn e−x
2
Hn(x) dx ,

we may deduce the holonomic system

N2 − 2x2N + 2(1 + n)x2

and
x2D2 + 2x(x2 − n)D + (n+ n2 + 2x2)

of the integrand. The Gröbner basis of this system with respect to the weighted
lexicographical order with weights (3, 1, 0, 0) for (x,N, n,D) (i.e. the term x is
considered larger than N3, whereas x is smaller than N4, and any power of n
and D is smaller than x and N) contains an x-free polynomial, which when
evaluated at D = 0 yields

P (n,N) = (n+ 5)(n+ 4)(n+ 3)N3 − (3n+ 7)(n+ 5)(n+ 4)(n+ 3)N2

+(3n+ 5)(n+ 5)(n+ 4)(n+ 3)(n+ 2)N (21)
−(n+ 5)(n+ 4)(n+ 3)(n+ 2)(n+ 1)2
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corresponding to a recurrence equation of order three.
On the other hand, P (n,N) obviously has the trivial (commutative) factor-

ization

P (n,N) = (n+5)(n+4)(n+3)
(
N3−(3n+7)N2+(3n+5)(n+2)N−(n+2)(n+1)2

)
and the remaining right factor can be represented as

N3−(3n+7)N2+(3n+5)(n+2)N−(n+2)(n+1)2 = (N−n−2)(N−n−1)(N−n−1)

(note that [28] finds four different right factors). This leads to the valid recur-
rence equation In+1 = (n+ 1)In that together with the initial value

I0 =

∞∫
−∞

e−x
2
dx =

√
π

gives finally In =
√
π n!.
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