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a b s t r a c t

This article deals with the problem of finding closed analytical formulae for generalized
linearization coefficients for Jacobi polynomials. By considering some special cases, we
obtain a reduction formula using for this purpose symbolic computation, in particular
Zeilberger’s and Petkovsek’s algorithms.

© 2010 Elsevier Ltd. All rights reserved.

The general linearization problem consists in finding the coefficients Lij(k) in the expansion of two polynomialsQi(x), Rj(x)
in terms of an arbitrary sequence {Pn}n≥0 (deg Pn = n):

Qi(x)Rj(x) =
i+j∑
k=0

Lij(k)Pk(x). (1)

Particular case of this problem is the standard linearization or Clebsch–Gordan type problem (Pn = Qn = Rn),

Pi(x)Pj(x) =
i+j∑
k=0

Lij(k)Pk(x). (2)

On the other hand, taking Rj = 1 in (1), this is, the so-called connection problem, which for Qi = xi is known as the inversion
problem for the family {Pn}n.
The literature on linearization and connection problems is extremely vast, and a variety of methods and approaches for

computing the coefficients Lij(k) in (1) have been developed. In the standard case (2), when {Pn}n is an orthogonal family
(with respect to some positive measure), many results concerning the positivity of the coefficients Lij(k) and the recurrence
relation satisfied by these coefficients are known, in some cases (classical orthogonal polynomials) the coefficients Lij(k) are
given explicitly, very often in terms of hypergeometric functions.
We recall that pFq denotes the generalized hypergeometric function with p numerator and q denominator parameters,

given by

pFq

(
(ap)
(bq)

∣∣∣∣ x) = ∞∑
k=0

(a1)k(a2)k · · · (ap)k
(b1)k(b2)k · · · (bq)k

xk

k!
, (3)

where the contracted notation (ap) is used to abbreviate the array of p parameters a1, . . . , ap and (x)n := Γ (x+n)
Γ (x) denotes

the well-known Pochhammer symbol.
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In this work, we consider the Jacobi polynomials defined by [1]

P (α,β)n (x) =
(α + 1)n
n! 2F1

(
−n, α + β + n+ 1

α + 1

∣∣∣∣ 1− x2
)
.

The standard linearization problem associated to Jacobi polynomials and to establish the conditions of non-negativity of the
linearization coefficients has been under considerable research for many years. Hyllareas (1962) investigated particular
cases [2], Gasper (1970) found the necessary and sufficient conditions for the non-negativity of these coefficients [3,4]
and Koornwinder (1978) approached the same problem from a different point of view [5]. Rahman (1981) gave an explicit
representation of the standard linearization coefficients, Lij(k), for the Jacobi polynomials and their continuous q-analogue
in terms of 9F8 and 10Φ9 hypergeometric series, respectively, but with distinct explicit representations for even and odd
values of k [6,7].
Themain aim of this paper is to give a closed form of the general linearization coefficients for Jacobi polynomials in terms

of the Kampé de Fériet function and to prove that in a suitable particular case these coefficients can be expressed as a product
of two terminating functions. By using symbolic computation, we show that one of these two hypergeometric functions can
be reduced to a simple hypergeometric term. As far as we know, the obtained reduction formula for 3F2 is not included in
any known reduction formula and appears to be new. At the end of this work, we use known connection and linearization
formulae for ultraspherical polynomials to derive a reduction formula associated to a terminating double sum.
We note here that this work is motivated by a problem suggested by Dick Askey in a private discussion about linearization
coefficients for Jacobi polynomials with special parameters.
The Kampé de Fériet function is the double hypergeometric function defined by: [8, p. 63]

F p:kl:n

(
(ap) : (bk); (ck);

x, y
(αl) : (βn); (γn);

)
=

∞∑
r,s=0

[ap]r+s[bk]r [ck]s
[αl]r+s[βn]r [γn]s

xr

r!
ys

s!
, (4)

where [ap]r =
∏p
j=1(aj)r , . . . .

To solve the linearization problem for the Jacobi PS, we need the following result which is proved in [9].

Theorem 1. Let {Pn}n≥0, {Qn}n≥0 and {Rn}n≥0 be three polynomial sets generated, respectively, by

A1(t)B1 (xC1(t)) =
∞∑
n=0

λ(1)n Pn(x)t
n,

A2(t)B2 (xC2(t)) =
∞∑
n=0

λ(2)n Qn(x)t
n,

A3(t)B3 (xC3(t)) =
∞∑
n=0

λ(3)n Rn(x)t
n,

(5)

where Ap, Bp and Cp, are three formal power series satisfying Ap(0) 6= 0, Cp(0) = 0, C ′p(0) 6= 0, B
(k)
p (0) 6= 0∀k 6= 0 and

λ
(p)
n 6= 0; p = 1, 2, 3.
Then, the associated linearization coefficients in (1) are given by

Lij(k) =
λ
(1)
k

λ
(2)
i λ

(3)
j

i∑
r=0

j∑
s=0

γ
(2)
r γ

(3)
s

γ
(1)
r+s

a(2)r (i)a
(3)
s (j)ψr+s(k), k = 0, 1, . . . , i+ j, (6)

where

Ap(t)Cmp (t) =
∞∑
i=m

a(p)m (i)t
i, Bp(t) =

∞∑
k=0

γ
(p)
k t

k
; p = 1, 2, 3; and

C−k1 (t)

A1(C−11 (t))
=

∞∑
n=k

ψn(k)tn. (7)

Recall here that a polynomial set defined by a generating function like in (5) is said to be of Boas–Buck type [10].
The Jacobi polynomial set is generated by [11]

(1− t)−τ 2F1

(
τ
2 ,

τ+1
2

α + 1

∣∣∣∣ −2(x− 1)t(1− t)2

)
=

∞∑
n=0

(τ )nP
(α,β)
n (x)

(1+ α)n
tn,

where τ = α + β + 1.
It follows that the shifted Jacobi polynomial set is of Boas–Buck type with

A(t) = (1− t)−τ , C(t) =
−t

(1− t)2
and B(t) = 2F1

(
τ
2 ,

τ+1
2

α + 1

∣∣∣∣ t). (8)

For this case, and to get the development of the formal power series in (7), we need the following lemma.
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Lemma 2 (Lagrange’s Inversion Formula [8]). Let ξ be a function of t implicitly defined by

ξ = t(1+ ξ)s+1, ξ(0) = 0. (9)

Then, we have

(1+ ξ(t))r =
∞∑
n=0

r
r + (s+ 1)n

(
r + (s+ 1)n

n

)
tn, (10)

where r and s are complex numbers independent of n.

In our case, we have

A(t) = (1− t)−τ and C(t) =
−t

(1− t)2
.

C−1 is defined, implicitly, by

(1− C−1(t))2t = −C−1(t).

Using (10), with ξ = −C−1, s = 1 and r = τ + 2k, we obtain

(C−1)k(t)
A(C−1(t))

= (−1)k(1− C−1(t))2k+τ tk

= (−1)k
∞∑
n=0

τ + 2k
τ + 2n+ 2k

(
2n+ 2k+ τ

n

)
tn+k

= (−1)k
∞∑
n=k

τ + 2k
τ + 2n

(τ + 1+ n+ k)n−k
(n− k)!

tn.

On the other hand, it is easy to check that

A(t)Cm(t) = (−1)m
tm

(1− t)2m+τ
= (−1)m

∞∑
n=m

(2m+ τ)n−m
(n−m)!

tn. (11)

By using Theorem 1, we deduce that the linearization coefficients in

P (λ,δ)i (x)P (µ,γ )j (x) =
i+j∑
k=0

Lij(k)P
(α,β)

k (x),

are given by

Lij(i+ j− k) =
(α + β + 1)i+j−k(α + 1)i+j(2(i+ j− k)+ α + β + 1)

(α + 1)i+j−k(α + β + 1)2(i+j)−k+1

×
(−1)k(i+ j)!
i!j!k!

(λ+ δ + 1)2i(µ+ γ + 1)2j
(λ+ δ + 1)i(µ+ γ + 1)j

× F 2: 22: 1

(
−k,−α − β − 1− 2(i+ j)+ k: − i,−λ− i;−j,−µ− j;

1, 1
−(i+ j),−α − (i+ j): − 2i− λ− δ;−2j− µ− γ ;

)
. (12)

In the special case α = µ+ λ, β = δ + γ , we get

Lij(i+ j− k) =
(µ+ λ+ δ + γ + 1)i+j−k(µ+ λ+ 1)i+j(2(i+ j− k)+ µ+ λ+ δ + γ + 1)

(µ+ λ+ 1)i+j−k(µ+ λ+ δ + γ + 1)2(i+j)−k+1

×
(−1)k(i+ j)!
i!j!k!

(λ+ δ + 1)2i(µ+ γ + 1)2j
(λ+ δ + 1)i(µ+ γ + 1)j

× F 2: 22: 1

(
−k,−λ− µ− δ − γ − 1− 2(i+ j)+ k: − i,−λ− i;−j,−µ− j;

1, 1
−(i+ j),−λ− µ− (i+ j): − 2i− λ− δ;−2j− µ− γ ;

)
. (13)
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In view of the Gasper’s reduction formula [12] for the product of two terminating hypergeometric functions in terms of
a Kampé de Fériet function

3F2

(
−n, n+ a, b

c, d

∣∣∣∣ 1)3F2(−n, n+ a, ec, f

∣∣∣∣ 1) = (−1)n(a− c + 1)n
(c)n

× F 2: 22: 1

(
−n, n+ a: b, e; d− b, f − e;

1, 1
d, f : c; a− c + 1;

)
, (14)

the linearization coefficient in (13) can be written as

Lij(i+ j− k) =
(α + β + 1)i+j−k(α + 1)i+j(2(i+ j− k)+ α + β + 1)

(α + 1)i+j−k(α + β + 1)2(i+j)−k+1

×
(i+ j)!
i!j!k!

(λ+ δ + 1)2i(µ+ γ + 1)2j
(λ+ δ + 1)i(µ+ γ + 1)j

(−2i− λ− δ)k
(−2j− µ− γ )k

× 3F2

(
−k,−λ− µ− δ − γ − 1− 2(i+ j)+ k,−i

−2i− λ− δ,−i− j

∣∣∣∣ 1)
× 3F2

(
−k,−λ− µ− δ − γ − 1− 2(i+ j)+ k,−λ− i

−2i− λ− δ,−λ− µ− i− j

∣∣∣∣ 1) (15)

Next, we consider the particular case λ = δ = µ = γ and we will prove that one of the above terminating 3F2 can be
summed using, for this purpose, computer algebra.
Put

S(k) = 3F2

(
−k,−4λ− 1− 2(i+ j)+ k,−i

−2i− 2λ,−i− j

∣∣∣∣ 1),
with Zeilberger’s algorithm (see e.g. [13, Chapter 7]) via the Maple sumrecursion command, we obtain:

0 = (1+ k)(2j− k+ 2λ)(j+ i+ 4λ− k)(−1+ j− k+ 2λ+ i)S(k)
− (1− 2i− 2λ+ k)(−k+ i+ j− 1)(−k+ j+ i+ 2λ)(4λ+ 2i+ 2j− k)S(2+ k)
− 2λ(−i+ j)(j+ 2λ+ 1+ i)(2j− 1− 2k+ 4λ+ 2i)S(1+ k). (16)

With the rechyper Maple command, which is an implementation of Petkovsek’s algorithm detecting all hypergeometric
term solutions of a holonomic recurrence equation [13, Chapter 9]1 we obtain that 0 is the only hypergeometric solution of
the recurrence relation (16), hence the first 3F2 in the r.h.s. of relation (15) cannot be reduced to any hypergeometric term.
For the second 3F2 of (15), consider

T (k) = 3F2

(
−k,−4λ− 1− 2(i+ j)+ k,−λ− i

−2i− 2λ,−2λ− i− j

∣∣∣∣ 1). (17)

Again, by Zeilberger’s algorithm we obtain

(2j− k+ 2λ)(1+ k)T (k)− (1− 2i− 2λ+ k)(4λ+ 2i+ 2j− k)T (2+ k) = 0, (18)

with initial conditions T (0) = 1 and T (1) = 0.
From this recurrence it follows with Petkovsek’s algorithm that T (k) is 0 for odd kwhich is also the only hypergeometric

solution of relation (18).
Note here that this reduction formula can also be obtained from the Karlsson–Minton Formula [15, p. 14], with a proper
choice of parameters.
For even values k = 2m, we get

(j+ λ−m)(2m+ 1)T (m)+ (2i− 1− 2m+ 2λ)(2λ+ i+ j−m)T (m+ 1) = 0, (19)

which admits the hypergeometric solution

T (k) = T (2m) =
(−λ− j)m(2m)!

4m(1/2− λ− i)m(−i− j− 2λ)mm!
. (20)

Therefore, for integermwe obtain the following reduction formula

1 This computation, in principle, can also be handled by Mark van Hoeij’s faster algorithm [14] implemented in Maple’s LREtools[hypergeomsols]
command.
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3F2

(
−2m,−4λ− 1− 2(i+ j)+ 2m,−λ− i

−2i− 2λ,−2λ− i− j

∣∣∣∣ 1) = (−λ− j)m(2m)!
4m(1/2− λ− i)m(−i− j− 2λ)mm!

.2 (21)

It follows that the linearization coefficients in

P (λ,λ)i (x)P (λ,λ)j (x) =
i+j∑
k=0

Lij(i+ j− k)P
(2λ,2λ)
i+j−k (x), (22)

are given by 0 if k = 2m+ 1, which can be also proven directly by the symmetry property of the ultraspherical polynomials
{P (λ,λ)n }n, and

Lij(i+ j− 2m) =
(
i+ j
i

)
(4λ+ 1)i+j−2m(2λ+ 1)i+j(2(i+ j− 2m)+ 4λ+ 1)

(2λ+ 1)i+j−2m(4λ+ 1)2(i+j)−2m+1

×
(2λ+ 1)2i(2λ+ 1)2j
(2λ+ 1)i(2λ+ 1)j

(−2i− 2λ)2m
(−2j− 2λ)2m

× 3F2

(
−2m,−4λ− 1− 2(i+ j)+ 2m,−i

−2i− 2λ,−i− j

∣∣∣∣ 1) (−λ− j)m
4m(1/2− λ− i)m(−i− j− 2λ)mm!

. (23)

Next, we use the above results to obtain a reduction formula for a finite sum of a terminating hypergeometric function,
using for this purpose the well-known connection and linearization formulae for Gegenbauer polynomials.
The Gegenbauer polynomials are Jacobi polynomials with α = β = µ− 1

2 and another standardization:

Cµn (x) =
(2µ)n
(µ+ 1

2 )n
P
(µ− 12 ,µ−

1
2 )

n (x). (24)

The connection and linearization formulae are, respectively, given by the formulae ([16, p. 39], compare [17])

Cωn (x) =
[
n
2 ]∑
k=0

(µ+ n− 2k)(ω − µ)k(ω)n−k
k!(µ)n+1−k

Cµn−2k(x), (25)

and

Cµi (x)C
µ

j (x) =
min(i,j)∑
k=0

(i+ j+ µ− 2k)
(i+ j+ µ− k)

(µ)k(µ)i−k(µ)j−k(2µ)i+j−k
k!(i− k)!(j− k)!(µ)i+j−k

(i+ j− 2k)!
(2µ)i+j−2k

Cµi+j−2k(x). (26)

That leads, by virtue of (24), to the following connection and linearization formulae for the ultraspherical polynomials

P (2λ,2λ)i+j−2k (x) =
(2λ+ 1)i+j−2k
(4λ+ 1)i+j−2k

[
i+j
2 ]−k∑
p=0

(λ+ i+ j− 2k− 2p+ 1
2 )(λ)p(2λ+

1
2 )i+j−2k−p

p!(λ+ 1
2 )i+j−2k−p+1

×
(2λ+ 1)i+j−2k−2p
(λ+ 1)i+j−2k−2p

P (λ,λ)i+j−2k−2p, (27)

and

P (λ,λ)i (x)P (λ,λ)j (x) =
(λ+ 1)i(λ+ 1)j
(2λ+ 1)i(2λ+ 1)j

min(i,j)∑
k=0

(λ+ i+ j− 2k+ 1
2 )(i+ j− 2k)!

(λ+ i+ j− k+ 1
2 )k!(i− k)!(j− k)!

×
(2λ+ 1)i+j−k(λ+ 1

2 )k(λ+
1
2 )i−k(λ+

1
2 )j−k

(λ+ 1
2 )i+j−k(λ+ 1)i+j−2k

P (λ,λ)i+j−2k(x). (28)

Substituting (27) in (22), using (23) and comparing with (28), we get the following reduction formula, for 0 ≤ k ≤ min(i, j),

k∑
p=0

(λ)k−p(2λ+ 1
2 )i+j−k−p

(4λ+ 1)2i+2j−2p+1( 12 − λ− j)p

[2(i+ j− 2p)+ (4λ+ 1)]
p!(k− p)!22p(λ+ 1

2 )i+j−p−k+1

(
λ+i
p

)
(
2λ+i+j
p

)
× 3F2

(
−2p,−4λ− 1− 2(i+ j)+ 2p,−i

−2i− 2λ,−i− j

∣∣∣∣ 1)

=

(
i
k

) (
j
k

)
(
i+j
2k

) k!
(2k)!

(2λ+ 1+ i+ j− 2k)k(λ+ 1)i(λ+ 1)j
(2λ+ 1)i+j(2λ+ 1)2i(2λ+ 1)2j

(λ+ 1
2 )k(λ+

1
2 )i−k(λ+

1
2 )j−k

(λ+ 1
2 )i+j+1−k

. (29)

2 Note that (21) is a variant of the Watson–Whipple formula (see e.g. [10], Table 6.1 on p. 84), hence our deduction gives a simple proof of this formula.
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