
Detecting regular dynamics from time series using
permutations slopes

J. S. Armand Eyebe Foudaa, Wolfram Koepfb

aDepartment of Physics, Faculty of Science, University of Yaoundé I, P.O. Box 812,
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Abstract

In this paper we present the entropy related to the largest slope of the permuta-
tion as an efficient approach for distinguishing between regular and non-regular
dynamics, as well as the similarities between this method and the three-state
test (3ST) algorithm. We theoretically establish that for suitably chosen delay
times, permutations generated in the case of regular dynamics present the same
largest slope if their order is greater than the period of the underlying orbit.
This investigation helps making a clear decision (even in a noisy environment)
in the detection of regular dynamics with large periods for which PE gives an
arbitrary nonzero complexity measure.
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1. Introduction

Complexity measure is important as it allows comparing time series and
distinguishing between regular (e.g. periodic) and non-regular behaviors. A
deterministic dynamical system generating non-regular dynamics is said to be
chaotic. Detecting chaos from an arbitrary series of observations remains a
challenging task [1–6], as it is difficult to make a clear difference between the
deterministic chaotic and stochastic dynamics. Some investigations have been
carried out in this area and are still giving promising results [7–9]. If the system
is assumed to be deterministic, measuring its complexity is useful for determin-
ing whether its behavior is predictable or not. Entropies, fractal dimension and
Lyapunov exponent (LE) are some examples of complexity parameters.

Particular interest has been reserved to entropies as some of them can be di-
rectly applied to the series of observations [1, 10–14]. In this perspective, Bandt
and Pompe have proposed the permutation entropy (PE) [1], which is actually
widely used in many fields due to its conceptual and computational simplicity.
The PE is based on the ordinal pattern analysis and is easily calculated for any
type of time series, be it regular, chaotic, noisy, or reality based. It has been
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successfully applied to the study of structural changes in time series and the un-
derlying system dynamics [15–19]. In addition to its robustness against noise, it
has been verified that the PE behaves similar to the largest Lyapunov exponent
and can therefore be used for the detection of chaos in dynamical systems [20].

However, although regular dynamics present vanishing or negligible complex-
ities, there is no particular value or property of the PE for the characterization
of regular dynamics as it is the case for the largest LE, which makes it less suit-
able for chaos detection. Indeed, in some examples given on chaos detection, PE
tracks the largest LE with a uniform bias that depends on the underlying system
and the parameter setting of the PE algorithm: even perfectly predictable dy-
namics are characterized by a nonzero entropy. The dependence on the uniform
bias can be sometimes difficult to determine when dealing with an unknown
single time series. Despite the modification proposed by the weighted PE [21]
and the modified PE [22] algorithms to overcome some shortcomings of the PE,
no solution has been proposed to address this concern. For the PE algorithm
to be efficiently implemented, a principle based on the use of lookup tables was
presented in [23]. Defining lookup tables for large permutation order n is diffi-
cult as the number of permutations is equal to n!. In the case of the modified
PE, the number of permutations is given by the ordered Bell numbers, which is
greater than n! [23]. Thus approximating the Kolmogorov-Sinai (KS) entropy
from the PE is quite difficult as it requires large n. Moreover, defining a lookup
table may not be useful if the algorithm is implemented for embedding systems.
Recently the conditional entropy of ordinal patterns was proposed that provides
more reliable estimation of the KS entropy [24] than the PE.

In 2004, Gottwald and Melbourne proposed the 0-1 test for chaos detection
from time series. The test presents the advantage to be binary as it outputs 0
for regular dynamics and 1 for non-regular dynamics. The 0-1 test has shown
competitive results and has been successfully applied to many types of dynam-
ical systems and experimental data [25–27]. The test is still in improvement
and has been recently slightly modified for an efficient application to strange
non-chaotic attractors (SNA) [28]. The 0-1 test is sensitive to the sampling
frequency. Gottwald and Melbourne showed that in the case of continuous time
systems, it fails to detect chaos in oversampled time series, hence it is necessary
to reduce the sampling frequency to the Nyquist frequency. However, such a
condition is not consistent with the digital signal processing requirement for
which the sampling frequency needs to be greater than the Shannon limit. In
order to overcome such a limiting property, we proposed the modified 0-1 test
in which the 0-1 test is applied to the local maxima and minima of the observa-
tions, instead of directly applying to the entire observation [29]. The modified
0-1 test thus allows to easily detect chaos from oversampled time series. How-
ever, despite this improvement, the 0-1 test remains computationally costly and
cannot be used for real-time analysis of time series as it is the case for the PE.
Moreover, the calibration of the test sometimes depends on the system under
study.

Without prior knowledge on the PE, we proposed another approach for time
series analysis, namely the three-state test (3ST) for chaos detection in discrete
maps, which also belongs to the group of ordinal pattern analysis methods [30].
The 3ST presents the advantage to perform both the detection of the regular-
ity or non-regularity and the period estimation in time series. The difference
between the PE and the 3ST comes from the statistical exploitation of the
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permutations. Indeed, instead of constructing ordinal patterns (permutations)
of fixed order n like in the PE, in the 3ST, data sequences are ordered using
different values of n and the corresponding permutations are studied. By this
approach, no probability is computed as the permutations do not have the same
length. Moreover, the permutation list may be very large, depending on the
length of the time series, hence it has memory and computationally expensive.
For this purpose, each permutation is replaced by its largest slope S. The 3ST
can easily detect the period-doubling route and output the corresponding pe-
riods as discrete numbers (periods of stable limit-cycles) [30]. In addition, as
an ordinal method for time series analysis, the 3ST is also computationally low
cost and was designed for possible real-time applications. Recently, we pro-
posed an improvement of the 3ST for clear discrimination between periodic,
quasi-periodic and chaotic dynamics [31]. We thus defined λP as the sensitivity
of the 3ST chaos indicator, namely λ, to the initial phase. We also showed that
λP is equivalent to computing λ using permutations with fixed order [31]. By
this definition, the 3ST and the PE appear closer, even if only the largest slopes
of permutations and no probabilistic approach are used in the 3ST algorithm.
However, the fundamental question is to know whether the use of the largest
slopes is reliable for chaos detection.

In this paper, we theoretically prove the usefulness of the permutation slopes
for the discrimination between regular and non-regular dynamics. We further
establish the relationship between the 3ST and the PE by computing the entropy
related to the permutations largest slopes, and show that it can be efficiently
applied to the detection of chaos in dynamical systems.

2. Mathematical fundamentals

2.1. Usefulness of the permutations slopes

Let {xt}t=1,··· ,T be a time series of length T where t is the time index.
The PE of order n is defined as a measure of the probabilities of permuta-
tions of order n [1]. Permutations of order n are obtained from the com-
parison of neighboring values (increasing order) in embedding vectors xt =
(xt+1, xt+1+τ · · · , xt+1+mτ , · · · , xt+1+(n−1)τ ), where n is the embedding dimen-
sion (number of values in xt), τ the distance between two values in {xt} or delay
time of samples and m + 1 the index of xt+1+mτ in xt, m ∈ N. Let Pt be the

permutation derived from xt. Pt =
(

1,2,3,··· ,n
5,n,1,··· ,3

)
, for example is obtained by sort-

ing the values of xt in ascending order, with xt+5 < xt+n < xt+1 < · · · < xt+3.
Identical values are sorted by the ascending order of their time index. The
permutation entropy of order n is thus given by

H(n) = −
∑

p(θ) · ln(p(θ)) (1)

where

p(θ) =
#{t | t ≤ T − n, Pt = θ}

T − n+ 1
(2)

is the probability of the permutation θ and # denotes number [1].
Definition 1:
A time series {xt} is called period-L cycle or simply L-periodic, if there

exists a basic pattern of length q samples containing L distinct values (L ≤ q)
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periodically repeated, independently of the time origin. q is known as the time
space period and L as the phase space period.

Despite the efficiency of the PE as complexity measure, it remains unsuited
for distinguishing between regular and non-regular dynamics. Indeed, obtain-
ing H(n) = 0 for regular dynamics requires large embedding dimensions n and
an observation time T ≫ n!. Such a requirement is difficult to achieve as the
memory space cannot be infinitely large. Therefore n is reduced to small values
(2 ≤ n ≤ 15) [1]. As a consequence, H(n) ̸= 0 even for perfectly predictable
dynamics. It is evident that a regular dynamics cannot be detected as periodic
unless the observation time is greater than its period [24, 29]. Let q be the pe-
riod of the underlying dynamics, if n < q, then the corresponding PE is greater
than zero. It then appears from the above restriction that only dynamics with
periods less than 15 samples may be detected with zero entropy. Moreover, for
a regular dynamics to be detected with zero entropy, all the embedding vectors
xt should output the same permutation, which is possible only if the dynamics
is a period-1 cycle, otherwise the embedding vectors will output different per-
mutations so that the entropy of the whole dynamics is different from zero. For
example, let us consider a period-5 cycle orbit obtained by generating 5 distinct
random numbers (0.8147, 0.9058, 0.1270, 0.9134, 0.6324) and repeating this ba-
sic sequence M -times (M > 2). The first four 6-order permutations obtained

by sorting values of vectors xt, t=0 to 3, are the following: P0 =
(

1,2,3,4,5,6
3,5,1,6,2,4

)
;

P1 =
(

1,2,3,4,5,6
2,4,5,1,6,3

)
; P2 =

(
1,2,3,4,5,6
1,6,3,4,5,2

)
and P3 =

(
1,2,3,4,5,6
5,2,3,4,1,6

)
. This example shows

that the entropy related to the permutation (PE) is different from zero as there
are at least four different permutations, although the dynamics is regular. It
appears that the permutations are sensitive to the initial phase/condition, and
therefore cannot efficiently help for detecting periodic dynamics as regular.

Definition 2:
Assuming the permutation Pt is a piece-wise linear function, we simply con-

sider as slope of each linear function the difference si = Pt(i + 1) − Pt(i),
1 ≤ i ≤ n − 1, between pairs of neighboring values in Pt. For a permutation
Pt of order n, the maximum number of distinct slopes is n − 1. We define as
largest slope of Pt, St = max ({si}) the maximum value of {si}. We showed
that L = limn→∞ |St| for regular dynamics [30, 31].

Theorem 1:
n-order permutations generated using ascending order of the values of n-

length embedding vectors xt derived from a period-L cycle time series {xt},
L = q, n > L

gcd(L,τ) , all present the same largest slope S = L
gcd(L,τ) .

Proof :
xt = (xt+1, xt+1+τ , · · · , xt+1+mτ , · · · , xt+1+(n−1)τ ) outputs permutations Pt

of order n after sorting in ascending order. Extracting samples from a periodic
time series with a fixed step leads to another periodic sequence.

If gcd(L, τ) = 1 and n ≤ L, all the differences Pt(i+1)−Pt(i), i = 1 to n−1
can take any value between 1 and n− 1, depending on the ordering of samples
in xt and S < L

If gcd(L, τ) ̸= 1, then xt+t′=xt+t′+L where t′ = mτ + 1, m ∈ N. The
corresponding indices in xt are respectivelym+1 andm+1+δ with δ = L

gcd(L,τ) .

The possible number of distinct samples in xt is equal to δ: xt is δ-periodic.
In the case n ≤ δ, none of the L distinct values of {xt} is repeated in xt and
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the largest slope takes any value S < δ between 1 and n− 1, depending on the
ordering of samples in xt.

If n > δ, at least one of the possible δ distinct samples in xt is repeated
at least once. In that case, xt+1 is always repeated and each of its occurrence
indicates the end of the previous period or the beginning of the next one. The
time index of such occurrences is t+ t′, where t′ = mτ + 1, m being an integer
such thatm+1 > δ. As xt is δ-periodic, the indexm+1 indicating the repetition
of xt+1+α, 0 ≤ α < δ, is such that:

mod (m+ 1, δ) = α+ 1 (3)

The general solution of Eq.(3) is m(k) = k · δ + α, k ≥ 0 is the number of
repetitions. According to the definition of xt, the largest slope S is equal to
the distance between indices of successive occurrences of the same value, so
S = m(k + 1) − m(k) = δ. Thus, considering the definition of δ, the largest
slope is:

S =
L

gcd(L, τ)
, (4)

hence the result.
For example the largest slopes of the above 6-order permutations P0, P1, P2

and P3 are S0 = S1 = S2 = S3 = 5. Each of the corresponding four vectors xt,
t = 0 to 3, has the same values and differ only by the initial value. All the four
different xt are period-5 sequences.

Consequence:
Theorem 1 shows that the estimate of the phase space period of the time

series {xt} by the largest slope S depends on the delay time τ . For this estimate
to be equal to L, it is necessary that gcd (L, τ) = 1. As it is difficult to meet
such a condition for arbitrary time series, choosing τ = 1 is sufficient.

In the case of the PE for example, choosing τ > 1 can lead to some mis-
interpretations in complexity values in the case of regular dynamics. Indeed,
let us consider a 3-periodic and a 10-periodic time series. Normally, the first
dynamics is less complex than the second one, but choosing τ = 5 will reduce
the second dynamics into a 2-periodic one, thus leading to a smaller complex-
ity. For n = 7, the corresponding PE are respectively H1(7) = ln(3) = 1.0986
and H2(7) = ln(10) = 2.3026 for τ = 1; and H1(7) = ln(3) = 1.0986 and
H2(7) = ln(2) = 0.6931 for τ = 5. This observation also proves that the bias
between the PE and the largest Lyapunov exponent cannot be determined rig-
orously.

However, although choosing τ > 1 can lead to false results for the detection
of regular dynamics periods, it can be useful for detecting regular dynamics of
large period from small embedding dimensions (n < L). Indeed, if τ is such
that gcd (L, τ) > 1, then the period of the time series is reduced to δ < L and
choosing δ < n < L even allows to detect the dynamics as periodic.

Theorem 2 (Periodicity of permutations):
Given a period-L cycle time series {xt} and τ such that gcd(L, τ) = 1, the

number of distinct n-order permutations, n > L, generated from the ascending
sorting of the values of n-length embedding vectors xt, xt+t0 , · · · , xt+lt0 , t0 < n,
is equal to L

gcd(L,t0)
, t0 being the delay time of the embedding vectors.

Proof:
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If t0 = 1, xt and xt+L according to Theorem 1 are redundant: {xt} is L-
periodic. It then results that Pt and Pt+L are the same, and only Pt to Pt+L−1

are distinct permutations. So, the set of permutations in that case is L-periodic
as the time series {xt}.

If t0 > 1 and L
gcd (L,t0)

= γ, according to Theorem 1, it is easily verified that

xt and xt+γ are redundant as {xt} is L-periodic. So, the number of distinct
permutations obtained from {xt+lt0}, l ∈ N, is equal to γ: {Pt} is γ-periodic,
hence the result.

For gcd(L, τ) > 1, the number of distinct permutations can be smaller than
γ, depending on the ordering of the values in {xt}: the choice of τ can reduce the
number of distinct permutations. Thus, γ is the maximum number of distinct
permutations which can be obtained, given the couple (τ, t0).

Let us consider for example a 4-periodic (L = 4) time series such that
{xt} = {a0, a1, a2, a3, a0, a1, a2, a3, a0, · · · }, where a0 ̸= a1 ̸= a2 ̸= a3 are real
numbers; and an embedding dimension n = 5. For τ = 1 and t0 = 1, the cor-
responding embedding vectors are the following: x0 = (a0, a1, a2, a3, a0), x1 =
(a1, a2, a3, a0, a1), x2 = (a2, a3, a0, a1, a2), x3 = (a3, a0, a1, a2, a3), x4 = x0,
x5 = x1, . . ., xt = xt−4, t ≥ 4. According to this example, there are only four
distinct embedding vectors, so only four distinct permutations can be observed
(γ = L

gcd(L,t0)
= 4) and all of them have the same largest slope equal to the

period of the time series, S = L = L
gcd(L,τ) = 4.

Now let us consider τ = 2 and t0 = 1, the embedding vectors become:
x0 = (a0, a2, a0, a2, a0), x1 = (a1, a3, a1, a3, a1), x2 = (a2, a0, a2, a0, a2), x3 =
(a3, a1, a3, a1, a3), x4 = x0, x5 = x1, . . ., xt = xt−4, t ≥ 4. Once more, the
number of distinct embedding vectors is equal to 4; but the number of distinct
permutations depends on the ordering of the samples in the time series. For
the case a0 < a2 < a3 < a1, there are only two distinct permutations: P0 =

P3 =
(

1,2,3,4,5
1,3,5,2,4

)
and P1 = P2

(
1,2,3,4,5
2,4,1,3,5

)
, which is less than γ = L

gcd(L,t0)
= 4

permutations. However, the largest slope of the permutations now is half the
period of the time series, S = L

gcd(L,τ) = 2.

By setting τ = 1 and t0 = 2, the embedding vectors are the following: x0 =
(a0, a1, a2, a3, a0), x2 = (a2, a3, a0, a1, a2), x4 = x0, x6 = x2, . . ., x2t = x2t−4,
t ≥ 2. It then comes that the maximum number of distinct permutations is now
half the period of the time series: γ = L

gcd(L,t0)
= 2; while the largest slope of

these permutations remains S = L = 4
Finally, if τ = 2 and t0 = 2, the embedding vectors are : x0 = (a0, a2, a0, a2, a0),

x2 = (a2, a0, a2, a0, a2), x4 = x0, x6 = x2, . . ., x2t = x2t−4, t ≥ 2. It now
clearly appears that both the number of permutations and the largest slopes
are reduced to half the period of the time series.

This example can be extended to any period to see the interplay between τ
and t0

Consequences:
C1: Theorem 2 shows that only γ (γ ≤ L < n) permutations are periodically

repeated in the case of regular dynamics, instead of n!. This number is less
than or equal to the possible number of largest slopes, so the permutations can
be efficiently represented by their largest slopes with no information loss. In
addition, for a given regular dynamics, all the γ permutations have the same
largest slope.

6



On the contrary, for non-regular dynamics if the period L is assumed to be
infinitely large, then n < L implies that the number of distinct permutations is
greater than n. Therefore the permutations cannot be efficiently described by
the n − 1 possible values of largest slopes any more. It then results that for a
given dynamics, there is more than a single value of largest slope as in the case
of regular dynamics.

From the above consequences, we can conclude that regular dynamics can
be characterized by a single largest slope while non-regular dynamics cannot.
This difference can help to distinguish between the two types of dynamics. The
largest slopes do not allow to represent all the possible permutations in the
case of non-regular dynamics and therefore are not useful for estimating their
complexity.

C2: Theorem 2 shows that the number of distinct permutations is less than
or equal to L and that {Pt} is γ-periodic. This proof implies that there is no need
to consider large observation durations, as the periodicity of the permutations
can be detected from only three to four cycles. So, the effective observation
time can be set such that 3n ≤ T ≤ 4n, with n > Lm the largest period to
be estimated without error. This observation also implies that only 3γ to 4γ
permutations can be sufficient for the detection to be accurate. When t0 is
chosen such that gcd (L, t0) > 1, 4γ can be too small and allows to save more
computation time.

Indeed, considering the largest slope does not allow us to determine the
complexity, but only to distinguish between regular and non-regular dynamics.
So, it is not useful any more to consider T ≫ n!, but only T > 3n. This
observation is as important as it can help speeding up the detection of the
regularity of dynamics for real-time applications, and to make a clear decision
from a small amount of data. For low-dimensional systems for example, where
periodic dynamics present few number of harmonics, T can be too short as n
can be too small.

Remarks:
R1: In the case L = q and n < L, the set of largest slopes {St} derived from

{xt} is γ-periodic. Indeed, for any embedding dimension n < L, the embedding
vectors xt are periodically repeated as the time series {xt} is L-periodic, even
if the largest slopes of the corresponding permutations Pt take possible values
between 1 and n−1, depending on the ordering of the values in {xt}. Theorem 2
shows that embedding vectors xt are periodically repeated and only a maximum
of γ distinct permutations Pt can be derived from such embedding vectors.
The number of distinct permutations for a regular dynamics does not explicitly
depend on the embedding dimension, but only on L, t0, T and the ordering of
the values. As stated above, the time period of {St} is equal to γ, similar as
that of {xt}, except when all the St values are the same. In such a case, {St}
corresponds to a period-1 cycle time series. As only a maximum of γ distinct
permutations can be derived from the set of embedding vectors xt, although
the corresponding largest slopes may be different, it can be conjectured that
the upper limit of the PE of a L-periodic dynamics is ln(γ), where γ = L

gcd(L,t0)
.

This limiting value is obtained when all the γ permutations are realized with
the same probability. The dependence of the number of distinct permutations
on the ordering of values in {xt} and τ can lead to arbitrary nonzero values of
the PE for regular dynamics: two regular dynamics with the same period can
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give different permutation entropies.
R2: In the case L < q, redundant values occur in the basic period of {xt}.

For the largest slope to be unique and equal to q, at least one non-redundant
value should be repeated in xt. For avoiding any detection error, it is necessary
to consider the time period as it remains constant even for embedding vectors
with redundant values (L < q). This requirement can be easily justified by
considering n ≥ 2q as embedding dimension. For example, n = 200 is enough
for detecting dynamics with period q = 100. In the case there is no redundant
value, even period q = 199 can be efficiently detected with n = 200.

2.2. Permutation largest slope entropy

Theorems 1 and 2 indicate that L-periodic dynamics are characterized by a
single value of largest slope if the embedding dimension is such that L < n. It
then results that the entropy related to the distribution of the largest slopes may
be equal to zero in the case of regular dynamics, so useful for their detection
as compared to the PE which is taking arbitrary values. Thus, we define the
permutation largest slope entropy (PLSE) of order n ≥ 2 as:

HS(n) = −
∑

p(S) ln(p(S)) (5)

where

p(S) =
#{t | t ≤ T − n, St = S}

T − n+ 1
(6)

is the probability/ relative frequency of S and # denotes number. HS(n) = 0
for regular dynamics with period L < n and 0 < HS ≤ ln(n−1) for non-regular
dynamics. We can also define the normalized PLSE as:

hS(n) = HS(n)/ ln(n− 1). (7)

hS(n) = 0 for regular dynamics and 0 < hS(n) ≤ 1 for non-regular dynamics.
Indeed, regular dynamics are characterized by a single value of largest slope
St = S, for all t and HS = 0 as p(S) = 1; for non-regular dynamics, St takes
different values, thus leading to a nonzero entropy. By this approach, the PLSE
can help to distinguish between regular and non-regular dynamics.

The definition of the entropy related to St allows to reduce redundant per-
mutations in the case of regular dynamics: two permutations with the same
largest slope are equivalent. The maximum number of permutations with dif-
ferent largest slopes is thus n− 1 instead of n!.

2.3. Relationship between the 3ST and the PLSE

We defined the 3ST algorithm for distinguishing between regular and non-
regular dynamics. The difference between the PLSE and 3ST resides in the
statistical analysis of the largest slope. We first computed the periodicity index
λ by considering embedding vectors of different lengths [30]. Thereafter, we
studied the sensitivity of λ to the initial phase, namely λP , by considering
embedding vectors of fixed length [31]. The interpretation of λP is similar to
that of the PLSE: λP = 0 for regular dynamics and λP > 0 for non-regular
dynamics. Computing the PLSE is similar to computing λP , except that the
PLSE algorithm is easy to implement.
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The number of distinct permutations in the case of regular dynamics does
not explicitly depend on the embedding dimension n. However, choosing n < L
may lead to permutations with different largest slopes, hence to hS > 0 for
regular dynamics. In order to prevent such false detection, large embedding
dimensions are required. The value of n is then chosen such that n > Lm,
where Lm is the largest period to be detected with no error. Periodic dynamics
whose periods are greater than Lm are considered to be chaotic and the choice
of Lm depends on the complexity of the system under study.

2.4. The differential dynamical quantization

The PE is robust against noise and has been successfully applied to real-
world data. For the PLSE to be useful for the detection of the regularity, it
should take zero values for regular dynamics even in the presence of noise. As
it is not always so, we suggest to use the differential dynamical quantization
(DDQ) for noise reduction. The DDQ is a nonlinear approach which consists
in affecting a single value (quantization) to those which are approximately the
same in the data series. This quantization is said dynamical as it is made for
each embedding vector xt: the same value appearing in xt and xt+1 may be
replaced by two different values. The noise threshold (or noise tolerance) η is
used as the quantization step. η is the minimum difference between xt and xt′

for the two values to be considered as different. The DDQ algorithm applies
as follows: xt is first sorted in ascending order to obtain ut in which all equal
values are neighbors; thereafter ut and ut+1 are set to ut′+1 if |ut−ut+1| < η and
t′ < t, with t′ such that |ut′ − ut′+1| ≥ η; else, these values are left unchanged;
finally the quantized vector vt is obtained by relocating the values of ut as in
xt. Then the PLSE is applied to vt.

If for example xt = (2.12, 2.61, 2.53, 2.30, 2.44, 2.28), then the sorted se-
quence is ut = (2.12, 2.28, 2.30, 2.44, 2.53, 2.61). Setting η = 0.04 leads to ut =
(2.12, 2.28, 2.28, 2.44, 2.53, 2.61), and finally vt = (2.12, 2.61, 2.53, 2.28, 2.44, 2.28).
It appears that xt(4) = 2.30 was noise contaminated and has been replaced by
2.28 in vt(4). The choice of the right value of η depends on the noise amplitude
ε.

3. Results and discussion

3.1. Impact of τ and t0 on the PE and PLSE

Readers are familiar with the rich nature of the logistic map [32]:

xt+1 = rxt(1− xt). (8)

We took 501 values of the control parameter as 3.5 ≤ r ≤ 4, by step size
∆r = 10−3. The Feigenbaum diagram is given in Fig. 1(a) for comparison with
entropies in periodic windows.

The logistic map exhibits a period doubling bifurcation for 3.5 ≤ r < 3.57,
starting with a period-4 cycle. Fig. 1 shows that choosing τ > 1 effectively
reduces the PE of regular dynamics for which gcd(L, τ) > 1. The PE of period-
4 and period-8 cycles which are respectively ln(4) and ln(8) for τ = 1 are now
all equal to zero for τ = 8 and less than the PE of period-3 cycle which remains
equal to ln(3) for both τ = 1 and τ = 8. The same result is observed with the
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PLSE. For example, r = 3.606 corresponds to a period-20 cycle and the smallest
embedding dimension for HS to be zero is equal to 21. However, considering
τ = 8 brings back this period to 5, which is less than the embedding dimension
n = 7, hence HS(7) = 0 for this dynamics.

For t0 = 8, the number of distinct permutations in the case of period-4 and
8 cycles is reduced to γ = L

gcd(L,t0)
= 1, thus leading to HS(7) = 0; for all other

period-L cycles multiple of 8, the number of distinct permutations becomes
γ = L/8 instead of γ = L. This reduction of the number of permutations does
not guarantee a zero value of the PLSE as 7 < L ≤ 32 may lead to different
largest slopes. For the PLSE to be zero, the embedding dimension needs to
be greater than the period of the underlying dynamics: t0 does not reduce the
period of the orbit, but only the number of distinct permutations. Fig. 1 also
shows that complexities corresponding to τ = 1, t0 = 1 and τ = 1, t0 = 8
are quite the same for non-regular dynamics, while for t0 = 1 and τ > 1 an
increase of the complexities is observed. This observation confirms that t0 > 1
preserves the ordering/nature of the underlying dynamics, hence its complexity,
while τ > 1 does not, thus giving a more complex appearance to the dynamics
than it is: we have shown in Theorem 1 that τ > 1 can lead to the reduction
of the periods of regular dynamics while Theorem 2 has shown that only the
number of distinct permutations can change without affecting the period of
the dynamics. Considering the simulation results, we can conjecture that in
the case of non-regular dynamics, choosing 1 < t0 < n does not modify the
number of distinct permutations, hence the complexity measure of the dynamics.
Considering t0 > n contributes to skipping samples in {xt} and may lead to false
detection results. It also appears that choosing large values of τ is a limiting
factor for the chaos scaling as the PE is taking quite the same value for all
the non-regular dynamics. On the other hand, choosing t0 > 1 reduces the PE
of regular dynamics for which gcd(L, t0) > 1, while maintaining the scaling of
the complexities of non-regular dynamics. Fig. 1(b) and Fig. 1(c) show that
HS(7) < H(7), which confirms that the number of distinct permutations in the
case of non-regular dynamics is effectively greater than the number of possible
slopes, and therefore cannot be suitably described by the largest slopes.

The impacts of τ and t0 to the PE and the PLSE for regular dynamics are
quite antagonist. For t0 = 1, gcd(L, τ) > 1 contributes to reduce the period of
the underlying dynamics to δ < L, but does not change the number of distinct
permutations. It therefore results that the PLSE of regular dynamics with
period L such that δ < n < L is equal to zero, while the corresponding PE
is such that ln(δ) ≤ H(n) ≤ ln(L). In the case τ = 1 and gcd(L, t0) > 1,
the number of distinct permutations is reduced to γ < L, while the period L
remains unchanged. As a consequence, the PE of L-periodic orbits is reduced
to H(n) ≤ ln(γ) whilst their PLSE is such that 0 ≤ HS(n) ≤ ln(n− 1) if n ≤ L
and HS = 0 if n > L. We choose n = 7 in Fig. 1 for comparison purposes, but
this value needs to be large enough for efficient detection of regular dynamics
with large periods.

3.2. Impact of n on the detection result

Now let us consider n = 1024 with τ = 1, t0 = 8 and n = 32 with τ = 8,
t0 = 1. Such large values of n are difficult to consider with the PE as the
requirement T ≫ n! may be difficult to achieve in practice. In the simulation

10



3.5 3.6 3.7 3.8 3.9 4
0

0.5

1

x t

(a)

3.5 3.6 3.7 3.8 3.9 4
0
2
4
6
8

H
(7

)

(b)

3.5 3.6 3.7 3.8 3.9 4
0

0.5
1

1.5

H
S
(7

)

(c)

r

Figure 1: Logistic equation for varying control parameter 3.5 ≤ r ≤ 4 (step ∆r = 10−3),
T = 5000: (a) Bifurcation diagram, (b) PE H(7) for τ = 1 and t0 = 1 (blue solid line), τ = 3
and t0 = 1 (red dash-dotted line), τ = 8 and t0 = 1 (magenta dashed line) and τ = 1 and
t0 = 8 (black dotted line); (c) PLSE HS(7) for τ = 1 and t0 = 1 (blue solid line), τ = 3 and
t0 = 1 (red dash-dotted line), τ = 8 and t0 = 1 (magenta dashed line) and τ = 1 and t0 = 8
(black dotted line).
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Figure 2: Logistic equation for varying control parameter 3.5 ≤ r ≤ 4 (step ∆r = 10−3),
T = 5000: (a) Cycle diagram for τ = 1 and t0 = 8; (b) Lyapunov exponent λLyap; (c)
HS(1024), τ = 1 and t0 = 8; (d) HS(32), τ = 8 and t0 = 1.

below, the results of the PLSE are compared with the Lyapunov exponent.
According to Fig. 2, choosing large values of n effectively allows to give a better
estimate of the periods and to achieve zero entropy even for dynamics with large
periods. This result also shows that there is no need to increase the observation
time T , as only three to four cycles of the distinct permutations are required
for the dynamics to be detected as periodic. Choosing t0 = 8 allows to reduced
this number of permutations for all regular dynamics whose periods are such
that gcd(L, t0) > 1 and to reduce the computational time, while choosing τ = 8
allows to achieve zero PLSE even for period-L cycle dynamics with L > 32
and δ < 32 < L. For r = 3.602, the logistic map exhibits a period-88 cycle
dynamics. Considering n = 32 is not enough for detecting this dynamics as
periodic. However, combining n = 32 with τ = 8 allows to obtain HS(32) = 0
as the 88-periodic orbit is reduced to period-δ cycle dynamics, with δ = 11.
Normally, there is a tiny periodic window around r = 3.801 which cannot be
clearly observed as ∆r = 0.001 only. For r = 3.801 the LE is coming close to
zero (λLyap = 0.0619), but remains positive. This result is clearly expressed by
the PLSE which remains positive even for n = 1024 (HS(1024) = 1.5652), thus
confirming the chaotic nature of the corresponding dynamics.

3.3. Robustness against noise

The robustness of the PE against noise has already been presented in [1]. In
order to verify the efficiency of the PLSE for the detection of regular dynamics
in the presence of noise, we have considered the logistic map contaminated
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Figure 3: Spectrum of the PLSE for the logistic map in presence of dynamical noise, T = 5000:
(a) HS(1024) for the uniform noise, σ = 0.0005, η = 0 (dash-dotted black line), σ = 0.0005,
η = 3σ (solid blue line) and σ = 0.001, η = 3σ (dashed magenta line); (b) HS(1024) for the
Gaussian noise, σ = 0.0005, η = 0 (dash-dotted black line), σ = 0.0005, η = 7σ (solid blue
line) and σ = 0.001, η = 4σ (dashed magenta line).

by dynamical and observational noise with Gaussian and uniform distributions
whose standard deviations are varying from σ = 0.0005 to σ = 0.005. In the
case of the dynamical noise, the noisy logistic map is given by:

xt+1 = rxt(1− xt) + σbt (9)

where bt are normally (Gaussian noise) or uniformly (uniform noise) distributed
values and σ the standard deviation of the noise. For the observational noise,
the noise samples are simply added to the output samples of the logistic map,
thus leading to the following equation:

ϕt = xt + σbt (10)

where xt is given by Eq. (8) and ϕt the logistic map contaminated by the
observational uniform or Gaussian noise bt. The noise bt is characterized by a
standard deviation σ0 = 1 and a mean value bt = 0. The corresponding Matlab
expressions are bt = 4(−0.5 + rand) for the uniform noise and bt = randn for
the Gaussian noise.

The detection results for the dynamical noise are presented in Fig. 3, while
those corresponding to the observational noise are shown in Fig. 4.

Figs. 3-4 show that the PLSE performs well in the presence of noise. We
use the DDQ with various η for the noise reduction. For η = 0, there is no
noise reduction and the corresponding result shows small values of HS for some
periodic windows, but also large values of HS where zero values are expected.
Considering η > 0 contributes to reinforce the robustness of the PLSE against
noise as well as the scaling of chaos. Choosing the right value of η for the noise
cancelation remains a difficult task. However, our choice of η is motivated by
the amount of noise, so by the standard deviation of the noise. According to the
results obtained, the DDQ, combined with the PLSE, appears to be an effective
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Figure 4: Spectrum of the PLSE (HS(1024)) for the logistic map in presence of observational
noise, T = 5000: (a) case of uniform noise, σ = 0.0005, η = 0 (dash-dotted black line),
σ = 0.0005, η = σ (solid blue line) and σ = 0.001, η = σ (dashed magenta line); (b) case of
Gaussian noise, σ = 0.0005, η = 0 (dash-dotted black line), σ = 0.0005, η = 2σ (solid blue
line) and σ = 0.001, η = 2σ (dashed magenta line); (c) case of uniform noise, σ = 0.002,
η = 0 (dash-dotted black line), σ = 0.002, η = σ (solid blue line) and σ = 0.005, η = σ
(dashed magenta line); (d) case of Gaussian noise, σ = 0.002, η = 0 (dash-dotted black line),
σ = 0.002, η = 2σ (solid blue line) and σ = 0.005, η = σ (dashed magenta line).
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approach for noise reduction, especially for the reduction of the observational
uniform noise. Such a robustness of the PLSE against noise may be useful for
the detection of the regularity from real-world time series.

3.4. Application to continuous time systems

Applying the PE or the PLSE to continuous time series is quite difficult due
to the sampling process and the precision of the integrator. Thus, the time series
should be considered as noise contaminated. For the PLSE to be efficiently
determined, we used the DDQ for noise reduction. We applied the PLSE to
the Duffing system described by the following system of ordinary differential
equations:  ẋ = y

ẏ = x− ay − x3 + r cos(z)
ż = ω

(11)

where ˙(·) = d(·)/dt. We used the fourth order Runge-Kutta algorithm to solve
Eq. (11) with sampling step Ts = 4π/1000. The algorithm of PLSE is then ap-
plied to the solutions xt and yt and only the maximal value of the corresponding
entropies is retained. We consider in the case of PLSE that times series {xt} and
{yt} are corrupted by a small amount of noise of amplitude ε ≤ Ts/10, due to
sampling and numerical integration. Taking η = Ts/10 and applying the DDQ
to {xt} and {yt}, we obtained the result in Fig. 5(b). Applying the DDQ prior
to PE gives approximately the same result as in Fig. 5(c), for which no noise
is considered. The result in Fig. 5 shows that the LE λLyap and hS(n) behave
similarly, except for r = 0.287 where hS(n) > 0 indicates a transition between
two stable limit-cycles. This transition is characterized by the detection of two
values of largest slopes and can be easily recognized. Fig. 5(c) shows that PE
can only detect changes in the dynamics, but cannot give details on their na-
ture. The PLSE algorithm may also be applied to the set of local maxima of
{xt} and {yt} for obtaining quite the same detection result.

PE accurately estimates the complexity of L-periodic dynamics iff the con-
ditions gcd (L, τ) = 1 and gcd (L, t0) = 1 are satisfied. As there is no defined
period in the case of non-regular dynamics, such a condition is not required
and the PE approximates the complexity of the underlying dynamics better as
t0 < n.

In contrast, the PLSE always indicates a zero complexity for the regular
dynamics whose periods are such that L < n, as they are perfectly predictable.
In the case of non-regular dynamics, the maximum number of distinct per-
mutations is greater than the n − 1 possible values of largest slopes, and the
permutations therefore cannot be effectively described by their largest slopes. It
then results that the corresponding entropy cannot be considered as a complex-
ity measure. However, as nonzero entropies are supposed to be obtained only
for non-regular dynamics and zero entropies for regular dynamics, the PLSE is
considered to be a detection entropy. Choosing τ > 1 allows to reduce detection
errors due to small values of embedding dimensions n while 1 < t0 < n allows to
consider smaller observation time T for detection purposes. Moreover, choosing
1 < t0 < n speeds up the scanning time of the time series under study, hence
the PLSE algorithm, as the number of embedding vectors analyzed for t0 = 1
is reduced by a factor of t0 without error on the detection result. In the sense
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Figure 5: Forced Duffing System for varying control parameter 0.2 ≤ r < 0.5 (step ∆r =
10−3), T = 4 · 104: (a) Lyapunov exponent, (b) hS(15000) and (c) h(7).

of detection, the above results show that the PLSE behaves similar to the pos-
itive Lyapunov exponent, whilst outputting zero entropy for regular dynamics
without bias.

3.5. Application to real-word time series

We considered a real life time series recorded from the low-frequency function
generator (FG) presented in Fig. 6(a). This example was preferred to common
used time series as it is difficult to find well known regular dynamics in the
existing databases. Indeed, the most difficult part is to detect a regular dynamics
as regular, given that real life data are noise contaminated. The output signal
of the FG was then acquired using the sound card of a 2.6 GHz PC running
Windows 8.1, with sampling frequency νs = 44100Hz. Data are recorded as
double precision values and processed using the PLSE algorithm. The FG is
considered as stable as the output signal is regular. The data set under study is
inevitably corrupted by the sampling noise, in addition to eventual observational
and dynamical noise due to electronic components, power supply fluctuation,
etc. The result in Fig. 6(b) is obtained for various values of η. We choose as
output of the FG a 2 kHz frequency sine wave signal and the time series analyzed
is a 30s recorded data. Each value of hS is estimated from a T = 22050-length
frame. The frame overlapping is ∆T = 18050. According to the results thus
obtained, the time series can be seen as regular as η ≥ 3.5·10−3 or as non-regular
for η < 3.5·10−3. Considering the time series as regular for η ≥ 3.5 ·10−3 attests
that the underlying real life time series is noise contaminated and that the FG is
not rigorously stable: the frequency or the amplitude of the output signal may
be fluctuating as the time evolves. This result also suggests that η may be used
as an indicator for quantizing the stability of a periodic FG: η = 0 indicates a
perfectly stable FG.
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Figure 6: Analysis of an experimental sine wave signal. (a): Function generator used; (b):
PLSE results hS(11000) for η = 0, η = 10−3, η = 3 · 10−3 and η = 4 · 10−3 from top to
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4. Conclusion

We showed in this paper that the PE estimates the complexity of a reg-
ular dynamics with a predictable bias iff gcd (L, τ) = 1 and gcd (L, t0) = 1.
Otherwise, the PE may take arbitrary values smaller than the predicted bias
of the dynamics under investigation, although it should be zero as referred to
the KS entropy. In the case of non-regular dynamics, although computing the
true entropy requires large embedding dimensions and observation times, so in-
finitely large memory space, the computed PE approximates the complexity of
the underlying dynamics for τ = 1 and t0 < n. In contrast, the PLSE indi-
cates a zero complexity for regular dynamics but cannot efficiently determine
the complexity of non-regular dynamics. For τ = 1 and t0 = 1, PE is a good
candidate for the complexity measure although it is not well approximating the
KS entropy for finite n, while the PLSE, hence the 3ST, is an effective approach
for distinguishing between regular and non-regular dynamics and to detect the
phase space period of stable limit cycles. This method allows to achieve zero
entropy from observation time T much smaller than n!. We also showed that
using permutation largest slopes allows to save more computational time, as
choosing 1 < t0 < n does not affect the detection result, nor the estimation of
the period of the limit cycles. The results thus obtained in this paper confirm
along the way the reliability of the previous results of the 3ST for chaos detec-
tion. Note also that the method has been successfully applied to other systems
like the sine-circle map, the Henon 2D map and the forced Duffing oscillator,
and that the logistic map has been chosen only for illustration due to the length
of the paper.
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