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In this short communication, we want to pay attention to a few wrong formulas which are unfortunately cited
and used in a dozen papers afterwards. We prove that the provided relations and asymptotic expansion about the
g-gamma function are not correct. This is illustrated by numerous concrete counterexamples. The error came
from the wrong assumption about the existence of a parameter which does not depend on anything. Here, we
apply a similar procedure and derive a correct formula for the g-gamma function.
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1. Introduction

Since J. Thomae (1869) and F. H. Jackson (1904) defined the g-gamma function, it plays an impor-
tant role in the theory of the basic hypergeometric series [4] and its applications [7]. Its properties
and different representations were discussed in numerous papers, such as in [3], [11] and [10]. A
few successful algorithms for its numerical evaluation are introduced in [6] and [5] and [1]. An
asymptotic expansion of the g-gamma function was provided in [2].

Here, we will make observations on the asymptotic expansions given in [8,9].

Letq € [0, 1). A g-number [a] is

[a]q:: q, aER

The factorial of a positive integer number [n], is given by

0lgt:=1,  [nlg!:=[nlgln—1g---[1]4, (neN).
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An important role in g—calculus plays the g-Pochhammer symbol defined by

n

1
(a;q)o =1, =[[(1-aq") (neNU{+e}),
=0

and
(a:q)2 = ((";’2; (gl <1,2€C).

The g-gamma function

LG = (@0 (10" = 202 (129 (0<g<1,2¢2)
has the following properties:
T (z+1) =z T4(z) (z€C), Tyn+1)=In],! (neNy).
In particular,

lim T'y(z) =T(z).
q—1—

The exact g—Gauss multiplication formula can be found in [4] or [3]:
n—1 k n—1 k
I, (nx) HFqn <> = [n]gx_] HFqn <x—i— ) (x>0, neN).
k=1 n k=0 n
Equivalently, substituting z = nx, it can be written in the form

r z)nlean;)_ - 1Hr <Z+k> (z>0; neN).

k=1

2. Our corrections to the paper [8]

Starting from the definition
Ly(x) = (4:9)» (1-9)' " (g%59)=",
we can write
Lg(x) = (4:9) (1 - )" /(1= q) !/ ¥e 08000,
Hence the function I'y(x) can be written in the form
Ly(x) =alg)-(1-¢)'> Y (a(q) €R),
where
0<a(g)=(¢:9)= (1-9)'* <1,  p(x.q) = —log(q":q)-.

Let

g
VD) = gy

(1.1)

(1.2)

2.1)

(2.2)
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From the estimate
0<pulx,g) <ylrg)  (0<g<l, x>0),
it exists 0(x,q) € (0,1) such that
p(x,q) = 6(x,q) - y(x,q).
Therefore, relation (2.1) becomes
Ly(x)=a(q)-(1- q)1/2*x 0 (xa)w(xg) 2.3)

On the other hand, formula (1.2) can be written in the form

ay(q)T, ;Hrqp <x+k> (x>0; peN), (2.4

where

ay(q) = [plg Tor (;)rqp (%) T (3).

p p
Substituting ¢ — ¢” and x — k/p into the definition (1.1) of the g—gamma function, we have

kY _@754")e 0 vtk 1k lmw
oy (5) = E00= (1 gy =it = (1= gy 4 i L2

Using moreover

IEI 1 k/pi(l_qp>PTilv

k=1
the following holds:
o E (@":9")n
ap(q) =[plg] | Tor ( ): PYL=K/p [y S92 )n
g ku;II ku;II n—es (gk;qP)n
P P P
=[pl, JJ(1 —¢" )I=k/p hmw

1 _’“Hk 1(q 5GP )n
(4":9")n
n—ee TT0_ 1 (q%59P)n

=~

The following identity is valid

P
[1(d":4")n = (a:9)up
k=1
Using estimate (2.3), we get
Cp(n+1)=a(g?)-(1- gP) 12 Ot L) y(nt L)

Since

((161?;’))[) — rl’ (n+1)=aP(g")- (1 —gP)P1/2) . p Ot la) wlntlg”)



Wolfram Koepf, Predrag Rajkovi¢ and Sladjana Marinkovié

and
0,50 (@) _ ~1/2-np _ 8(np+1.9)-W(np+1.q)
(I—grr (l—q)"p_Fq(”p+1)—a(‘1)’(1_‘1) e )
we have
ap qp 1/2 .. ep'e(n+17qp)'l//(n+l7qp)
(lp(q) = ( )[P]q/ hm 0 1.9)- 1 .
a(q) n—oo @0(np+1.9)-y(np+1,q)
From
lim y(n+1,¢") = limy(np+1,9) =0  (0<g<1;peN),
we find

ala) = 1p124"(d")
P( )_[ q a(q) .

In that manner, the parameter a,(g) from formula (2.4) is expressed via the parameter a(g) from
formula (2.3).

3. Faults in paper [8]

In the very beginning, the author has supposed that Iy (x) for 0 < ¢ < 1; x > 0, can be written in the
form

L) =a-(1—¢)"*™ '™ (aeR),
where

p(x,q) = —log(q*;q)= > 0.

His efforts in looking for p(x) we shortened a lot by starting from the definition of I';(x). From the
fact that

q'

0<pu(x)< —gi—g)"

and

(1-¢)(1-¢)=1-g—q"+q¢""' > 1—g—¢",

the author in [8] concluded wrongly that

q
0<p@)<—L
(1-q)—q*
But, expression 1 — g — ¢* is not positive for all ¢ € (0,1) and x > 0. Indeed,

log(1-q)

l1-g—¢"' <0< 1-g<q" & x-logg>log(l—¢q) & x< ]
0gq

Example 3.1. We examined the sign changes of the function /,(x) = 1 — g — ¢* for different ¢ and
x. Notice that x — oo if g — 1.



On a connection between formulas about g—gamma functions

Table 1. Unique real zero of the function A, (x) and the sign changes for random
values of ¢ and x

g x:1-qg—q¢' =0 x q l—-g—4q*
0.1 0.045758 1.10500  0.592727 —0.15378
0.3 0.296248 2.27287 0.752038  —0.275286
0.5 1.0000 6.47584  0.816692 —0.0861563
0.7 3.37555 43.2362  0.946066 —0.0370453
0.9 21.8543 60.1635 0.954814 —0.0167368

This estimate should be written in the from

q" ( log(1 —g) )
O<u(kx) < — 0<g<lyx>—=>—22.
) (1-4)—¢* logg
Furthermore, from the estimate
q'

ENREANEr RS

the author in [8] concluded wrongly that
0q"
A = (1-q)—q*’

where 6 is a number independent of x between 0 and 1.

Example 3.2. We find counterexamples which show that 8 depends on x and g. At the first table,
we fixed ¢ = 0.9 and take a few random values for x. In another we changed the rule of variables.

Table 2. The dependence of parameter 6 from x and g

X q 0 X q 2]
3.78377 0.9 —7.27980 10.5  0.063920 1.00000
13.2554 0.9 —1.58344 10.5 0.234682 1.00000
20.6473 09 —0.139893 10.5  0.494904 0.99898
25.7471 0.9 0.342512 10.5 0.618621 0.98504
322948 0.9 0.673069 10.5 0.806515  0.473541
43.8850 0.9 0.904181 10.5 0915828 —4.19862

In continuation, the author in [8] got the wrong formulas (2.21)-(2.27). He concluded that

ap = \/@Fq2(1/2)’

L) = R (1/2)(1- ' S5 (0<<1)

The following wrong version of the g—Gauss multiplication formula was provided

and

x+k
n

n—1
e /2000 = T

) (x>0;neN).
k=0
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In a special case, for n = 2, it agrees with the exact g—Legendre relation. Also, when g — 1, it
reduces to well-known formulas for gamma-function.

4. Bounds of the g-gamma function

Let
g(x) =InTy(x)
Since
g(r 1) = InTy(x+ 1) = In([x], Ty (x) = Infa], + g (x). “.1)
by induction, we get

n—1
g(x+n) :];)In[x+k]q+g(x) (neN).

It is known that g(x) is a convex function.
Lemma 4.1. [fx € (0,1) and n € N, then
g(n) +xInfx+n—1]; < glx+n) < (1 -x)g(n) +xg(n+1)
Proof. Since
x+n=(1-x)n+x(n+1),
we can write
gx+n) =g((1=x)n+x(n+1)) < (1-x)g(n) +xg(n+1).
Let us find a lower bound for I'y(x). Since
n=(1—-x)(x+n)+x(x+n-1),
and because of the convexity of the function g(x), we have
gn) < (1—x)g(x+n)+xg(x+n—1).
Applying (4.1), for x = x+n — 1, we can write
glx+n)=Inx+n—1];+gx+n—1),
wherefrom
g(n) < (1—x)g(x-+n) +x(g(x+n) — Infr-+n—1],) = glx+n) —xInfx+n—1],,
i.e.,
g(n)+xInx+n—1], < gx+n).0
Theorem 4.1. The following bounds are valid:

[n—1]y! [n—1+x]; <Ty(n+x) < [n—1],! [n];, (neNp; 0<x<1).
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Proof. According to the upper bound for g(x), we get e. g.
InTy(x+n) < (1 —x)Inly(n) +xInTy(n+1).
Hence
Ly(xtn) < (n=10g) "~ ([n]g)",
wherefrom
Ly(x+n) <[n—1],! [n;.

According to the lower bound for g(x), we get

InTy(n) +xInjx+n—1], <InT';(x+n),

i.e.,
Ly(n) [n+x—1]; <Ty(n+x). O
Theorem 4.2.
T 1/x
n—(1—x)), < Lyln )\ ™ n,, (neNg0<x<l).
[n—1]y!
y
O.CO ‘1 é :‘; X

Fig. 1. T'4(x) and its boundary functions for ¢ = 0.5.

Theorem 4.3. For any n € N and x € (0,1) there exists 6 = 0(n,x,q) € (0,1) such that
Ly(n+x)=[n—1];! [n—0(1-x)[3.
Introducing y =n+x (n € No; 0 < x < 1) and denoting n = |y|, we can write
) =1, =17 <D0 <) -1 I o>,

Theorem 4.4. Foranyy € (1,+)\N, it exists 0 = 6(y,q) € (0,1)] such that
00 = (L)~ 1! [ly) ~ 60— 5~ )l .
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Fig. 2. T'y(x) and its bounds for ¢ = 0.9.
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