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Using the well-known Brickman representation for univalent functions, it is shown 
that the extreme points of the set So(R ) of nonvanishing univalent functions 
with real coefficients omit only real values. Furthermore a support point of 
So(R ) is shown to have the same property. 

1. Introduction 

Let A be the set of analytic functions of the unit disk 119. A is a locally convex 
linear space, so that the Krein-Mil 'man theorem applies; i.e. the extreme points 
of a compact family F span the closed convex hull: -d-OEF=~-OF. For an 
introduction look for example in [-5]. 

Recently Duren and Schober [4] examined the set S o of univalent functions 
which are normalized by the conditions 

f(O) = 1, O~f(ID). 

S O u {1} is a compact subset of A. Duren and Schober had been interested in 
extreme points and support points of S o. Recall that a support point of a 
family F is a function which maximizes the real part of some continuous linear 
functional, that is not constant over F. 

We shall give a characterization of the extreme points and support points 
of the subfamily So(R ) of nonvanishing univalent functions whose Taylor 
expansions at the origin have real coefficients. 

2. Extreme Points of So (R) 

Using the usual Brickman representation we get: 

* This work is part of the author's doctoral thesis, accepted by the Department of Mathematics 
at the Free University of Berlin in 1984 
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L e m m a .  Let be f eSo(R  ). I f  f omits some nonreal value a, then f has a proper 
convex representation in So(R ) . 

Proof Because f is univalent and has real coefficients, the range of f is 
symmetric with respect to the real axis, so that f omits 8, too. 

Because aCN, we have now two omitted values which lie on an ellipse with 
foci in 0 and 1, so that f has the Brickman representation ([11, see [41, 
Theorem 1) 

f =t f l  +(1 --t)f2, 

with telO, 1[ and (k= 1, 2) 

w + 4,(w)~- ~(o) 
fk: = ~k ofeSo,  ~ /1 ,2 (w)  :~- 

1 +r 
where 

~b (w): = ]// (w -a) (w -Ft). 

Now it remains to show that fk (k= 1, 2) or equivalently 0 (expanded at the 
point 1) has real coefficients. 

For w e n  one has ~b(w)elR, implying the result. [] 

Now we are able to state the following result about the extreme points. 

T h e o r e m  1. Every extreme point of S O (R) u { 1 } has the form 

( l + z )  2 y e S l D \ { - 1 }  or 
f (z)  = (1 -yz ) (1  - y z ) '  

(1 - z) 2 

cj (z) =(1 -yz) (1  - y z ) '  
ye~lD\{1}. 

Proof Because of the Lemma an extreme point of So(R ) omits only real values. 
Thus with the origin all negative real numbers are omitted (because the 

range is simply connected). We next show that an extreme point of So(R)u {1} 
omits no interval of the form 1 -  c~, e] for e>0.  In this case there would be a 
representation 

1 e -1 
g=  l~-ee " f +  1 +e  

with a certain function f e S  o with similar range. This is a representation within 
Sou  {1}, thus g is not extreme. 

So an extreme point omits ] - o %  0] and possibly a second real interval 
[1 +e, ~ [ ,  e>0.  But the functions having this geometric property are exactly 
of the desired form. [] 

3. Support  Po int s  of  S O (R) 

Using the result about the extreme points we are able to give the following 
result about the support points of So(R ) . 



On Nonvanishing Univalent Functions 577 

Theorem 2. Every support point of So(R ) has the form 

Z 

f(z) = 1 + ~c (1 -yz)(1 - y z )  

for some yeOlD and ~ c e [ - 2 ( 1 -  Rey), 2(1 + Rey)], ~c#0. 

Proof. Let L be a continuous linear functional over A which is not constant 
within So(R ) . 

If g is a support point of So(R ) with respect to L, we have 

M." = Re Lg = max Re Lh. 
heSo(R) 

Because of Theorem 1 the function g has the Choquet representation (see e.g. 
[5]) 

(l - z )  = d~, (y) (1) 
(1+z)2 d~+(y)+ ~ (1-yz)(1-yz) g(z)= ~.~ ( 1 - y z ) ( 1 - y z )  ~ 

with positive measures #+ a n d / z ,  #+(OlD)+#_(OlD)= 1, which are supported 
by the sets 

{ (l+z)2 ~E(So(R)u{1})} 
yealD (1-yz)(1-yz) 

respectively. 
Therefore it follows that #+-a.e. and #_-a.e. respectively 

( (1 + z) 2 ) 
ReL ~il_Tz~(1-yz)-~=M and 

(1 -z# 
Re L {il __fiz~_ z)_}= lVl. (2) 

Let H_+ be the subsets of 01D in which (2) hold. The functions l_+ defined by 

l_+ (y), = L {(1 -yz)(1 - z/y) J 

are analytic in a neighborhood of 01D. 

Furthermore, let g-+(y):=�89 Then g,+ is analytic in a neigh- 
borhood of 0ID and g_+ (y) = Re l+ (y) whenever [y[ = 1. 

Assume now, for example H+ were infinite. Then g+ takes the value M 
infinitely often in its domain of analycity and is thus constant, in particular 
Re l+ (y) = M whenever [Yl = 1. 

But then we get substituting y = - l ,  that the constant function 1 is a 
support point with respect to L: Because of the representations 

1 + z  k 1 - z  k 
, k > _ l  1 = ~ 4  2 
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it follows that 1 +_z k are support points with respect to L for all keN.  There- 
fore the Toeplitz coefficients b k of L (see e.g. [5], p. 36) vanish for all keN.  

Thus L is constant in So(R), which contradicts the assumption. 
So H+ and - as a similar construction shows - H_ are finite, and (1) 

becomes a finite convex representation. 
If it is a proper convex representation with a most two points, then the 

represented function g is either multi-valued, because g has poles on 01D of 
order at least 4 (see [2], p. 103), or g is of the form (tel0, 1D 

g(z):  t 
(1 -~ Z) 2 

(1 -yz) (1  - y z )  

(1 - z )  2 
4- (1 - t )  (1 -yz ) (1  - y z )  

which gives the desired result. [] 

4. Application to Other Normalizations 

Originally Brickman obtained a representation for the family S of univalent 
functions, normalized by 

f(O)=O, i f (O)=l .  

Because the construction is similar, our method works also in the family 
S(R)== { f e S [ f  has real MacLaurin coefficients}. 

Corollary. Every extreme point of S(R) is of the form 

Z 
f(z) - (1 - yz)(1 - y z ) '  [y[ = 1. (3) 

Proof. Using the Brickman representation in S (see e.g. [3], Theorem 9.5) one 
gets similarly as in our Lemma, that an extreme point of S(R) only omits real 
values, which is equivalent to representation (3). [] 

We remark that this is a refinement of a result due to Brickman, Mac- 
Gregor and Wilken [2], Theorem 4, who showed representation (3) for an 
extreme point of the closed convex hull of S(R). Because of a general result due 
to Mil'man (see e.g. [5]), one knows a priori that 

E ~  s(R) = ES(R). 

[2], Theorem 4, gives also a proof of the statement 

{feS(R) l f  has representation (3)} ~ E ~-6 S(R), 

so that all families are equal: 

E-c--6 S(R) = ES(R) = { f  eS(R) i f  has representation (3)}. 

Our method also applies to other normalizations, for example to the Montel 
classes with 
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f(zl)=wa, f(z2)=w2, zl,z2,wl, w2~IR, 

because in this case there is a Brickman representation, too (see [5], Theorem 
8.5). Thus here also the extreme points omit only real values. 
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