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Using the well-known Brickman representation for univalent functions, it is shown
that the extreme points of the set S,(R) of nonvanishing univalent functions
with real coefficients omit only real values. Furthermore a support point of
So(R) is shown to have the same property.

1. Introduction

Let A be the set of analytic functions of the unit disk ID. A4 is a locally convex
linear space, so that the Krein-Mil’'man theorem applies; i.e. the extreme points
of a compact family F span the closed convex hull: ©@EF=Ct0F. For an
introduction look for example in [5].

Recently Duren and Schober [4] examined the set S, of univalent functions
which are normalized by the conditions

fO)=1, 0¢f(ID).

Sgu{l} is a compact subset of 4. Duren and Schober had been interested in
extreme points and support points of S;. Recall that a support point of a
family F is a function which maximizes the real part of some continuous linear
functional, that is not constant over F.

We shall give a characterization of the extreme points and support points
of the subfamily S,(R) of nonvanishing univalent functions whose Taylor
expansions at the origin have real coefficients.

2. Extreme Points of S,(R)

Using the usual Brickman representation we get:

*  This work is part of the author’s doctoral thesis, accepted by the Department of Mathematics
at the Free University of Berlin in 1984
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Lemma. Let be feSy(R). If f omits some nonreal value a, then f has a proper
convex representation in S, (R).

Proof. Because f is univalent and has real coefficients, the range of f is
symmetric with respect to the real axis, so that f omits a, too.

Because a¢R, we have now two omitted values which lie on an ellipse with
foci in 0 and 1, so that f has the Brickman representation ([1], see [4],
Theorem 1)

f:tf1+(1—[)f2=
with t€7]0, 1] and (k=1,2)

= o _wY (W) FyY(0)
fei=yofesS,, wl'Z(W).—_—_—l—i-lﬂ(l)—T—l//(O)

Y(w):=V (w—a)(w—a).

Now it remains to show that f, (k=1,2) or equivalently ¥ (expanded at the
point 1) has real coefficients.
For welR one has y(w)eR, implying the result. []J

where

Now we are able to state the following result about the extreme points.

Theorem 1. Every extreme point of S,(R)u {1} has the form

(27
f(ﬂ-m, yedID\{—1} or
=4 yedD\{1}.

(1-yz)(1-yz2)°

Proof. Because of the Lemma an extreme point of S;(R) omits only real values.
Thus with the origin all negative real numbers are omitted (because the
range is simply connected). We next show that an extreme point of S,(R)u {1}
omits no interval of the form ]—co,¢] for ¢>0. In this case there would be a
representation
1 g

= . 1
l+e f+1+s

g

with a certain function feS, with similar range. This is a representation within
Sow {1}, thus g is not extreme.

So an extreme point omits ]— o0, 0] and possibly a second real interval
[1+4¢, o[, £>0. But the functions having this geometric property are exactly
of the desired form. []

3. Support Points of S;(R)

Using the result about the extreme points we are able to give the following
result about the support points of S,(R).
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Theorem 2. Every support point of S,(R) has the form

z
(1=yz)(1-yz)
for some yedID and ke[ —2(1 —Rey), 2(1 + Re y)], «*0.

f@)=1+x

Proof. Let L be a continuous linear functional over A4 which is not constant
within S, (R).
If g is a support point of S,(R) with respect to L, we have

M:=ReLg= max ReLh.
heSo(R)

Because of Theorem 1 the function g has the Choquet representation (see e.g.
(5D

2 1_2
o= —r g e 02

I S =2
op (1—y2)(1—72) oo (1—y2)(1—y2) w_(y) (1)

with positive measures p, and y_, u, (6ID)+p_(0ID)=1, which are supported
by the sets

(12

respectively.
Therefore it follows that u_ -a.c. and u_-a.e. respectively

(1+2)?
ReL{(l—yz)(l =53)

ReL{——————(I—Z)Z }—M
(1—-y2)(1—-y2)f

Let H, be the subsets of JID in which (2) hold. The functions [/, defined by

(1£2)° }
(1 —y2) (1 —z/y)

are analytic in a neighborhood of JID.

Furthermore, let g, (y):=3(l. (y)+1,.(1/9). Then g, is analytic in a neigh-
borhood of 0ID and g, (y)=Rel, (y) whenever |y|=1.

Assume now, for example H_ were infinite. Then g, takes the value M
infinitely often in its domain of analycity and is thus constant, in particular
Rel, (y)=M whenever |y|=1.

But then we get substituting y= —1, that the constant function 1 is a
support point with respect to L. Because of the representations

} =M and
2y

li()’)‘ZL{

_1+zk+1—zk

1
2 27

k=1
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it follows that 1+z* are support points with respect to L for all keN. There-
fore the Toeplitz coefficients b, of L (see e.g. [5], p. 36) vanish for all kelN.

Thus L is constant in S,(R), which contradicts the assumption.

So H, and — as a similar construction shows — H_ are finite, and (1)
becomes a finite convex representation.

If it is a proper convex representation with a most two points, then the
represented function g is either multi-valued, because g has poles on JID of
order at least 4 (see [2], p. 103), or g is of the form (¢€]0, 1[)

B U SR U S
Tyt 32 09059

which gives the desired result. [J

gla)=t

4. Application to Other Normalizations

Originally Brickman obtained a representation for the family S of univalent
functions, normalized by

fO)=0, fO)=L

Because the construction is similar, our method works also in the family
S(R):={feS|f has real MacLaurin coefficients}.

Corollary. Every extreme point of S(R) is of the form

f@)= lyl=1. &)

A
(1-yz2)(1-52)’

Proof. Using the Brickman representation in S (see e.g. [3], Theorem 9.3) one
gets similarly as in our Lemma, that an extreme point of S(R) only omits real
values, which is equivalent to representation (3). [

We remark that this is a refinement of a result due to Brickman, Mac-
Gregor and Wilken [2], Theorem 4, who showed representation (3) for an
extreme point of the closed convex hull of S(R). Because of a general result due
to Mil’'man (see e.g. [S]), one knows a priori that

ET0 S(R)cES(R).
[2], Theorem 4, gives also a proof of the statement
{feS(R)|f has representation (3)}  ET0 S(R),
so that all families are equal:
ET0S(R)=ES(R)={feS(R)|f has representation (3)}.

Our method also applies to other normalizations, for example to the Montel
classes with
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fz)=wy, fz)=w,, z4,2,,w,, weR,

because in this case there is a Brickman representation, too (see [5], Theorem
8.5). Thus here also the extreme points omit only real values.
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