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Extremal Problems for
Close-to-Convex Functions

WOLFRAM KOEPF

Freie Universitat Berlin, |. Mathematisches Institut, Arnimallee 3,
1000 Berlin 33, Fed. Rep. Germany

Let C(B), B =0, denote the family of normalized close-to-convex functions of order §.
For =1 this is the usual set of close-to-convex functions, which had been defined by

Kaplan.

We study the family Sub C(f) of functions which are subordinate to close-to-convex
functions of order . For # > 1 it is shown that the extreme points of the closed convex
hull of Sub C(p) are of the form

) w 1 +xz\/*!
)= - x| =l =wl=1 -
1) (/f+1)(x+y><<1—yz> 1)’ M=l ==t xr =y

Further for all 8> 0 the coefficient problem is solved. Also for the family C,,(f) of m-fold
symmetric close-to-convex functions of order § an extreme point result is given, if f = 1.
For all >0 and arbitrary pe R, the pth integral means of the derivatives are shown to
be maximized by the function f with

(1+zmp
(1 _Zm)/i+2fm’

fz)= f(0)=0.

This shows in particular that f has a rectifiable boundary curve if m > 2/(1 — f8). On the
other hand it is shown that if m>4/(1 — f) then f has furthermore a quasiconformal
extension.
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1. INTRODUCTION

Let S denote the family of univalent functions f of the unit disk D,
normalized by

f@)=z+az*+az2+ - (1)
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We consider S as a subset of the family A of analytic functions of T
endowed with the topology of locally uniform convergence. Let K
denote the family of convex functions. i.e. univalent functions that have
aconvexrange. A function /. normalized by (1. is called close-{o-convex
of order fi. f = 0. if there is a convex function ¢ so that " @' = p” for
some function pe P:={p | p(0) =1, 90: Re(¢p) > 0!. Let C(f8) denote
the family of closc-to-convex functions of order p. For <1 it turns
out that a function is close-to-convex of order f.if and only if it maps
D univalently onto a domain whosc complement E is thc union of
rays. which are pairwise disjoint up to their tips, so that every ray is
the bisector of a sector of angle (1 — f)m which wholly lies in E (see
[13. p. 176]. Obviously C(0) equals K

Let B denote the family of analvtic functions which fulfili the
hyvpotheses of Schwars’s Lemma We eall g subordinate to f {den

/

i

oy g =/ 1 there isa function e Bsuch that g = £ o, If [ is univalent,
g <1 is cquivalent to the statement that ¢(Dj o f(iv). Furthermore

Schwars’s Lemma implies that gz | 2l <)) /(02 | |-l < '), Let
Sub C1f§) denote the family of functions that are subordinate to some

close-to-convex function of order f8. In §2 for /= 1 the extreme points
of the closed convex hull of Sub C(f) - which is denoted by
co Sub C(ff) arecharacterized. and for all = 0 the coefficient problem
is solved. Recall that an extreme point of a family is a function which
does not have a proper convex representation within the family.

A function [ is called m-fold symmetric {me NJj if it has the special
form f(z)=z+a, . =" " +a5,. 2" + ... By C,.(ff) we denote the
family of m-fold symmetric close-to-convex functions of order f. In
[12] we solved the coefficient problem when fz1—1m. In §3 the
extreme points of co C,,(f8) are characterized for f# = 1.In §4 we consider
integral means. Let

1 2n ) 1p
M (r. f )= (MJ l,f'(rv"')l”d(?> (2)
< Jo

the pth integral mean. Then for an m-fold symmetric close-to-convex
function of order f# we get that M (r 1)< M,(r. k') holds for all pe R,
where

ot
mcet

(14 =myp

k'(z)= . k(0)=0.
(] _ :lrl)/f +2m ( (

(8]
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This shows in particular that M,(r. f ') remains bounded as r tends to
I (ie. freH if pelO. 1 (f+2m)[. Soif m>2 (1 —f)then / has a
rectifiable boundary curve. Morcover we show that if m >4 (1 —f)

2. ON FUNCTIONS SUBORDINATE TO
CLOSE-TO-CONVEX FUNCTIONS

Hallenbeck and MacGregor ([8]. sec [9. Theorems 5.21 and 5.23])
characterized the extreme points of Sub K and Sub C(1). With the aid of
the result for C(1) they got a new proof for the so-called Rogosinski
conjecture for close-to-convex functions, originally proved by
Robertson [ 14] (and now proved for all f €Sub S by de Branges [1]).
We generalize their result to Sub Cif5). This will be done with the aid of
the following general Lemma. An analytic function fe A is called @
BCK-functionif EcoSub! /| =1y 1 gisy=fixcnxelD! (seeeg. [11]).

.
/3 N ¥

[ L+ o .
Well-known cxamples of BCK-functions arc ( ) for W<l and

\ -]
AN -/

LEMMA | Let Fc A be a compact family of analytic  functions
normalized by (1). If E co F consists of BCK-functions, then the extreme
points of co Sub F have the form g(wz) for some g e E co Fand we ch.

Proof The argument given in [9, p. 65, after the proof of Lemma
5.20]. shows that in the given situation an extreme point f of co Sub F
must be subordinate to some geE co F. or it equals the constant
function 0.

In the latter case f is subordinate to each function of F., in particular
to some g€ E co F. So we have f =¢  forsome weBand ge E co F.
Suppose now there is no we D such that o(z) =z, then, because by
hypothesis ¢ is a BCK-function. it follows that f has a proper convex
representation in Sub{¢} and so in Sub F. This gives the result. W

A consequence 1$

THEOREM 1 Let #= 1. then the exireme points of co Sub C(f) hare the
form

, W 4 xz)f .
o= —1]. xorwedD, x# -
(f+ Dx+ v)\\T =)z )
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Proof For =11t is well-known ([2]. see e.g. [15. Theorem 2.227)
that an extreme point f of co C(f) has the form (4) with w = . Because
SEEAAS o o .
( | ) are BCK-[unctions, so is /. and an apphication of
—

Lcmma 1 gives the result by an easy change of variabies. |

We remark that the given argument does imply the result also in
the case e ]0, I[ if the corresponding extreme point result for C(f8) is
true. As an application of the theorem one could deduce the coefficient
result for Sub C(f). = 1. which had been shown in [7. Theorem 7].
By another dpproach we get it for all f=0.

If f(z Z a,,_ "and g(z)=) b,z", then the coefficient domination

!un‘ !hn' ”E () 1\ anOlLd b} ’ L.
THEOREM 2 Let 20,y < f und | cC(f). Then
i
(it :)/

)

Proof By hypotheses there are weB. pe K and pe P such that
g=/f wand ["=¢ -p” This gives

gz = (o) ()= @ (=)' (2)- plez)P.

Now q)’(u)(")) '(z) 1s the derivative of some function subordinate to

@€ K. thus havmg a represeniation {([9. Theorem 5.217) of the form
X dp(x ) . -
for some Borel probability measurc p. Further
cae (1 —1z)
( plw(z)) has positive real part. So we have

xdu(x.y
y'(:)zj ¥t ")-cﬂ’(:)
(o (I —1z)”

Now the same calculation as in C(f§) (see [15, Theorem 2.297) gives
the result since |x| = 1. [

We remark that this is the adequate form of the statement of the
Rogosinski conjecture for close-to-convex functions of order f.
Furthermore the theorem shows that the functionals |f“”(z)[ are
maximized in Sub C(f}) by the function h. given by (5).
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3. ON m-FOLD SYMMETRIC CLOSE-TO-CONVEX
FUNCTIONS

in [i2] we solved the cocllicicnt problem for m-fold symmetric
close-to-convex funuion' of order f.if f—1'm=1.1.¢. [ <k'. where
k is defined by (3). Even though this statement is falxc ifp—1m<1
[12].weshow lhdl Lorrupondmg distortion theorems hold forall f = 0

THEOREM 3 Ler 20, meN and feC,(f5). Then

m

( 1 4= m )/f

(1=

Proof Let feC,(f). Then the function ¢. defined by f'(z)=
(g'(z")"™, is close-to-convex of order mfi (see [12, Lemma]).
Thercfore

ek = and 1 f2) < k).

m )/f t2m

mp S lom

o AN | e T .
il — b eyt om o — ]
EN=He EIE TS NUREY A=
N 1—:
(sec c.g. [10]). An intcgration gives
: E _ B
|1‘(:)] =] fHdi< | £ (re™)| dr < k'(r) dr. [ ]
0 0 0
From this we get a corresponding result for functions subordinate

to odd close-to-convex functions.

COROLLARY | Let f20 und y<feCy(f). Then

, {
\.q<:)l<“;‘_|z),,.l and - |g(=) < k(]
Proof Let g=/f . weB. Then ¢'(z)= f'(w(z))-w'(z). and the
elementary inequality (1 —[z]2)|o'(z)[ < 1 - ’(u o) (see e.g. [5. p. 198])

and Theorem 3 imply that

‘Sl'(:)‘:“ (o= HW( )\<1 - |n)(:

(1 + |m(:)|2>/‘ 1
I —lo?) 1 —z*

1+ i(')(:

)3\)” ‘(’)'(f)i
)12/ 1o

N
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Now 1t follows from Schwarz's Lemma that

o

l+x()(

| ,
I Lo=1H(z]?),
- u)( ); T [of i

because H increases as |z| increases, so that finally

= k(=

3+ 1

The second statement follows as in the proof of Theorem 3. [

Now we give an extreme point result for m-fold symmetric
close-to-convex functionsif f > 1. The case f = lisin [6. Theorem §].

TurorrMm 4 Let f2 1 and me N Then the extreme points of co C,(f)
hare the form
(14 =y .
f0)=0, t(c)= e Noyedld, X #E -y
(l _ -\_:m)i:;m - -

nm

Proof  Let feC,(ff) have the representation f'(z)= ¢'(z)- p'{z").

where pe K,, and pe P. So ¢ has a representation
, du(w)
¢'(2) :J e (6)
o (l o H'Z'")_ m

(see [3. Theorem 37) for some Borel probability measure p. Since ff > 1
there is a second representation

1+>.:1n\/f
p/‘(:):J < ! )a’r(.\'._\‘)
‘[ { ) ? l - .‘.:,”

[9. Theorem 5.7]. Now by the argument given in [2] (see [9. Theorem
S.11]), we deduce that there is a probability measure ~ such that

) d'u(wr) 1 =+ xz™
o[ (1
oo (T—wzm)2m J o2\l =3z

(Lxzmf
= J([j’: (l 1717")134_2/’" dA(x. _) ).

So an extreme point is a kernel function. For v= —y the kernel
functions arc convex. in particular starlike, but they are not extreme
in the family of m-fold symmetric starlike functions (see [ 3, Theorem 3]),
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which is a subset of C,(f) for = 1. so that they are not extreme
in co C,(f). |

We remark that our method also applies to the family 1, (k) of m-fold
symmetric functions with boundary rotation at most kn for k = 2m + 2,
using the relation V, (k) = C((k/2 — 1)/m) (see [12. Theorem 2] and the
fact that the extreme points of co C((k/2 — 1)/m) lie in V,,(k), so that
co V, (k)=co C,((k/2—1)/m).

m

4. INTEGRAL MEANS OF THE DERIVATIVE
Let the integral means M, (r. f ) be defined by (2).
THEOREM 5 Let 120, melN and feC,(p). Then
Mr f V<M e k) for all  pei. (7

In particular: { € H" for all p |0, 1 (Jf + 2 m)|

Proof Let feC ). Then the function y. defined by ['(z)=
(g (27N s close-to-convex of order mfi (see {12, Lemma 1ij)
Therefore the result of Brown [4] implies (- = re™)

l 2n i ] 2n 1 2n (I +::r1)rr:/i pm
L[| do = lg' (=P ™ do < 2 do
2n 27 ), 2r ), (1 —zmymEe 2
1 f2n
= ’ ‘/\"(:)"’ di).
2r Jq

where k is defined by (3). which shows (7). The last conclusion follows
because (1 —z) *e H” for pe]0, 1/a[. |

We remark that the result for ff = 1 seems to be new even for starlike
functions. Further we have

COROLLARY 2 Let f<1.m>2/(1 —f)and fe€C,(f3). Then f'eH",
i.e. [ hus a rectifiuble boundary.

We note that the weaker statement that for m>2/(1 —f}) the
functions are bounded follows immediately from the geometry: with a
boundary point the function omits a sector of angle at least (I — f)=,
and because of the symmetry there arc at least m such sectors omitted.
If the total value of the angles exceeds 2n. then obviously f(D) is
bounded.
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5. QUASICONFORMAL EXTENSIONS

The following Theorem is due to Gall [6]:

TuroreM 6 Let f< 1. feC(p)ywith {"=¢"-p". pe K and peP. If

, .
log(max |(p’(:))

Izl =r ‘ 1 4[3

< .

lim su
P | 2

r—1

then | hus a quasiconformal extension.
An application gives

Corotiary 3 Lot i< lom>4 (1 —fiand e C M. Then [ has a

W A K 2

quasiconformal extension.

- P, £ . $ 1
ntation [ =" pf with

Proof Because [cC, (/)

an mi-fold syi mmetric function ¢ rom rep‘:s\,nmm‘" (6)one gets

<
(l—':

so that

lim sup———" — &<

r—1

whenever m > 4/(1 — f3), and the result follows from Theorem 6. 1
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