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Abstract:

Functions of positive real part have been studied extensively, especially many extremal problems.
Usually functions of the so-called Carathéodory boundary are solutions of extremal problems. In
many cases, however, it is more difficult to study the case of equality than the extremal problem itself.

In this paper we show a general uniqueness theorem for functions of positive real part, and give some
applications.

1 Introduction
We consider functions that are analytic in the unit disk
D:={zeC||z| <1}.

A function is called univalent if it is one-to-one. The Riemann mapping theorem guarantees the
existence of a univalent map f : ID — G for each simply connected domain G ; C. Moreover f is
uniquely determined except of the composition with rotations z — e'*z of ID.

If we speak about convergence of a sequence (f,) of analytic functions, we mean locally uniform
convergence and write f,, — f. The family A of analytic functions of ID together with this topology
is a Fréchet space, i.e. a locally convex complete metrizable linear space.

The family S of univalent functions that are normalized by f(0) =0, f/(0) =1, i.e.

f(z):z+a222+a3z3+---, (1)

forms a compact subset of A.
A function f € A is called starlike if it maps ID univalently onto a domain which is starlike with
respect to f(0) = 0. It is well-known that a function f is starlike if and only if

!
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where P denotes the subset of A of functions p with positive real part that are normalized by
p(0) =1 (see e.g. [9]). Let St denote the family of starlike functions that are normalized by (1).
Many extremal problems in St have been studied. As a particularly nice example we mention
the result of Leung ([7], see e.g. [3], § 5.10) that for f(2) = z+ag 22 +a3 23 +... € St the inequality
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holds with equality for some n € IN if and only if

f(z) = (1 —z2)(1 —yz) 3)

with |z| = |y| = 1 and z/y = ¢ where (¥ = 1 for some k in IN.
We evidently have equality for all n in IN if { =1, i.e. x = y. So now assume, possibly after a
rotation, that z = ¥, y = e=, where 0 < || < 7. Then
o0
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unless sin (n#) = 0 or sin ((n + 1)0) = 0.
In fact, (4) is a special case of the triangle inequality
|sin (A + B)| £ |sin A| + |sin B (5)

for real A, B with equality if and only if sin A = 0 or sin B = 0. In fact
|sin (A + B)| < |sin A|| cos B| 4 |cos A||sin B| < |sin A| + |sin B| ,

with strict inequality if sin Asin B # 0, so that |cos A] < 1 and |cos B| < 1.
We deduce from (5) that

|sin A| = |sin (A+ B — B)| £ |sin (A + B)| + |sin B| ,
so that
[[sin (4 + B)| — |sin Al < |sin B,

unless one of sin A, sin B and sin (A + B) is zero. Writing A = n#, B = 6, we obtain (4).

To derive inequality (2) Leung makes clever use of the Lebedev-Milin inequalities (see e.g. [3],
§ 5.1). To prove the case of equality, however, he uses deep variational methods. (Therefore in the
book of Duren ([3], § 5.10) the case of equality is omitted.)

In this paper we deduce a general uniqueness theorem for functions in P. As an application we
point out that our general uniqueness theorem covers the case of equality in Leung’s result, too.

2 Functions with positive real part

A function of the form

14+ 2x2

= d 6

pe) = [ (). (6)
oD

where p denotes a Borel probability measure on 91D, clearly has positive real part, because the

kernel functions have this property. The famous Herglotz representation theorem states that the

converse is also true. This is equivalent to the fact that the extreme points of P (i.e. the points



which have no proper convex representation within the convex set P) are the kernel functions of
representation (6), which map ID univalently onto the right halfplane {w € C | Rew > 0} (see e.g.
[10], [5]); we write E (P) = {I2£| z € 9D}. By the Krein-Milman theorem their closed convez hull
co (E P) is all of P and so their convez hull co (E P) lies dense in P with respect to the topology of
locally uniform convergence (which makes P compact), so that each function p € P can be locally
uniformly approximated by functions p,, of the form

n

1+ xp2
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The functions of the form (7) give the so-called Carathéodory boundary of P.

A function f is called subordinate to g, if f = g ow for some function w € A with w(0) = 0 and
w(ID) C D; we write f < g. The subordination principle states that if g is univalent then f < g
if and only if f(0) = g(0) and f(ID) C g(ID), and so p € P if and only if p < 2. If f < g then
by Schwarz’s Lemma f(ID,) C ¢g(ID,) for all r in ]0,1[ where D, := {z € C | |z2|] <r}. By B we
denote the family of functions w € A with w(0) =0 and w(ID) C D.

A compact family which is similar to P is the class P of functions p normalized by p(0) =1 for
which there is some o € IR such that the real part of €'*p is positive. One sees that p € P if and
only if p < 11-1;1{: , where y = e72* and |a| < 7/2. A slight modification of Herglotz’s theorem gives
that each function p € P can be approximated by functions of the form

n

1+ yzyz "
pn(z)zz,uki, ly| = |zg| =1, up >0 (k=1,...,n), Z,ukzl, nelN.
pt l—mkz k=1

From this property in ([6], Lemma 2.3) I deduced the following

Lemma 1 The functions p, (n € IN) with a representation of the form

n

pn(z) = H LU )

k=1 1 - Trz

where
|xk|:|yk|:1 (kzl,...,n),
and

argTy < argyy < argZs < arglyp < --- < argx, < argy, < argzi + 2w

form a dense subset of P.

3 Uniqueness statements for functions with positive real part

It is an easy consequence of Schwarz’ Lemma that p € P implies |p1| < 2 with equality if and only
if p(z) = 12 (2 € OID). This includes the uniqueness statement that

l—xz

_ 1+ 22

EP p=2 € oD) = = i
p =2z (z ) pz) =1

We shall now give a generalization of this statement the proof of which is a consequence of the
Carathéodory-Toeplitz-Fejér theory on positive harmonic functions, in particular of the following



Theorem due to Carathéodory, see [1], or [2], Theorem VI:

Theorem I Suppose that p(z) = 14 p1z +poz?> +--- € P, n € N, and

2 b, D, Py
P2 po P
D,:=|P. Pi 2 - p|=0.
1)_71 pn—l pn—2 2

Then Dj = 0 for all j > n, and p is the only function in P with the coefficients p1,p2,...,pn, i.c.
it 1s uniquely determined by those first n coefficients.

As a consequence we get the following uniqueness statement for functions with positive real part.

Theorem 1 Suppose that p(z) = 1+piz+pz>+--- € P, n € N, and that for all j, 1 < j <n we
have
n i n
ijQZtk(L‘i, Ztkzl, tr, >0, 2, € 0D (kzl,...,n), (8)
k=1 k=1

then (8) holds for all j in IN, i.e.

" l—i-mkz
= t .
b = (1)

Proof: Observe that in our case
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as the determinants of both factor matrices trivially vanish. So by Theorem I it follows that D; = 0
for 7 > n, and the uniqueness of p, establishing the result. O

n
Note that we only used 2, Tx = 1 (k = 1,...,n) but not the facts that ¢, is positive, and > t; = 1.
k=1
In particular, the determinant (9) vanishes for arbitrary ¢,z (K =1,...,n).

As a consequence of the theorem we get

Corollary 1 Suppose that p(z) = 1+ p1z + pez2 + --- € P where p1/2 € D, and further that
z€ 0D and y € 0D, 0 <t <1, and p; = 2(t$ + (1 — t)y) (Such a representation exists for
@— /A SEE @+ pu)/4).

If now ps = 2(tm2 +(1— t)y2), then p is uniquely determined and

p(z):t<1+xz>+(1—t)<l+yz> . (10)

—xz 1—yz

The functions of form (10) are the extremals also for the next problem. This is a typical example
of an extremal problem, which occurs frequently (see e.g. [9], p. 166, formula (10)) but for which
the case of equality has not been explicitly studied.

Lemma 2 Suppose that p(z) = 1 +p1z + pez® + --- € P. Then

1
b2 — —p%

A
<2—— 11
2 = 2|191| ( )

with equality if and only if p is of form (10) with x,y in 0D and t in [0, 1].

Proof:  For p(z) = 1+p1z+pez?+--- € P we have w(z) := %283 =wy+w z+wyz’+--- € B,
and it follows that |wi| £ 1 — |wp|? with equality if and only if w(z) = UJQ% for some w € 9D



and a € D (see e.g. [4], Kapitel VIII, Satz 2). This inequality is equivalent to (11). If equality
occurs in (11), then

1+zw(z) 1+ w? T Faz f@ _ 1+ z(a+w?a) + w?2?
a

1-— — w2yt 1 T_an2a) — 2.2
2w(2) 1 —w +E + z(@a—w?a) — w?z

p(z) =

1 +wz(2 Re aw) + w?2?
1 — wz(2i Im aw) — w222’

and so writing b = aw we deduce that

1+ 2(b+b)+ 22
p(wz) = 1—2(b—b)—22° (12)

It is therefore sufficient to establish the representation (10) for the functions p(wz) given by (12).
We write b = cosf — isint, and note that, since |b| < 1, we have

|cos @] < |costp| .

Now ” ” " "
14 2e")(1 + ze™ 1—ze I+ze"*
plwsy = U2tz ) Loeed g pldze T
(1 + ze)(1 — ze=) 1+ zet 1 — ze~®
where t = 1 (1 - gg:z), so that 0 < ¢ < 1. This proves (10).
On the other hand a calculation shows that the functions of form (10) with z,y € 9D and
t € [0,1] give actually equality in (11). O

We remark that Corollary 1 also follows from Lemma, 2.

4 Successive coefficients of starlike functions

In this section we derive the extremal functions (3) for the successive coefficient result (2) for
functions f € St by our method. We follow the lines of the proof given in ([3], Theorem 5.12).
Assume, equality holds in (2) for some n € IN (n > 2). Let

LS g )
)=

denote the function of positive real part associated with f. In Leung’s proof the third Lebedev-Milin
inequality is applied to the function

2)\ _ +w k_oopk—ykzk
In ((1 )-éakz —kz::l - (13)

for some y € C with |y| = 1, so that by the equality statement for the third Lebedev-Milin inequality
(see e.g. [3], § 5.1) it follows that

k
ak:% (k=1,...,n), |z|=1,



By (13) we have
pr=a"+y" (k=1,....n), l|g[=1|yl=1,
and an application of Corollary 1 yields (10) with ¢ = 1/2, and so

0)
<1—|—mz l—i-yz)
l—zz 1-yz)

1
2
Finally an integration yields (3).

5 Coefficients of the logarithmic derivative and an application

In §2 we presented a dense subset of P. As an application of the solution of the coefficient prob-
lem for the logarithmic derivative of functions in P we derive a family of inequalities for sets of
consecutive points on the unit circle.

- ' 0 .
Theorem 2 Suppose that p € P and that z%(z) = Y vj2) . Then, if m € N, we have |yp,| < 2m,
j=1

and this is sharp as is shown by p(z) = E22- where z € OD.

l—z2zm

Proof:  Since p € P, there is a number z € dD such that p < 11+_a:zz , so that
Inp<In(l+2z2)—In(l—2) .

The last function on the right hand side has the expansion

G(z):=—In(1—-2) = Z—

so that, if me Nand ¢ < G
lam(9)] S a1(G) =1,

as the coefficients a,,(G) form a decreasing and convex sequence of positive real numbers (see e.g.
[8], Theorem 216). For f(z) < F(z) := In(1 + zz) it also follows that

lam(f)] £ a1(G) =1
as F(z) = —G(—zz) and so we have (with some w € B)

|am(Inp)| = |am (F o w) + am(G o w)| < lam (f)] + lam(9)] £ 2,

implying the result. For the function p(z) = 122 equality holds as is easily verified, which finishes

l—z2zm

the proof. O

Applying the theorem to the dense subset of P of Lemma 1 leads to

Corollary 2 Suppose that m € N, n € N, that x, € 0D and yi, € 0D for 1 <k <n and that
arg r1 <argy) <argzs <argys <---< argx, <argy, <argxi+2m .

Then

<2m.

n
Z —?/k

2mik/m

For o fired m equality occurs if n =m, zp = e zo, and yp = €™Mz, (k=1,...,m) for some

o € JD.



We remark that for m = 1 the Corollary is a statement about the sum of the lengths of the vectors
T — Yk, which can be proven also by geometrical means. In this sense Corollary 2 is a geometrical
statement.

Acknowledgement I thank the reviewer of this paper very much for his important remarks that
made several parts of the paper much easier to read.
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