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Zeilberger's algorithm which finds holonomic recurrence equations for definite sums of
hypergeometric terms F(n, k) is extended to certain nonhypergeometric terms. An ex-
pression F(n, k) is called hypergeometric term if both F(n + 1,k)/F(n, k) and

F(n, k+1)/F(n, k) are rational functions. Typical examples are ratios of products of ex-
ponentials, factorials, T’ function terms, binomial coefficients, and Pochhammer symbols
that are integer-linear with respect to n and k in their arguments.

We consider the more general case of such ratios that are rational-linear with respect
ton and k in their arguments, and present an extended version of Zeilberger's algorithm
for this case, using an extended version of Gosper's algorithm for indefinite summation.

In a similar way the Wilf-Zeilberger method of rational function certification of
integer-linear hypergeometric identities is extended to rational-linear hypergecmetric
identities.

The given algorithms on definite summation apply to many cases in the literature
to which neither the Zeilberger approach nor the Wilf-Zeilberger method is applicable.
Examples of this type are given by theorems of Watson and Whipple, and a large list of
identities (“Strange evaluations of hypergeometric series”) that were studied by Gessel
and Stanton. Finally we show how the algorithms can be used to generate new identities.

(©1995 Academic Press Limited

1. Hypergeometric identities

In this paper we deal with hypergeometric identities. As usual, the notation of the gen-
eralized hypergeometric series pFy defined by

ay ap . - (‘11 (a2)k (ap)k
pFq ( bi bo I) = ;Akm Z (bl "o, )pk k!:r,k {1.1)

is used, (a)x = 5%%%';1 denoting the Pochhammer symbol or shifted factorial. The numbers
ay, are called the upper, and bg the lower parameters of ,Fg.

Consecutive terms Apr* of the generalized hypergeometric series have the rational
ratio

Akpz®™ (K tay)-(k+ag)- - (k+ap) .
Agzh (k+b1)-(k+b2) - (k+by}(k+1)

(keN).
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If a sequence a, has a rational consecutive-term ratio az+)/ak, we call ey a hypergeometric
term or closed form. Note that any hypergeometric term essentially has a representation
as the ratio of shifted factorials (over C), and its generating function is connected with
a generalized hypergeometric series.

The classical reference concerning generalized hypergeometric series is the book of
Bailey (1935) containing a huge amount of relations between hypergeometric series some
of which represent the value of certain hypergeometric functions at a special point (mostly
z =1 or £ = —1) by a single hypergeometric term. We will be concerned with this type
of identities, and Table 1 is a complete list of all such hypergeometric identities found in
Bailey's book.

Here n € IN is assumed to represent a positive integer so that the hypergeometric
series with upper parameter —n are terminating. All other parameters involved represent
arbitrary complex variables such that none of the lower parameters corresponds to a
nonpositive integer.

With a method due to Wilf and Zeilberger, and with an algorithm of Zeilberger, many
of these hypergeometric identities can be checked. It turns out, however, that for some
of these identities both methods fail. We give extensions of both the Wilf-Zeilberger
approach, and the (fast) Zeilberger's algorithm with which all above identities can be
handled as well as a large list of identities that were studied by Gessel and Stanton
(1982).

Qur extensions therefore unify the verification of hypergeometric identities.

2. Gosper’s algorithm

Tn this section we recall Gosper’s algorithm (Gosper, 1978), see also Graham, Knuth
and Patashnik {1994), § 5.7.

Gosper’s algorithm deals with the question to find an antidifference sj for given ag,
i.e., a sequence s for which

k= 8k — 8k--1 (2.1)

in the particular case that sy is a hypergeometric term, therefore

is a rational function w.r.t. &k, (2.2)
8k—1
i.e., sp/si_1 € Q(k). We call this indefinite summation.
Note that if a hypergeometric term antidifference s exists, we call the input function
ar Gosper-summable which then itself is a hypergeometric term since by (2.1} and (2.2)

ak S — Sg—1 s:q -1
= = S _a = E Q(k)

v
Sk—1 k

ar—y  Sp—1—Sk—2 l-—
is rational, i.e., ug, vy € Q[k] are polynomials.
Whenever ay, is Gosper-summable then necessarily sg is a rational multiple of ag:

Sk Sk Sk 1
— = = = Hi € Q(k) .
ak Sk —Sk-1  Sk-1 oo — 1

Gosper’s algorithm is a decision procedure which either returns “No closed form antidif-
ference exists” or returns a closed form antidifference sy of ar, provided one can decide
the rationality of ag/ak—1, i.e., one finds polynomials ug, vk such that ex/ar_1 = wg/ve.
In so far, Gosper's algorithm is an algorithm with input uy and vy rather than a;.
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Table 1. Bailey’s hypergeometric database

page Theorem Identity
Vandermonde a,b (c—b)_c T{c)(c—a—b)
2-3 F 1] = =
Gaufl 2 ( ) {c)—a Me—a)l{c—1b)
_ a,b,—n {c—a)n(c—b)n
1) = —rbF0——t
9  Saalschiitz (c l4atbocon ) ©Onlc—a—0)n
(1+a)_s T(l+a—bBI(1+a/2)
9 K 1] = =
Hnmer ( 1+a— ‘ ) (1+a/2) 5 TO+al(l+a/2—8
1\ _ I(1/2)C((a+ b+ 1)/2)
11  Gauf ~ =
A ( (a+b+ 1)/2 2) T{(a + 1}/2)T((b+ 1)/2)
. a,l—a T{e/2)T{(c + 1)/2}
11  Bail =
s ( 2) T{(@+/20({1 —a+0)/2)
. a,b,c _{(14a)—c(l+a/2—b)-

13 Dixon (1+a—b 14a—c ! T (14a/2)c(1+a—bl_c
Il+ea/2TM1+a—-8T'(1+a—e)I(1+af2~b-—c)
I'{l+a)f(l+a/2-6T{1+a/2—c)T{1+a—b—c)

16 ‘Watson F a,b,c _ r(%)r‘(uﬁz—c)r('l‘ﬂ;ﬂ')r(‘m__gﬁz—c)

Whipple (a+b+1)/2,2 T r(dfe)p(dt)r(izatlep(izkile)
] a,1—a,c w212 (e)T(1 4 2c — €)
16  Whipple L9 (e: 1+2—e ) F(m)r(ailim: e)l-( 1— u+e )F( 2+2c—n—e)
g5 Dougall's . a,l+a/2,b,c,d,1+2a—b—c—d+n,—-n ) =
Theorem e 2/2 ,1+a-b,14+a—c,1+a—d ,btctd—a—n ,1+a+n -
{(l1+a)n(l+a—b—cln(l+a~b—adn(l+a—c—ds
(1+a—-bu(l+a—Jn(l+e—dn(l+ea—b—c—dn
a,1+a/2,¢.d,e (1+a)—e(lta—c—d)_,
25/27 D i E, 1] = =

/ ouga 3 ( a/2,1+0—c¢, 1+a—d, 1+a~e (+a—0)-e(lta—d)_n
Fl+e—cl'(l1+ea—di(1+a—e)[{1+a—c—d—e)
FMl+4+al(l14+e—d—-el{l+a—c—e)l'(t+a—c—d)

28 Whipple a,1+a/2,de _q)__(+e}-e _T{i+a—d)F(1+a—e)

a/2,1+a—d, 1+a—e (1+ae—d)—. T(14+a)l(1+a—d—e)

30 Bailey a,14af2,—n 1) = (w—e—1-—n)(w—a)n-1
af2,w (w)n

, a,b,—n (@ = 26)n(1 + /2 — bu(~b)n

30 Bail F 1] =

ey 5 2(1+a—b,1+2bmn ) (It a—b)n(a/2 — Bin(—2b)n

30 Bailey @ 14a/2,b,on |\ (@ )n(-b)a

a/2,1+a—b,1+2—mn 1+ a—bn(—20)m

30 Bailey ( a,1+a/2,b,—n

1) _ (a—2b—D)n(1/24a/2=b}n(—b—1)

a2, 14a—b,242—n| | T (Tta Bn(a/2—b—1/2)n(—2b—1)n
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Since without preprocessing, the user's input is ag rather than the polynomials ug and
vk, the success of an implementation depends heavily on an algorithm quickly and safely
calculating (ug, vg) given ag. In Algorithm 2.1, we present such a method. It turns out
that none of the existing implementations of Gosper’s algorithm uses such a method.

Gosper implemented his algorithm in the MACSYMA nusum command, an implemen-
tation of the algorithm is distributed with the sum command of the MAPLE V.3 system
(to check its use set infolevel[sum] :=5), and one was delivered with MATHEMATICA
Version 1.2 (Algebra/GosperSum.m). Another MATHEMATICA implementation was given
by Paule and Schorn (1994).

Along the lines of Koornwinder {1993), together with Gregor Stélting I implernented
Gosper’s algorithm in REDUCE (Koepf, 1995) and MAPLE, using the decision procedure
for rationality of hypergeometric terms described in Algorithm 2.1 below rather than
internal simplification procedures (like MAPLE's expand), available in releases REDUCE
3.6 and MAPLE V.4 through the zeilberg and the sumtools packages.

In case Gosper’s algorithm provides us with an antidifference sy of ag, any sum

n

E Qg = Sp — Sm—1

k=m

can be easily calculated by an evaluation of s; at the boundary points like in the inte-
gration case. Note, however, that the sum

n

> (%) (23)

k=0

e.g., is not of this type as the summand ( : ) depends on the upper boundary point n

explicitly. This is an example of a definite sum that we consider in § 3.
It is almost trivial but decisive that the following is a decision procedure for the
rationality of ax/ar_; for input ay (at least) of a special type:

ALGORITEM 2.1. (simpcomb)
The following algorithm decides the rationality of ap/ax—1:

1 Input: ax 2 0 as ratio of products of rational functions, exponentials, factorials, T’
function terms, binomial coefficients, and Pochhammer symbols that are rational-
linear in their arguments.

2 (togamma)

Build az/ak—1, and convert all occurrences of factorials, binomial coefficients, and
Pochhammer symbols to I' function terms. The case of binomial coefficients is done
by the rules

k—a .
(—l)km—kit‘l)'—p‘ﬁ faeZ, a<0
(:)_, 0 fa—keZ a—k<0

T (a+1 .
mﬁ%;_kﬁ; otherwise
3 (simplify_gamma)

Recursively rewrite this expression according to the rule

T(a+i)=(a); T (a)
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((e); := ala+1)---(a + j — 1) denoting the Pochhammer symbol} whenever the
arguments a and e + j of two representing I' function terms have positive integer
difference 7. Reduce the final fraction canceiling common I terms.

4 (simplify_power)
Recursively rewrite the last expression according to the rule

ot = 7 p®

whenever the arguments ¢ and a + j of two representing exponential terms have pos-
itive integer difference j. Reduce the final fraction cancelling common exponential
terms.

5 The expression ap/ap—; is rational if and only if the resulting expression in step 4
is rational of the form ug/vg, vi, vr € Q[K].

6 Output: (ug, vi).

Note that this result follows immediately from the given form of e} and therefore of the
expression ai/ar_1 considered.
As an example, the rationality of ay/ag_ for

_ T {2k)

T 4RT (BT (k4 1/2)

is recognized by the given procedure, and from the resulting information (ag/ar—1 = 1),
by induction ex = 1/(2/7) (Abramowitz and Stegun, 1964, (6.1.18)}.

In most cases also sums of ratios of the described form can be treated by the same
method. An important family of examples of this type will be considered next.

ai

3. The Wilt-Zeilberger method

Examples for an application of Gosper’s algorithm in connection with Algorithm 2.1
are given by the Wilf-Zeilberger method on definite summation (Wilf and Zeilberger,
1990}, see also Wilf (1993).

The Wilf-Zeilberger method is a direct application of Gosper’s algorithm to prove
identities of the form

Sp = Z F(n,k)=1 (3.1)
ke
for which F(n, k) is a hypergeometric term w.r.t. both n and &, i.e.,
F(n,k F(n, k . .
}’(n—(il_,)-la and }ﬁ—_—)ﬁ— are rational functions w.r.t. both n and k,

where n is assumed to be an integer, and the sum is to be taken over all integers & € Z.
We moreover assume that F(n, k) has finite support, i.e., is nonvanishing only for finitely
many k € Z for each fixed n € WNy.

To prove a statement of the form (3.1) by the WZ methodf, one applies Gosper’s
algorithm to the expression

ag = F(n k) — F{n —1,k)

T Note that Wilf and Zeilberger use forward rather than backward differences, whereas we follow
Gosper’s original treatment. There is no theoretical difference between these two approaches, though.
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w.r.t. the variable k. If successful, this generates G(n, k) with
ag=F(n, k)~ F(n—-1,k)=G(n,k)— G(n, k- 1}, (3.2)

and summing over all k leads to

Sp — Sp.1 = Z (F(n,k} — F(n - l,k)) = Z (G(n,k) — G(n, k- 1)) =0

ke keZ

since the right hand side is telescoping, and F(n, k), hence G(n, k) = R(n, k) F(n, k) has
finite support, see below. Therefore s,, = sy is constant, and as F(n, k) has finite support,
we can prove sg = 1, and are done.

Since the WZ method only works if » is an integer, we can prove the statements of
Bailey’s list in Table 1 only if one of the upper parameters of the hypergeometric series
involved is a negative integer. The extension to the general case is over the capabilities
of the methods of this article, and must be handled by other means.

Note that the rationality of ag/ag_1 for the WZ method is decided by Algorithin 2.1
since

F(n—1,k
ar F(n, k) — F(n —1,k) _ _Fnk) 1~ Fntn,kj)
ap-1 F(mk—-1)—~F(n—-4Lk—1) Fink—1) l_ﬂFfﬁf—ITll'

Note moreover, that the application of Gosper’s algorithm may be slow. But when
Gosper’s algorithm generates the function G{(n, k}, it moreover finds the rational function

G(n,k
R(n k) = Gln, k)
F(n,k)
R{n, k) is rational since G(n,k) is a rational multiple of ay = F(n,k) — F{n — 1, k),
G(n, k) =r(n, k) - (F(n, k) — F(n — 1,k)), say, so that

Gn,k} F(n, k)~ F{n—1,k) _Fln— 1,k))

R(n, k) = ) r(n, k) . ) = r(n, k) (1 Pl k)

is rational. R{n, k) is called the retional certificate of F(n, k}. Once the rational certificate
of a hypergeometric expression F{n, k} is known, it is a matter of pure rational arithmetic
(which is fast) to decide the validity of (3.1) since the only thing that one has to show is
(3.2) which after division by F(n, k) is equivalent (module an application of Algorithm
2.1) to the purely rational identity

Fln,k—1) Fln—1k _
Fo R Fek) DO (3.3)

As an example, to prove the Binomial Theorem in the form

sn:=ZF(n,k)=Z§;(2)=l {3.4)
k=0 k=0

by the WZ method, Algorithm 2.1 yields
ap F(n,k) — F{n —1,k) _{n—k+1)(n—2k)
ax-1 F{nk—1)—-Fn-1,k-1 " k(n—2k+2)
so that Gosper's algorithm can be applied, and results in

600 = gty (25 1) - (7))

1— R(n, k) + R{n,k— 1)
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This proves (3.4) since sp = 1.
The rational certificate function is

R(n,k):M: k—mn

F(n, k) n
and the verification of identity (3.4) is therefore reduced to simplify the rational expres-
sion
F{n,k—1) F(n~1,k) k—n k-l-n &k  2(n—k)
1-R(n,k}+R(n. k—1 =1- + -
(n, k}+R(n ) F(n,k) F{n, k) n n  ntl-k n
to zero.
Table 2. The WZ method
Theorem n  Rn,k)
Vandermonde ~a — M
nic+n—1)
" (tkj(-n+k)(a+k)
Saal -
aalschiitz " nfe+n~-1)(1+atb—c—n+k)
Kummer _p letRintk)
nia+2n)
Dixon e _la+k){n+k)(b+k)
nla—b+n){at2n)
Watson e 9 (e+k)(—n+k}{b+k)
Whipple (-1+a+b+2n)(—2n+1+k){-2n +k)
, o _f{atka-1-kK(-nt+k)
Whipple € n{2—2n—e+k}{(l—-2n—e+k)
(2a—b—c—d+2n)(a+k)(—n+k) b+ k) (c+ k) (d + k)
1
Dougal " n{a+2k)(lea—b—c+n—d—Fk)la—d+n)la—c+n)(e—b+mn)
. flatk)(-n+k)c+k)(dt+k)
Dougall ¢ nla+2kj(a—c4+n)(e~d+n)
. _ (d+E)(—n+k)(at+ k)
Whipple nia+2k)(a—d+n)
. (a2 +2a—watna+2—2w—2kw+2 ka+2k+2kn) (a + k) (—n + k)
Bailey no -
(—w+e+njn(a+2k)(w+n—1)
. (<26—282 4 2nb+ab—1+n—k) (a+ k) {(—n+ k) (+k)
Bailey n -
ab(l+2b—mt+ki{a—2b+2n—2{a~b+n)
Baile _(2b4+ab+1—n42kb+ k) (b+k)(—n+k)(atk)
Y nb(a+2k) (1+26—n+k)(a—&+n)
Bailey . (a+k)(—n+ k) (B +k)

“nb(a+2k)(2+2b—n+k)(a—2b-3+2n){a—b+n}

. (—8&:—4!)2+5nb—ab—2n2+2nba—4+6n-r2bga+a2b—6k:—8kb—4b2k+4kn+4kbn+2kba—2k2)




406  W. Koepf

Table 2 is a complete list of those identities of Bailey’s list (Table 1) that can be treated
by the given method together with their rational certificates with which the reader may
verify them easily.

Note that neither the statements of Gaufl and Bailey of argument z = 1/2 (p. 11)
are accessible w.r.t. any of the parameters involved, nor can Watson’s Theorem (p. 16)
be proved by the WZ method w.r.t. Watson’s original integer parameter e, nor can the
method be applied to Whipple’s Theorem (p. 16) concerning parameters a or b since in
all these cases the term ratio eg/aj_; is not rational

Our REDUCE and MAPLE implementations both generate the results of Table 2, and
only the caiculation of the rational certificate of Dougall’s Theorem needs more than a
few seconds.

In § 5, we consider a generalization of the WZ method. To be able to consider the most
general case, we present an extended version of Gosper’s algorithm next.

4. An extended version of Gosper's algorithm

Here we deal with the question, given a nonnegative integer m, to find a sequence s
for given ay, satisfying

2k = 8k — Sk—m (4'1)

in the particular case that s is an m-fold hypergeometric term, i. e.

is a rational function w.r.t. k. (4.2)
Sk—m

Note that in the given case the input function aj itself is an m-fold hypergeometric term
since by {4.1) and (4.2}

S

@ _ Sk — 8k—m _ Sk-m u_k
= = e =
Qkom  Sk-m — Sk—zn 1— T vy

is rational, i. €., uz and vg can be chosen to be polynomials.
Assume first, given ax, we have found s; with sg — sg—m = ag. Then we can easily
construct an antidifference 5y of ax by

8= Sk + Sk-1+ -+ Skmfm-1) {4.3)

since then §x — Sp—1 = (8k + -+ + Sk~ (m-1)) — (Sk—1 + - + Sk—m) = 5k — Sk—m = ak.
Since
sk 8k Sk—1  Sk~(m—1)

Skem Sk—1 Sk-2 Sk—m

1

any hypergeometric term is also an m-fold symmetric hypergeometric term.
An m-fold antidifference always can be constructed by an application of Gosper's
original algorithm in the following way:

ALCORITHM 4.1. (extended gosper)
The following steps generate an m-fold antidifference:

1 Input: ap, and m € IN.
2 Define by = agm.
3 Apply Gosper’s algorithm to by w.r.t. k. Get the antidifference T'(k)bk of by (where
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T(k) is a rational function), or the statement: “No hypergeometric term antidif-
ference of by, and therefore no m-fold hypergeometric term antidifference of ay
exists.”

4 The output s := T(k/m)a; is a solution of (4.1) with the property (4.2).

ProorF. Existence of an m-fold hypergeometric solution sy, of
Sk — Sk—m = G (4.4)
is equivalent to the existence of a rational solution S(k) of
S(k) — r(k)S(k —m) =1 (4.5)
where r{k) = ax—m/ar and §(k) = si/ax. Existence of a hypergeometric solution ¢ of
th —tho1 = Qkm (4.6)
is equivalent to the existence of a rational solution T (k) of
T{k) — r(km)T(k—-1)=1 (4.7)

where T{k) = tg/agm. Clearly (4.5} and (4.7) are either both solvable and have solutions
such that T(k) = S(km), or are both unsolvable. So either {4.6) has no hypergeometric
solution and {4.4) has no m-fold hypergeometric solution, or (4.6) has a hypergeometric
solution tx = T(k)agm and (4.4) has an m-fold hypergeometric solution s3 = S{k)a, =
T(k/m)ar. O

As an example, we consider ay := k (£)!, and m = 2. Then bx = az = 2kk!, and
Gosper’s algorithm yields tx = 2{k 4+ 1)k!. Therefore si = tysq = (k + 2) (-’i"-)' has the
property that

Sk — Sp—2 = ak -
By {4.3), we moreover find the antidifference

fr=sp+sk—1=(k+2) (g)!+(k+1) (E—;—l-)'

of Qg

As another example, for a = ( k72 ) ~ ( & /2n— 1 ), one gets
s - 2n+3-k}n+1-k) ( n )_( n )
* 2nt2—k)(n+1—k) \\ 552 5
+(n+2—k)(2n+2—k) ( n )_( n )
2n+2—k}n+1—~k) \\ k/2 ki2—1)} "
Now, we give an algorithm that finds an appropriate nonnegative integer m for an
arbitrary input function a, given as ratio of products of rational functions, exponentials,

factorials, I' function terms, binomial coefficients, and Pochhammer symbols that are
rational-linear in their arguments:

ALGORITEM 4.2, (find_mfold)

The following is an algorithm generating a successful choice for m for an application of
Algorithm 4.1.
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1 Input: ay as ratio of products of rational functions, exponentials, factorials, I func-
tion terms, hinomial coeflicients, and Pochhammer symbols that are rational-linear
in their arguments.

2 DBuild the list of all arguments. They are of the form p;/g; k + a; with integer p;
and g;, p;/¢; in lowest terms, ¢; positive.

3 Calculate m = lem{g;}.

Proor. 1t is clear that the procedure generates a representation for by, = ajpy, with the
given choice of m which is integer-linear in the arguments involved. Since in this case
bi /b1 is rational, Algorithm 4.1 is applicable. O

In our example cases above, the given procedure yields the desired value m = 2.

5. Extension of the WZ method

In this section we will give an extended version of the WZ method which resolves the
questions that remained open in Section 3 so that finally Bailey’s complete list (Table 1)
can be settled using a unifying approach.

Assume that for a hypergeometric identity the W% method fails. This may happen
either because ag/ag_—1 is not rational, or because there is no single formula for the
result like in Andrews’ statement

_ 0 if n 3 0 (mod 3)
o Fy n,n+ 30 ,a E = nl (a, -} 1)n/3 . (5_1)
3a/2,(3a +1)/2 |4 m otherwise

which—together with many similar statements—can be found in a paper of Gessel and
Stanton (1982), Equation (1.1}.
In such cases, we proceed as follows: To prove an identity of the form

Sp = Z F(n, k) = constant {n mod m constant) , (5.2
keZ

m denoting a certain positive integer, F(n, k) being an (m,{)-fold hypergeometric term
w.r.t. (n, k), Le.,

F(n, k) and Fin,k)

_— ———"———  are rational functions w.r.t. both n and %,
Fln—m,k) Fln, k1)

with finite support, and » assuming to be an integer, we apply our extended version of
Gosper’s algorithm to find an !-fold antidifference of the expression
ay = F(n, k) — F(n —m,k)

w.r.t. the variable k. (In most cases I = 1, so that Gosper’s original algorithm is applied.)
If successful, this generates G(n, k) with

ap = F(n, kY — F(n - m,k) = G{n, k) - G{n, k= 1), (5.3)
and sumrning over all k leads to

$n = Snem = 3 (F(n, k)~ F(n- EDY (G(n,k} — Gn k — z)) =0
keZ keZ



Algorithms for m-fold Hypergeometric Summation 409

since the right hand side is telescoping, and F(n, %) has finite support. Therefore s,
is constant mod m, and these constants can be calculated using suitable initial values.
This can be accomplished as the series considered is terminating. Note, that again, the
function

G(n, k)

Rln kY= 05

(5.4)

acts as a rational certificate function.
As an example, we prove {(5.1): In the given case, we set m := 3, [ := 1, further

(—nk(n +3a)k(@)r (n/3)!(Ba+ 1)a (3"
Fn k)= k'(3a/2)k ({32 +1)/2)x mnl{a+1)ays (4) !

and notice that
F(n, k) F(n, k)
— . n e ——————
Flmk—1) " F(n~3k)
are (complicated) rational functions (Algorrithms 4.1 and 2.1). An application of Gosper’s
algorithm is successful, and leads to the rational certificate

{e+k)(n—k}{8a+2n—3)
n+3a+k—-2(n+3a+k-1n"

R(n,k) =3
Therefore

Z F(n, k)= ZF(n, k) = constant {n mod 3 constant) ,
keZ £=0

and statement (5.1) foilows using three trivial initial values.

Table 3 lists the hypergeometric identities of the Gessel-Stanton paper (note the mis-
print in Equation (1.4}), and Table 4 contains their rational certificates (5.4), calculated
by our implementations, together with the certificates of Bailey’s list (Table 1) to which
the W2 method did not apply.

Note that in all cases considered, [ = 1, so that the original Gosper algorithm is applied.

Note, moreover, that Gessel and Stanton were not able to present proofs for their
statements (6.2), (6.3), (6.5), and (6.6): Table 5 contains proofs.

Finally, we give an example of an application for which ! # 1. To prove the identity

_i(_.z)"(":)-(k{f)zl, (neN), (5.5)
k=0

we apply our extended WZ method with ! = 2, and m = I, and get the rational certificate

_(=k+n—-1)(-k+n)
Rin, k) = (n—1}{-k+2n~2)"

which proves (5.5).

6. Zeilberger’s algorithm

In this section, we recall Zeilberger's algorithm (Zeilberger, 1990-1991), see also Gra-
ham, Knuth and Patashnik (1994), Section 5.8, with which one can not only verify
hypergeometric identities but moreover in many cases definite sums can be calculated.
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Table 3. Gessel and Stanton’s hypergeometric identities
Eq. Identity
0 if 0 d 3
(1) 3F2( —-n,n+3a,a g) _ Al (a+ Doy n?fh (mlo )
3a/2,(3a+1)/2 m otherwise
(1.2) 20 ,26,1—-20,142a/3,-n _‘J; _ {a+1/2)n(at 1),
' a—b+1,a+b+1/2,2a/3,1+2a+2n T {at b1/ (a—b+1)n
(13) ( a,b,a+1/2-b,1+2a/3,—n 4) :{ n!(a+1(;n,22—n ifn odd
2a+1-2b, 2b,2a/3, 1+a+n/2 (B)ia—t41), /30 D)ra otherwise
1.4) 1/2+3a,1/2=3e,-n {3 _ (1/2—a)n(1/2+a)n
(1 12, -3n 1= W/
15 143a,1~3a,-n E _(1+a)(1~a)n
(1.5} 3/2,-1-3n 417 (2/3)n (4/3)n
(16 2a,1—a,-n 1V = {(n+3)/2)n(n+1)(2a+1)
) 20 +2,—2—1/2-3n/2 T {1+ (n+20+1)/Dn(2atn+1)
R 2e,20,1—-2b,14+2a/3,a+d+n+1/2,a-d,—m 1) =
.7 rhe a—b+1,a+b+1/2,2/3,~2d~2n,2d+1,1 +2a+2n -
(2a+1)on (b+d+1/Dn(d=b+1)n _ (@a+1/Dale+Dab+d+1/2n(d—b+1)n
(2d+ Dan @+ 0+ 1/2)n (@ b+ Dy (@t b+1/2)n (@ b+ Dn(d+1/2)n(d+ 1)
b,a+1/2—-6,1+2a/3,1—-2d ,2a+2d+n,—n _
(1-8) 2a—-2b+1 2b,20/3 ,a4+d+1/2,1-d—n/2,1+a+n/2 -
if n odd
{ b+ d)n/2 (d—b+a+t 1/2)n/3 n!(a+ 1)"/2 " otherwise
{6+ 1/Dnpla+d+1/2)n 2 (dhnye (n/2) (@ — b+ 1)y
~2n ~2/3 (5/6)n n
(3.7) ( 8) G f2)n( a7)
0 if 17 0 (mod 3
(5.21) ( det1j2,8at ], n i) S e, T
6a+1,—n/3+2a+1 |3 (0 + 2a) 2 (<22} otherwis
—n,1/2 1Y _ (/2 (20\"
(5.22) ( 2n +3/2 ) = @nti/m (4)
~n,-1/3—9n _ n
(5.23) ( 2/3 —8) = (-27)
0 if n odd
(5.24) ( 4/3 lg) = { §7§6; Z (,3)'(n/2) otherwise
0 if i odd
—n,1/2
o9 an( (7l |0) L QD
(n+3)/2 Gy (ol ™
1/3—-n,—n/2,(1 —n)/2,22/21 - 3n/7 8"
(527 L / /2,(1=n)/2 ,22/21 ~ 3n/ _27) (_2,,,,

5/6,4/3,1/21 — 3n/7
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Table 4. The extended WZ method

Bailey p. n m  R(n,k)
b+ k) (n— k}
11, Gauf ~a _(—b+n—1—-2k)n
. (2n—-1)(n—k)
11, Bailey —a (T—:n——_lm
(c+ k) (b+ k) (n — k)
16, Watson  —a T 1+ n+20(—b+n—-1—2K)n
. (2n—1}(n—k){c+ k)
16, Whipple —a 2 Zeoein) (-1Tnse)(n i k)
G.-5. Eq. m  Rn,k)
{a+k)(n—k)(3a+2n-3)
(1) 3 (n+3a+k-D(n+3a+k-1n
12) . (2a+k)(n—k)(2b—1—K)(2b+ k)
’ 2n(3k+2a)(2a+2b—14+2n){a—b+n)
(b+k)(at+k)(2a—2b+1+2k)(n—k)
a3 2 A Gkiza)@b~1+n)(Za—2b+n)
L (n—k)(6a—1-—2K) (6a+1+2k)
(4) ! T(2n—4k)(3n—-1-k)(83n—-2-k)
(n—k)Ba—k—-1)Ba+14+k)
(1.5) R Py Sy Py Yy
(—ta+4an+18n2—20n+2~16nk) (n—k) {a—k~1) (2a+k)
(1.6) 2 n(2a+14+3n—-2k)(2a-143n—2Kk) (2a—3-+3n-2k) (n—1)
amn | (2a-1l+4nt2d)(@~d+k)2atk) (n-k)(@2b=1-k) (@b+k)
’ n{2a+3k)(2d+2n-—k}(2d+2n—1-k) (2a+2b—142n) (a—b-+n)
(15) ) (2d—1—k) (b+k) {n—k) (a+k) (2a—2b+2k+1) (atntd—1)
' n(2a4+3k) (—2+2d+n—-2k} (2b6—1+n) (20—2b4n) (2a+2d-+n+k-1)
(n—k)(6n+2—3k) (Tn~1—3k)
S 14 (Bn+1)(14+2n)n
Ba+1+k)Ba+2k+1)(n—k)
(5:21) 32 na+n)(—n+6a+3+3k)
(5+6K)(14+2k)(n—Fk)
(522) ! (24n+4)(6n—-1n
(2Q1n—7-9k)(Bn+1—3k)(n - k)
(5:23) 14 rn+1{B3n-1n
n—k
(5.24) 2 4
(dn — 4k) (1+2&) (24 3 &)
(5-25) 2 n(3n—1)(1+43n)
(5.27) 1 81(n—1_2k)(n—2k}(—1+3n—3k)

n(Bn—1}(-1+9n—21k})
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Table 5. Gessel and Stanton’s open problems

Eq. Identity

62) F( a+1/2,8,b,1—6,—n,2+1)/3+n,0/2+41
- Ti'6

1/2,(2a—b+3}/3,(2a+642)/3,-3n,2a+143n,0/2 1) =
({22 +2)/3)n (20/3 + 1)n (1 + 6)/3)n ((2 = b}/3)n
((2a = B}/3+ D ({26 + b+ 2)/3)m (2/3)n (1/3)m

o) = ((2a+ 2}/3)n (2a/3 + 1}n
(2/3)n (1/3)n

63) a+1/2,a,-n,(2a+1)/3+n,a/2+1
S she 1/2,-3n ,2a+1+3n,a/2

1 (5/4)m 28\"
9/ " (2/3).(13/12), \ 3°

1\ _ _ (9/4)m 251"
97 7 (4/3)n{17/12)n \ 3°

Rational certificates

2n+5/4

—n,—n+1/4
(6:6) 2Fl( 2n + 9/4

®5) 2R ( —n,—n+1/4

Eq. m  Ri{n,k)

(a—1+3n)(a+k)(2a+2k+1)(n—K)(b~1~k)(b+k)

632) 6(a+2k)(3n—k)(3n—1—k.)(3n—2—k)(?o.—b+3n)(2a+&——1+3n}
(6.3) _[(ba—6418n)(n—k)(20+2k+1)(a+ k)
' (a+2k)(B3n—k)Bn—-1-Fk)(3n—2—k)
(52n? —13n — 21 — 56k 4 16nk - 3252) (n — k) (4n — 1 — 4k)
s 1 - (108n— 27y (3n— 1){1 + 1Zn)mn
66 1 (52n% +39n — 55 — 84k + 16k — 32k%) (4n - 1 ~ 4K) (n - k)

(108n —27)(1+3n) (5 +12n)n

Zeilberger’s algorithm determines a holonomic recurrence equation

J
D B En-4) =0 (6.1)
i=0
with polynomials P; in n, for sums
T(n) = Y F(n,k) (6.2)
keZ

for which F(n, k) is a hypergeometric term w.r.t. both n and k. For rigorous descriptions,
see Koornwinder (1993) and Graham, Knuth and Patashnik (1994}, Section 5.8.

Implementations of the Zeilberger algorithm were given by Zeilberger (1990) and
Koornwinder (1993) in MAPLE, and by Paule and Schorn (1994) in MATHEMATICA.
Along the lines of Koornwinder (1993}, we implemented Zeilberger’s algorithm in RE-
pUCE {Koepf, 1995) and MAPLE, available in releases REDUCE 3.6 and MAPLE V.4
through the zeilberg and the sumtools packages.
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Like for the Wilf-Zeilberger method, Zeilberger's algorithm is accompanied by a ratio-
nal certification mechanism. Note that Zeilberger's algorithm can be applied to ratios of
products of rational functions, exponentials, factorials, T’ function terms, binomial coef-
ficients, and Pochhammer symbols that are integer-linear in their arguments w.r.t. both
n and k.

Next we will present a modified version of Zeilberger’s algorithm that is applicable if
the arguments of such expressions are rational-linear w.r.t. n and k.

7. An extended version of Zeilberger’s algorithm

Our extended version of Zeilberger’s algorithm deals with the question to determine
a holonomic recurrence equation (6.1) for sums (6.2) for which F(n, k) is an (m,{)-fold
hypergeometric term w.r.t. (n, k), see Section 5.

In particular, this applies to all cases when the input function F(n,k} is given as a
ratio of products of rational functions, exponentials, factorials, I' function terms, binomial
coefficients, and Pochhammer symbols that are rational-linear in their arguments w.r.t.
both n, and &.

First of all we mention that Zeilberger’s algorithm may be applicable even though this
is safely the case only if the arguments are integer-linear. An example of that type is

_ —n/2, —nj2+1/2 on= (/20 (—n/2+ 1/2)
Z(n) = 2F1( b+1/2 1) - Z EV(b+1/2) ’

k=0

for which an application of Zeilberger’s algorithm yields the recurrence equation
26+n—-1)E(n)-2(+r~-1)Ern-1)=0,
and therefore the explicit representation

_ 2" {b)n
L(n) = (2b)n .

Zeilberger’s algorithm applies since F(n,k)/F(n —1,k) and F(n, k)/F(n, k — 1) are ra-
tional even though the representing expression for F(n, k) is not integer-linear w.r.t =.
On the other hand, not for every F{n, k) given with rational-linear I'-arguments, Zeil-
berger's algorithm is applicable. An example for this situation is the left hand side of
Watson's theorem w.r.t. varisble a (see Table 1).
We present now an algorithm which can be applied for arbitrary rational-linear input.

ALGORITHM T7.1. (extended_sumrecursion)

The following steps perform an algorithm to determine a holonomic recurrence equation
{6.1} for sums (6.2).

1 Input: F(n,k}, given as a ratio of products of rational functions, exponentials,
factorials, T function terms, binomial coefficients, and Pochhammer symbols with
rational-linear arguments in n and k.

2 Build the list of all arguments. They are of the form p;/g;n + s;/¢; k + a; with
integer pj, g5, 85, t5, pj/q; and s;/t; in lowest terms, q; and ¢; positive.

3 Calculate m := lem{q;} and [ := lem{t;}.

4 Define F(n, k) ;= F(mn, ki). Then F(n,k) is integer-linear in the arguments.
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5 Apply Zeilberger's algorithm to F(n, k). Get the recurrence equation

J
Z Pi{n)Z(n—3)=0
3=0
with polynomials P; in n, for the sum

E(n) = Z F(n, k).
ke

6 The output is the recurrence equation

J
ZP-? /m)E(n—jm) =10
=0

for the sum

= F(nk)

ke

ProoF. Obviously our construction provides us with F(n, k) that is integer-linear in
the arguments involved. Therefore Zeilberger's algorithm can be applied, and the result
follows. [J

Note that even though in general Zeilberger's algorithm does not find the recurrence
equation of lowest order {which in practice rarely happens), one can prove that for proper
hypergeometric terms F(n, k) having a representation

Q(n. k)

F(n,kY= P(n, k) Rim & )w 2", (7.1)

where P(n, k) is a polynomial and Q(n, k), R{n, k) are [-term products with integer-
linear arguments, Zeilberger’s algorithm terminates, see e.g. Knuth and Patashnik (1994),
Section 5.8.

Therefore the above algorithm terminates for terms (7.1) where P(n, k) is a polynomial
and Q{n,k), R(n, k) are I'-term products with rational-linear arguments.

As a first example, we apply our algorithm to the Watson function

S(n) = 3F2( -n.b,c 1)

(—n+84+1)/2,2c
w.r.t. the variable n to which Zeilberger's algorithm does not apply. In this case, the
algorithm determines m = 2 and [ = 1, and leads fo the two-fold recurrence equation

b-2c—n+1)n-1Er-2)-(b-n+1)2c+n—-1)E(n)=10

from which the explicit right hand representation listed in Table 1 can be deduced since
B(0)=1and B(l) =

It turns out that our method is applicable to all identities considered in this paper to
which Zeilberger’s original approach does not apply.

For example, we consider one of the major identities of the paper of Gessel and Stanton
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)

otherwise

(1982): The evaluation of (1.8)

a,b,a+1/2-0,1+2¢/3,1-2d,2a+2d+n,~n
E(H) = 7F6(

%2a—264+1,26,2a/3 ,a+d+1/2,1—d—n/2,1+a+n/2

0 if n odd
- 6+ d)nja(d—b+a+1/2)nznia+ s

(b+1/2)nsz e +d+1/2)nsz (d)nsa (n/2} (e — b+ )np

cannot be handled w.r.t, n using Zeilberger's algorithm, but the extended version leads

to the equivalent 2-fold recurrence equation
0 = (n—-1+2d+2a){20—n—2a)(rn—1+2b)(n—2+2d)E(n)

+(n—1+2d-2b+2a)(n—2+2d+2b)(2e + n){n — 1)E(n - 2) .

Finally, as an example with | # 1, we consider (5.5), again. Our algorithm generates
m = 1 and [ = 2, and the recurrence equations

Eln)—En-1)=4 and 2E(n)+ E{n-1)=0

E(n)::(—?)“(z)-(kf), and E(n)::(:)-(k’{z),

respectively.

for

8. Deduction of hypergeometric identities

In this section, we show that with a good implementation of Zeilberger’s algorithm
and our extension at hand, one can discover new identities. A kind of deductive strategy
is: Applying Zeilberger's algorithm to the general o F; polynomial

(b—14+n)E2(n)+(-2n+znt+za—b+2-2)Z(n-1)—(z-D{n-1)ER-2)=0.

a,-n

E(n) = 2F1( b

e. g., leads to the recurrence equation

It is hypergeometric in particular if the coefficient of Z(n ~ 2) equals zero, i.e., if z = 1,
implying Vandermonde’s identity. Moreover, the coefficient of £(n — 1) can be made zero
(equating coefficients) by choosing z = 2, and b = 24, in which situation we get

r+2a~-1En)—(rn-1)B(n-2)=0.
Therefore we have deduced the identity

( e —n 0 if n odd
oF ' 2) = (1/2)71/2 .
2 ——————— otherwise
¢ (1/2+ a)ns2

We see that this method, to some extent, can be a substitute for the ingenuity of people
like Dougall, Bailey, Andrews, Gessel or Stanton to find hypergeometric sums which can
be represented by single hypergeometric terms.
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As a final example we try to find hypergeometric functions of the form

T(n) = 2F1(a T :L‘)

n+h
for which a, b and z are constants w.r.t. n, and for which a recurrence equation with only
two terms E(n — j) is valid,
The recurrence equation for ${n) turns out to be

0 = -(ﬂ:—~1)2{11,—1)(11—1+b)(n——2+b)(a:n+n—:ra—a:+bm)2(n——2)
+{n—-14b)P(r,a,bz)E(n—1)
+r(2n+b6-1)2n+8—-2)(n—a~14b)(zn+n—2za— 22— 1+ bz} B(n),

where P(n,a,b,z) denotes a very complicated polynomial of degree 2 in n. To obtain a
recurrence equation for which only two terms X{n — j) different from zero occur, we may
set the coefficient lists with respect to n of any of the factors occurring to zero, and try
to solve for a,b and z. Note that since the resulting equations are polynomial systems,
by Grébner bases methods these can be solved algorithmically.

In our case, we obtain either x = 1, or we are led to the Kummer identity, i.e., to the
values b = a + 1 and x = —1. The only exception occurs when we set the coefficient list
with respect to n of the factor P(n,e,b, ) to zero, leading to the Kummer case again,
and to the second solution set

fa=1/26=23/2z>—6z+1=0}.
Therefore, for z = 3+ 2+/2, we have the recurrence equation

~4 (2n—-1)2n+1)En-2)+4n—-1)dn+1)E(n)=0

leading to the closed form representations
(1%V2) if n odd
(3/4)11/2 (5/4)11/2

2 (5/4)(71—1]/2 (7/4)(n~1)/2
- (1/2 -
SR W 77
(7/8)ns2 (3/8)ns2

3+ 2\/5) _ ) 5(11/8}n_1ys2 (13/8)(n—1)/2
Hence, for even n, the values at z = 3 + 2v/2 and = = 3 — 2v/2 are rational and equal:

otherwise

I\ { 2ntk+l
AT _i‘:(*l)k( P )(Hm)k: (3/4)s (5/4)n
2 2n+3)2 T (4n+2k+2) (7/8%, (9/8)n
= 2%
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