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Abstract. There are several well-known algorithms to calculate the Puiseux series 
developments of the branches of an algebraic function. None of them, however, 
generates the series in closed form, even in those cases where such a formal result is 
available. They produce, instead, truncated series, and give information that can be 
used to handle the series as streams. Here we give a solution to the given problem. 
We combine an algorithm ofD. V. and G. V. Chudnovsky that transforms the given 
algebraic equation into a differential equation for the function, and further into 
a recurrence equation for the Puiseux coefficients, with an algorithm of Koepf 
which in the case of hypergemetric type results in the formal series. A finite 
linear recurrence equation is optimal for a representation by streams. D. V. and 
G.V. Chudnovsky point out that their algorithm requires only O(M) field 
operations if M is the order of the number of series terms considered. However, 
from a practical point of view, it is of importance that the complexity of the resulting 
recurrence equa t ion -  as well as of the differential equa t ion -  can be extremely 
high, a fact, which we illustrate by an example. It turns out, that many alge- 
braic functions of low order with a sparse representation are of hypergeometric 
type, and so closed form representations for the corresponding series can be 
given. 

Keywords: formal power series, Laurent-Puiseux series, closed forms, hypergeometric 
terms and functions, functions of hypergeometric type, holonomic linear differential 
and recurrence equations. 

1 Introduction 

We consider algebraic functions y(x) which are given by some bivariate polynomial 
equation 

N 

F(x, y(x)) = ~ pk(x)y(x) k = 0 (1) 
k = 0  

with coefficient functions pk ~ ~(X) where ~ is one of Q, N, or C. 
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Locally the branches of an algebraic function in a neighborhood of the origin 
x = 0 can be represented by Laurent-Puiseux type series 

y ( x ) = ~ a k x  k (a k o / , r  . . . .  }) (2) 
k s Z  

for some k o e / / a n d  neN,  with coefficients a k e C ( k ~ Z ) .  If there is a power series 
representation, i.e. if k o > 0 and n = 1, the origin is called a regular, otherwise 
a singular point of the algebraic function. 

There are well-known algorithms to find the coefficients of these representations 
iteratively, see e.g. [10]. Roughly, they consist of both a method to find initial values 
which, in general, are algebraic quantities, and of an iteration procedure to generate 
higher coefficients. 

These algorithms are implemented in certain Computer Algebra systems, e.g. in 
Axiom [4] (previously Scratchpad), and Maple [3J, see E11]. 

However, none of these algorithms leads to a formula for ak. For that reason 
Axiom internally works with streams, and lazy evaluation, i.e. the series objects are 
given by a finite number of initial terms, and an (internally used) formula to calculate 
further coefficients, see e.g. [9]. Infinite series representations, however, are not 
supported. 

We will not emphasize on the question how to find suitable initial values. 
However, we use an algorithm which generates a homogeneous linear recurrence 
equation for the coefficients searched for. In the special case of hypergeometric type, 
i.e. if the generated recurrence equation possesses only two summands, the closed 
form solution can explicitly be given. Many algebraic functions of low order are 
examples of that type. 

2 Algorithm to Generate of formal Laurent-Puiseux Expansion 

In [1]-[2] an algorithm was introduced generating a differential equation for (all 
branches of) y(x), and a recurrence equation for its Laurent-Puiseux coefficients ak. 
These authors gave an elegant algebraic argument that each algebraic function of 
order N, given by (1), satisfies a homogeneous, linear differential equation 

N 

qk(x)y(k)(x) = 0 (3) 
k = 0  

with polynomial coefficients qk ~ ~(X) of order at most N: Equation (3) states that the 
N + 1 distinct functions y(k) (k = 0 . . . . .  N) are linearly dependent members of the (at 
most) N-dimensional linear space over ~(x) which is generated by the extension of 
~(x) according to (1). 

This algorithm can be combined with an algorithm that I developed in [5]. If the 
resulting recurrence equation of order m 

m 1 

Z PJak+~=0 (Po, P , , - I ~  O) 
j = O  

contains only the two summands j = 0, m -  1, then we say that y(x) is of hyper- 
geometric type with symmetry number m, and an explicit formula for the coefficients 
can be found by the hypergeometric coefficient formula (see [5], Equation (2.2)), and 
some initial conditions. 
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We implemented a version of this algorithm which is more on the lines of our 
development [5]-[7] (here especially the conversion of the differential equation to 
the recurrence equation is simpler, see [5], w and used it to calculate the 
Laurent-Puiseux expansions, and in particular the corresponding differential and 
recurrence equations, for many algebraic functions. The details of our implementation 
can be found in [8]. 

It turns out that 

1. many algebraic functions oflow order, especially those with a sparse represen- 
tation, are of hypergeometric type, and so closed form representations for the 
corresponding series can be given. 

2. On the other hand, there are sparse low order algebraic functions for which 
the corresponding differential and recurrence equations have very high 
complexity. 

In the following section we give examples illustrating the algorithm, and especially 
the issues mentioned. 

3 Examples 

First we use a simple algebraic function to illustrate the algorithm. We consider the 
algebraic equation 

y ( x )  2 q- X 2 - -  r 2 = O, 

i.e. 

Differentiation of (4) leads to 

with the explicit form 

y(x) 2 = r 2 _ x 2. 

2x + 2y(x)y ' (x)  = 0 

(4)  

(5)  

(6)  

x 

y ' ( x ) -  y(x)" (7) 

The expression y ' (x) /y(x)  can be simplified using (5) 

y ' ( x )  x x 

y ( x )  y ( x )  2 r 2 - x 2 '  

which is independent of y(x)  so that the first order differential equation 

(r ~ - x ~ ) y ( x )  + x y ( x )  = 0 (8)  

holds for y(x). By our general method (see [5], w 6) the differential equation (8) is 
converted to the recurrence equation 

(k - 1)a k -- (2 + k)rzak+ 2 = 0 (9) 

which is of hypergeometric type, and produces the two formal series 

~' ]rl(2k) ! 2 k  

y(x)  = + k_2_, ~ 4kr2i,(2~__ 1)k!2 x . 
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Because the symmetry number of (9) is two, we need two initial values y(0), 
and y'(0), which may be obtained by the usual Newton diagram method (see 
e.g. [2], w 7). 

Next we consider the similar equation 

(y(x) -- r) 2 + x 2 -- r 2 = 0. (10) 

In this case a simplification of expression y'(x) /y(x)  yields y'(x) /y(x)  = x / (x  2 - ry(x)) 
which is not  independent of y(x)  so that no first order differential equation for y(x) 
exists. 

Thus one continues, and is finally led to the second order differential equation 

- -r2y ' (x)  + r2xy"(x)  -- x3y"(x) = O. (11) 

Further we get the equivalent recurrence equation for the Laurent-Puiseux coeffi- 
cients a k 

(1 -- k)ka  k + k(2 + k ) r 2 a k + 2  = 0 (12) 

which, again, is of hypergeometric type, producing the two formal series 

y(x) = ~ (2k)! x 2 + 2k, 
k=0 2"4kr2k+ 1( 1 + k)k  !2 

and 

)_2 ~7 ~ (2k)! T2 x2*2k" y(x)=  
2r--k=_O2"4krZk~-tl + k )k .  

It turns out that algebraic functions of low degree (smaller than 5 or 6) with 
sparse representations often are of hypergeometric type. The following is a list of 
examples of that type which we generated with experimental implementations of our 
algorithm in Mathematica [12], and Maple [-3]. Note that in our list, for brevity, we 
omit the argument x of y(x): 

F(x,  y) recurrence equation 
x 3 + x y  - y2 2(k - 1)(2k - 3)a k + (k - 1)kak+ 1 = O, 

x + y2 + xy3 27k(1 + k)(2 + k)a k + 2(1 + k)(4 + k)(5 + 2k)ak+ 3 = O, 
x 2 _.}_ y2 _.}_ xy3 3(1 + k)(3k - 1)(7 + 3k)a k + 4(1 + k)(3 + k)(5 + k)ak+ 4 = O, 
1 q- y2 q_ xy3 3(1 + k)(1 + 3k)(5 + 3k)a k + 4(1 + k)(2 + k)(3 + k)ak+ z = O, 

- - x W y + x y  3 2 7 k ( l + k ) a k + 2 ( 2 + k ) ( 7 + 2 k ) a k + 3 = O  , 
--y2-k- x 2 y 4 - - x  ( l  + 4 k ) ( 7  + 4 k ) a k  + 2 ( 4 + k ) ( 5 +  2k)ak+3=O,  

- -  1 "~- xZy 2 -~- x y  3 4(k -- 1)(1 + k)(3 + k)ak -- 3(3 + k)(5 + 3k)(13 + 3k)ak+4 = O, 
- - 1 - t - x Z y - ] - x y  2 ( k - 1 ) ( 2 + k ) a k + 2 ( 2 + k ) ( 7 + 2 k ) a k + 3 = O  , 
(x 2 + y2)3 _ 4xZy2 3(k - 1)(3k - 1)(1 + 3k)a k - 4k(1 + 2k)(3 + 2k)ak+ z = O, 
(x 2 + y2)4 _ Ax2y2  256(1 -- k)k(2 + k)a k + 3A(1 + k)(7 + 3k)(ll  + 3k)ak+ 4 = O, 
_ y3 + x2y4 _ x 2 256k(2 + k)(4 + k)(6 + k)a k 

+ 3(2 + k)(10 + k)(14 + 3k)(22 + 3k)ak+ 8 = O, 
X 2 _1_ xy3 q_ y5 6k(2k -- 1)(3k - 1)(1 + 3k)a k 

+ 5(5k - 1)(1 + 5k)(2 + 5k)(3 + 5k)ak+ t =0.  

We show that there exist low order algebraic functions that are not of the 
hypergeometric type considering the algebraic equation 

x y ( x )  2 - -  y(x) + 1 + x 2 = 0 
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that corresponds to the recurrence equation 

0 = 6(1 + k)(Zk - 1)a k + 4(3 + k)(5 + 4k)ak+ 2 

- 3 ( l + k ) ( 4 + k ) a k + 3 + Z ( 5 + k ) ( 9 + Z k ) a g + 4 - ( 5 + k ) ( 6 + k ) a k + 5  (13) 

of order 5, which obviously is not of the hypergeometric type. Note that the 
algorithm generates the differential equation of lowest order, but not necessarily the 
recurrence equation of lowest order: In the present case the recurrence equation 

2(2k - 1)a k + 2(2k + 5)a k + 2 - ( k  + 4 )a k + 3 = 0 

of order 3 is also valid. If we denote by K a  k = ak+ 1 the shift operator with respect to 
k, then this corresponds to the fact that the operator polynomial corresponding to 
(13) has the (non-commutative)factorization 

6(1 + k)(Zk - 1) + 4(3 + k)(5 + 4 k ) K  2 - -  3(1 + k)(4 + k ) K  3 

+ 2(5 + k)(9 + 2 k ) K  4 - (5 + k)(6 + k ) K  5 

= ((k + 5)K 2 + 3(k + 1))(2(2k - 1) + 2(2k + 5)K 2 -- (k + 4)K3). 

As another sparse example of low order we consider the equation of fifth order (see 
e.g. [11], Example 1) 

y(x)  5 + 2xy(x)  4 - xy (x )  2 - 2 x 2 y ( x )  + x 4 - X 3 "~- O. 

It turns out that no differential equation of order smaller than 5 exists. The 
differential equation of order five that is valid for y(x)  has the following complexity: 

1. the coefficients of each expression y~k) (k = 0, . . . ,  5) are polynomials of degree 
31, 

2. those polynomials are nonsparse with coefficients that are typically 15-digit 
integers, 

3. expanding the differential equation yields 190 summands. 

The final recurrence equation has the following properties: 

1. It is of order 32, 
2. the coefficients of each expression ak+j (j = 0 . . . . .  31) are polynomials of 

degree 5, 
3. those polynomials are nonsparse with coefficients that are typically 20-digit 

integers with maximum 11235463054441863110400, 
4. expanding the recurrence equation yields 192 summands. 

This example shows that even for small degree the complexity of the resulting 
differential and recurrence equations can be extremely high, and moreover that in 
order to use the recurrence equation many initial values may be needed. 

D. V. and G. V. Chudnovsky point out that their algorithm requires only O ( M )  

field operations if M is the order of the number of series terms considered. The above 
example shows, however, that in practical situations the computing overhead given 
by the conversion of y(x)  into the corresponding (nonsparse) recurrence equation 
cannot be neglected even for sparsely given algebraic functions, and the computing 
time and memory requirements can be tremendous even for small M despite the 
given complexity order. 
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