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Abstract

We present a second proof of an interesting binomial coefficient
identity which 1s computer assisted, together with two related
generalised results also generated computationally.

Introduction

1

Consider the binomial coefficient sum 16" zio 4’“(1%) (72) (2;2_’2) In [1]
some powerful results concerning Dixon type sums and formulas—drawn

together by Larsen [2, Chapter 9]—have been applied to this sum to pro-

duce the closed form (4n + 1)(2:)2. In this paper we present a computer
assisted proof which is not without an element or two of interest, and which
demonstrates the power of this type of modern day proof construction. This
leads naturally on to two generalised identities (i.e., hypergeometric evalu-
ations) which recover the closed form of the sum (one result evaluates the



sum as it stands, and the other the sum with the order of its terms reversed).

We first wish to convert the sum to hypergeometric form. Writing it as
16" Zio s(k;n), we see that [1, (4), p.4] the summand is expressible as
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Alternatively, by replacing the binomial coefficients by factorials (resp.
Gamma terms) and cancelling factorials whose arguments differ by an in-
teger, this ratio can be computed algorithmically (see Koepf [3, Algorithm
2.1, p.15]). The denominator factor k is clearly a problem, added to which
the hypergeometric multiplier is s(0;n) = 2[2n — 1], /(2n)! which is zero
except at n = 0. A slight change of approach is, therefore, required at this
initial stage. The identity in question holds identically for n = 0 (both
Lh.s. and r.h.s. being 1). Since, for n > 1,

Zs(k’;n) = S(O;n)—i—ZS(k’;n)



= Zs(k;n), (3)

we prove an equivalent version of the identity which involves what may be
described as the ‘natural bounds’ of the sum:

Theorem For integer n > 1,

S(n):16”§4’“< ) ( _k% ) ( 2;2_"7k ) = (dn+1) ( 2: )2.

T

The Proof

Conversion of the sum S(n) is now straightforward, an easy hand calcula-
tion yielding (we now consider instead ZZT; s(k;n) = ZZZ# stk + 1;n),
with term ratio s(k + 2;n)/s(k + 1;n) available directly from (2) and mul-

tiplier s(1;n) = 2n)
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whose evaluation we wish to secure. Zeilberger’s algorithm® generates a
recurrence equation for S(n) which takes the form

0= fi(n)S(n) = f2(n)S(n + 1) + fs(n)S(n +2). (P2)
where
fi(n) = 256(24n? 4+ 72n + 53)n*(2n + 1),
fo(n) = 4(768n° + 4608n° 4 11872n"
+16768n” 4 13216n% 4 5184n + 729),
fa(n) = (24n® +24n 4 5)(n + 2)%(2n + 3)%. (P3)

Since (P2) is not first order, we use an algorithm due to van Hoeij to
detect any hypergeometric term solutions. The routine gives a completely
automated means to determine whether or not S(n) is a linear combination
of hypergeometric terms,? and duly produces the answer

S(n) = As1(n) + Bsa(n), (P4)

Tmplemented through the software package “hsum9.mpl” of the author W.A.K., and
accessible at http://www.mathematik.uni-kassel.de/~koepf/Publikationen.

2Whilst Petkovsek formulated an algorithm in the early 1990s to deal with such an
issue [4], its inefficiency subsequently led van Hoeij [5] to develop an improved version
which is presently embedded in the Maple 10 command “LREtools/hypergeomsols”.



where

si1(n) = 16%1—471)%,
sa(n) = 16”(1+4n)rz(+!—;%). (P5)

Noting that I'(n + $) = 47"/7(2n)!/n!, it remains but to firstly evaluate
(P4) at n = 1 which gives—with s1(1) = —48/T%(2) = —192/7, s5(1) =
80I'?(2) = 207 and S(1) = 16[s(1;1) + s(2;1)] = 16[2 — 2] = 20—the

equation

20 = (—192/m)A + (207) B, (P6)
and then at n = 2 which generates in the same way the equation
324 = (—28672/97) A + (3247)B. (P7)

The solution to (P6),(P7) by inspection is A = 0, B = 1/#,% whence to
complete the proof we have simply that, from (P4) and (P5)

S(n) = %sz(n)
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as required.O

Generalised Results

We have, from (P1),(P8), established the hypergeometric evaluation
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which we note 1s a particular instance of the more general result
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30f course any two values of n > 1 will produce simultaneous equations in the un-
knowns A, B; the interested reader might care to check that, for example, n = 3,4 lead to
5200 = (—11534336/2257) A+(52007) B and 83300 = (—201326592/2457) A+(833007) B,
resp.




found by a repeat, and computationally non-trivial, application of the van
Hoeij algorithm (the r.h.s. here involves the rising factorial function (u)g =
w(u+ 1) (u+2)(u+3)- - (u+ k — 1))—setting @« = ¢ = 0 reduces (5) to

simply
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since I'(n+ %) = /7(3),, and equation (4) is now immediate from (3),, =

4=7(2n)!/nl.

That the evaluation of a generalised version of the 3F5(1) in (4) exists is not
surprising since the latter is ‘close’ to being dealt with by either Watson’s
or Whipple’s Theorem [6, (2.3.3.13),(2.3.3.14), p.54]. Alternatively, we can
obtain the evaluation of S(n) as a specialisation of the new identity
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which, for a =1 — 2n, ¢ = —2n, yields
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We then see that, on reversing the order of summation in S(n),

S(n) = wé?zﬁ( }{; ) ( —k% ) ( 2 )
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)
by (8). The identity (7), like (5), was also revealed by an implementation
of the van Hoeij algorithm.

1 (4n)1? (1 — 2n,—2n,—2n
= - EY
5—2n,1—4n

Remark 1 As a minor point of interest, equating S(n) in each of (P1) and
the penultimate line of (10) gives a 3F2(1) transformation which is in fact
available by other means independently (reader exercise).

Remark 2 Note that both generalisations (5) and (7) turn out to be special
cases of a very general Watson type summation formula due to Lewanowicz
[7] who evaluates the sum

a, b, c
F o 1 11
32<§(a+b+i+1),2c+j‘ ) (1)

for integer values i,j (fixed j, arbitrary i—the classic Watson summation
formula is delivered by setting ¢ = j = 0); our identities (5),(7) are each
intances of the particular values i = j = 1. Whereas the above sum (11)
can be written in general as a linear combination of hypergeometric terms,
in establishing a closed form for S(n) we see that only one hypergeometric
term survives.
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