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for finding the differential equations satisfied by holonomic functions were given, in
this paper we deal with the space of théolonomic functions which are the solutions

of linear ¢g-differential equations with polynomial coefficients. The sum, product and
the composition with power functions gfholonomic functions are alspholonomic

and the resulting-differential equations can be computed algorithmically.
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1 Preliminaries

The purpose of this paper is to continue the research exposed in [7] and [8]. There, the
authors discussetblonomic functions which are the solutions of homogeneous linear
differential equations with polynomial coefficients.

In the present investigation, we consider a similar problem from the point of view
of ¢g-calculus. As general references fpralculus see [2] and [4]. We begin with a
few definitions.

Letq # 1. Theg-complex numbefa], is given by

_ =4
-1

[alq : , acC.
Of course

limfaly =a.
q—1

Theg-factorial of a positive integdin], and theg-binomial coefficient are defined by

n

Ohti= 1, Bt = bl = e [} = et



The ¢g-Pochammer symbol is given as
(a;q)o =1,
(CI/; Q)k = (1 - 0,)(1 - aQ)(l - Clq2) e (1 - aqk71)7 k = 17 27 cee
(a;¢)oc = lim (1 —a)(l —ag)(1 — ag®) -+ (1 —ag*™")

and (@:q)
a;4)oco
a; Q)N = ———— ql <1, A€ C).
GOr= v (4 )
Theg-derivative of a functionf(z) is defined by
x) — f(qx .
D, ()= LI () pLg) = tm D), @
r —qr x—0
and higher ordeg-derivatives are defined recursively
DYf:=f, Dif:=D,Dl'f n=123,... 2)

Of course, iff is differentiable atr, then

lim D, f(z) = f'() .

q—>

The next four lemmas are well-known jacalculus and their proofs can be seen,
for example, in [3] or [4].
Lemma 1.1. For an arbitrary pair of functionsu(z) and v(x) and constants., 5 €
C andgq # 1, we have linearity and product rules
D, (au(m) + ﬁv(m)) = aDgu(x) + fDgv(z),
Dy (u(x) - v(x)) = u(qz) Dyv(x) + v(z) Dgu(x)
= u(z)Dgv(z) + v(gx)Dyu(z) .

Lemma 1.2. The Leibniz rule for the higher orderderivatives of a product of func-
tions is given as

Dy (u(z) -v(z)) = Z

k=0

i m qu*ku(qu) DEo(a).

Lemma 1.3. For an arbitrary functionu(z) and fort(z) = cz* (c,k € C, ¢* # 1)
we have for the composition witkw)

Dy(uot)(z) = Dgru(t) - Dyt(x).

Lemma 1.4. The values of the function for the shifted argument and for higher
derivatives are connected by the two relations:

flare) = So-0ta-af )] ot Db, ©
k=0 q

W) 1 RN G O,

Pif) = (= g D i . @



For our further work, it is useful to write the product rule in slightly different form.
Lemma 1.5. The product rule for th@-derivative can be written in the form
Dy (u(z) - v(2)) = u(2)Dgv(w) + v(z)Dgu(z) — (1 — g)zDgu(z) Dgv(z) . (5)
In the same manner, higherderivatives can be expressed by
D! (u(z) -v(@)) = 3° 3" (@) Dhu(x) Dliv(x)
v=0 u=0
whereq,,,(x) are appropriate polynomials.
Let us finally recall that the-hypergeometric series is given by ([2], [6])

1,02, ...,0 = H;:l (aj; q) zk k(%) e
7‘¢s ( an> = S (_1) q\? .
bl,bg,.‘.,bs k’Z:OHjZI (bj,q) ; ( )

k
k (qa q)k

2 On ¢-holonomic functions

For every functionf(x) which is a solution of golynomial homogeneous linear g-
differential equation

> k(@) DEf(x) =0 (5 #0)  (bx €K(q)[z], n €N) (6)
k=0

we say thatf(z) is a g-holonomic function. The smallest such is called the
holonomic order of f(x). HereK is a field, typicallyK = Q(a,a2,...) or K =
C(ay,as9,...) whereay, aq, ... denote some parameters. An equation of type (6) is
calleda ¢g-holonomic equation

Example 2.1. Since

s—1

Dyz® = [s]yx (z,a, s € R),

we have
f@) =2 = aDgf(x) = [slgf(z) =0,
or
(g—=1)zDef(z) —(¢" = 1) f(zx) =0,
i.e. the power function is (for intege) a g-holonomic function of first order.
Example 2.2. For0 < |¢| < 1, A € R, z # 0,1, we have

—[Mg

1—=x

Dy((z59)2) = —[Ng (g5 q)a1 =

(T5q)x -

Hence

f@)=(@ix = (#-1)Def(x) = [Mgf(z) =0



or
(¢=1) (z = 1) Dyf(x) = (¢* =1) f(z) = 0.
Therefore the;-Pochhammer symbol is (for integg) alsog-holonomic of first order.
Similarly, from

1 1
1—ql—=x

Dy ((739)00) = —(1 = @) M (g25q) 0 = (23 4) oo,

we get
1
f@)=(219)c = (1—2)Dgf(z)+ mf(x) =0.
Example 2.3.The smallg-exponential function
0 > 1
eq(z) = 100 ( B ‘q,x) :Z%x", lz] <1,0<|q| <1,

= (G0)n

hasg-derivative

Dyeq(x) = —eq(x; — qu(qx)

=qux(2(.1 RN <qw>”)

i.e. the small-exponential function ig-holonomic of first order:

f(@) = eg@) = (1 q)Dyf(2) — f(x) =0.

Note that this)-differential equation as well the resultigedifferential equations of the

next four examples and similar ones can be obtained completely automatically by the
gsumdiffeq command of the Maple packaggsum by Boing and Koepf [1]. The
above equation, e.g., is obtained using the command

gsumdiffeq(1/gpochhammer(q,q,n)*x"n,q,n,f(x))}



Example 2.4.The bigg-exponential function

< 4(3)
wee) = A, o<l <

n=0

Ey(x) = o¢o ( -

hasqg-derivative

45 < 4(3)
DyEq(z) = . jqz <Z (q. " — Z (Q (qz)" > = 1%11 Eq(qu).

(¢ 0)n = (G 0)n

which can obtained be in a similar way as in Example 2.3. Since

flgz) = f(x) = (1 = q)z(Dyf)(),

we conclude that the bigrexponential function is als¢-holonomic of first order:
f(x) =Eq(z) = (1—q)(z+1)Dgf(x) - f(x) =0.

Example 2.5.For0 < |g| < 1, g-sine and;-cosine functions

sin. () = eq(ix) - eq . ( p2ntl
o) Z QaQ)Qn-H

_ eqiz) +€q — (- DA
Cosq(m) B Z q’ q)2n

satisfy
(1)’ Dy f(z) + f(z) =
and are thereforg-holonomic of second order.

Example 2.6.The g-hypergeometric seriesp, is g-holonomic. Theqsumdiffeq
command computes in particular for
.

F(w) = 261 ( “

the g-holonomic equation

0 = (wzabg—c)z(q—1)> D} f(x)
+(—zb—za+ 1+ zabg — c+ zab)(q¢ — 1)D, f(2)
+(-1+a)(—14b)f(z) .

Example 2.7Many g-orthogonal polynomials argholonomic. The Bigj-Jacobi poly-
nomials (see e.qg. [5], 3.5) are given by
q, (1) .

n+1

—n

, abg
aq, cq

, T

f(x) = Py(z;0,b,¢;q) = 362 ( 1

5



They satisfy thei-holonomic equation

0 = g¢"a(bgz —c)(q — 1)*(1 — gqz) D} f(x)
+(g—1)(abg" M +abg* T r+2—q"a—q"c—abg" Tz —abg" T*x+q"ac) D, f(z)
+(¢" = 1)(abg" ™ — 1) f(x)

which is again easily determined by thsumdiffeq command.

The following lemma will be the crucial tool for the investigations of the next section.

Lemma 2.1. If f(z) is a function satisfying a holonomic equation (6) of ordethen
the functionsD!, f(z) (I = n,n + 1,...) can be expressed as

ZP(” 7)

wherep(”( ) are rational functions defined by

6kl; 0<li<n-1,
Dy _ Pr () I—n
pk (I) pn(x)7
P (qw) + Dapll V(@) + 9 (q2)pl (). 1>,

for0 < k < n —1and0 for otherk’s.

Proof. The representations (7) and the corresponding coefficients are evident by Equa-
tion (6) forl = 0,1,...,n. By ¢g-deriving and using Lemma 1.1, from

an Zpk (z)

we get
n—1
Dn+1f Z Dq (”) f(l’))
Z v (qx) DET f(x) +ZD " (x)) Dk f(z)

= Z P (qx) + Dy (0 (@) DE () + i (@) DI f ()

Zp;”+l><x>D§f<x>,
k=0



with
py (@) = pi (qx) + Depl” () + p{ (q)piP (@) (0<k <n—1).

Repeating the procedure, we get the representation and coefficients for atbitrary

%

We finish this section by noting that there are functions which arg+maionomic.
Lemma 2.2. The exponential functiofi(z) = a® (a > 0,a # 1) is notg-holonomic.

Proof. Taking successivg-derivatives off () := a® generates iteratively the functions
of the listL := {a”, a‘”’,aq?x, ...}. Since the members df are linearly independent

overK(q)[z], the linear space ov&(q)[x] generated by has infinite dimension. This

is equivalent to the fact that there is gdnolonomic equation fof (z). ¢

3 Operations with g-holonomic functions

In this section, we will formulate and prove a few theorems alelblonomic func-
tions provided by derivation, addition or multiplication of the giveholonomic func-
tions.

Theorem 3.1. If f(z) is ag-holonomic function of orden, then the functioh,,, (x) =
Dy f(x) is ag-holonomic function of order at mostfor everym € N. Furthermore,
there is an algorithm to compute the correspondjrdifferential equation.

Proof. If we prove the statement for. = 1, the final conclusion follows by mathemat-
ical induction.

Let h(z) = Dgyf(x), where the functiory(z) satisfies (6). Ifpo(x) = 0, then
immediatelyh(x) is ag-holonomic function of orden — 1.

Hence, letpy(z) # 0. Then, by Lemma 2.1, we have

n—1

=Y n @D} f (),
k=0

wherefrom
Fla) = — (Dgﬂx)—ipg")(xwi;f(m))
Py ()
) _
_ Dn 1h (n)l .
pé")(w)( kz:: Su@pinia)



Also, by g-deriving, we get

Dy h(x)
D71+1f Z (Tl+1) ( )
(W+1) Z (’"-‘rl) Dk lh( )
(n+1) n—2 n—2
Py (x) n
= O(T< Zkarl )) + ZpI(CJIl)(x)D(’;h(J;).
20) ( ) k=0
Hence,
n—1
Dyh(z) =Y Pe(a;h) DEh(z)
k=0
where
(n+1)
n P () (n
Pila;h) = pih V(@) = o= pl (@), k=010 -2,
Py (2)
(n+1)
P i(z;h) = %T()~
py ()
By multiplying with the common denominator of the rational functi¢i (z; k), k =
0,1,...,n — 1}, we can conclude thét(z) satisfies the equation

Zﬁ’k(x; h) Dgh(x) =0,
k=0

i.e it is ag-holonomic function of ordex n. $
Example 3.1.In Example 2.2, for thg-Pochhammer symbol we proved that it satisfies

f@) = @as = (0 =0)Duf(e)+ o) =

Now, we have
han(z) = DI (21 9)) = (1—qu)thm(x)+1L_qhm(x) =0 (meNy).

Theorem 3.2. If u(z) and v(z) are g-holonomic functions of order andm re-
spectively, then the functiong(z) + v(z) are g-holonomic functions of order at most
m+n and there is an algorithm to compute the correspondiifferential equations.

Proof. If u(z) andv(z) areg-holonomic functions of ordet andm respectively, they
satisfy holonomic equations

> Bk(@) Dyu(e) =0, > 7(x) Dj(x) =0, 8)
k=0 j



wherep;,(z) and7;(z) are polynomials ang,, # 0, 7,, # 0. According to Lemma
2.1,D}u(x) and D! v(x) can be represented as

m—1

235” Dlu(z) = > i(x) Djv(z),  (9)

Jj=0

Wherep(l (x) and J(”(x) are rational functions as mentioned lemma.
Let h(z) = u(x) + v(x). Then, according to (9), we have

n—1 m—1
Déh(x) = Zp,(cl)(x) D(’ju(sr) + r?(x) ng(x) , 1=0,1,...,m+mn. (10)
k=0 =0
Taking the values fot = 0,1,...,m + n — 1 in the above identities and expressing

g-derivatives ofu(x) andv(x) by g-derivatives ofh(x), we get

m—+n—1
Diu(z) = > a(z) Dia(x), k=0,1,....n—1,
1=0
] m+n—1
Div(z) = Z b;-l)(sc)Dflh(sc), j=0,1,....m—1.

=0

By eliminatingDfu(x) (k =0,1,...,n—1) andDJv(z) (j = 0,1,...,m—1) from
the last identity! = m + n) of (10), we get

m—+n—1

D h(z) = Y a(x)Dih(x),

=0

where ) )
l l l l
=> @ @) + 3 rP @ ()
k=0 7=0

By multiplying with the common denominator ¢é;(x), I =0,1,...m+n— 1}, we
get the holonomic equation fé(x)

m—+n

Z El(sc)Df]h(x) =0.

=0

This proves that the-holonomic order ofi(z) +v(x) is at mostn —+n, but can be less.
An iterative version of the given algorithm will determine tpéolonomic equation of
lowest order foru(z) + v(z). &

Note that the algorithm given in Theorem 3.2 findg-differential equation which

is not only valid foru(z)+wv(x), but also for every linear combinatioqu(x)+Az2v(x),
in particular foru(z) — v(x).



Example 3.2.The smallg-exponential function from Example 2.3 gsholonomic of
first order and satisfies

u(z) = eq(z) = Dgu(m) = u(z) (k=0,1,...).

Also, theg-sine from Example 2.5 ig-holonomic of second order and satisfies

ﬁDSv(x) (k=0,1,...).

Now, by the algorithm given in the proof of Theorem 3.2, the functién) = u(z) +
v(x) satisfies

v(x) = sing(z) = D§+2v(x) =

1, 1 1

3 —
D h(x) =
i.e., it isg-holonomic of third order.

Theorem 3.3.If u(z) and v(z) areg-holonomic functions of ordet andm respec-
tively, then the function(x) - v(z) is g-holonomic of order at mostn - n and there is
an algorithm to compute the correspondigqglifferential equation.

Proof. If u(z) andv(z) areg-holonomic functions of ordet andm respectively, they
satisfy holonomic equations (8), and theiderivatives (9).
Let h(z) = u(x) - v(x). Then, according to (1.5), we have

Dlih(z) = ZZO‘W ) Difv(z)

v=0 pu=0
l l m—1
= Y Y e (me su(@)) (Y r (@) Djp(a)).
v=0 pu=0 7=0
ie.
n—1m-—1
Z Z ﬁ(l) flv(x) (1=0,1,...,mn), (12)
k=0 7=0
where

ZZO‘VN (M)( ).

v=0 pu=0
Taking the relations for (11) fdr=0,1,...,mn — 1 and expressing thgderivatives
Dku(z)DJv(x) by g-derivatives ofi(x), we get

mn—1

D(’;u(m)ng(Jc) = Z yl(clj)(sc) Dflh(sc) 0<k<n—-10<j<m-—1).

10



Eliminating all thoseD¥u(z)DJv(x) from the last identity! = mn) of (11), it be-
comes

mn—1

D*"h(z) = Y oy(x)Dih(x) |

=0
where

n—1m-—1

-5 5 dento

k=0 j=0
By multiplying with the common denominator ¢&;(z),l = 0,1,...mn— 1}, we get
the g-holonomic equation foh(z)

mn

> &(z)Dih(z) = 0.

=0

This proves that thg-holonomic order olu(x) - v(x) is at mostmn, but can be less.
An iterative version of the given algorithm will determine t@olonomic equation of
lowest order for(z) - v(x). &

Note furthermore that by Lemma 2.2 there is no similar algorithm for the quotient
u(zx)/v(x).
Example 3.3.We use again(z) = e,(z) andv(z) = sin,(z). Now, by the given
algorithm the functiorh(z) = u(z) - v(z) satisfies

(1 —q)*Dih(z) — (1 — ¢*) Dgh(z) + (q2* — (1 + ¢)(x — 1)) h(z) = 0,
i.e., itisg-holonomic of second order.

Theorem 3.4.1f u(x) is ag-holonomic function of order, then the functionw(z) =
u(z”) (v € N) is ag-holonomic function of order at mostand there is an algorithm
to compute the correspondingdifferential equation.

Proof. By assumptionu(t) satisfies a-holonomic equation
> Br(t) Dru(t) =0, (12)
k=0

wherepy (t) are polynomials ang,, # 0. Then, by Lemma 2.1Déu(t) can be repre-
sented as

n—1

=" p(t) Dru(t) (13)
k=0

wherep( )( t) are rational functions determined by that lemma.
Lett = 2. Using Lemma 1.3, we have

Dyu(z) = Dy u(t) Dy(a”y = "D =8I vt

(1—g)t

11



According to (4), we get

x) = Zej,y(x)D u(t
j=1

where

J

eju(x) = (=171 (1 —¢)’ ! mq @il =19,

By (13), we can write

:Zejl/ ZP(J) Zf )
j=1

where

1 o
,5,3( ) = Zp,(gj)(az Yeju(x), k=0,1,...,n—1.
i=1

Furthermore,

= i Dy (f2) () DEu(t))

As before, the second sum in the above term can be transformed to

n—1 n—1 v
> i a)Dy(Diu()) = 37 £8)(a0) Y e (2) DI (Diul?)
i=0 i=0 j=1

n—1 v

= Z Z qa: € )Dflﬂu(t)

=1 j=1

n—1 v n—1

= ZZfz( (qx) e], ZP HJ)

i=1 j=1
Hence,
n—1
2
) =Y [ (@) DEu(t),
k=0

where

n—1 v

)

u(t)

f1523(x) (1) —I—ZZ W (gz)e;j . (x)p Ejﬂ)(aj”), k=0,1,...

=0 j=1

12
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(14)

(15)



By induction, we obtain the representations

§:<” u(t), 1=0,1,2,....n (16)

k=0

wheref(o)( ) = dko, (1)( ) is given in (15) and

n—1 v
(@) = Dafi, )+ 303 £ e @p @) . an
=0 j=1

Taking the firstn of the identities (16), we can determine
§:ww k=0,1,...,n—1,

Wherebl(ff,)(z) are rational functions. Substituting this in identity (16), we get

n—1 n—1

n l k
Dyw(a) =Y fil)(x) Y b1 ch
k=0 1=0
where »
a, V Z f 7) b(k)
By multiplying with the common denominator ¢t; ,(z), | = 0,1,...,n — 1}, we
obtain

ZEZ7V($)Déw(x) =0. ¢
=0
Example 3.4. In Example 2.1, it was proved that

u(z) =2° = (¢—1)zDgu(z) — (¢°* — 1) u(z) =0.

Hencen = 1, pi1(x) = (¢ — 1)z andpp(x) = —(¢° — 1). By the procedure of
Theorem 3.4, we get fap(z) = u(z)”
D ) Wy -1 1
() = f5,()w(x) where o, (T) = -1 o

Finally,
w(z) =u(z”) = (¢—1)zDyw(z) — (¢* — 1) w(z) = 0.

Example 3.5. In Example 2.2, it was proved that

u(z) = (z:9)x = (¢ 1) (x = 1)Dgu(z) — (¢* = 1) u(z) = 0.

13



Using our algorithm we get fan(x) = u(z?) = (22; ¢)» theg-holonomic equation
(q=1D)(x—1)(z+1)(2%g~1) Dyw(z) — a(q* — 1)(®** — g~ 1+2%) f(z) =0

and similar, but more complicated, equations(fef; ¢), for higherv € N.
Example 3.6.In Example 2.5, for the-sine function, we got

u(z) =sing(z) = (1 - q)2D§u(:c) + u(z) = 0.
Now, forw(z) = u(x?), we have

Dyw(z) = f§ (x)u(t) + {5 (z) Dyu(t),

with .
i@ =1 A3 =0+ae
and
D2w(z) = [ (x)u(t) + f{3 (@) Dyu(t),
with ( )2( ) > 8 4)
T)(—2—q— T
@) =14 a g q)Z a
@, (1+q)(1—qg+¢*(1+q¢*)a?)
1,2 (v) = 1—¢ .

By eliminatingD,u(t), we get
D?Iw(x) = ¢cg2(z)w(x) + c1,2(x) Dyw(z),

wherefrom we get for the functiom(z) = u(x?) the following equation

142 1—¢* ¢
zD>w(z —(1+q27x4)D w(x —l—qu( -+ T )wx = 0.
q () 17q q () (17(1)5 (17(])2 ()

4 Sharpness of the algorithms

In the previous section we proved that the sum, product and composition with powers
of g-holonomic functions are-holonomic too. In this section we show that the given
bounds for the orders are sharp in all algorithms considered.

Example 4.1. The functionsu(z) = 22 andv(x) = 2 areq-holonomic of first order.
According to Theorem 3.2, the functidrix) = u(z) + v(z) is ¢g-holonomic of order

at most two. However, all polynomials ayeholonomic functions of first order, and we
find thath(x) satisfies the equation

2(1+ ) Dgh(z) = ([2]¢ + [Blgz)h(z) = 0.

This example shows that the order of the sum of sgrhelonomic functions can
be strictly less than the sum of their orders. This applies if the two functiansand
v(x) are linearly dependent ov&t(q)(x).

However, we will prove that for every algorithm given in the previous section there
are functions for which the maximal order is attained.

14



Lemma 4.1. The functionsE, (z*) (1 = 1,2,...,n) are linearly independent over
K(g)(2).

Proof. Let us consider a linear combination
11 By (x) + 2By (2®) + - + 10 By (a™) = 0,

wherer, = r,(z) (. = 1,2,...,n) are rational functions and suppose that# 0.
Then,

ryBg(at) = — Z ruEq(a)
pn=0

v

ie.,
- Ty Eq(ah)
B = L (18)
; Ty Eq(fﬂ”)
n#Ev
Since
m o g(5)
Z (q 2) (xh)"
— \454)n
A(m) = liIn n=0 _ _ hm xm(p,fy) _ { —I—OO, M > v,
T—00 i q(z) ( u)n T—00 0 , I < v,
T
we have

E H
o) _ i A(m>{ ooz

This is a contradiction with (18). Hence, it follows that=0forall p =1,2,...,n,
i.e. E (") (u=1,2,...,n) are linearly independent ov&(q)[z]. ¢

Lemma 4.2. The function

Fo(z) = Z Eq(z") (19)

is g-holonomic of ordenmn.

Proof. The functionE, (z) satisfies thg-holonomic equation of first order (see Exam-
ple 2.4)
(L=q)t+1)Dgf(t) - f(t) =0.

With respect to Theorem 3.4, for eaghe N, the functionE, (z") is g-holonomic of
first order and one has

DL (Ey(a™)) = f§) (@) By(z"), 1=0,1,..., (20)

whereféfl(a:) are rational functions given as in (17).

15



According to Theorem 3.2, the functidn, (z) is g-holonomic of order at most.
Therefore

DLF,(x) =Y DL (Ey(a#) =Y £ (2)Ey(a") .
pn=1 p=1
Let us suppose that the functidf, (z) satisfies a-holonomic equation of order:,
i.e.

m—1
D' F(z) + > A;DjF,(x) =0. (21)
=0

This equation can be represented in the form
n m—1 )
SO0 @)+ D AfE (@) ) Byla*) = 0.
pn=1 =0
SinceE,(z") (1 =1,2,...,n) are linearly independent ov&(q)|x], it follows that

m—1

o) (@) + > Af@)=0, p=12...n.
i=0

This can be written in the form of the system of equations

m—1
=0

with unknown rational functionsl; = A;(z).
If m < n, then the system is overdetermined and has no solution. Hence it follows
thatm = n. §

Theorem 4.3. For eachn € N there is a functiont” which isg-holonomic of ordem,
such thatd = Dy F is g-holonomic of order.

Proof. The function defined by (19) satisfies the statemént.

Theorem 4.4. For eachn, m € N there are functiong/ and V' that are¢-holonomic
of ordern andm respectively, such thaf = U + V is ¢g-holonomic of orden + m.

Proof. Consider the functions

n n+m
U)=)Y Eyz*) and V()= Y  E,(a"). (22)
p=1 p=n-+1

According to Lemma 4.2, they areholonomic of ordern andm respectively, and the
function

n+m

H(z) =U(z) +V(z) = Y Ey(a")
pn=1
is g-holonomic of orden + m. ¢
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Theorem 4.5. For eachn, m € N there are functiong/ and V' that areg-holonomic
of ordern andm respectively, such thaf = U - V is ¢g-holonomic of order - m.

Proof. The statement is valid for the functions defined by (22), because in the function

n  n+m
H(z)=U(x)-V(z) =) > Eya")Ey(z")
p=1lv=n+1
there arenm linearly independent summands (z*)E,(z”) (p=1,2,...,n; v =

n+1,n+2,...,n+m)overK(q)z]. The proof of their independence is again based
on Lemma 4.1)

Theorem 4.6. For eachn € N there is a functiont” which isg-holonomic of ordem,
such thatiW (x) = F'(z") is g-holonomic of order.

Proof. Starting from the functior¥, (z) defined by (19), we can form
W(x) = Fp(a”) = Y By (@)
p=1

which is of the same type &8, (z). ¢
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