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1 Preliminaries

The purpose of this paper is to continue the research exposed in [7] and [8]. There, the
authors discussedholonomic functions which are the solutions of homogeneous linear
differential equations with polynomial coefficients.

In the present investigation, we consider a similar problem from the point of view
of q-calculus. As general references forq-calculus see [2] and [4]. We begin with a
few definitions.

Let q 6= 1. Theq-complex number[a]q is given by

[a]q :=
1− qa

1− q
, a ∈ C.

Of course
lim
q→1

[a]q = a .

Theq-factorial of a positive integer[n]q and theq-binomial coefficient are defined by

[0]q! := 1, [n]q! := [n]q[n− 1]q · · · [1]q,
[
n

k

]
q

=
[n]q!

[k]q![n− k]q!
.
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Theq-Pochammer symbol is given as

(a; q)0 = 1 ,

(a; q)k = (1− a)(1− aq)(1− aq2) · · · (1− aqk−1), k = 1, 2, . . . ,

(a; q)∞ = lim
k→∞

(1− a)(1− aq)(1− aq2) · · · (1− aqk−1)

and

(a; q)λ =
(a; q)∞

(aqλ; q)∞
(|q| < 1, λ ∈ C).

Theq-derivative of a functionf(x) is defined by

Dqf(x) :=
f(x)− f(qx)

x− qx
(x 6= 0), Dqf(0) := lim

x→0
Dqf(x), (1)

and higher orderq-derivatives are defined recursively

D0
qf := f, Dn

q f := DqD
n−1
q f, n = 1, 2, 3, . . . . (2)

Of course, iff is differentiable atx, then

lim
q→1

Dqf(x) = f ′(x) .

The next four lemmas are well-known inq-calculus and their proofs can be seen,
for example, in [3] or [4].

Lemma 1.1. For an arbitrary pair of functionsu(x) and v(x) and constantsα, β ∈
C andq 6= 1, we have linearity and product rules

Dq

(
αu(x) + βv(x)

)
= αDqu(x) + βDqv(x),

Dq

(
u(x) · v(x)

)
= u(qx)Dqv(x) + v(x)Dqu(x)
= u(x)Dqv(x) + v(qx)Dqu(x) .

Lemma 1.2. The Leibniz rule for the higher orderq-derivatives of a product of func-
tions is given as

Dn
q

(
u(x) · v(x)

)
=

n∑
k=0

[
n

k

]
q

Dn−k
q u(qkx) Dk

q v(x).

Lemma 1.3. For an arbitrary functionu(x) and for t(x) = cxk (c, k ∈ C, qk 6= 1)
we have for the composition witht(x)

Dq(u ◦ t)(x) = Dqku(t) ·Dqt(x).

Lemma 1.4. The values of the function for the shifted argument and for higherq-
derivatives are connected by the two relations:

f(qnx) =
n∑

k=0

(−1)k(1− q)k

[
n

k

]
q

q(
k
2)xk Dk

q f(x), (3)

Dn
q f(x) =

1
(1− q)nxn

n∑
k=0

(−1)k

[
n

k

]
q

q(
k
2)−(n−1)kf(qkx). (4)
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For our further work, it is useful to write the product rule in slightly different form.

Lemma 1.5. The product rule for theq-derivative can be written in the form

Dq

(
u(x) · v(x)

)
= u(x)Dqv(x) + v(x)Dqu(x)− (1− q)xDqu(x)Dqv(x) . (5)

In the same manner, higherq-derivatives can be expressed by

Dn
q

(
u(x) · v(x)

)
=

n∑
ν=0

n∑
µ=0

ανµ(x)Dν
q u(x)Dµ

q v(x) ,

whereανµ(x) are appropriate polynomials.

Let us finally recall that theq-hypergeometric series is given by ([2], [6])

rφs

(
a1, a2, . . . , ar

b1, b2, . . . , bs

∣∣∣∣ q, x) :=
∞∑

k=0

∏r
j=1 (aj ; q)k∏s
j=1 (bj ; q)k

xk

(q; q)k

(
(−1)k q(

k
2)
)1+s−r

.

2 On q-holonomic functions

For every functionf(x) which is a solution of apolynomial homogeneous linear q-
differential equation

n∑
k=0

p̃k(x) Dk
q f(x) = 0 (p̃n 6≡ 0) (p̃k ∈ K(q)[x], n ∈ N) (6)

we say thatf(x) is a q-holonomic function. The smallest suchn is called the
holonomic order of f(x). HereK is a field, typicallyK = Q(a1, a2, . . .) or K =
C(a1, a2, . . .) wherea1, a2, . . . denote some parameters. An equation of type (6) is
calleda q-holonomic equation.

Example 2.1. Since
Dqx

s = [s]q xs−1 (x, α, s ∈ R),

we have
f(x) = xs ⇒ xDqf(x)− [s]qf(x) = 0 ,

or
(q − 1) xDqf(x)− (qs − 1) f(x) = 0 ,

i.e. the power function is (for integers) a q-holonomic function of first order.

Example 2.2. For0 < |q| < 1, λ ∈ R, x 6= 0, 1, we have

Dq

(
(x; q)λ

)
= −[λ]q (qx; q)λ−1 =

−[λ]q
1− x

(x; q)λ .

Hence
f(x) = (x; q)λ ⇒ (x− 1)Dqf(x)− [λ]qf(x) = 0
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or
(q − 1) (x− 1) Dqf(x)− (qλ − 1) f(x) = 0 .

Therefore theq-Pochhammer symbol is (for integerλ) alsoq-holonomic of first order.
Similarly, from

Dq

(
(x; q)∞

)
= −(1− q)−1(qx; q)∞ = − 1

1− q

1
1− x

(x; q)∞,

we get

f(x) = (x; q)∞ ⇒ (1− x)Dqf(x) +
1

1− q
f(x) = 0.

Example 2.3.The smallq-exponential function

eq(x) = 1φ0

(
0
−

∣∣∣∣ q, x) =
∞∑

n=0

1
(q; q)n

xn , |x| < 1, 0 < |q| < 1 ,

hasq-derivative

Dqeq(x) =
eq(x)− eq(qx)

x− qx

=
1

x− qx

( ∞∑
n=0

1
(q; q)n

xn −
∞∑

n=0

1
(q; q)n

(qx)n

)

=
1

x− qx

∞∑
n=0

xn − (qx)n

(q; q)n

=
1

x− qx

{
x +

∞∑
n=2

1− qn

(1− q)(1− q2) · · · (1− qn−1)(1− qn)
xn

}

=
x

x− qx

{
1 +

∞∑
k=1

1
(1− q)(1− q2) · · · (1− qk)

xk

}

=
1

1− q
eq(x),

i.e. the smallq-exponential function isq-holonomic of first order:

f(x) = eq(x) ⇒ (1− q)Dqf(x)− f(x) = 0.

Note that thisq-differential equation as well the resultingq-differential equations of the
next four examples and similar ones can be obtained completely automatically by the
qsumdiffeq command of the Maple packageqsum by Böing and Koepf [1]. The
above equation, e.g., is obtained using the command

qsumdiffeq(1/qpochhammer(q,q,n)*xˆn,q,n,f(x))}
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Example 2.4.The bigq-exponential function

Eq(x) = 0φ0

(
−
−

∣∣∣∣ q,−x

)
=

∞∑
n=0

q(
n
2)

(q; q)n
xn , 0 < |q| < 1

hasq-derivative

DqEq(x) =
1

x− qx

( ∞∑
n=0

q(
n
2)

(q; q)n
xn −

∞∑
n=0

q(
n
2)

(q; q)n
(qx)n

)
=

1
1− q

Eq(qx).

which can obtained be in a similar way as in Example 2.3. Since

f(qx) = f(x)− (1− q)x(Dqf)(x),

we conclude that the bigq-exponential function is alsoq-holonomic of first order:

f(x) = Eq(x) ⇒ (1− q)(x + 1)Dqf(x)− f(x) = 0.

Example 2.5.For0 < |q| < 1, q-sine andq-cosine functions

sinq(x) =
eq(ix)− eq(−ix)

2i
=

∞∑
n=0

(−1)n

(q; q)2n+1
x2n+1 ,

cosq(x) =
eq(ix) + eq(−ix)

2
=

∞∑
n=0

(−1)n

(q; q)2n
x2n ,

satisfy
(1− q)2D2

qf(x) + f(x) = 0

and are thereforeq-holonomic of second order.

Example 2.6.The q-hypergeometric seriesrφs is q-holonomic. Theqsumdiffeq
command computes in particular for

f(x) = 2φ1

(
a, b
c

∣∣∣∣ q, x)
theq-holonomic equation

0 = (xabq − c)x(q − 1)2 D2
qf(x)

+(−xb− xa + 1 + xabq − c + xab)(q − 1)Dqf(x)
+(−1 + a)(−1 + b)f(x) .

Example 2.7Manyq-orthogonal polynomials areq-holonomic. The Bigq-Jacobi poly-
nomials (see e.g. [5], 3.5) are given by

f(x) = Pn(x; a, b, c; q) = 3φ2

(
q−n, abqn+1, x

aq, cq

∣∣∣∣ q, q) .
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They satisfy theq-holonomic equation

0 = qna(bqx− c)(q − 1)2(1− qx)D2
qf(x)

+(q−1)(abqn+1+abq2n+1x+x−qna−qnc−abqn+1x−abqn+2x+qn+1ac)Dqf(x)
+(qn − 1)(abqn+1 − 1)f(x)

which is again easily determined by theqsumdiffeq command.

The following lemma will be the crucial tool for the investigations of the next section.

Lemma 2.1. If f(x) is a function satisfying a holonomic equation (6) of ordern, then
the functionsDl

qf(x) (l = n, n + 1, . . .) can be expressed as

Dl
qf(x) =

n−1∑
k=0

p
(l)
k (x)Dk

q f(x), (7)

wherep
(l)
k (x) are rational functions defined by

p
(l)
k (x) =



δkl , 0 ≤ l < n− 1 ,

− p̃k(x)
p̃n(x)

, l = n

p
(l−1)
k−1 (qx) + Dqp

(l−1)
k (x) + p

(l−1)
n−1 (qx)p(n)

k (x) , l > n ,

for 0 ≤ k ≤ n− 1 and0 for otherk’s.

Proof. The representations (7) and the corresponding coefficients are evident by Equa-
tion (6) for l = 0, 1, . . . , n. By q-deriving and using Lemma 1.1, from

Dn
q f(x) =

n−1∑
k=0

p
(n)
k (x)Dk

q f(x)

we get

Dn+1
q f(x) =

n−1∑
k=0

Dq

(
p
(n)
k (x)Dk

q f(x)
)

=
n−1∑
k=0

p
(n)
k (qx)Dk+1

q f(x) +
n−1∑
k=0

Dq

(
p
(n)
k (x)

)
Dk

q f(x)

=
n−1∑
k=0

(
p
(n)
k−1(qx) + Dq

(
p
(n)
k (x)

)
Dk

q f(x)
)

+ p
(n)
n−1(x)Dn

q f(x)

=
n−1∑
k=0

p
(n+1)
k (x)Dk

q f(x),
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with

p
(n+1)
k (x) = p

(n)
k−1(qx) + Dqp

(n)
k (x) + p

(n)
n−1(qx)p(n)

k (x) (0 ≤ k ≤ n− 1).

Repeating the procedure, we get the representation and coefficients for arbitraryl > n.
♦
We finish this section by noting that there are functions which are notq-holonomic.

Lemma 2.2. The exponential functionf(x) = ax (a > 0, a 6= 1) is notq-holonomic.

Proof. Taking successiveq-derivatives off(x) := ax generates iteratively the functions
of the listL := {ax, aqx, aq2x, . . .}. Since the members ofL are linearly independent
overK(q)[x], the linear space overK(q)[x] generated byL has infinite dimension. This
is equivalent to the fact that there is noq-holonomic equation forf(x). ♦

3 Operations with q-holonomic functions

In this section, we will formulate and prove a few theorems aboutq-holonomic func-
tions provided by derivation, addition or multiplication of the givenq-holonomic func-
tions.

Theorem 3.1. If f(x) is aq-holonomic function of ordern, then the functionhm(x) =
Dm

q f(x) is a q-holonomic function of order at mostn for everym ∈ N. Furthermore,
there is an algorithm to compute the correspondingq-differential equation.

Proof. If we prove the statement form = 1, the final conclusion follows by mathemat-
ical induction.

Let h(x) = Dqf(x), where the functionf(x) satisfies (6). Ifp̃0(x) ≡ 0, then
immediatelyh(x) is aq-holonomic function of ordern− 1.

Hence, let̃p0(x) 6≡ 0. Then, by Lemma 2.1, we have

Dn
q f(x) =

n−1∑
k=0

p
(n)
k (x)Dk

q f(x) ,

wherefrom

f(x) =
1

p
(n)
0 (x)

(
Dn

q f(x)−
n−1∑
k=1

p
(n)
k (x)Dk

q f(x)
)

=
1

p
(n)
0 (x)

(
Dn−1

q h(x)−
n−2∑
k=0

p
(n)
k+1(x)Dk

q h(x)
)
.
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Also, byq-deriving, we get

Dn
q h(x)

= Dn+1
q f(x) =

n−1∑
k=0

p
(n+1)
k (x)Dk

q f(x)

= p
(n+1)
0 (x)f(x) +

n−1∑
k=1

p
(n+1)
k (x)Dk−1

q h(x)

=
p
(n+1)
0 (x)

p
(n)
0 (x)

(
Dn−1

q h(x)−
n−2∑
k=0

p
(n)
k+1(x)Dk

q h(x)
)

+
n−2∑
k=0

p
(n+1)
k+1 (x)Dk

q h(x).

Hence,

Dn
q h(x) =

n−1∑
k=0

Pk(x;h) Dk
q h(x) ,

where

Pk(x;h) = p
(n+1)
k+1 (x)− p

(n+1)
0 (x)

p
(n)
0 (x)

p
(n)
k+1(x) , k = 0, 1, . . . n− 2,

Pn−1(x;h) =
p
(n+1)
0 (x)

p
(n)
0 (x)

.

By multiplying with the common denominator of the rational functions{Pk(x;h), k =
0, 1, . . . , n− 1}, we can conclude thath(x) satisfies the equation

n∑
k=0

P̃k(x;h) Dk
q h(x) = 0 ,

i.e it is aq-holonomic function of order≤ n.♦
Example 3.1.In Example 2.2, for theq-Pochhammer symbol we proved that it satisfies

f(x) = (x; q)∞ ⇒ (1− x)Dqf(x) +
1

1− q
f(x) = 0.

Now, we have

hm(x) = Dm
q

(
(x; q)∞

)
⇒ (1−qmx)Dqhm(x)+

qm

1− q
hm(x) = 0 (m ∈ N0).

Theorem 3.2. If u(x) and v(x) are q-holonomic functions of ordern and m re-
spectively, then the functionsu(x) + v(x) are q-holonomic functions of order at most
m+n and there is an algorithm to compute the correspondingq-differential equations.

Proof. If u(x) andv(x) areq-holonomic functions of ordern andm respectively, they
satisfy holonomic equations

n∑
k=0

p̃k(x) Dk
q u(x) = 0 ,

m∑
j=0

r̃j(x) Dj
qv(x) = 0 , (8)
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wherep̃k(x) and r̃j(x) are polynomials and̃pn 6≡ 0, r̃m 6≡ 0. According to Lemma
2.1,Dl

qu(x) andDl
qv(x) can be represented as

Dl
qu(x) =

n−1∑
k=0

p
(l)
k (x) Dk

q u(x) , Dl
qv(x) =

m−1∑
j=0

r
(l)
j (x) Dj

qv(x) , (9)

wherep
(l)
k (x) andr

(l)
j (x) are rational functions as mentioned lemma.

Let h(x) = u(x) + v(x). Then, according to (9), we have

Dl
qh(x) =

n−1∑
k=0

p
(l)
k (x) Dk

q u(x) +
m−1∑
j=0

r
(l)
j (x) Dj

qv(x) , l = 0, 1, . . . ,m + n. (10)

Taking the values forl = 0, 1, . . . ,m + n − 1 in the above identities and expressing
q-derivatives ofu(x) andv(x) by q-derivatives ofh(x), we get

Dk
q u(x) =

m+n−1∑
l=0

a
(l)
k (x) Dl

qh(x) , k = 0, 1, . . . , n− 1 ,

Dj
qv(x) =

m+n−1∑
l=0

b
(l)
j (x) Dl

qh(x) , j = 0, 1, . . . ,m− 1 .

By eliminatingDk
q u(x) (k = 0, 1, . . . , n− 1) andDj

qv(x) (j = 0, 1, . . . ,m− 1) from
the last identity(l = m + n) of (10), we get

Dm+n
q h(x) =

m+n−1∑
l=0

cl(x)Dl
qh(x) ,

where

cl(x) =
n−1∑
k=0

p
(l)
k (x)a(l)

k (x) +
m−1∑
j=0

r
(l)
j (x)b(l)

j (x) .

By multiplying with the common denominator of{cl(x), l = 0, 1, . . . m + n− 1}, we
get the holonomic equation forh(x)

m+n∑
l=0

c̃l(x)Dl
qh(x) = 0 .

This proves that theq-holonomic order ofu(x)+v(x) is at mostm+n, but can be less.
An iterative version of the given algorithm will determine theq-holonomic equation of
lowest order foru(x) + v(x). ♦

Note that the algorithm given in Theorem 3.2 finds aq-differential equation which
is not only valid foru(x)+v(x), but also for every linear combinationλ1u(x)+λ2v(x),
in particular foru(x)− v(x).
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Example 3.2.The smallq-exponential function from Example 2.3 isq-holonomic of
first order and satisfies

u(x) = eq(x) ⇒ Dk
q u(x) =

1
(1− q)k

u(x) (k = 0, 1, . . .).

Also, theq-sine from Example 2.5 isq-holonomic of second order and satisfies

v(x) = sinq(x) ⇒ Dk+2
q v(x) =

−1
(1− q)2

Dk
q v(x) (k = 0, 1, . . .).

Now, by the algorithm given in the proof of Theorem 3.2, the functionh(x) = u(x) +
v(x) satisfies

D3
qh(x) =

1
1− q

D2
qh(x)− 1

(1− q)2
Dqh(x) +

1
(1− q)3

h(x).

i.e., it isq-holonomic of third order.

Theorem 3.3. If u(x) and v(x) areq-holonomic functions of ordern andm respec-
tively, then the functionu(x) · v(x) is q-holonomic of order at mostm · n and there is
an algorithm to compute the correspondingq-differential equation.

Proof. If u(x) andv(x) areq-holonomic functions of ordern andm respectively, they
satisfy holonomic equations (8), and theirq-derivatives (9).

Let h(x) = u(x) · v(x). Then, according to (1.5), we have

Dl
qh(x) =

l∑
ν=0

l∑
µ=0

ανµ(x)Dν
q u(x)Dµ

q v(x)

=
l∑

ν=0

l∑
µ=0

ανµ(x)
(n−1∑

k=0

p
(ν)
k (x) Dk

q u(x)
)(m−1∑

j=0

r
(µ)
j (x) Dj

qv(x)
)
,

i.e.

Dl
qh(x) =

n−1∑
k=0

m−1∑
j=0

β
(l)
kj (x)Dk

q u(x)Dj
qv(x) (l = 0, 1, . . . ,mn), (11)

where

β
(l)
kj (x) =

l∑
ν=0

l∑
µ=0

ανµ(x)p(ν)
k (x)r(µ)

j (x) .

Taking the relations for (11) forl = 0, 1, . . . ,mn− 1 and expressing theq-derivatives
Dk

q u(x)Dj
qv(x) by q-derivatives ofh(x), we get

Dk
q u(x)Dj

qv(x) =
mn−1∑

l=0

γ
(l)
kj (x) Dl

qh(x) (0 ≤ k ≤ n− 1; 0 ≤ j ≤ m− 1).
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Eliminating all thoseDk
q u(x)Dj

qv(x) from the last identity(l = mn) of (11), it be-
comes

Dmn
q h(x) =

mn−1∑
l=0

σl(x)Dl
qh(x) ,

where

σl(x) =
n−1∑
k=0

m−1∑
j=0

β
(l)
kj (x)γ(l)

kj (x) .

By multiplying with the common denominator of{σl(x), l = 0, 1, . . . mn−1}, we get
theq-holonomic equation forh(x)

mn∑
l=0

σ̃l(x)Dl
qh(x) = 0 .

This proves that theq-holonomic order ofu(x) · v(x) is at mostmn, but can be less.
An iterative version of the given algorithm will determine theq-holonomic equation of
lowest order foru(x) · v(x). ♦

Note furthermore that by Lemma 2.2 there is no similar algorithm for the quotient
u(x)/v(x).
Example 3.3.We use againu(x) = eq(x) andv(x) = sinq(x). Now, by the given
algorithm the functionh(x) = u(x) · v(x) satisfies

(1− q)2D2
qh(x)− (1− q2)Dqh(x) +

(
qx2 − (1 + q)(x− 1)

)
h(x) = 0,

i.e., it isq-holonomic of second order.

Theorem 3.4. If u(x) is aq-holonomic function of ordern, then the functionw(x) =
u(xν) (ν ∈ N) is a q-holonomic function of order at mostn and there is an algorithm
to compute the correspondingq-differential equation.

Proof. By assumptionu(t) satisfies aq-holonomic equation

n∑
k=0

p̃k(t) Dk
q u(t) = 0 , (12)

wherep̃k(t) are polynomials and̃pn 6≡ 0. Then, by Lemma 2.1,Dl
qu(t) can be repre-

sented as

Dl
qu(t) =

n−1∑
k=0

p
(l)
k (t) Dk

q u(t) , (13)

wherep
(l)
k (t) are rational functions determined by that lemma.

Let t = xν . Using Lemma 1.3, we have

Dqw(x) = Dqν u(t) Dq(xν) =
u(t)− u(qνt)

(1− qν)t
[ν]q xν−1 .

11



According to (4), we get

Dqw(x) =
ν∑

j=1

ej,ν(x)Dj
qu(t) ,

where

ej,ν(x) = (−1)j−1(1− q)j−1

[
ν

j

]
q

q(
j
2)xνj−1, j = 1, 2, . . . , ν. (14)

By (13), we can write

Dqw(x) =
ν∑

j=1

ej,ν(x)
n−1∑
k=0

p
(j)
k (t) Dk

q u(t) =
n−1∑
k=0

f
(1)
k,ν(x) Dk

q u(t) ,

where

f
(1)
k,ν(x) =

ν∑
j=1

p
(j)
k (xν)ej,ν(x) , k = 0, 1, . . . , n− 1 . (15)

Furthermore,

D2
qw(x) =

n−1∑
k=0

Dq

(
f

(1)
k,ν(x)Dk

q u(t)
)

=
n−1∑
k=0

Dqf
(1)
k,ν(x) Dk

q u(t) +
n−1∑
k=0

f
(1)
k,ν(qx)Dq

(
Dk

q u(t)
)

..

As before, the second sum in the above term can be transformed to

n−1∑
i=0

f
(1)
i,ν (qx)Dq

(
Di

qu(t)
)

=
n−1∑
i=0

f
(1)
i,ν (qx)

ν∑
j=1

ej,ν(x)Dj
q

(
Di

qu(t)
)

=
n−1∑
i=1

ν∑
j=1

f
(1)
i,ν (qx)ej,ν(x)Di+j

q u(t)

=
n−1∑
i=1

ν∑
j=1

f
(1)
i,ν (qx)ej,ν(x)

n−1∑
k=0

p
(i+j)
k (t) Dk

q u(t) .

Hence,

D2
qw(x) =

n−1∑
k=0

f
(2)
k,ν(x) Dk

q u(t) ,

where

f
(2)
k,ν(x) = Dqf

(1)
k,ν(x) +

n−1∑
i=0

ν∑
j=1

f
(1)
i,ν (qx)ej,ν(x)p(i+j)

k (xν), k = 0, 1, . . . , n− 1.

12



By induction, we obtain the representations

Dl
qw(x) =

n−1∑
k=0

f
(l)
k,ν(x) Dk

q u(t) , l = 0, 1, 2, . . . , n (16)

wheref
(0)
k,ν(x) = δk0, f

(1)
k,ν(x) is given in (15) and

f
(l)
k,ν(x) = Dqf

(l−1)
k,ν (x) +

n−1∑
i=0

ν∑
j=1

f
(l−1)
i,ν (qx)ej,ν(x)p(i+j)

k (xν) . (17)

Taking the firstn of the identities (16), we can determine

Dk
q u(t) =

n−1∑
l=0

b
(k)
l,ν (x)Dl

qw(x) , k = 0, 1, . . . , n− 1,

whereb
(k)
l,ν (x) are rational functions. Substituting this in identity (16), we get

Dn
q w(x) =

n−1∑
k=0

f
(l)
k,ν(x)

n−1∑
l=0

b
(k)
l,ν (x)Dl

qw(x) =
n−1∑
l=0

cl,ν(x)Dl
qw(x) ,

where

cl,ν(x) =
n−1∑
k=0

f
(l)
k,ν(x)b(k)

l,ν (x).

By multiplying with the common denominator of{cl,ν(x), l = 0, 1, . . . , n − 1}, we
obtain

n∑
l=0

c̃l,ν(x)Dl
qw(x) = 0 . ♦

Example 3.4. In Example 2.1, it was proved that

u(x) = xs ⇒ (q − 1) xDqu(x)− (qs − 1) u(x) = 0.

Hencen = 1, p̃1(x) = (q − 1) x and p̃0(x) = −(qs − 1). By the procedure of
Theorem 3.4, we get forw(x) = u(x)ν

Dqw(x) = f
(1)
0,ν (x)w(x) where f

(1)
0,ν (x) =

qsν − 1
q − 1

· 1
x

.

Finally,
w(x) = u(xν) ⇒ (q − 1) xDqw(x)− (qsν − 1) w(x) = 0.

Example 3.5. In Example 2.2, it was proved that

u(x) = (x; q)λ ⇒ (q − 1) (x− 1)Dqu(x)− (qλ − 1) u(x) = 0.

13



Using our algorithm we get forw(x) = u(x2) = (x2; q)λ theq-holonomic equation

(q−1)(x−1)(x+1)(x2q−1) Dqw(x)−x(qλ−1)(x2qλ+1− q−1+x2q) f(x) = 0

and similar, but more complicated, equations for(xν ; q)λ for higherν ∈ N.

Example 3.6.In Example 2.5, for theq-sine function, we got

u(x) = sinq(x) ⇒ (1− q)2D2
qu(x) + u(x) = 0.

Now, for w(x) = u(x2), we have

Dqw(x) = f
(1)
0,2 (x)u(t) + f

(1)
1,2 (x)Dqu(t),

with

f
(1)
0,2 (x) =

qx3

1− q
, f

(1)
1,2 (x) = (1 + q)x

and
D2

qw(x) = f
(2)
0,2 (x)u(t) + f

(2)
1,2 (x)Dqu(t),

with

f
(2)
0,2 (x) =

(qx)2(−2− q − q2 + q3x4)
(1− q)2

f
(2)
1,2 (x) =

(1 + q)(1− q + q2(1 + q2)x4)
1− q

.

By eliminatingDqu(t), we get

D2
qw(x) = c0,2(x)w(x) + c1,2(x)Dqw(x),

wherefrom we get for the functionw(x) = u(x2) the following equation

xD2
qw(x)−

(
1 + q2 1 + q2

1− q
x4
)
Dqw(x) + qx3

( 1− q4

(1− q)3
+

q2

(1− q)2
x4
)
w(x) = 0.

4 Sharpness of the algorithms

In the previous section we proved that the sum, product and composition with powers
of q-holonomic functions areq-holonomic too. In this section we show that the given
bounds for the orders are sharp in all algorithms considered.

Example 4.1. The functionsu(x) = x2 andv(x) = x3 areq-holonomic of first order.
According to Theorem 3.2, the functionh(x) = u(x) + v(x) is q-holonomic of order
at most two. However, all polynomials areq-holonomic functions of first order, and we
find thath(x) satisfies the equation

x(1 + x)Dqh(x)− ([2]q + [3]qx)h(x) = 0.

This example shows that the order of the sum of someq-holonomic functions can
be strictly less than the sum of their orders. This applies if the two functionsu(x) and
v(x) are linearly dependent overK(q)(x).

However, we will prove that for every algorithm given in the previous section there
are functions for which the maximal order is attained.
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Lemma 4.1. The functionsEq(xµ) (µ = 1, 2, . . . , n) are linearly independent over
K(q)(x).

Proof. Let us consider a linear combination

r1Eq(x) + r2Eq(x2) + · · ·+ rnEq(xn) = 0 ,

whererµ = rµ(x) (µ = 1, 2, . . . , n) are rational functions and suppose thatrν 6≡ 0.
Then,

rνEq(xµ) = −
n∑

µ=0
µ6=ν

rµEq(xµ) ,

i.e.,
n∑

µ=0
µ6=ν

rµ

rν

Eq(xµ)
Eq(xν)

= −1 . (18)

Since

A(m) = lim
x→∞

m∑
n=0

q(
n
2)

(q; q)n
(xµ)n

m∑
n=0

q(
n
2)

(q; q)n
(xν)n

= lim
x→∞

xm(µ−ν) =
{

+∞ , µ > ν ,
0 , µ < ν ,

we have

lim
x→∞

Eq(xµ)
Eq(xν)

= lim
m→∞

A(m) =
{

+∞ , µ > ν ,
0 , µ < ν .

This is a contradiction with (18). Hence, it follows thatrµ ≡ 0 for all µ = 1, 2, . . . , n,
i.e. Eq(xµ) (µ = 1, 2, . . . , n) are linearly independent overK(q)[x]. ♦

Lemma 4.2. The function

Fn(x) =
n∑

µ=1

Eq(xµ) (19)

is q-holonomic of ordern.

Proof. The functionEq(x) satisfies theq-holonomic equation of first order (see Exam-
ple 2.4)

(1− q)(t + 1)Dqf(t)− f(t) = 0 .

With respect to Theorem 3.4, for eachµ ∈ N, the functionEq(xµ) is q-holonomic of
first order and one has

Dl
q

(
Eq(xµ)

)
= f

(l)
0,µ(x)Eq(xµ) , l = 0, 1, . . . , (20)

wheref
(l)
0,µ(x) are rational functions given as in (17).
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According to Theorem 3.2, the functionFn(x) is q-holonomic of order at mostn.
Therefore

Dl
qFn(x) =

n∑
µ=1

Dl
q

(
Eq(xµ)

)
=

n∑
µ=1

f
(l)
0,µ(x)Eq(xµ) .

Let us suppose that the functionFn(x) satisfies aq-holonomic equation of orderm,
i.e.

Dm
q Fn(x) +

m−1∑
i=0

AiD
i
qFn(x) = 0 . (21)

This equation can be represented in the form

n∑
µ=1

(
f

(m)
0,µ (x) +

m−1∑
i=0

Aif
(i)
0,µ(x)

)
Eq(xµ) = 0.

SinceEq(xµ) (µ = 1, 2, . . . , n) are linearly independent overK(q)[x], it follows that

f
(m)
0,µ (x) +

m−1∑
i=0

Aif
(i)
0,µ(x) = 0 , µ = 1, 2, . . . , n .

This can be written in the form of the system of equations

m−1∑
i=0

Aif
(i)
0,µ(x) = −f

(m)
0,µ (x) , µ = 1, 2, . . . , n

with unknown rational functionsAi = Ai(x).
If m < n, then the system is overdetermined and has no solution. Hence it follows

thatm = n. ♦

Theorem 4.3. For eachn ∈ N there is a functionF which isq-holonomic of ordern,
such thatH = DqF is q-holonomic of ordern.

Proof. The function defined by (19) satisfies the statement.♦

Theorem 4.4. For eachn, m ∈ N there are functionsU andV that areq-holonomic
of ordern andm respectively, such thatH = U + V is q-holonomic of ordern + m.

Proof. Consider the functions

U(x) =
n∑

µ=1

Eq(xµ) and V (x) =
n+m∑

µ=n+1

Eq(xµ) . (22)

According to Lemma 4.2, they areq-holonomic of ordern andm respectively, and the
function

H(x) = U(x) + V (x) =
n+m∑
µ=1

Eq(xµ)

is q-holonomic of ordern + m. ♦
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Theorem 4.5. For eachn, m ∈ N there are functionsU andV that areq-holonomic
of ordern andm respectively, such thatH = U · V is q-holonomic of ordern ·m.

Proof. The statement is valid for the functions defined by (22), because in the function

H(x) = U(x) · V (x) =
n∑

µ=1

n+m∑
ν=n+1

Eq(xµ)Eq(xν)

there arenm linearly independent summandsEq(xµ)Eq(xν) (µ = 1, 2, . . . , n; ν =
n+1, n+2, . . . , n+m) overK(q)[x]. The proof of their independence is again based
on Lemma 4.1.♦

Theorem 4.6. For eachn ∈ N there is a functionF which isq-holonomic of ordern,
such thatW (x) = F (xν) is q-holonomic of ordern.

Proof. Starting from the functionFn(x) defined by (19), we can form

W (x) = Fn(xν) =
n∑

µ=1

Eq(xµν)

which is of the same type asFn(x). ♦
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