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Abstract The Bieberbach conjecture about the coefficients of univalent functions
of the unit disk was formulated by Ludwig Bieberbach in 1916 [4]. The conjecture
states that the coefficients of univalent functions are majorized by those of the Koebe
function which maps the unit disk onto a radially slit plane.

The Bieberbach conjecture was quite a difficult problem, and it was surprisingly
proved by Louis de Branges in 1984 [5] when some experts were rather trying to
disprove it. It turned out that an inequality of Askey and Gasper [2] about certain
hypergeometric functions played a crucial role in de Branges’ proof.

In this article I describe the historical development of the conjecture and the main
ideas that led to the proof. The proof of Lenard Weinstein (1991) [72] follows, and it
is shown how the two proofs are interrelated.

Both proofs depend on polynomial systems that are directly related with the Koebe
function. At this point algorithms of computer algebra come into the play, and computer
demonstrations are given that show how important parts of the proofs can be automated.
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104 W. Koepf

1 The Bieberbach Conjecture

The origin of the Bieberbach conjecture goes back to the middle of the nineteenth
century when the Riemann Mapping Theorem was formulated.

1851 RIEMANN Mapping theorem

The Riemann mapping theorem states that for every simply connected domain G ⊂ Ĉ
of the extended complex plane Ĉ there is a univalent and meromorphic function
f : D → G (D := {z ∈ C

∣∣ | z | < 1}). Since univalent functions don’t possess zero
derivatives, there is no loss of generality to assume that f is normalized by f (0) = 0
and f ′(0) = 1 and therefore an element of

S := { f : D → C| f (z) = z + a2z2 + a3z3 + · · · analytic and one-to-one}.

Another important family is given by (� := {z ∈ Ĉ
∣∣ | z | > 1})

� :=
{

g : � → Ĉ
∣∣∣∣g(z) = z + b1

z
+ b2

z2 + · · · meromorphic and one-to-one
}

.

Riemann’s proof of the Riemann mapping theorem was incomplete. Carathéodory
[10] and Koebe [35] proved the mapping theorem at the beginning of the twentieth
century.

1912 CARATHÉODORY Proof of the
KOEBE mapping theorem

Moreover, Koebe showed that S is compact w.r.t. the topology of locally uniform
convergence [33, 34].

1909 KOEBE Compactness of S

Hence, since an is a continuous functional,

kn := max
f ∈S

|an( f )|

exists.
Soon later Gronwall received a first result w.r.t. the coefficient problem [24].

1914 GRONWALL Area theorem in �

The Area Theorem is an inequality that expresses the obvious fact that the area of the
complement of the range of a function g(z) = z + b1

z + b2
z2 + · · · ∈ � is non-negative.

∞∑
n=1

n|bn|2 ≤ 1 (1)

Without knowing Gronwall’s work, Bieberbach proved the same relation, and received
the first coefficient result within S [4].
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1916 BIEBERBACH |a2| ≤ 2

This result is deduced from the relation |b1| ≤ 1, which is a consequence of (1), by a
simple transformation to S. Since by (1) |b1| = 1 implies b2 = b3 = · · · = 0, it follows
that a2 = 2 occurs if and only if f is the Koebe function

K (z) := z

(1 − z)2 = 1
4

( (
1 + z

1 − z

)2
− 1

)
=

∞∑
n=1

nzn,

whose image domain is a plane that is radially slit on the negative real axis. In a footnote
Bieberbach wrote “Vielleicht ist überhaupt kn = n.”1 This statement was called the
Bieberbach Conjecture.

1916 CONJECTURE |an| ≤ n

The methods that were accessible at those times seemed not to be strong enough to
prove this assertion in its completeness. Hence one tried to find partial solutions, i.e.

1. to prove the Bieberbach conjecture under further geometrical conditions for the
image domains, or

2. to solve the problem for specific values of n, e.g. for n = 3 or n = 4.

The first progress for one of these questions was given by Charles Loewner [50].

1917 LOEWNER |an| ≤ 1
(convex functions)

A univalent function is called convex if its image domain is convex.
If we consider only domains that are surrounded by polygons with vertices wk ∈ C

and interior angles αkπ (k = 1, . . . , n), then the Schwarz reflection principle implies
the Schwarz- Christoffel Formula for the mapping function f

1 + z
f ′′

f ′ (z) =
n∑

k=1

1 − αk

2
· 1 + f −1(wk)z

1 − f −1(wk)z
,

that represents a functional differential equation which in general cannot be solved
explicitly, but since

n∑
k=1

1 − αk

2
= 1

(the rotation of the boundary for one cycle is 2π ) and

| f −1(wk)| = 1 (k = 1, . . . , n)

(the preimages of the vertices lie on ∂D) it follows that

Re
(

1 + z
f ′′

f ′ (z)
)

> 0 (z ∈ D), (2)

1 Perhaps kn = n is generally valid.
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106 W. Koepf

if αk < 1 for all k = 1, . . . , n, which corresponds exactly to the convex case. More-
over, it is easy to prove that (2) implies the univalence and convexity of f (see e.g.
[70]).

An elementary estimate which goes back to Carathéodory [8, 9] and which is valid
for functions with positive real part

Re
(

1 +
∞∑

n=1
pnzn

)
> 0 =⇒ |pn| ≤ 2 (n ∈ N := {1, 2, 3, . . . }), (3)

enables an induction proof for the inequalities |an| ≤ 1 (n ∈ N) for convex functions.
This result analytically expresses the fact that convex domains are far away from being
extremal w.r.t. the entirety of all simply connected domains.

The next step towards the Bieberbach conjecture was given by Nevanlinna [58].

1920 NEVANLINNA |an| ≤ n
(starlike functions)

He considered univalent functions with an image domain that is starlike w.r.t. the origin.
The proof of the Bieberbach conjecture for starlike functions is also given by an analytic
representation. First one proves with the aid of Schwarz’ lemma that the starlikeness
of f (D) implies the starlikeness of f (Dr ) (Dr := {z ∈ C

∣∣ | z | < r}) for all r ∈ (0, 1).
Next, by geometrical considerations it follows that | arg z f ′(z) − arg f (z)| < π

2 , hence

Re
(

z
f ′

f
(z)

)
> 0 (z ∈ D). (4)

Carathéodory’s estimate (3) for functions with positive real part yields the result.
Again, one can prove that Eq. (4) implies the univalence and starlikeness of f .

From Nevanlinna’s result it became clear that there was some chance for the Bieber-
bach conjecture to be true since it was true for a rather large subset of S. Nevertheless,
it was not yet known whether the Bieberbach conjecture was true for a single n > 2.
This step was finished by Loewner [51], again. Maybe Loewner’s article was the most
important step towards the proof of the Bieberbach conjecture, at least it was the first
decisive one.

1923 LOEWNER |a3| ≤ 3
(Loewner theory)

Loewner gave an analytic representation for a subset of S which is dense w.r.t. the
topology of locally uniform convergence. Loewner’s theorem states that for every f of
this dense subset of S there is a Loewner chain, i.e. a family of functions { f (z, t) | t ≥ 0}
with

f (z, t) = et z +
∞∑

n=2
an(t)zn, (z ∈ D, t ≥ 0, an(t) ∈ C (n ≥ 2)),
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which start with f

f (z, 0) = f (z),

and for which the relation

Re
(

ḟ (z, t)
z f ′(z, t)

)
> 0 (z ∈ D) (5)

is satisfied. Here ′ and · denote the partial derivatives w.r.t z and t , respectively,
as usual. The above equation is referred to as the Loewner differential equation. It
geometrically states that—as a result of Schwarz’ lemma, again—the image domains
of f (D, t) expand as t increases. Hence Loewner investigated the dynamics of univalent
functions. The subset of S that he considered consists of those functions whose image
domains are all of C besides a slit which is a Jordan arc. In this case, the Loewner
chain consists of those functions whose slit gets shorter as t increases.

The Loewner differential equation characterizes univalent functions, since it turns
out that for all f ∈ S there is a Loewner chain. Furthermore, one can prove that under
rather general conditions for the function

p(z, t) := ḟ (z, t)
z f ′(z, t)

(6)

the univalence of f (z, 0) implies the univalence of f (z, t) (t > 0).
Very easily it follows from (5) that |a3| ≤ 3 in S (see e.g. [15], Section 3.5). But only

in 1973 Nehari succeeded in proving |a4| ≤ 4 using exclusively Loewner’s theory.
Next, Littlewood could prove that the Bieberbach conjecture gives the correct order

of magnitude for the coefficient growth [48].

1925 LITTLEWOOD |an| < e · n

If f ∈ S, then the function h with h(z)
z :=

√
f (z2)
z2 , which is called the square root

transform of f , is an odd univalent function and vice versa. By Sodd ⊂ S we denote
the set of odd univalent functions.

From the Koebe distortion theorem | f (z)| ≤ |z|
(1−|z|)2 , which was proved by

Bieberbach [4], it follows that |h(z)| ≤ |z|
1−|z|2 and therefore

area (h(Dr )) ≤ π
r2

(1 − r2)2 .

From this, by Parseval’s theorem it follows that

1
2π

∫ 2π

θ

| f (r2eiθ )|dθ = 1
4π

∫ 4π

θ

| f (r2eiθ )|dθ = 1
2π

∫ 2π

θ

| f (r2e2iθ )|dθ

= 1
2π

∫ 2π

θ

|h(reiθ )|2dθ ≤ r2

1 − r2 .
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108 W. Koepf

Furthermore, the Cauchy integral formula gives

|an| ≤ 1
rn

(
1

2π

∫ 2π

θ

| f (reiθ )|dθ

)
≤ 1

rn−1(1 − r )
=

(
1 + 1

n − 1

)n−1
· n,

using r := 1 − 1
n . Since (1 + 1

n )n increases towards e, Littlewood’s result follows.
This method has the disadvantage that by taking an integral mean information is

thrown away so that a sharp result such as the Bieberbach conjecture is not accessible.
About a decade after the formulation of the Bieberbach conjecture it was therefore

proved

1. for an interesting subclass,
2. for the third coefficient and
3. in its order of magnitude.

As next step the Bieberbach conjecture could be verified for another subclass of S:
for univalent functions with real Taylor coefficients ([13, 67]). These are characterized
by domains that are symmetric w.r.t. the real axis.

1931 DIEUDONNÉ |an| ≤ n
ROGOSINSKI (real coefficients)

Both authors used quite different methods: the question seemed to be in the air.

2 The Littlewood-Paley and the Robertson conjecture

Again by the integral mean method Littlewood and Paley [49] could show that for odd
univalent functions h(z) = ∑∞

n=1 cnzn ∈ Sodd

|cn| ≤ A

for a constant A that does neither depend on h nor on n. Their article contains the
footnote “No doubt the true bound is given by A = 1.” Hence they conjectured that
the square root transform of the Koebe function z

1−z2 = ∑∞
n=0 z2n+1 is extremal for

the given problem.

1932 LITTLEWOOD Littlewood-Paley conjecture
PALEY (odd functions)

Instantaneously Fekete and Szegö [17] disproved the Littlewood-Paley Conjecture by
using Loewner’s method. This was the first relapse in the history of the Bieberbach
conjecture.

1933 FEKETE max
h∈Sodd

|c5| = 1
2 + e−2/3 = 1.0134 · · · > 1

SZEGÖ
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The Littlewood-Paley conjecture would have implied the Bieberbach conjecture. As-
sume h(z) = ∑∞

n=1 cnzn is the square root transform of f (z) = ∑∞
n=1 anzn , then

an =
n∑

k=1
c2(n−k)+1 · c2k−1, (7)

so that obviously |cn| ≤ 1 (n ∈ N) implies the Bieberbach conjecture.
Even though the Littlewood-Paley conjecture turned out to be false, it showed the

way in the correct direction, Robertson [66] conjectured a somewhat weaker condition
which, nevertheless, implies the Bieberbach conjecture.

1936 ROBERTSON Robertson conjecture

Robertson’s Conjecture states for odd univalent functions the inequality

h ∈ Sodd =⇒
n∑

k=1
|c2k−1|2 ≤ n,

which by an application of the Cauchy-Schwarz inequality to (7) implies the
Bieberbach conjecture. Robertson showed the Robertson conjecture for n = 3.

This work should turn out to be the second decisive step towards the proof of
the Bieberbach conjecture. Robertson’s essential new idea was to consider weighted
quadratic means of Taylor coefficients.

At the end of the 1930s Schiffer [69] developed a variational method that was suit-
able to solve extremal problems within S. Whereas elsewhere in variational calculus
one of the major concerns is the question of existence of a solution, in our case ex-
istence it not an issue since S is compact. Instead it is rather difficult to find suitable
comparison functions since S is everything else but a linear space.

1938 SCHIFFER boundary variation

The idea behind Schiffer’s boundary variation is to compose a univalent function f with
a family of in f (D) almost identical mappings. The conclusion is a differential equation
that the extremal function characterizes. Let L be a continuous linear functional, and
let Re L( f0) = max f ∈S Re L( f ), then as a—rather complicated—result of Schiffer’s
variational method it turns out that f0(D) = C\�, where � is an analytic arc satisfying
the differential functional equation

1
�(t)2 L

(
f 2

f − �(t)

)
d�(t)2 > 0,

hence � is the trajectory of a quadratic differential. An application of the Schwarz
reflection principle for the coefficient functional L = Re an( f ) yields for the mapping
function f the Schiffer differential equation(

z f ′(z)
f (z)

)2
Pn

(
1

f (z)

)
= Rn(z),
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110 W. Koepf

where Pn is the polynomial of degree n − 1 with the generating function

ζ ( f (z))2

1 − ζ f (z)
=

∞∑
k=2

Pk(ζ )zk

and Rn is the rational function given by

Rn(z) = (n − 1)an +
n−1∑
k=1

(kak zk−n + kak zn−k).

Hence every solution f of Bieberbach’s coefficient problem must also satisfy the
Schiffer differential equation. In particular, f (D) = C\� and � is an analytic arc. For
every n ≥ 2 the Koebe function is a solution of the Schiffer differential equation, but
unfortunately the solution is not unique.

Eventually in 1955 Garabedian and Schiffer [21] were able to use Schiffer’s varia-
tional method to prove the Bieberbach conjecture for n = 4.

In contrast to Schiffer’s variational method the Grunsky inequalities [25] are rather
elementary. They generalize Gronwall’s area theorem.

1939 GRUNSKY Grunsky inequalities

For all g ∈ � let

ln
g(z) − g(ζ )

z − ζ
=: −

∞∑
n=1

∞∑
k=1

γnk z−nζ−k (z, ζ ∈ �). (8)

The Grunsky coefficients γnk are polynomials in the coefficients bn of g. Note that a
representation of the form (8) for a meromorphic function g(z) = z + b1

z + b2

z2 + · · ·
exists if and only if g ∈ �.

The Grunsky inequalities∣∣∣∣∣ N∑
n=1

N∑
k=1

γnkλnμk

∣∣∣∣∣ ≤
N∑

n=1

|λn|2
n

·
N∑

n=1

|μk |2
k

are valid for all N ∈ N and λn, μn ∈ C (n = 1, . . . , N ).
Surprisingly, they were used for a very elementary and simple proof of the

Bieberbach conjecture for n = 4 by Charzyński and Schiffer [11] in 1960. Eight
years later Pederson [61] and—independently—Ozawa ([59, 60]) used the Grunsky
method to show |a6| ≤ 6 for f ∈ S.

Likewise Friedland [20] was able to prove the Robertson conjecture for n = 4 in
1970.

At the end of the 1930s the interest for the Bieberbach conjecture was abated. The
search for a proof had been not successful enough. It took until the 1950s when the
problem was reconsidered.
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Hayman had been asked by Littlewood to prove the Bieberbach conjecture as PhD
topic. Since a full proof seemed to be out of sight, Hayman asked the still difficult
question about the behavior of |an |

n for n → ∞, and he could settle it [27].

1955 HAYMAN Regularity theorem

In a first step he gave an elementary proof of the fact that for f ∈ S

lim
r→1

(1 − r2) max
|z|=r

| f (z)| = α ≤ 1.

The number α is called the Hayman index of f . Finally Hayman could show that
for every function f ∈ S

lim
n→∞

|an( f )|
n

= α. (9)

This is clearly much information since it is not obvious at all that this limit exists for
every f ∈ S. On the other hand Hayman’s statement does not indicate the Bieberbach
conjecture for large n ∈ N since the speed of convergence considerably depends on f .
Hayman’s result might give some evidence for the truth of the Bieberbach conjecture,
but this is clearly a fallacy, since the regularity theorem implies for odd univalent
functions h(z) = ∑∞

n=1 cnzn ∈ Sodd with h(z)
z =

√
f (z2)
z2 the relation

lim
n→∞ |c2n+1| = √

α ≤ 1,

although the Littlewood-Paley conjecture is false!
In the 1950s the Bieberbach conjecture could be proved again for a further subset

of S, the close-to-convex functions [65].

1955 READE |an| ≤ 1,
(close-to-convex functions)

A univalent function is called close-to-convex if its range f (D) is the complement
of a union of rays that are pairwise disjoint. Of course, starlike functions have this
property so that Reade’s result generalizes Nevanlinna’s.

Let us remind the fact that also in 1955 the Bieberbach conjecture was proved the
first time for n = 4.

1955 GARABEDIAN |a4| ≤ 4
SCHIFFER (Loewner th., Schiffer var., etc.)

Using the Grunsky inequalities an elementary proof for the same coefficient was given
in [11].

1960 CHARZYŃSKI |a4| ≤ 4
SCHIFFER (Grunsky inequalities)
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112 W. Koepf

By an ingenious choice of the free parameters in the Grunsky inequalities Milin was
able to improve Littlewood’s result considerably ([52, 54]).

1965 MILIN |an| < 1.243 · n

3 The Milin conjecture

The researchers in the former soviet union worked also on the last essential ingredient
which made de Branges’ proof possible. After some decades one knew that it was very
difficult to obtain informations about the coefficients an( f ) of univalent functions. The
success of the Grunsky inequalities suggested that it should be simpler to obtain results
about the coefficients dn( f ) of the function

ln
f (z)
z

=:
∞∑

n=1
dnzn.

These are called the logarithmic coefficients of f . The use of the logarithmic coef-
ficients is also suggested by Loewner’s method.

Lebedev and Milin ([43, 53, 54]) worked on the question how to turn information
about the logarithmic coefficients into information about the coefficients of f itself.
They discovered that it was easier to lift informations about certain quadratic means
of coefficients. This could be combined with the Robertson conjecture. They showed
rather elementary—almost entirely by the use of the Cauchy-Schwarz inequality: If
ψ(z) = ∑∞

k=0 βk zk with β0 = 1 has positive radius of convergence, then the same is
true for ϕ(z) := ln ψ(z) = ∑∞

k=1 αk zk , and the following relations between the coef-
ficients are valid

∞∑
k=0

|βk |2 ≤ exp
( ∞∑

k=1
k|αk |2

)
, (10)

1
n + 1

n∑
k=0

|βk |2 ≤ exp
(

1
n + 1

n∑
k=1

(n + 1 − k)
(

k|αk |2 − 1
k

) )
(11)

and

|βn|2 ≤ exp
(

n∑
k=1

(
k|αk |2 − 1

k

) )
. (12)

Note that the Lebedev-Milin inequalities (10)–(12) are completely independent of
univalent functions. Hence it was possible to use them to solve quite different function
theoretic problems (see e.g. [1, 46, 47, 56]).

1967 LEBEDEV Lebedev-Milin inequalities
MILIN
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The nature of the Lebedev-Milin inequalities enables their application to the
Bieberbach conjecture. Therefore it is necessary that they are suitably sharp for the
Koebe function. If we set

ψ(z) := f (z)
z

=
∞∑

n=0
an+1zn,

then

ϕ(z) = ln
f (z)
z

=
∞∑

n=1
dnzn,

If f ∈ S, then dn are the logarithmic coefficients of f . Let further h(z) = ∑∞
n=1 cnzn

be the square root transform of f .
Assume, for some n ∈ N the Milin Conjecture

n∑
k=1

(n + 1 − k)
(

k|dk |2 − 4
k

)
≤ 0, (13)

is valid, then with ln h(z)
z = 1

2ϕ(z2) it follows from the second Milin inequality that

1
n + 1

n+1∑
k=1

|c2k−1|2 ≤ 1,

hence the Robertson conjecture and therefore the Bieberbach conjecture for the index
n + 1.

1971 MILIN Milin conjecture

The Milin conjecture is a statement about a weighted quadratic mean of the logarithmic
coefficients or of the coefficients of the function

z
f ′

f
(z) = 1 + z

(
ln

f (z)
z

)′
= 1 +

∞∑
n=1

ndnzn,

whose modulus is bounded by 2 for starlike functions because of (4) and (3), so that
for those functions |dk | ≤ 2/k (k ∈ N) and therefore the Milin conjecture is valid.
At the end of the 1960s the use of the Grunsky inequalities succeeded in proving
specific instances of the Bieberbach conjecture ([20, 59–61]).

1968 PEDERSON |a6| ≤ 6
OZAWA (Grunsky inequalities)

1970 FRIEDLAND Robertson conjecture for n = 4
(Grunsky inequalities)
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114 W. Koepf

Another strategy that was considered since Schiffer’s work was to characterize the
support points of S, i.e. those functions that are solutions of linear extremal problems.
From Schiffer’s theory it was known that in this case f (D) = C\� with an analytic
curve �. Was it possible to characterize the support points, maybe they could be even
parameterized?

A similar question was considered by Brickman [6] who asked for the properties
of the extreme points of S, i.e. those functions that do not have a proper convex
representation within S.

1970 BRICKMAN Extreme points

For every linear extremal problem there is an extreme point solution. Brickman found
a simple proof of the fact that for extreme points f (D) = C\�, where � is a curve
with increasing absolute value.

In these days one hoped that such functional analytic methods might eventually
solve the Bieberbach conjecture. Ironically at the time of the proof of the Milin con-
jecture by de Branges it turned out, however, that there are too many extreme and
support points to be of value for the solution of the Bieberbach conjecture [26]. On
the other hand extreme point theory was applied with great success to subfamilies of
S like convex and starlike functions ([7], see also [36, 37]).

Another type of exponentiation of the Grunsky inequalities than the one used by
Lebedev and Milin was developed by FitzGerald [18]. Using this approach he could
improve Milin’s estimate.

1972 FITZGERALD |an| <

√
7
6 · n = 1.0801 . . . · n

In 1978 Horowitz [31] could refine FitzGerald’s argument to deduce the inequality

|an| < 1.0657 · n (n ∈ N). (14)

In the same year of FitzGerald’s result the last single result was established [62] before
the general proof.

1972 PEDERSON |a5| ≤ 5
SCHIFFER

Now the Bieberbach conjecture was proved for n ≤ 6, for close-to-convex functions
and functions with real coefficients, and one had Hayman’s regularity result (9) as
well as the estimate (14). But still there was no idea how to prove the Bieberbach
conjecture for general n. Maybe the Bieberbach conjecture was false? The disproof
of the Littlewood-Paley conjecture by Fekete and Szegö as well as the results of other
extremal problems—the value

max
{

|c7|
∣∣∣∣∣h(z) =

∞∑
n=1

cnzn ∈ Sodd, cn ∈ R (n ∈ N)
}

= 1 + 7
1083
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is also larger than 1 [44]—hint the possibility that the Bieberbach conjecture could be
slightly wrong for some n ∈ N.

Some researchers tried now to disprove the Bieberbach conjecture by finding a
numerical counterexample. Hummel reported that at the beginning of the 1980s he
was sure that the Bieberbach conjecture would collapse around n = 19. Hummel had
been successful in 1976 to disprove a conjecture about the so-called Gelfer functions
[32] by finding a numerical counterexample.

In [88] Hayman and Hummel found numerical examples of univalent functions
whose coefficients seemed to contradict the Bieberbach conjecture. However, the
Bieberbach conjecture could not be disproved since the error estimates of the numerical
computations could not be made small enough. Nevertheless, there seemed to be more
and more evidence against the Bieberbach conjecture.

4 The de Branges theorem

In the spring of 1984 de Branges sent a book manuscript to well-known specialists
on univalent functions whose last chapter contained a proof of the Bieberbach con-
jecture. But some small errors were discovered, and almost nobody read the 385 page
manuscript completely. Every previous announcement of a proof of the Bieberbach
conjecture had turned out to contain irrepairable mistakes.

De Branges was invited to the Steklov institute in Leningrad, and he gave lectures
about his proof in the function theory seminar, one of whose members was Milin,
and in June 1984 the members of the seminar were convinced that de Branges’ proof
was correct! Emel’yanov had translated the essential ideas into Russian language, and
Milin worked out the function theoretic nucleus of de Branges’ argument and sent out
this version which found world-wide distribution [55].

1984 DE BRANGES Proof of the Milin conjecture,
Robertson conjecture and Bieber-
bach conjecture

The initial idea of de Branges was the following: Both the Robertson conjecture and
the Milin conjecture were statements about quadratic means of coefficients of analytic
functions. They could be looked at as statements about the norm in certain Hilbert
spaces of analytic functions. This functional analytic approach led him to the following
considerations: To prove the Milin conjecture (13) for some n ∈ N, set

ψ(t) :=
n∑

k=1
τ n

k (t)
(

k|dk(t)|2 − 4
k

)
,

where the function system (τ n
k )k=1,... ,n of functions τ n

k : R�0 → R is still unknown and
will be determined later, and let dk(t) denote the logarithmic coefficients of e−t f (z, t),
where f (z, t) is a Loewner chain of f .

The relation ψ(0) ≤ 0 is equivalent to Milin’s conjecture if we set

τ n
k (0) = n + 1 − k (k = 1, . . . , n). (15)
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De Branges succeeded to prove that the Milin conjecture for the index n ≥ 1 was true
if the function system (τ n

k )k=1,... ,n has the properties

τ n
k (t) − τ n

k+1(t) = − τ̇ n
k (t)
k

− τ̇ n
k+1(t)
k + 1

(k = 1, . . . , n) (16)

as well as

lim
t→∞ τ n

k (t) = 0 (k = 1, . . . , n) (17)

and

τ n
k (t) � 0 (t ∈ R�0). (18)

Using these equations and Loewner’s differential Eq. (5) leads—after a lengthy but
not difficult computation—to the relation ψ̇(t) ≥ 0 and therefore to ψ(0) =
− ∫ ∞

0 ψ̇(t)dt ≤ 0.
Hence the Bieberbach conjecture for the index n + 1 was reduced to the existence

of the functions (τ n
k )k=1,... ,n with the properties (15)–(18).

Of course the coupled system of differential Eq. (16) with the initial values (15) has
a unique solution, hence the properties (17) and (18) must be fulfilled additionally!
Here, de Branges was lucky. Whereas (17) is an easy consequence of the theory of
ordinary differential equations, relation (18) is a deep theorem. De Branges gave the
explicit representations

τ n
k (t) = e−kt

(
n + k + 1

2k + 1

)
4 F3

(
k + 1

2 , n + k + 2, k, k − n

k + 1, 2k + 1, k + 3
2

∣∣∣∣∣ e−t

)
, (19)

and

τ̇ n
k (t) = −ke−kt

(
n + k + 1

2k + 1

)
3 F2

(
k + 1

2 , k − n, n + k + 2
2k + 1, k + 3

2

∣∣∣∣∣ e−t

)
(20)

of his functions where the power series

p Fq

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣ y

)
=

∞∑
k=0

Ak =
∞∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bq )k

yk

k!

whose summands ak have a rational term ratio

Ak+1

Ak
= (k + a1) · · · (k + ap)

(k + b1) · · · (k + bq )
· y

k + 1
,

as usual denotes the generalized hypergeometric function (see e.g. [39]). The sum-
mands ak of the hypergeometric function are called hypergeometric terms, and
(a)k = a(a + 1) · · · (a + k − 1) is the Pochhammer symbol or shifted factorial.
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Fig. 1 τ̇ 30
6 (y) shows the highly

oscillatory character of the
derivatives of the de Branges
functions

Note that τ̇ n
k are polynomials w.r.t the variable y = e−t . De Branges verified (18)

by hand computations up to n = 5, hence he reproved the Bieberbach conjecture up
to n = 6 again! Next, he asked his colleague Walter Gautschi from Purdue University
to verify the inequality (18) numerically, which was done for n � 30, and de Branges
became confident of the validity of the general statement.

Note, however, although Gautschi (under several methods) used Sturm sequences
(for details, see [22]), because of the oscillatory nature of τ̇ n

k (see Fig. 1) his numerical
computations had to be very careful to obtain correct results. Nowadays, we can apply
Sturm sequences or more efficient approaches [12] in a computer algebra system and
count the roots easily by rational arithmetic to obtain correct countings since the input
polynomials have rational coefficients. In this way Milin’s conjecture for n � 30, e.g.,
is easily checked within seconds with a PC of these days.

By a phone call of Walter Gautschi with Dick Askey, de Branges finally realized
that his relation (18) had been proved by Askey and Gasper not long before, namely
in 1976 [2]. This finished the proof of the Milin conjecture [5].

FitzGerald and Pommerenke [19] realized that the proof was independent of func-
tional analysis and published a purely function theoretic version.

How did Askey and Gasper find out that

3 F2

(
k + 1

2 , k − n, n + k + 2
2k + 1, k + 3

2

∣∣∣∣ y

)
� 0?

This is a consequence of the so-called Askey-Gasper inequality that was proved by
detecting ingeniously the Askey-Gasper identity

(α + 2)n

n!
· 3 F2

(−n, n + 2 + α, α+1
2

α + 1, α+3
2

∣∣∣∣ x

)

=
� n−k

2 ∑
j=0

( 1
2
)

j

(
α
2 + 1

)
n− j

(
α+3

2
)

n−2 j
(α + 1)n−2 j

j!
(

α+3
2

)
n− j

(
α+1

2
)

n−2 j (n − 2 j)!
· 3 F2

(
2 j − n, n − 2 j + α + 1, α+1

2
α + 1, α+2

2

∣∣∣∣ x

)

which (for α = 2k) represents the de Branges functions as a linear combination of 3 F2
functions with positive coefficients.

Using Zeilberger’s algorithm which was developed in 1990 [75], computer cal-
culations can prove the Askey-Gasper identity easily [39]. Therefore we load the
Maple package hsum.mpl which is part of the book [39] and includes Zeilberger’s
algorithm:
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> read "hsum9.mpl";
Package “Hypergeometric Summation”, Maple V - Maple 9
Copyright 1998 – 2003, Wolfram Koepf, University of Kassel

> summand:=pochhammer(1/2,j)∗pochhammer(alpha/2 + 1,n−j)∗

> pochhammer ((alpha+3)/2,n−2∗j)∗pochhammer (alpha+1,n−2∗j)/
> (j!∗pochhammer((alpha+3)/2,n−j)∗pochhammer((alpha+1)/2,n−2∗j)∗

> (n−2∗j)!)∗hyperterm([2∗j−n,n−2∗j+alpha+ 1,(alpha+1)/2],
> [alpha+1,(alpha+2)/2],x,k);

summand := pochhammer ( 1
2 , j) pochhammer ( α

2 + 1, n − j) pochhammer
( α

2 + 3
2 , n − 2 j)

pochhammer (α + 1, n − 2 j) pochhammer (2 j − n, k)
pochhammer (n − 2 j + α + 1, k) pochhammer ( α

2 + 1
2 , k)xk/j!

pochhammer ( α

2 + 3
2 , n − j) pochhammer ( α

2 + 1
2 , n − 2 j)(n − 2 j)!

pochhammer (α + 1, k) pochhammer ( α

2 + 1, k)k!)

By changing the order of summation, Zeilberger’s algorithms yields the recurrence
equation for the summand of the outer sum:

> RE:=sumrecursion(summand,j,S(k));

RE := (k + 1)(α + 1 + k)(α + 3 + 2k)S(k + 1)

+x(α + 1 + 2k)(−k + n)(n + α + 2 + k)S(k) = 0

Hence the sum is a multiple of

> hyp:=hypergeom([−n,n+2+alpha, (alpha+1)/2],
> [alpha+1,(alpha+3)/2],x);

hyp := hypergeom
([

α

2
+ 1

2
, −n, n + 2 + α

]
,

[
α

2
+ 3

2
, α + 1

]
, x

)

We compute the initial value S(k = 0) by the same algorithm:

> sumrecursion(subs(k = 0,summand),j,init(n));

−(1 + n)init(1 + n) + (n + 2 + α)init(n) = 0

Hence S(0) is given as

> S0:=pochhammer(2+alpha,n)/n!;

S0 := pochhammer(α + 2, n)
n!

This proof goes from right to left, but there is no way to detect the right hand side
from the left hand side. This part still needs Askey’s and Gasper’s ingenuity.
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The clue of the Askey-Gasper identity is the fact that the hypergeometric function
occurring in its right hand summand is a complete square by Clausen’s identity

3 F2

(
2a, 2b, a + b

2a + 2b, a + b + 1/2

∣∣∣∣ x

)
= 2 F1

(
a, b

a + b + 1/2

∣∣∣∣ x

)2
.

Clausen’s identity can also be proved by Zeilberger’s algorithm. For this purpose,
we write the right hand side as a Cauchy product, and an application of Zeilberger’s
algorithm leads to a first order recurrence for the outer summand which can be brought
in closed form by the command

> Closedform(hyperterm({a,b},{a+b+1/2},x,j)∗

> hyperterm({a,b},{a+b+1/2},x,k−j),j,k);

Hyperterm
(

[2b, 2a, b + a],
[

2a + 2b, a + b + 1
2

]
, x, k

)

5 Weinstein’s proof

In the year 1989 Weinstein [72] succeeded with a proof of the Milin conjecture without
using the Askey-Gasper result.

1989 WEINSTEIN alternate proof of the de Branges
theorem

I would like to present Weinstein’s proof in little more detail (see also my review
0743.30021 in Zentralblatt Mathematik), first, since it is impressively simple, and
second, since the article [72] is not easily accessible.

Weinstein uses the following representation of the t-derivatives of the logarithmic
coefficients dk(t) of the Loewner chain (ζ := reiθ , r ∈ (0, 1))

ḋk(t)
(Cauchy formula)=== 1

2π

∫ 2π

0

ḟ (ζ, t)
f (ζ, t)

dθ

ζ k

(6)
===

1
2π

∫ 2π

0
p(ζ, t)

ζ f ′(ζ, t)
f (ζ, t)

dθ

ζ k

= 1
2π

∫ 2π

0
p(ζ, t)

(
1 +

∞∑
j=1

jd j (t)ζ j

)
dθ

ζ k

= lim
r→1

1
2π

∫ 2π

0
p(ζ, t)

(
1 +

∞∑
j=1

jd j (t)ζ j

)
dθ

ζ k
. (21)
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Let now z ∈ D and set ϕ(z, t) := K −1(e−t K (z)), hence

z

(1 − z)2 = et ϕ

(1 − ϕ)2 (t ≥ 0). (22)

The mapping ϕ : D × R�0 → D is a special Loewner family of bounded univalent
functions whose image domains are the unit disk with a radial slit on the negative
real axis that increases with t . Taking derivative in the defining Eq. (22) leads to the
relation

ϕ̇ = −ϕ
1 − ϕ

1 + ϕ
. (23)

By de Branges’ success Weinstein knew that the Milin conjecture is valid, hence he
could easily try to prove the conjecture for all n ∈ N at the same time. Therefore
he considered a generating function of the Milin expression (13). Because of the
compactness of S this generating function converges absolutely and locally uniformly
in D, and changing the order of summation yields

ω(z) :=
∞∑

n=1

(
n∑

k=1
(n + 1 − k)

(
4
k

− k|dk(0)|2
))

zn+1= z

(1 − z)2

∞∑
k=1

(
4
k

− k|dk(0)|2
)

zk .

Note that this procedure automatically generates the Koebe function as a factor! Using
(22) and the fundamental theorem of calculus implies with ϕ(z, ∞) = 0 and ϕ(z, 0) =
z

ω(z) =
∫ ∞

0
− etϕ

(1 − ϕ)2
d

dt

( ∞∑
k=1

(
4
k

− k|dk(t)|2
)

ϕk

)
dt.

Using the relations (21) and (23) gives after some further computations (ζ := reiθ , r ∈
(0, 1))

ω(z) =
∫ ∞

0

etϕ

1 − ϕ2

∞∑
k=1

Ak(t)ϕkdt,

where

Ak(t) := lim
r→1

1
2π

∫ 2π

0
Re p(ζ, t)

∣∣∣∣∣1 + 2
k∑

j=1
jd j (t)ζ j − kdk(t)ζ k

∣∣∣∣∣
2

dθ.

If we now write

Wk(z, t) = etϕk+1

1 − ϕ2 =:
∞∑

n=k

�n
k (t)zn+1, (24)

Springer



Bieberbach’s conjecture, the de Branges and Weinstein functions and the Askey-Gasper inequality 121

then finally

ω(z) =
∞∑

k=1

(∫ 2π

0

∞∑
k=1

�n
k (t)Ak(t)dt

)
zn+1. (25)

Remember that the Milin conjecture is equivalent to the fact that ω has non-negative
coefficients. On the other hand Loewner’s Eq. (6), Re p(ζ, t) > 0, yields

Ak(t) ≥ 0 (t ≥ 0),

so that the Milin conjecture follows if

�n
k (t) ≥ 0 (t ≥ 0, k, n ∈ N). (26)

This, again, is a positivity statement of a system of special real functions. These
functions, however, are intimately related with the Koebe function and therefore with
geometric function theory.

The range of ϕ = K −1(e−t K ) is the unit disk with a slit on the real axis. Since the
mapping (γ ∈ R)

hγ (z) := z

1 − 2 cos γ · z + z2

maps the unit disk for γ �= 0 (mod π ) onto a domain which is slit on the real axis
twice, we can also interpret ϕ as the composition ϕ = h−1

θ (e−t hγ ) for a suitable pair
(θ, γ ), and a computation shows the relation

cos γ = (1 − e−t ) + e−t cos θ. (27)

We therefore get

hγ (z) = et · hθ (ϕ) = etϕ

1 − ϕ2

(
1 − ϕ2

1 − 2 cos θ · ϕ + ϕ2

)

= etϕ

1 − ϕ2 Re
1 + eiθϕ

1 − eiθϕ
= etϕ

1 − ϕ2

(
1 + 2

∞∑
k=1

ϕk cos kθ

)

= etϕ

1 − ϕ2 + 2
∞∑

k=1

( ∞∑
n=1

�n
k (t)zn+1

)
cos kθ. (28)

Since

η(z) :=
√

hγ (z)
z

= 1√
1 − 2 cos γ · z + z2

is the generating function of the Legendre polynomials, it follows from (27) and the
addition theorem of the Legendre polynomials ([42], see also [29, 45]), an explicit
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representation of the form

η(z) =
∞∑

n=0
ν2

n zn + 2
∞∑

k=1

( ∞∑
n=k

(n − k)!
(n + k)!

μ2
knzn

)
cos kθ (νn, μkn ∈ R (k, n ∈ N))

with obviously non-negative coefficients. After squaring this result, it follows from
(28) that (26) is fulfilled, and therefore the Milin conjecture is true. This finishes
Weinstein’s proof.

Weinstein’s proof uses the dynamic information of the Loewncr differential equa-
tion in the form (25), i.e., he proves the fact that the Milin expressions (13) can be
represented as time integrals with throughout non-negative integrands.

Note that Weinstein’s paper has only four pages, but is written very densely, con-
taining no single unnecessary word. This should be compared with my Zentralblatt
review 0743.30021 of this paper which has also four pages, but which contains some
historical remarks as well.

Undoubtedly, Bieberbach would have understood the proof of the Milin conjecture
in Weinstein’s form. The history of the proof, however, shows that a single researcher
was not able to prove the conjecture, but the ideas of many people were necessary to
collect the puzzle.

Especially� the introduction of the dynamics of univalent functions and their describing differ-
ential equation by Loewner,� the discovery of the relevance of weighted quadratic means by Robertson,� the exponentiation of the logarithmic coefficients by Lebedev and Milin,� as well as the systematic study of a special dynamic variant of the Milin conjecture
by de Branges

eventually led to Weinstein’s direct proof of the Milin conjecture by an application of
the special Loewner chain generated by the Koebe function.

The Bieberbach conjecture has vastly influenced the research in geometric function
theory, and de Branges’ seminal discovery leaves a hole which may be bitterly missed
by some researchers. The history of this conjecture, however, is a typical example how
mathematical knowledge is generated.

6 A computer algebra proof of the Weinstein theorem

In [16], Ekhad and Zeilberger showed how the final part of Weinstein’s proof version
of the Bieberbach conjecture can be principally computerized. The main argument it
the following: The coefficients of the function η(z) given by

1√
1 − z(2x2 + (1 − z2)(w + 1/w)) + z2

=
∞∑

n=0

n∑
k=0

(n − k)!
(n + k)!

(1 − x2)kCk,n(x)(wk + w−k)zn
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are polynomials Ck,n(x) ∈ Q[x] with rational coefficients. To prove that these form
the squares of another system of polynomials

Dk,n(x)2 = Ck,n(x) (29)

—which indeed is one of the major steps in Weinstein’s proof—one should calculate
the first polynomials Dk,n(x) for 0 ≤ k ≤ n ≤ 20, and then “guess” a holonomic recur-
rence equation w.r.t. n, i.e., a homogeneous linear recurrence equation with polynomial
coefficients σ j ∈ Q[k, n],

σ2 Dk,n+2(x) + σ1 Dk,n+1(x) + σ0 Dk,n(x) = 0,

and to use linear algebra to find σ0, σ1, σ2. With an own Maple implementation I was
able to carry out this step. It turns out that

(n − k + 2)Dk,n+2(x) − (2n + 3)x Dk,n+1(x) + (n + k + 1)Dk,n(x) = 0 (30)

and only the initial values for 0 ≤ k ≤ n ≤ 6 were necessary to find this equation.
Assume, Ek,n(x) is the solution of (30) with the appropriate initial values. Then by

another application of linear algebra this recurrence equation can be “squared”, i.e.
it is possible to calculate the recurrence equation R of third order valid for Ek,n(x)2.
This step can be accomplished by Maple’s gfun packacke [68]. Then, finally, by an
implementation of Zeilberger, using the so-called WZ method [74] one can show that
R is valid for Ck,n(x). This gives an a posteriori proof of the guessed (29).2

7 The de Branges and the Weinstein functions

The question was posed to identify the Weinstein functions �n
k (t). Todorov [72] and

Wilf [74] independently proved the surprising identity

τ̇ n
k (t) = −k�n

k (t). (31)

This shows that the t-derivatives of the de Branges functions and the Weinstein func-
tions essentially agree. In particular, the essential inequalities are the same.

We give an elementary proof of (31), see [41]. Since by (24)

Wk(z, t) = etϕk+1

1 − ϕ2 = etϕ

(1 − ϕ)2
1 − ϕ

1 + ϕ
ϕk = K (z)

1 − ϕ

1 + ϕ
ϕk

and

Wk+1(z, t) = ϕWk(z, t)

2 The given proof differs from the argument of Ekhad’s and Zeilberger’s paper slightly and wasfirst presented
in my Zentralblatt review 0894.30013 of this paper where I corrected some minor inaccuracies.
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we have

Wk(z, t) + Wk+1(z, t) = (1 + ϕ)Wk(z, t) = K (z)(1 − ϕ)ϕk = K (z)ϕk − K (z)ϕk+1.

Taking derivative w.r.t. t , we get

Ẇk(z, t) + Ẇk+1(z, t) = K (z)kϕk−1ϕ̇ − K (z)(k + 1)ϕk ϕ̇

= −kK (z)
1 − ϕ

1 + ϕ
ϕk + (k + 1)K (z)

1 − ϕ

1 + ϕ
ϕk+1

= (k + 1)Wk+1(z, t) − kWk(z, t)

where we have used (23). Hence Wk(z, t) satisfies the differential equation system of
de Branges. Comparing the coefficients of zn+1 one realizes that the same differential
equation system is valid for �n

k (t). Checking the initial values proves the assertion
(31).

The strong relation between the de Branges functions and the Koebe function can
be also seen by their generating function w.r.t. n [41]:

∞∑
n=k

τ n
k (t)zn+1 = Bk(z, t) := K (z)ϕ(z, t)k (32)

= K (z)k+1e−kt
2 F1

(
k, k + 1/2

2k + 1

∣∣∣∣ − 4K (z)e−t

)
(33)

=
∞∑

n=k

e−kt

(
n + k + 1

2k + 1

)
4 F3

(
k + 1

2 , n + k + 2, k, k − n
k + 1, 2k + 1, k + 3

2

∣∣∣∣ e−t

)
zn+1.

(34)

To obtain these results algorithmically, we would like to start with the proposed
generating function Bk(z, t) = K (z)ϕk(z, t), and compute its Taylor coefficients w.r.t
y = e−t , see [40]. Therefore we consider the following general situation.

Given an expression f (x) in the variable x , one would like to find the Taylor series

f (x) =
∞∑

k=0
Ak xk,

i.e., a formula for the coefficient Ak . For example, if f (x) = ex , then

f (x) =
∞∑

k=0

1
k!

xk,

hence Ak = 1
k! . The main idea behind the FPS (Formal Power Series) algorithm [38]

is
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Bieberbach’s conjecture, the de Branges and Weinstein functions and the Askey-Gasper inequality 125� to compute a holonomic differential equation for f (x), i.e., a homogeneous linear
differential equation with polynomial coefficients,� to convert the differential equation to a holonomic recurrence equation for Ak ,� and to solve the recurrence equation for Ak .

The above procedure is successful at least if f (x) is a hypergeometric power series.
As a first application of the FPS algorithm, we compute the Taylor series of

w(z, y)k = ϕ(z, − ln y)k , considered as function of the variable y = e−t ,

w(z, y)k = (4yz)k

(1 − z +
√

1 − 2(1 − 2y)z + z2)2k
.

which turns out to be a hypergeometric power series: We load the package

> read "FPS.mpl";
Package Formal Power Series, Maple V − 8

Copyright 1995, Dominik Gruntz, University of Basel
Copyright 2002, Detlef Müller & Wolfram Koepf, University of Kassel
and enter

> assume(z>0, z<1); interface (showassumed=0);
> w:=4�y�z/(1−z+sqrt(1−2�(1−2� y)�z+z∧2))∧2

w := 4yz

(1 − z +
√

1 − 2z + 4zy + z2)2

> s:=standardsum(y∧k∗FPS((w/y)∧k,y,j));
FPS/hypergeomRE: provided that-1 < = min(−1,−2∗k−1)

s :=
∞∑
j=0

yk(−1) j z
( j+k)( 1

(−1+z)2

)( j+k) pochhammer(2k, 2 j)y j

pochhammer(2k + 1, j) j!

The computation gives the power series which can be brought into hypergeometric
form:

> simplify(Sumtohyper (op(1,s),j));

yk zk

(
1

(−1 + z)2

)k

Hypergeom
([

k, k + 1
2

]
, [2k + 1], − 4zy

(−1 + z)2

)

This is (33). To obtain (34), i.e. the hypergeometric representation (19) of τ n
k , we

multiply by K (z), and apply the FPS procedure a second time, this time w.r.t the
variable z:
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> ss:=standardsum(FPS(z/(1-z)̂ 2∗s,z,i));

ss :=
∞∑
j=0( ∞∑

i=0

(
2(−1) j y( j+k)k�(2k + 2 j) pochhammer(2k + 2 j + 2, i)z(i+1+ j+k)

�( j + 2k)( j + 2k) j!i!

))

> summand:=op([1,1],ss);

summand := 2(−1) j y( j+k)k�(2k + 2 j) pochhammer(2k + 2 j + 2, i)z(i+1+ j+k)

�( j + 2k)( j + 2k) j!i!

> summand := subs(i=n-j-k,summand);

summand := 2(−1) j y( j+k)k�(2k + 2 j) pochhammer(2k+2 j + 2, n − j − k)z(n+1)

�( j + 2k)( j + 2k) j!(n − j − k)!

> result:=
> convert(Sumtohyper(summand,j),binomial);

result := yk z(n+1)Hypergeom
([

k+2+n, k, k+1
2
, −n+k

]
,

[
k+1, 2k+1,

3
2
+k

]
, y

)
binomial(k + 1 + n, 2k + 1)

The last computation gives (34), hence the hypergeometric representation (19) of τ n
k (t).

An application of the same method automatically generates the hypergeometric
representation for the Weinstein functions �n

k (t) directly from their defining generating
function:

�n
k (z, t) = e−kt

(
k + n + 1

2k + 1

)
3 F2

( 1
2 + k, k − n, 2 + k + n

1 + 2k, 3
2 + k

∣∣∣∣ e−t

)
.

Using (31) and (20) this finally yields the generating function (32).

8 Final remarks

The Maple packages used in this article can be downloaded from my web site
http://www.mathematik.uni-kassel.de/∼koepf/Publikationen.

As general references concerning the history of the Bieberbach conjecture I rec-
ommend the books of [3, 14, 15, 30, 64, 65] (pp. 605ff.) and [23].
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