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In this article we will show how computer algebra can be used in the study of
orthogonal polynomials and special functions. The classical orthogonal polyno-
mials named after Jacobi, Gegenbauer, Chebyshev, Legendre, Laguerre, Hermite
and Bessel can be classified as the polynomial solutions of second order differential
equations. Similarly the classical “discrete” orthogonal polynomials named after
Hahn, Krawtchouk, Meixner and Charlier are classified as the polynomial solutions
of second order difference equations. Using computer algebra one can compute the
recurrence equations and hypergeometric representations of these systems, one can
convert this process by computing differential and difference equations from the
hypergeometric representations automatically, and one can decide whether a re-
currence equation has classical orthogonal polynomial solutions. We will discuss
these and related algorithms, and give some demonstrations with Maple.

1. Demonstrations with Computer Algebra

I will use the computer algebra system Maple to demonstrate and program
the algorithms presented. Of course, we could also easily use any other
general purpose system like Mathematica, MuPAD or Reduce.

Internally the following algorithms are most prominently used: linear
algebra techniques, multivariate polynomial factorization and the solution
of nonlinear equations, e. g. by Grébner basis techniques?.

As an appetizer we consider the conversion between a recurrence equa-
tion and a difference equation.

In this article a difference equation is an equation involving the forward
difference operator

Af(x) = flz+1) = f(z) .
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We ask the question: How can one convert a linear recurrence equation
ap F(@+D)+ -+ ar fz+1) +ao f(z) = 0 (1)

(involving the shift operator) to a difference equation (involving the forward
difference operator)?

Here is a Maple worksheet for this purpose. First we load the LREtools
package

> with(LREtools);

[AnalyticityConditions, HypergeometricTerm, IsDesingularizable, REcontent,
RFEcreate, REplot, REprimpart, REreduceorder, REtoDE, REtodelta, REtoproc,
ValuesAtPoint, autodispersion, constcoeffsol, dAlembertiansols, d, dispersion,
divcong, firstlin, hypergeomsols, polysols, ratpolysols, riccati, shift]

Let us start with the left hand side of the recurrence equation n f,42 —
(n—1)(n+1) frne1 + fn =0 of type (1):
> RE:=n*f (n+2)-(n-1)*(n+1) *f (n+1)+f (n) ;

RE =nf(n+2)—(n—1)(n+1)f(n+1)+1(n)

The desired conversion rewrites the highest term a, f(z + p) of Eq. (1)
in terms of a, AP f(x) which changes the coefficient of f(z+p—1), and iter-
ates this process. This procedure is already implemented in the LREtools
package and can be invoked by the command REtodelta:

> L:=REtodelta(RE,f(n),{});

L := n LREtoolsa,,*> + (—n? + 14 2n) LREtoolsn,, +n + 2 — n?
This results in an operator L such that Lf(z) = 0 is equivalent to the
starting recurrence. The LREtools package uses its own Delta operator

LRFEtoolsa which may be replaced by the usual A:
> subs(LREtools[Delta] [n]=Delta,deltaexpr);
nAZ+(2n—n?+1)A+2+n—n?
so that the resulting operator looks more familiar.
Now let’s ask the opposite question. How can we compute the original
recurrence equation from the operator L7 This is easy: Replacing A and

its powers by their defining equations does the job. For this purpose we
implement the program deltatoRE and some subroutines by?®

deltaop:=(f,x)->subs (x=x+1,f)-f:

2You don’t have to study this code in detail.
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expanddelta:=(f,x,n)->
if n=0 then f(x)
elif n=1 then f(x+1)-f(x)
else
deltaop(expanddelta(f,x,n-1),x)
fi:

deltatoRE:=proc(deltaexpr,an)
local a,n,term,deg,k;
a:=op(0,an);
n:=op(l,an);
term:=deltaexpr-coeff (deltaexpr,LREtools[Delta] [n],0)+
coeff (deltaexpr,LREtools[Delta] [n],0)*a(n);
deg:=degree(deltaexpr,LREtools[Delta] [n]);
for k from deg by -1 to 1 do
term:=subs (LREtools [Delta] [n] "k=expanddelta(a,n,k),term);
od;
collect(term,a,factor);
end:

Our function deltatoRE uses L and creates the original recurrence equa-
tion, again:
> deltatoRE(L,f(n));

nfn+2)—(n—1)(n+1)fn+1)+1f(n)

2. Classical Orthogonal Polynomials

Assume, a scalar product

b
(f.g) = / f(@)g(x) du(z)

with non-negative Borel measure p(z) supported in a real interval [a, b] is
given. One considers essentially the following particular cases:

e absolutely continuous measure du(z) = p(x) dx with weight func-
tion p(z),

e discrete measure pu(x) = p(x) with support in Z.

e discrete measure u(z) = p(x) with support in ¢Z.
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In the sequel we will only consider the first two cases, whereas the third
instance is called the basic case, ¢ denoting the base.
A family P, (x) of polynomials
Po(z) = kpa" + kL™ P+ E2" 2 4k #£0 (2)
is called orthogonal w. r. t. the positive definite measure u(x), if

0 ifm#mn
h, >0 ifm=n

(P = {

The classical orthogonal polynomials can be defined as the polynomial so-
lutions of the differential equation

o(z)P!(z) + 7(x)P.(x) + \nPn(z) = 0. (3)

Since one searches for solution families P, (x) according to Eq. (2) one gets
the following conclusions:

en=1 implies 7(x) = dx +e,d # 0
o n=2 implies o(z) = ax? + bx + ¢
e coefficient of 2" implies A, = —n(a(n — 1) + d)

Therefore these differential equations are easily classified according to the
five parameters a, b, ¢, d and e, the coefficients of the polynomials o(z) and
7(z).

By this procedure the classical systems can be classified according to
the following scheme (Bochner!):

e o(x)=0 powers x"

e o(z)=1 Hermite polynomials

e o(x)=2x Laguerre polynomials

o o(z) = a? powers, Bessel polynomials
o o(z) = a? Jacobi polynomials

Every solution family P, (x) of Eq. (3) is a translate of one of the above
systems. The powers are not orthogonal, whereas all other systems are.
The Bessel polynomials are, however, not orthogonal in a real interval but
on the unit circle of the complex plane.

It turns out that the corresponding Borel measure du(z) is absolutely
continuous, and the corresponding weight function p(z) fitting to the dif-
ferential equation (3) satisfies Pearson’s differential equation

2 (s@p(a)) = r(@)(a)
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Hence it is given as

C @) g,
= o(x) .
p(x) o@)°

The classical “discrete” orthogonal polynomials can be defined as the
polynomial solutions of the difference equation

0(2) AV P, (2) + 7(2) AP, (z) + A Po(z) = 0 (4)

where Vf(x) = f(x) — f(x — 1) denotes the backward difference operator.
We get the same conclusions as before:

en=1 implies 7(x) = dzx +e,d # 0
on=2 implies o(z) = az? + bz + ¢
e coefficient of " implies A, = —n(a(n — 1) + d)

This leads—besides translations—to the classification”:

e o(x)=0 falling factorials 2 = z(x —1)--- (x —n+1)
e o(x)=1 translated Charlier polynomials
e o(x)=1 falling factorials, Charlier, Meixner and

Krawtchouk polynomials
o deg(o(z),z) =2 Hahn polynomials

Again, the falling factorials are not orthogonal, whereas the other systems
are. The discrete weight function p(z),x € Z, corresponding to the differ-
ence equation (4) satisfies Pearson’s difference equation

Ao@)p(@)) = 7(@)p(x) -
Hence it is given by the term ratio

pla+1) _ ol@)+7(a) 5

3. Hypergeometric Functions

The power series
ay a i
yeeey Gp
qu Z | = E Ak Zk 5
b b
1y-+-5,0q k=0
whose summands aj = Agz* have rational term ratio

opp1 Appr 2 (ktar)-(ktay) 2
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is called the generalized hypergeometric function.

The summand a; = Apz* of a hypergeometric series is called a hyper-
geometric term w. r. t. k.

Eq. (5) therefore states that the weight functions p(z) of classical dis-
crete orthogonal polynomials are hypergeometric terms w. r. t. the variable
T.

For the coefficients of the hypergeometric function one gets the formula

at, ... 7G,p
F,
b q(bl,...,bq
in terms of the Pochhammer symbol (or shifted factorial)

I(a+ k)
I'(a)

e (@) (ap)n 2"
) =2 e G B

k=0

(a)py=ala+1)---(a+k—1)=

From the differential or difference equation of a classical orthogonal system,
one can determine a hypergeometric representation. This computation can
be easily done with Maple. Here are the computations in the generic con-
tinuous case. We define the polynomials

>  sigma:=a*xx”2+b*x+c;

>  tau:=dxx+te;

c:=az’+bz+c

T:=dzx+e
with arbitrary coefficients a, b, ¢, d and e and consider the differential equa-
tion
> DE:=

>  sigmaxdiff (F(x),x$2)+tau*xdiff (F(x) ,x)-n*(a*n+d-a)*F(x) ;

DE :=(az®+bx +¢) (dd—; F(z))+ (dz+e) (4 F(z)) —n(an+d—a)F(z)
To convert the differential equation to a recurrence equation for the
series coeflicients, we load the gfun (generating functions) package.

> with(gfun):

This package contains a function diffeqtorec which computes the re-
currence equation for the Taylor coefficients A; of a function

Flz)=) Aja/
j=0

satisfying a linear differential equation DE:

> RE:=diffeqtorec(DE,F(x),A(j));
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RE :=(aj*+(d—a)j—n?a—nd+an)A(j)+ b5+ (e+b)j+e)A(+1)
+(cj?+3cj+2c)A(j+2)
In certain instances, this three-term recurrence collapses towards a two-
term recurrence generating a hypergeometric representation for the family.
This gives, for example, for the Laguerre polynomials

+ -n " (-1 (n+a
L (z)= (" F = ",
n () ( n )1 1<a+1$> kz=o il n—k T
In the Jacobi case, the point of development should be x = £1 to get a

hypergeometric power series. As a classical discrete example, the Hahn
polynomials are given by
1> |

Note that in a similar fashion the basic discrete case can be handled and
leads to a classification of the so-called ¢g-Hahn class of orthogonal polyno-
mials, that have a basic hypergeometric representation, see e. g. Lesky®.

—n,—z,n+1+a+p

(@B (1, N) = 3 F
Qn (7 ) 3 2( O¢+1’—N

4. Computation of the Recurrence Coefficients

Moreover, by linear algebra one can determine the coefficients of the fol-
lowing identities (written for the discrete case)

¢ (Recurrence Equation)
2 Pp(x) = ap, Pry1(x) + by Pr(x) + ¢ Pr—1(x) (6)
¢ (Difference Rule)
0(2) AP, () = @ Pos1(2) + B Pal) + 7 Pai (2)
e (Structure Relation)
Po(2) = Gp APy (2) + by APy (%) + G AP,_1 ()

in terms of the given numbers a,b,c,d and e. A recurrence equation of
type (6) is valid for every orthogonal system, whereas difference rule (or
differential rule) and structure relation are characteristics of the classical
systems.

With Maple, we will now determine the coefficients a,,b, and ¢, of
the recurrence equation (6) in terms of a, b, ¢,d and e. As an example, we
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deal with the classical continuous case. Note that the discrete case can be
treated in a similar fashion.
We consider the three highest coefficients of the orthogonal polynomial:

> p:=k[n]*x"n+kprime [n]*x~ (n-1)+kprimeprime [n]*x~ (n-2);
p = kpz" + kprime,, z=1 4 kprimeprime,, z("=2)

The polynomial satisfies the differential equation DE = 0 with

> DE:=sigmaxdiff (p,x$2)+tau*diff (p,x)+lambda[n]*p;

kn n 2 kn n kori (n—1) -1 2
DE := (az® +ba + c)( 3?271 B x2n+ prime,, T i (n—1)
x x x
kprime, =Y (n — 1)  kprimeprime, ("~ (n — 2)?
a x? * x?
_ kprimeprime,, (=2 (n — 2)) +(dzte)

22
(kn " n n kprime,, 2 (n — 1) . kprimeprime,, 2"~ (n — 2)
x x T

+ Ay (kp 2™ + kprime,, 2= 4 kprimeprime,, 2("=2)
n—4

After division by z
> de:=collect(simplify(DE/x"(n-4)),x);

, we collect coefficients:

de := (—ak,n+ A\ ky + dky,n+ ak,n?) x* + (=3 a kprime,, n + bk, n?
+ a kprime,, n* + 2 a kprime,, + \, kprime,, — d kprime,, + ek, n
—bknn + dkprime, n)x® + (=5 a kprimeprime,, n
— 2d kprimeprime,, — e kprime,, — ck, n — 3bkprime, n
+ 2b kprime,, + ¢k, n® + e kprime,, n + 6 a kprimeprime,,
+ d kprimeprime,, n + X\, kprimeprime,, + a kprimeprime,, n*
+ b kprime,, n?)z? + (c kprime,, n* — 5b kprimeprime,, n
+ 2ckprime,, — 3 c kprime,, n + e kprimeprime, n
+ b kprimeprime,, n® + 6 b kprimeprime,, — 2 e kprimeprime,,)x
— 5 ¢ kprimeprime,, n + 6 ¢ kprimeprime,, + ¢ kprimeprime,, n?
Equating the highest coefficient gives the already mentioned identity for
An:
> rulel:=lambdal[n]=solve(coeff(de,x,4),lambdaln]);

rulel ==X\, = —n(an+d—a)

This equation can be substituted:
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> de:=expand(subs(rulel,de));

de := 223 a kprime,, + 6 22 a kprimeprime,, + 2 x2 b kprime,,
+ 6 2 b kprimeprime,, + 2 x c kprime,, + 6 ¢ kprimeprime,,
— 23 d kprime,, — 2 22 d kprimeprime,, — 22 e kprime,,
— 2z e kprimeprime,, + 22 ck, n? — 22 cky,n — 223 a kprime,, n
— 422 a kprimeprime,, n + 3 bk, n? — 23 bk, n + 22 b kprime,, n*
— 322 bkprime,, n + x b kprimeprime,, n? — 5 b kprimeprime,, n
+ @ ckprime,, n? — 3z c kprime,, n + ¢ kprimeprime,, n>
— 5 ckprimeprime,, n + x3 e k, n + x2 e kprime,, n
+ x e kprimeprime,, n
Equating the second highest coefficient gives k!, as rational multiple of k,,:
> rule2:=kprime[n]=solve(coeff(de,x,3) ,kprime[n]);
knn(e+bn—>b)
—2a+d+2an
Equating the third highest coefficient gives k!! as rational multiple of k,:

> rule3:=kprimeprime[n]=
> solve(coeff (subs(rule2,de),x,2) ,kprimeprime[n]);

rule? := kprime,, =

1
rulel := kprimeprime,, = ikn n(Bbe+5b°n—2b%+e2n+2en?b

—5enb—e?>—4dcna+cnd+2cn’a+2ca—cd+b*nd

—4v*n?)/((-2a+d+2an)(-3a+d+2an))
Without loss of generality we consider the monic case and set
> k[n]:=1;

k, =1
We would like to compute the coefficients a,, b, and ¢, in the recurrence
equation RE = 0 with:
> RE:=x*P(n)-(a[n]*P(n+1)+b[n]*P(n)+c[n]*P(n-1));
RE :=2zP(n)—a,P(n+1)—b,P(n) —c, P(n—1)

We substitute P, (z):

> RE:=subs(

> {P(n)=p,P(n+1)=subs(n=n+1,p),P(n-1)=subs(n=n-1,p)},
> RE);
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RE := z (z™ + kprime,, x~ Y + kprimeprime,, x("~2))
— ap () + kprime,, ., 2™ + kprimeprime,,_., (" ~1)
— by, (2" + kprime,, 2"~V + kprimeprime,, x("~?)
— ¢ (Y + kprime,,_, =2 + kprimeprime,,_, x("73))
We substitute the already known formulas:
> RE:=subs(
{rule2, subs(n=n+1,rule2),subs(n=n-1,rule2),

>
> rule3,subs(n=n+1,rule3),subs(n=n-1,rule3)},
> RE);

n(e4bn—b)z»V
—2a+d+2an
+2en?b—5enb—e? —4cna+cnd+2cn?a+2ca—cd
+02n® — 462 n?)2("=2) /(2(~2a+d+2an) (-3a+d +2an)))
(n+1)(e+b(n+1)—b)a"
—2a+d+2a(n+1)
+5b2(n+1)—2b2+e2(n+1)+2e(n+1)2b—5e(n+1)b
—e2—dce(n+1)a+cn+1)d+2¢c(n+1)%2a+2ca—-cd
+ 02 (n4+1)% —40> (n+1)2)2""V/(2(-2a+d+2a(n+1))
n(e4bn—b)zV
—2a+d+2an
3be+5b2n—2b%+e?n+2en?b—5enb—e?> —4cna+cnd
+2cn?a+2ca—cd+b?>n® —4b>n?)z(*2) /(2
(—2a+d+2an)(=3a+d+2an))) — c,(z»V
n (n—1)(e+b(n—1)—b)z2
—2a+d+2a(n—1)
-2 +e?(n—1)+2e(n—1%2b—5e(n—1)b—¢?
—4c(n—1a+cn—1)d+2c(n—1)2%a+2ca—cd
+02(n—1)° =40 (n—1)?)z 3 /(2(=2a+d+2a(n—1))
(=3a+d+2a(n—1))))
After putting this rational expression in the form numerator/denominator
with normal, the numerator must vanish:

RE = x(z™ + +n(3be+5b*n—20%+e2n

—ay, (x(”-i'l) +

+(n+1)(3be

(=3a+d+2a(n+1))))—by(a™+ + n(

+(n—=1)3be+5b*(n—1)

> re:=simplify(numer (normal(RE))/x"(n-3)):

Equating the highest coeflicient gives for monic polynomials

> ruled:=a[n]=solve(coeff(re,x,4),aln]);
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11
rulef :=a, =1
and equating the second highest coefficient yields
> ruleb5:=b[n]=factor(solve(subs(rule4,coeff(re,x,3)),blnl));
—2bn%a+2bna+2ea—2bnd—ed
ruley := b, =
(d+2an)(—2a+d+2an)
Finally equating the third highest coefficient leads to
> rule6:=c[n]=
> factor(solve(subs(rule5,subs(ruled,coeff(re,x,2))),cln]));
rule6 :=c, = —n(an+d—2a)(4a’n’c—8a*cn+4a’c—ab’*n?®+4acnd

+2ab?n+ae?—ab?>—4acd—b*dn—bed+cd®>+b2d)/((d—a+2an)
(-3a+d+2an)(—2a+d+2an)?)

In a similar fashion the differential (difference) rule and structure relation
can be handled.

5. Zeilberger’s Algorithm

Doron Zeilberger (1990)!° developed an algorithm to detect a holonomic
recurrence equation for hypergeometric sums

[e.9]

Sp = Z F(n, k).

k=—o0

A recurrence equation is called holonomic, if it is homogeneous, linear and
has polynomial coefficients.
A similar algorithm detects a holonomic differential equation for sums
of the form
o0

s(x)= Y F(z,k).

k=—o00

Holonomic functions form an algebra, i.e. sum and product of holonomic
functions are holonomic, and there are linear algebra algorithms to compute
the corresponding differential / recurrence equations.

As an example, we apply Zeilberger’s algorithm to the Laguerre poly-
nomials

Hw =3 G (1)
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For this purpose, we load the package hsum.mpl from my book Hypergeo-
metric Summation®®

> read "hsum9.mpl";
Package “Hypergeometric Summation®, Maple V. — Maple 9
Copyright 1998 — 2004, Wolfram Koepf, University of Kassel
We define the hypergeometric summand of the Laguerre polynomials
> laguerreterm:=(-1) "k/k!*binomial (n+alpha,n-k)*x"k;
(—1)* binomial(n + o, n — k) 2"

k!
and use Zeilberger’s algorithm to detect a recurrence equation for the sum,

laguerreterm :=

hence for the Laguerre polynomials:

> LaguerreRE:=sumrecursion(laguerreterm,k,L(n));

LaguerreRE :=
m+a+1)Ln)+(z—-2n—a—-3)L(n+1)+(n+2)L(n+2)=0
Similarly, a recurrence equation w.r.t. « is obtained
> sumrecursion(laguerreterm,k,L(alpha));
(mn+a+1)L{e) — (e +a+1)Lia+1)+zL(a+2)=0
Next, we compute the differential equation of the Laguerre polynomials
from their hypergeometric representation:

> LaguerreDE:=sumdiffeq(laguerreterm,k,L(x));

LaguerreDE = x (% L(z))—(z—a—-1) (% L(z))+L(z)n=0
Using the holonomic algebra, it is furthermore easy to find recurrence
and differential equations for the square L'®(z)? and for the product
L' (x) Ly )(a:) or any other sum or product of holonomic functions.
The following computation using the gfun package takes the recurrence
equation for L;")(:z;) and generates the recurrence equation valid for the
square of the Laguerre polynomials (including some initial values)

> ‘recxrec‘(LaguerreRE,LaguerreRE,L(n));

bThe software can be downloaded from my home page http://www.mathematik.
uni-kassel.de/ koepf/Publikationen.
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{(10 — 22 +29n+30n? + 2502 —5za+2n* +13n® +27a +9a® + o*
—zn® 74177,2+7n3a+9n2a2+35n2a+31na2+5na3
—za®—42a? —3zn’a—3zna? —8zxna—5zn+55na)
L(n) 4 (=66 + 7T0x — 149n — 124n?% —47a® + 5z o — 6n*

— 45n3 —22x2+2z3 —9la—11a° —a4+ac3n—6x2n2
—23$2n+11wn3+62wn2 —15n%a—14n%a?® —84n’a
752na276na3+z3a73m2a2 717x2a+3$a3+26$a2
79932na+221:n2a+14:vn042+821na+115zn7153no¢)
L(n+1)+ (110 — 1022 4+ 21971 + 160n? + 220 — 48z a + 6n*
+51n3+26x2 7213+82a+2o¢3 7x3n+6x2n2+25m2n
—1lzn® —702zn®> +9na+5n%a® +57n%>a+21na’® +na’
+612a—6z0¢2+3w2na—11wn2a—3$na2—46wna
—147zn+119na)L(n+2) + (zn® +8zn? +21zn + 18z

—2n% —19n° —66n% —99n —n®a —8n%a —21na — 18a — 54)

1 9 3 3
L(TL+3),L(2) = Z,C() _Co + Z,Cl _C3 — Z,C[),Cg — Z,Cl _Co

1 1 1 1
+7,C1w,02a77,Cla,C3w+7,C0a,03z+7,00a2,C2

4 2 4 4

L Coa? 05— 1 Cra® Cat s Cra? Cs+ 1 Cra?C
- — - [6 2 — = - a” - - o - - - -

4 0 3 4 1 2 4 1 3 4 1 3

1 1
+5700(176’2—700047034-170070396—7010£7C2

3

3 1
+ 5 Cia_-C3— 5701 _Czz+ Z—Cl z_Cao, L(O) =_Co-Cso,

L(1) = .C1 _Cs}
Next, we compute the differential equation for the square of the Laguerre
polynomials

> ‘diffeq*diffeq‘(LaguerreDE,LaguerreDE,L(x)) ;

(=4dzn+4na+2n)L(x)

+(@zn+222+3a+1+2a® —dza—42) (£ L(z))

+ (=322 +3za+37) (L, L(2)) + (L L(z)) 2
and this is finally the (fourth order) differential equation for the product
L' (z) Lsg)(x) of the Laguerre polynomials.

> ‘diffeqxdiffeq‘(LaguerreDE,
> subs(alpha=beta,n=m,LaguerreDE),L(x));
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(5,32112z+4zn2aﬁ+2ﬂn2m72m2o¢z7mﬁa2 —2m? Bz +ma?p?
+2mapB?+anp?—28na? —12ma’n? —5m?a’z+m?p%x
+12m2?22n—12mae?na+6maena?+12mpBaz’n—6mp%2zn
—4m?zap-—a®Bn—c®mpB+4zina—42°nB+42°ma
—d428mpB—4z?a®n+zan—222an?+422mp%—422ang
—zanpB’+4z22mBat+zmpBa®+5z8na? —5zmaps?

+ 823 n? 78z3m27mmﬁ3+2z2m2ﬁ+8m2ﬂ2n75xﬁsn
—1412ﬂn2 —8w2ma2+5wmoc3+14$2m2a+12m2$2

2 _na® 7612na+2zn2a+6mna2 —6z2am

—1222n% —na
+6ﬁzzm+6ﬁmzn+6o¢2mm—6B2mz—6521n+63an
+ﬂ3o¢m—o¢2n,82—a2n2z+ﬁ4n+4x2n3+nﬁ2—ma2+m,6'2
+28%3n —4m?z? —mat 72mo¢3+mﬁ3)L(m)+(fa2+62
—2mzfB+2znB-98x%a®’ —6B2za—2ema+4zna
+2013n6—QOa:Smoz—4w3mﬁ+4$2a2n—2aca3n
+8z2an?—42°mpB?—6Bamz—16z2anB+6zan3?
+162°mBa—6azmpBa?+2zBna? —2zmapp?+82%a?
73Ba3+6ﬁawn+3ﬁsa716z3n2+16a:3m2 —32ma®
+8mat +22mp —8x2m2p - 122282 n+ 2263 n+ 822 gn?
+12m2ma2—2wma3—8w2m2a+21ﬁ2w2 —953w+,6'4
—12m?z? —2a° 7a4+9z204[32+6azo¢3ﬁ+3213n+12x2n2
—207;271-1-163:3(1—21;62012 —10w2a+9wa3+10xa2
—162°na—2zna? +2zna+ 10822 —-108%z — 2423
+20ma? +26% —522a® —88%22 +58%2%2 —9xap?
+28w2am+9ﬁxa2+16Bz2m—286w2n—8a2mz
+28°mez+88%zn—a*B—a®p?—8z*n—4zta+482*
Bz + 20+ a—1682% +2a 8% + o’ 2)(4L L(z)) + (
9Bm2a2+3ﬁ3ma—16m3no¢—2413n5+24m3ma+16x3mﬂ
+222a?n—-22°2mpB%2+1222anB-1222mBa —15z% a2
+8CESTL2 7813m2+52mx3 720mm4+6m2[32n76z2ma2
—2508%222+68%2—922apB? -3z B —-522°n+162%n
72613a+2512a2+812a76xa377za2+1812na78,@x2
+78%2z—16ma?+722a+158%2> — 73222 + 628
718w2am76,@a:a2718,@$2m+186w2n+2014n+10m4a
—1Oﬁz4+ﬁ4z+26513—oz4m)(d”;—22L(x))+(—852z3+652z2
+8z%a? 42023 n+16ma* —16x*n —20mz® + 102> «
—1082% —622a? -8zt a+882*+22%2aB8%2 -82°ma
+8:63na72,6’z2a278933m['3+8933n['372:52a3+2[‘33a:2)

(5 L))

+(214o¢—2ﬁx4—m3a2+ﬁ213—4mz4+4z4n)(£—44L(z))
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6. Petkovsek-van Hoeij Algorithm

Marko Petkovsek® developed an algorithm to find all hypergeometric term
solutions of a holonomic recurrence equation. This algorithm is not very
efficient, but finishes the problem to find hypergeometric term representa-
o0 n
tions of hypergeometric sums s, = >, F(n,k) like (2)2 algorithmi-
k=—00 =0
cally. Mark van Hoeij® gave a very efficient version of such an algorithm,
and implemented it in Maple.

We would like to find a simple representation for

> s:=Sum(binomial (n-2x*k,k)*(-4/27) "k,k=0..floor(n/3));

ﬁ ﬁ
oor(3) »
= bi ial(n — 2k, k) (==)"
s kZ:O inomial(n , k) ( o7 )

Hence we define the summand
> summand:=binomial (n-2*k,k)*(-4/27) "k;

summand := binomial(n — 2k, k) (;—?)k
and compute the recurrence equation for the sum s, using Zeilberger’s
algorithm:
> RE:=sumrecursion(summand,k,S(n));

RE :=2(n+3)S(n)+3(n+4)S(n+1)—9(n+2)S(n+2)=0
Since the recurrence RE is second order, we try to find the hypergeometric
term solutions of RE using van Hoeij’s algorithm:
> res:=‘LREtools/hsols‘(RE,S(n));

-1 2.4
res == (5" (5)" (5 + )
Since our second order recurrence has two linearly independent hypergeo-
metric term solutions, every solution of RE must be a linear combination
of them. Hence we can set for s,
> result:=alphax*op(l,res)+beta*op(2,res);

result := « (_?1)" +4 (%)” (% +n)

and we can find the coefficients v and ( using two initial values by linear
algebra:
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> sol:=solve({

> eval(subs(Sum=sum,s=result),n=0),
> eval(subs(Sum=sum,s=result),n=1)},
> {alpha,beta}l);

2 1
l = = -, = —
50 {B 3 %= }
Therefore, we have finally found the simple formula for s,,:
> result:=subs(sol,result);
-1 2

(?)" 2(3)" (5 +n)

9 3

result 1=

7. Recurrence Operators

Assume we consider the holonomic recurrence equation
Rf(z):=flx+2) = (z+1) flz+1) +2® f(x) = 0.

In the general setting the coefficients could be rational functions w.r.t. x.

Let 7 denote the shift operator 7 f(x) = f(z + 1). Then the above
recurrence equation can be rewritten as R f(x) = 0 with the operator poly-
nomial

Ri=7>—(z+1)7+22.

Such operators form a non-commutative algebra.
The product rule for the shift operator

(2f@) =@+ D) f@+1) =@+ 1)1 f(2)
is equivalent to the commutator rule
TX—XT =T

in this algebra.

An operator polynomial has a first order right factor iff the recurrence
has a hypergeometric term solution. Hence the Petkovsek-van Hoeij algo-
rithm finds first order right factors of operator polynomials.

Multiplying an operator polynomial from the left by a rational function
in x is equivalent to multiply the recurrence equation by this rational func-
tion. Multiplying an operator polynomial from the left by 7 is equivalent
to substitute « by x 4+ 1 in the recurrence equation.
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Let us construct a fourth-order recurrence equation from R. To con-
struct the equation S f(x) = 0 with operator
Si=(x@+)r*+a¥r+ @ +2-1))-R,

we just add the equations

(@242 -1) (flz+2) ~ (@+1) fz+1) +2° f(z)) =0
2 (f(x+3)—(x+2)f(x+2)+(x+1)2f(x+1)) -0

2(e+1) (fl@+4) — (@+3) f(a+3) + (2 + 22 f(w+2)) =0,
This leads to

Si=z(x+1)7
—x(4x+3)7°
+(x+1) (32> + 6z —1) 7
+(@+1) (a2 +2® -2 —z+ 1)1
+(a:2+x—1)x2.
Given S, a factorization procedure by Mark van Hoeij can compute the
factorization S = L R, again. For this purpose, we load his package:

> read "FactorOrder4-discrete";

Warning, the name delta has been redefined
_Env_LRE g :==x
_Env_LRE tau :=T
The following command factors S and returns the right factor found:
> fact:=FactorOrder4(RE);
fact := {1+ (—x — 1) 7 + 2%}

which, of course, equals R.

8. Classical Orthogonal Polynomial Solutions of Recurrence
Equations

Previously we had shown how the recurrence equation can be explicitly
expressed in terms of the coefficients of the differential / difference equation
of the classical orthogonal systems.



October 6, 2005 11:17 Proceedings Trim Size: 9in x 6in Koepf"Munich'2005

18

If one uses this information in the opposite direction, then the corre-
sponding differential / difference equation can be obtained from a given
three-term recurrence. In this algorithm a polynomial equation system
containing linear and quadratic polynomials must be solved?®.

Let the recurrence

Poio(®) — (x —n—1)Pyi1(x) + a(n+1)*P,(x) =0

be given.

Our program computes that for & = 1/4 this corresponds to translated
Laguerre polynomials, and for o < 1/4 translated Meixner and Krawtchouk
polynomial solutions occur:

> read "retode.mpl";
Package “REtoDE“, Maple V. — Maple 8
Copyright 2000 — 2002, Wolfram Koepf, University of Kassel
> RE:=P(n+2)-(x-n-1)*P(n+1)+alpha*(n+1) "2*P(n)=0;
RE:=Pn+2)—(z—-n—-1)Pn+1)+a(n+1)?Pn)=0
The following command gives the classical continuous solutions
> REtoDE(RE,P(n),x);

Warning : parameters have the values,

1
{b:20,azO,a:Z,c:c,d:—élc,e:O}

(5 @2+ 1) (22 Pn, 2)) 22 (2 P(n, 2)) + 20 P(n, 2) =0,

-1 k
5 o< pla) = 220, A — 1]

and finally, the following command gives the classical discrete solutions:
> REtodiscreteDE(RE,P(n),x);

(1=

2
—1
Warning : parameters have the values, {a = f472, f=7f,d=d,
1,,, 1, 1 1
C__Zf d+1d+§gdf+§gd,a—O,g—g,e——gd,

1

1
b=—3fd—;d}



October 6, 2005 11:17 Proceedings Trim Size: 9in x 6in Koepf"Munich'2005

19

1(f+2faz—1)A(Nabla(P(n, fz +g), ), z) 22A[P(n, fz+g), z)

5 i F+1

20P( fr+g)
T /
b@*:£+x‘;‘g”*”+T@*:U_lﬂéaiﬂjl_2”L
f_l kn-i—l_l

p(z) = (

=0 Tk

9. Final Remarks

I hope this survey article has shown some of the capabilities that lie in the
use of computer algebra systems when working with orthogonal polynomials
and special functions. I wish you much success with their use!
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