ON A NEW CLASS OF LAPLACE TRANSFORMS OF
GENERALIZED HYPERGEOMETRIC FUNCTIONS
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ABSTRACT. Very recently Masjed-Jamei and Koepf established several inter-
esting and useful generalizations of classical summation theorems for the series
2F1, 3F2, 4F3, 5F4 and gF5. The main objective of this paper is to provide
a new class of Laplace transforms of generalized hypergeometric functions by
employing these summation theorems. Several new and known special cases
have also been considered.

1. INTRODUCTION

The generalized hypergeometric function with p numerator and ¢ denominator
parametres is defined [1, 2, 17] as

ai, -, ap . = (al)n"'(ap)n z"

where (a),, is the well known Pochhammer symbol [10] for any complex number a
defined as

n=0

1, (n=0,aeC\{0})
ala+1)---(a+n-—1), (neN,aeC),

where I'(2) is the well known gamma function defined by

3) T(z) = /0 " ey

for Re(z) > 0.

For details about the convergence conditions of (1) and other properties, we refer
to [17].

It is not out of place to mention here that whenever a generalized hypergeomet-
ric function reduces to gamma function, the results are very important from the
application point of view. Here, we shall mention the following classical summation
theorems [1, 2] so that the paper may be self contained. These are
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Gauss Theorem for Re(c—a—b) >0
a, b I(e)T'(c—a—10)
F ’ il = —F/————+
: [ c ] I(c—a)l(c—b)
Kummer’s Theorem
a, b ] F(1+a—-bI'(1+ 1a)

l+a=b"" | " TA-b+ la)l(1+a)

o F1 [

Second Gauss Theorem

a, b .1]_ Val(zla+b+1))
sla+b+1) 2] " T(d(a+D))TEDB+1)

2F1{

Bailey’s Theorem

P [ a, 1—a _1} _ T(30)0(5(b+ 1))
201 b 2] T((a+b)L(E(b-a+1))

Dixon’s Theorem

a, b, c )
3F2[ l1+4a—-0b, 14+a—c ’1}

A+ 3a)l(1+a-bl(1+a—cl(1—b—c+ ja)

CT(l+aT(1l-b+ia)(1—c+ia)’(1+a—b—c)
a? b)

Sa+b+1), 2 ?1}
ViT(e+ 3 (3(a+b+1)T(c—i(a+b—1))
+ 1)L (e~ 5(a—1))T(c—5(b—1)

Watson’s Theorem

3Fs {

- T(za+1)0(5(0
Whipple’s Theorem

TR+ o))Lb+s(a—c+1)T(E(L—a+e)I(b+1—3(a+c))
Pfaff-Saalschiitz Theorem

I a, b, -no _(c=a)u(c—b)n
2 e, 14atb—c—n’ (nlc—a—b),

Second Whipple’s Theorem

I a, 1+3a, b ¢ | _ Tl@=b+1l'(a—c+1)
3 e, a-b+1,a—ct+ 17 T T+ 1)T(a—b—c+1)
Dougall’s Theorem

a, 1—4—%(1, c, d, e )

5F4[ %a, a—c+1, a—d+1, a—e+1 ’1]

_Tla—c+Dl(a—d+1)l'(a—e+1)(a—c—d—e+1)
CTe+Dl(a—d—e+Dl(a—c—e+1)(a—c—d+1)
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e Second Dougall’s Theorem

(14) F, a, 1—1—%@, b, ¢, d, 14+2a—b—c—d+n, -n
[ éa,a—b—l—l,a—c—i—l,a—d—l—l,b—|—c—|—d—a—n,a—|—1+n’
_(a+pla—b—cH+1)(a—b—d+1)(a—c—d+1),
C(a+1-bplat+l—c)plat+l—dy(a+1—b—c—d),

For finite sums of hypergeometric series, we will use the following symbol

(m) |:a1, e, Ay ] i Hf_l(ai)n 2"
2 = T R
PR Dy, e, by T;) 2 (b)n !

where for instance

(=1) (0)
pFy(2) =0, Fy(2) =1, pF(2)=1+
by - by

By using the following relation [16],

a1, Ap_1 1
15 F, ’ PP ;
(15) P q[bh,,,,bq_l’ maZ:|
_ I'(by)---T'(bg—1) I'(ag —m+1)---T'(ap—1 —m +1) (m—1)!
I(ai)---T(ap—1) T(by —m+1)---T'(bg—1 —m+1) 2zm71

><{ r ar—m+1,---, ap_1—m-+1
p=1tq-1 bp —m+1,---, bgo1 —m+1"
_ (m};2) al_m+1a"'vap71_m+1_z}
Py 1, by —m A1 T S

very recently Masjed-Jamei and Koepf [14] have established generalizations of the
classical summation theorems (4) to (14) in the following form:

Fm)T(e)Ma—m+1)T'(b—m+1)

B T(a)L(0)C(c—m + 1)
Ple—=m+1)l(c—a—-b+m—1) M=2DTqg-m+1,b—m+1
X{ T(c—a)l(c—b) ~ 2f c—m+1 1]}

:Ql
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;=

a—b+m,m
(e ITm)T(a—=b+m)I'a—m+1)Ib—-—m+1)
(@) (a—b+1)

{ Ta—b+ DI+ L@a—m+1)  (m=2) a—m+Lb—m+1.;q}
—Q,

r'2+a-—m F(m—b—i—%(a—m—kl))_ 2 a—b+1

a, b, 1 1

(@a+b+1),m 2

L Tm)P(G(a+b+1)l(a—m+1)T(b—m+1)
L@ (—m+144i(a+b+1))

{ﬁr(m+1+§(a+b+1)) =2 g—m+1, b—m+1 1”

N[

TA+a—m)P(I+30b-m) > ' [ -m+1+ia+b+1) 2

R { a, ZTrIL)’famfl, 1 ;%
1 D(m ) O)I'(a—m+1)I'(m —a)
Fa)'2m—a—-1)T'b-—m+1)
%b m+1))T (i(b—m+2)) _(m_Q) a—m—l—l,m—a.l]
—mA1+la+b)FEb—a+1) T

b—m+1 ’9

{Q/—’H

(20)
a, b, c, 1
+Fs { a—b+m,a—c+m, m’ }
FmT(a—b+m)T(a—c+m)TNa+1—m)T(b+1—m)T'(c+1—m)
F@) IO ()M a—b+1I'(a—c+1)

{ I'(A(a+3-m))T(a—b+1)l(a—c+1I(~b—c+ i(a+3m—1))
Tla+2—m)I(~b+3(@a+m+1)I(—c+i(a+m+1)T(a—b—c+m)
M= ag—m+1,b—m+1, c—m+1

— 8fh { a—b+1, a—c+1 ’1}}
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(21)
a c 1
oF3 [ %(a—&’—b—i—lbj, 2c—|—71 —m, m ;1}
_ D(m)(3(a+b+1)T'(2c+1—m)l(a+1—m)(b+1—m)(c+1—m)
L(a)L ()T ()L (—m + 3(a+ b+ 3))['(2c — 2m + 2)
Val(e—m+ 3)T(=m+ 3(a+b+3)T(c—L(a+b-1))
{m +3a—-m)IA+ib-m)(c+1—2(a+m)T(c+1—1(b+m))

(m—2) a—m+1, b—m+1, c—m-+1
— 3l 1 i1 }
-m+1+35(a+b+1), 2c—2m+2
= Qg
a, 2m—1—a, b 1
(22) 4F3{ c, 2b—c+1, m ’1}

Tm)T'(e)(2b—c+1)I'(m—a)T(a+1—m)T'(b+1—m)
F@)I'®Ir'2m—-1—a)l'(c+1-m)I'(2b—c—m+2)
" { 722m=2=1P(c —m + 1)
D(—m+1+3a+e)T(-m+1+b+3(a—c+1)I(3(1—a+c))
P@b—c—m+2) "2 [ a—m+1, b—m+1, m—a ;1} }

F(b+1—%(a+c))_ 352 c—m+1,2b—c—m+2
a, b7 —n+m—1, 1 . _ (m—l)'(l—c)m,l
R I T R (o

(c—a—b+n)m_1 x{ (c—a)n(c—D)y
(n+2—m)m_1 (c+1-—m)p(c—a—-b+m-—1),
_(mI;Q) a—m+1, b—m+1, —n q }

32l e—m+1, 24a+b—c—m—-n"

(24) 5Fy4 { L = (=1)""'T(m)

a, %(a—l—m—i—l), b, ¢ 1 _1}
2
F(%(CH—m—1))F(a—b+m)F(a—c+m)F(%(a—m+3)){‘(a_m+1)

a+m—1),a—b+m,a—c+m,m

L(a)L(O)T()L(2(a+m+1)T(5(a —m+1))
Fb+1—m)T'(c+1—m) x{ Fl+a-bT(1+a—c)
Fla—b+1)l'(a—c+1) re—m+a)l’'m+a—5b--c)
(m2){a—m+1,b—m+1,é(a—m+3),c—m+1 1}}

fla=m+1),a—b+1, a—c+1 '
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(25)
F{ a, %(a—i—m—&—l), c, d, e, 1
655 %(a—i—m—l),a—c+m,a—d+m,a—e+m,m’
B L(m)L(3(a+m—1))T'(a—c+m)I'(a—d+m)l(a—e+m)
IFa—c+1Il'(a—d+1)I'(a—e+1)
Fla—m+1I(3(a—m+3)L(c+1-—m)I(d+1—m)(e+1—m)
L(a)L(c)D(d)L(e)T(5(a+m + 1)) (3 (a —m +1))
{F(a—c+1)F(a—d+1)F(a—e—|—1)F(a—c—d—e—|—2m—1)
re—-m+al(a—c—e+m)lla—d—e+m)I'(a—c—d+m)
(7;42){a—m—|—17c—m—|—1,%(a—m—&—S),d—m—i—l,e—m—i—l.1}}
fla=m+1), a—c+1, a—-d+1, a—e+1 ’
= Q1o
(26)

r a, %(a—}—m—i—l), b, ¢, d, 2a—b—c—d+2m—-1+n, m—-n-1, 1 1
857 %(a—i—m—l),a—b+m,a—c+m,a—d+m,b+c+d—a+1—m—n,a+n+1,m’
(3B—a—m))m-1(l—a+b—m)m_
B e Y e
" l—-a+c—m)p1(l—a+d—m)pm_(m+n+a—-b—c—d)m_1(—a—n)m-1
(1=b)m-1(l=)m-1(l =d)pp—1(b+c+d—2a+2—-2m—n)pm_1(n+2—m)y_1
{(afm+2)n(a—bfc+m)n(a7b—der)n(afc—der)n
(a—b+1)p(a—c+1)pla—d+1)p(a—b—c—d+2m—1),

= (=)™ (m - 1) x

(m—2) B 1, B B B L B
a m+1,2(a m+3),b—m+1l,c—m+1l,d—m+1,2a—b—c—d+m+n, —n 1
%(afmqtl),a7b+1,a7c+1,a7d+l,b+c+d+7a+272mf'n,a7m+n+2’ }

It is interesting to mention here that for m = 1, the results (16) to (26) reduce
to the results (4) to (14), respectively. For other generalizations and extensions of
the results (5) to (10), we refer to [7, 11, 12, 13, 18].

On the other hand, we define the (direct) Laplace transform of a function f(t)
of a real variable ¢ as the integral g(s) over a range of the complex parameter s as

(27) o(s) = L{f(1): s} = / T et it

provided the integral exists in the Lebesgue sense. For more details, see for instance
[3] or [4]. It is interesting to mention here that in view of the formula

(28) / e 1t =T'(a)s™™
0

provided Re(s) > 0 and Re(«) > 0, by utilizing (1), with p < g, it is not difficult
to show that the Laplace transform of a generalized hypergeometric function ,Fj
is obtained as [5, 15, 19]:
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29 mstgr=L g |90 T e gy
(29) /0 € pq{bh o bq“’
_ —v v, ay, -+, Qp, g
7]?\(”)8 p+1Fq |: bla Y bq’ S:|

provided that when p < ¢, Re(v) > 0, Re(s) > 0 for w arbitrary, or p = ¢ > 0,
Re(v) > 0 and Re(s) > Re(w).

Here, the interchange of order of integration and summation when integrating
the left-hand side of (29) with respect to t is easily seen to be justified by the
uniform convergence of the series (1).

The aim of this paper is to provide a new class of Laplace transforms of general-
ized hypergeometric functions by employing the summation theorems (16) to (26).
Several new and known special cases have also been considered.

2. LAPLACE TRANSFORMS OF GENERALIZED HYPERGEOMETRIC FUNCTIONS

In this section, we shall establish several new, interesting and elementary Laplace
transforms of generalized hypergeometric functions asserted in the following theo-
rems that follow directly from (29) and (16) - (26).

Theorem 2.1. For m € N, Re(s) > 0, Re(a) > 0 and Re(c —a — b+ m) > 1, the
following result holds true.

(30) / ettty Ry Lb’ 7;; st} dt =T(a)s™*Q,
0

b

where 1y is the same as given in (16).

Theorem 2.2. For m € N, Re(s) > 0 and Re(c —a —b+m) > 1, the following
result holds true.

(31) / e Sty [Ca, :1; st] dt = s71Qy,
0 s
where 1y is the same as given in (16).

Theorem 2.3. For m € N, Re(s) > 0 and Re(a) > 0, the following result holds
true.

(32) / €Stta12F2|: b, L ;st] dt
0

where g is the same as giwven in (17).

T(a)s™*Qa,

Theorem 2.4. For m € N, Re(s) > 0 and Re(b) > 0, the following result holds
true.

OO —st 4b—1 a, 1 . - —b
(33) /0 e T o Fy [a —bt+m, m st] dt =T'(b) s7° o,

where g is the same as giwen in (17).
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Theorem 2.5. For m € N and Re(s) > 0, the following result holds true.
(34) h e "y Fy @ b c—st| dt =510,

0 a—b+m, m’ ’
where g is the same as giwven in (17).

Theorem 2.6. For m € N, Re(s) > 0 and Re(a) > 0, the following result holds
true.

>~ —st yja—1 bv 1 1 _ —a
(35) /0 et oy [;(a+b+1), m,zst dt =T(a) s~ Q3,

where Q3 is the same as given in (18).

Theorem 2.7. For m € N and Re(s) > 0, the following result holds true.
> —st a, b . 1 _ -1

(36) /O e 2F2 h(a—l—b—f—l), m,QSt:| dt = s Qg,

where Q3 is the same as given in (18).

Theorem 2.8. For m € N, Re(s) > 0 and Re(a) > 0, the following result holds
true.

- 2m—a—-1,1 1
—st yja—1 9 Lo — —a
(37) /0 e Tt o { b, o 2575} dt =T(a) sy,
where Q4 is the same as given in (19).

Theorem 2.9. Form € N, Re(s) > 0 and Re(2m —a—1) > 0, the following result
holds true.

o
—st 12m—a—2 a, 11 _ o a+1—2m
(38) /0 e %t o Fy [b, . 2st] dt=T(2m—a—-1)s Qy,
where 4 is the same as given in (19).

Theorem 2.10. For m € N and Re(s) > 0, the following result holds true.

< a, 2m—a—1 1 _
(39) /0 (& tQFQ |: b, m ,2$t:| dt = s 1947
where Qg is the same as given in (19).

Theorem 2.11. For m € N, Re(s) > 0, Re(a) > 0 and Re(a — 2b— 2¢+ 3m) > 1,
the following result holds true.

* —S a— b’ ) 1 —a
(40) /0 e st oy [a—b—&—m ;—C—Fm m;st]dt:I‘(a)s Qs,

where 5 is the same as giwen in (20).
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Theorem 2.12. For m € N, Re(s) > 0, Re(b) > 0 and Re(a —2b — 2¢+ 3m) > 1,
the following result holds true.

b a, c, 1 _
(1) / L [a—b+m a—c+m m;St] dt =)™ %,
0 ) )

where 5 is the same as giwen in (20).

Theorem 2.13. Form € N, Re(s) > 0 and Re(a—2b—2c+3m) > 1, the following
result holds true.

> —st a, ba & . _ -1
(42) /0 e " 3F3 {a—b—i—m,a—c—i—m,m’“}dt_s Qs,

where Q5 is the same as given in (20).
Theorem 2.14. For m € N, Re(s) > 0, Re(a) > 0 and Re(2¢ —a — b) > —1, the
following result holds true.

b c, 1

—st ya—1 ’ . — —a
(43) /0 e 'tV 3 Fy h(a—i—b—l—l),Qc—&—l—m, m,st} dt =T'(a) s~ Qg,

where Qg is the same as given in (21).

Theorem 2.15. For m € N, Re(s) > 0, Re(c) > 0 and Re(2¢ —a —b) > —1, the
following result holds true.

o0
—st yc—1 a, b7 1 . o —c
(44) /0 e Tt 3k h(cu—b—f—l), %+1—m, m,st} dt =T(c) s~¢Qg,
where Qg is the same as given in (21).

Theorem 2.16. For m € N, Re(s) > 0 and Re(2¢c — a — b) > —1, the following
result holds true.

> —st a, ba c . _ -1
(45) /O & 3F3 [é(a+b+1), 20+17m, m,St:| dt =s QG,

where Qg is the same as given in (21).

Theorem 2.17. For m € N, Re(s) > 0, Re(a) > 0 and Re(b—m + 1) > 0, the
following result holds true.

OO —st ya—1 2m_a—17 bv 1 _ —a
(46) /0 e 'tV 3 Fy {07 % — 1, s 5t dt =T(a) s~ *Q7,

where Q7 is the same as given in (22).
Theorem 2.18. For m € N, Re(s) > 0, Re(b) > 0 and Re(b —m + 1) > 0, the

following result holds true.

> —st 4 b—1 a, 277’7,—0,—17 1 _ —b
(47) A e t 3F3 I:C, 2bfc+1, m,St:l dt—F(b)S Q7,

where Q7 is the same as given in (22).

Theorem 2.19. Form € N, Re(s) > 0, Re(2m—a—1) > 0 and Re(b—m+1) > 0,
the following result holds true.
(48)

> —st 42m—a—2 T a, c, 1 . _ _ _ a+1—2m
/0 e 't 33 [c, % —ct1, m,st} dt=T2m—-a—-1)s Q7,

where Q7 is the same as given in (22).
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Theorem 2.20. Form € N, Re(s) > 0 and Re(b—m—+1) > 0, the following result
holds true.

o a, 2m—a—1, b
(49) / e 3 Fy [C’ Wt m;st} dt = s71Qq,
0 ) )

where Q7 is the same as given in (22).

Theorem 2.21. Form € N, n € Ny, Re(s) > 0 and Re(a) > 0, the following result
holds true.

® stsae b, —n+m-—1, 1 _
st ya—1 ) ) . _ a
(50) /0 et 3Fy [c, l4atb—c—n, m,st} dt =T(a) s~ Qs,

where Qg is the same as given in (23).

Theorem 2.22. For m € N, n € Ny and Re(s) > 0, the following result holds true.

> —st a, b7 -n+m-—1 . _ 1
(51) /0 e 3F3[c,1+a—|—b—c—n, m,st]dts Qg,

where g is the same as given in (23).

Theorem 2.23. For m € N, Re(s) > 0, Re(a) > 0 and Re(a — 2b — 2¢ + 3m) > 2,
the following result holds true.
(52)

00 1
—st ya—1 E(a +m+ 1)7 ba C, 1 . _ —a
/0 ¢k h(a—i—m—l%a—b—i—m,a—c—l—m, m 5 dt =T(a)s™* s,

where Qg is the same as given in (24).

Theorem 2.24. For m € N, Re(s) > 0, Re(c) > 0 and Re(a —2b — 2¢+ 3m) > 2,
the following result holds true.
(53)

o0 1
0 2

a+m—-1), a—b+m, a—c+m, m
where Qg is the same as given in (24).

Theorem 2.25. Form € N, Re(s) > 0, Re(a+m+1) > 0 and Re(a—2b—2c¢+3m) >
2, the following result holds true.

%)
—st %(a—&-m—l) a, ba c, 1 .
(54) /O (& t 4F4[é(a—|—m—1),a—b+m,a—c+m, m’ st| dt

1
= I‘(E(a +m41)) s 2letmt g
where Qg is the same as given in (24).

Theorem 2.26. For m € N, Re(s) > 0 and Re(a—2b—2c+3m) > 2, the following
result holds true.

e} 1
—st a, §(a+m+1)7 b7 c . _ 1
(55) A e 4F4 |:§<a+m_1)’ a—b+m, a—c+tm, m st|dt =s Qg,

where Qg is the same as given in (24).
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Theorem 2.27. For m € N, Re(s) > 0, Re(a) > 0 and Re(2a—2c¢—2d—2e+3m) >
2, the following result holds true.
(56)
o0 1
/ st a1 {12(‘”””*1)7 % d, € Ust| at
0 z(a

where Q1o is the same as given in (25).

Theorem 2.28. Form € N, Re(s) > 0, Re(c) > 0 and Re(2a—2c—2d—2e+3m) >
2, the following result holds true.

(57)

o0 1
/ e St Sy 1a7 za+m+1), o “ ! pst|dt
o sla+m—1),a—c+m, a—d+m, a—e+m, m

= F(C) s~ ¢ QIO;
where 19 is the same as given in (25).

Theorem 2.29. For m € N, Re(s) >0, Re(a+m+1) > 0 and Re(2a — 2¢ —2d —
2e + 3m) > 2, the following result holds true.

(58)

o0
—st 43 (a+m—1) a, ¢ d, & 1 ;
/0 cr ot %(a+m—1)7a—c+m,a—d+m7a—€+mam75t o

1
=T(5(a+m+1)s dermivay,

where Q19 is the same as given in (25).

Theorem 2.30. For m € N, Re(s) > 0 and Re(2a — 2c — 2d — 2e + 3m) > 2, the
following result holds true.

(59) Tt [ z(atm—1), © d, ©.st|dt
o 558 %(a—l—m—l),a—c—&-m,a—d+m,a—e+m,m’

= s~ Q4,
where Q19 is the same as given in (25).

Theorem 2.31. For m € N, Re(s) > 0 and Re(a) > 0, the following result holds
true.

(60)

[eS)
/ e—st ta—l x
0

%(a+m—|—1), b, ¢, d, 2a—b—c—d+2m—-1+n, m-n—1, 1 )
(a+m—-1),a=b+m,a—c+ma—d+m,b+c+d—a+1—m-—-n,a+n+1m

= F((l) S_a Qlla

st

where 111 is the same as given in (26).

dt
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Theorem 2.32. Form € N, Re(s) > 0 and Re(a+m+1) > 0, the following result
holds true.

(61)
e st t%(ajtmfl) ~
0
F a, b, c, d, 20 —b—c—d+2m—1+n, m—-n-—1, 1 st| ar
[ %(a—&—m—1),a—b—|—m,a—c+m,a—d+m,b+c+d—a+1—m—n,a—|—n—|—1,m’
1
=Pyt m+ 1) sHe 0y
where Q11 is the same as given in (26).
Theorem 2.33. For m € N, Re(s) > 0 and Re(b) > 0, the following result holds
true.
(62)
o0
/ efst 2tbfl X
0
o %(a—l—m—i—l)7 b, ¢, d, 2a—b—c—d+2m—1+n, m-n—1, 1 otl ar
T %(a—&—m—1),a—b—|—m,a—c+m,a—d+m,b+c+d—a+1—m—n,a—|—n—|—1,m’s
= F(b) 57b 9117
where 211 is the same as given in (26).
Theorem 2.34. For m € N, Re(s) >0 and Re(2a —b—c—d+2m —1+n) >0,
the following result holds true.
(63)
oo
/ 67515 t2a7bfcfd+2m+n72 %
0
F ta+m+1), a, b, c, d, m-—n-—1, 1 cot| at
[ %(a—&—m—1),a—b—|—m,a—c+m,a—d+m,b+c+d—a+1—m—n,a—|—n—|—1,m’
=T(2a —b—c—d+2m—1+n) s~ Fabmemdt2m=lin) q
where Q171 is the same as given in (26).
Theorem 2.35. For m € N and Re(s) > 0, the following result holds true.
(64)
oo
—st l(a-km-!— 1), a, b, c, d, m—mn—1, 1 .
/0 e’ 7F7 |:%(a+2m—1),@—b+m,a—c+m,a—d+m,b+c+d—a+1—m—n,a+n+1,m’8t dt
= s,

where Q171 is the same as given in (26).

Proof. In order to establish the result (30) asserted in the theorem 2.1, we proceed
as follows. In (29), if we take p=qg=2,v=a,a; =b, a3 =1, by =¢, by =m and
w = s, we get

(65) / e St R [Cb’ ﬂll;st] dx = s T'(a) 3F» [a, b, 1; 1] .
0 )
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We now observe that the 3F» appearing on the right-hand side of (65) can be
evaluated with the help of the result (16) and we easily arrive at the right-hand
side of (30). This completes the proof of (30) asserted in the theorem 2.1.

In exactly the same manner, the results (31) to (64) asserted in the theorem 2.2
to 2.35 can be evaluated. We however omit the details.

([l

3. COROLLARIES

In this section, we shall mention some of the very interesting special cases of our
main findings.

(a) In Theorem 2.1, if we take m = 1,2, 3, we get the following results.

® g b ] T@T(ET(c—a—b)
(66) /0 (& t 1F1 l:c,St:| dt = saF(c—a)l"(c—b) s

(67) / esttalez{lc)’ ;;st} dt
0 )

_(e=DP(a—1) f[T(c-1I'(c—a—b+1)
- se(b—1) { I'(c—a)l'(c—10) 1}

and

> . b, 1
—st ya— ) .
(68) /0 (& t 2F2 [C 3 St:| dt

2T (a)(c — 2)2 | {F(c—2)I‘(c—a—b+2) ab+c—2a—2b+2}.

T s (a—2)2(b—2)s T(c—a)l(c—b) c—2

(b) In Theorem 2.4, if we take m = 1,2,3, we get the following results.

© 27 T(WT(IT(1 +a —b)
69 st gt F[ ¢ ;—t}dt: 2 :
(69) /0 ‘ e R s'T(3a+ T (14 La—1b)

(70) /OOO e SR, {2+aa lb,2;—st} dt
_ (a=b+1)TB) [, Fl+a-bI'(3a+3)
CsP(a—1)(b-1) { - T(@l(a-b+3) }

> —st ja—1 b7 1 .
(71) ‘/O (& t QFQ |:3 +a— b,37 St:| dt
~ 2(a—b+1)2T(a) F(ia)l(14a—1b) ~3a+b—ab-3
Csb(a—2)2(b—2)2 (T(@—1I'(3a—b+2) 1+a—-0 '

(c) In Theorem 2.7, if we take m = 1,2,3, we get the following results.
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(72) /OOO et By h( b ); ;st} gt VL (a)L(5(a+b+1))

a+b+1 T TS (a+ )TEOB+1)
> —st ya— b7 1 1
(73) /O e st 12F2[§(a+b+1)’2,25t}dt
_(a+b—1I(a—1) {ﬁr(;(a+b—1)) _1}
5@ (b—1) T(ia)D(1d)
and

b, 1 '(a)(a+b—1)(a+b—23)

(74) /OOo et a1, {;(a+b+1),3;38t} dt = s (a—2)2(b— 2)s
{ VrT(3(a+b-3)) ab—a—b—i—l}.
r

(3(a =)z —1)) a+b-3

(d) In Theorem 2.10, if we take m = 1,2, 3, we get the following results.

(75) /0Oo e st pa—1 1 Fy [1—a.15t} dt = F(a F(%)b)r(%(b_i_l))
2

b 2 s T(3(a+)0(F(b—a+1)
(76) /OOO et 1, Ry [3 ;’a’ ) L ;st} dt
_2(1-b)I(a) { D(5(b—1)P(3b) B 1}
s¢(1—a)y \T(3(a+b)—1I(5(b—a+1))
and
(77) /0 e St Ry [5 ;’a, 3 1; ;st] dt = Siithi)(f)
{ FA-1)I(3(0b-2) _ ba—a*+2b— 10}
I(i(a+b)—2)T(3(b—a+1)) 2(b—2)

(e) In Theorem 2.11, if we take m = 1,2,3, we get the following results.

° b c
—st ya—1 ’ .
(78) /0 e t 2F2|:1+6L—b7 l—l—a—C’St:ldt

TGl +a-bT(1+a—l(1+fa—b—c)
- 25¢T(1+3a—b)I(1+3a—c)T(1+a—b—c)’

b c 1
—st ya—1 ’ ’ .
(79) /0 e ! 3 Fy [a_b % a—c42 2,st] dt

Tla—1)(14+a—-b)(1+a—c)
B s (b—1)(c—1)
{r(;(a+1))r(1+a—b)r(1+a—c)r(;a—b—c+3) B 1}
L@l (3a—b+ 23T (3a—c+3)(2+a—-b—c)
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and

(80) /000 e st o Fy {G_Z’_'_ 3, Z’—c—&—l?), 3;575} dt
_2(a—b+1)2(a—c+1)21'(a)
s@ (a72)2(b72)2(cf2)2
{ Fta)l(1+a—-bI(1+a—c)(3a—b—c+4)
F(afl)F( a—b+2)T ( a—c+2)I'B+a—-b—c)
=20 ne-y )
(a=b+1)(a—c+1) i

(f) In Theorem 2.14, if we take m = 1,2, 3, we get the following results.

o b
—st yja—1 ) .
(81) /0 e T oy h(a-i-b-k ), QC,st} dt

I'(c+ 3 ;
T s T(S(a+ DIGO+ 1)) (e — L(a—1)T(c— L(b—1))’

(82)

> —st yga—1
/0 et 3F3[;(a+b+1) 901, 215t d

:(a—&-b—l)F(a—l){fF( DUr(i(a+b—1)r (c—l(aer—l))_
s (b—1)

and

et ,a-1 b, c, 1
(83) /0 et sl [%(a—%—b-l—l), 2¢c — 2, 3;34 dt
~ (2c=3)(a+b—-1)(a+b—-3)I'(a)
B s (c—1)(a—2)2(b—2)y
{ Val(e—=3)(i(a+b—-3)T(c—Li(a+b-1))
L(5(a—D)C(3(b— 1))l (c—z(a+1))Tc—5(b+1)
)

‘% 1}-

(g) In Theorem 2.17, if we take m = 1,2, 3, we get the following results.

* —st ya—1 1—0,
(84) /0 (& t 2F2 |: 2 — c+ 1,8t:| dt

B 72172 (@)D (e)(2b — ¢ + 1)

seT(3(a+e)I(b+3(a—c+1))I(5(1—a+c)l(b+1-F(a+c))’
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(85)

® stiae 3—a, b 1 (c—1)(c—2b)(a)
st yqa—1 F ) ) . —_
/0 e s 3{(;, 2bc+1,2’8t]dt 5% (a —2)2(b— 1)

y { 72372 (c — 1)I(2b — ¢) B 1}
F(A(a+c) =D+ 3(a—c—1)I(E(1—a+c)l(b+1—3(a+c))

and

(86)

® e o [5ma b1 ] 2e—2)s(2b—c—1)s0(a)
foe 3F3[c,2bc+1,3’“ L P Y ()

x{ 72972 (c—2)I'(2b—c+ 1)
L(3(a+c)=2)T(b+3(a—c—3)T(5(1—a+c)I(b+1—F(a+c))

2
(a—2)(3—a)(b—2)
C(c—2)(2b—c—1) _1}'

(h) In Theorem 2.21, if we take m = 1,2, 3, we get the following results.

X st -n, b , _ L(a)(c=a)n(c=b)n
(87) /0 et 2F2[1—|—a—|—b—c—n,c ’St}dt_ 59 (c)plc—a—0b), ’

o)
—st ya—1 —TL+1, b, 1 .
(88) /0 (& t 3F3[1+a+bcn, C,27St dt
_(I—=c)(c—a—=b+n)'(a—1) (c—a)p(c—b)n 1
N n(l —b)s® (n(c—a—-b+1),
and
oo
—st ya—1 ' _n+2a ba 1 .
(89) A & t 3F3[1+a+bcn, 6’3,St:|dt

~ 2(1—c)a(c—a—b+n)I'(a)
5@ (1 — a)g(l — b)g

(C_a)n(c_b)n n(a—2)(b—2)
g {(02)71(cab+2)n+ (c—2)(a+b—c—n—1) _1}'

(i) In Theorem 2.24, if we take m = 1,2,3, we get the following results.

[es] 1
—st yc—1 a, 5(@"‘2)7 b .
(90) /0 (& t 3F3|: %a, a_b+17 a—c—|—1 ) st| dt

_Tl4+a—b)T(1+a—c)(c)
- sT(1+a)l(14+a—-b—c)’
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00 1
—st yc—1 a, §(a + 3)7 bv 1 .
(91) /O e st 4F4[§(a+1),ab+2,ac+2,2’ st| dt

_ (I+a-0b)(1+a—c)(c) {1_F(1+a—b)F(1+a—C)}
 sla+1)(b—1)(c—1) Fa)T'(2+a—-b—2c)

o] 1
—st yc—1 a, §(a+4)7 ba 1 .
(92) /0 e 't 4F4[%(a+3),a—b—|—3,a—c+3,3’ st| dt

_ 2(14+a—b)a(14+a—c)l(c)
s¢(a+2)(a—1)(b—2)y(c — 2),
Fl+a—-bI(14+a—c) a(b—2)(c—2)
X {r(a—l)r(3+a—b—c) * 1+a—b)(1+a—-c) _1}'

(j) In Theorem 2.27, if we take m = 1,2, 3, we get the following results.

o] 1
—st ya—1 c, §(a+2)a d7 € .
(93) /0 e %'t 4F4[%a,a—c—l—l,a—d—&—l,a—e—l-l”% dt

I'l+a—-oll+a—-d)f(1+a—e)l'(1+a—c—d—e)
sT(l+a—-d—el(1+a—c—e)l(1+a—-c—d)

00 1
—st ya—1 Cy §(CL + 3)a da €, 1 .
(94) ‘/0 (& t 5F5|:é(a+1)7a_c+2’a_d+27a_e+2’2,st dt

C(+a—o(+a—d)(l+a—e)T()
s (14+a)(c—=1)(d-1)(e—1)
{I‘(l+a—c)F(1+a—d)F(1+a—e)I‘(3+a—c—d—e) _1}
FNa)l2+a—-d—el’'2+a—-c—e)T'(2+a—c—d)

and

00 1
—st yja—1 ¢, E(a + 4)7 da €, 1 .
(95) /0 c ! 5F5{;(a+2),a—c+3,a—d+3,a—e+3,3’5t dt

_ 20+a—c)(l+a—d)2(l4+a—e)T(a)
s%(a—1)(a+2)(c—2)2(d — 2)2(e — 2)2
{I‘(l—I—a—c)F(l—|—a—d)F(1+a—e)F(5—|—a—c—d—e)
IMNa—-—1)I'B+a—d—e)I'B4+a—c—e)I'(3+a—c—d)
3 alc—2)(d—2)(e —2) }
(I+a-c)(l+a—-d)(1+a—e)f’

(k) In Theorem 2.31, if we take m = 1,2, 3, we get the following results.
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(96)
/Ooefsttafl
0
b La+2) c d 2a—b—c—d+n+1 n
’ 2 ’ ) 5 , .
xeFG{ %a,l+a—b,l—i—a—c,l+a—d7b+c+d_a_n7a+n+1 ;st| dt

_ Tla)A+a)p(a—b—c+1)y(a—b—d+1)(a—c—d+1),
 st(l+a—-b),(1+a—c)p(l+a—d,(l1+a—b—c—d), "’

(oo}
(97) / e—st ta—l
0

b l((14»3) c d 2a —b—c—d+n-+3 1—n 1
X 7F7{ lat1),1+a-bl+a-clta—dbtectd—a—n—1,a+n+1,2 ;st|dt

b—a—-1)(c—a—1)({d—a—-1)(n+24+a—-b—c—d)(a+n)(a)
ns*(l+a)(1-0(1-c)1—-d)(b+c+d—2a—2—n)
 (@nla—b—c+2)n(a—b—d+2)n(a—c—d+2),
{1 |

l+a—-b)p(l+a—c)p(l+a—d),3+a—b—c—d),

(98)

9]
/ efst tafl
0

b l(0,4»4) c d 2a —b—c—d+n+5 2—n 1
3 s s s > > .
X7F7|: %(a+2),3+a7b,3+a7c,3+a7d,b+c+d7a7n72,a+n+l,3 ’St dt

_ (a—2)b—a—2)(c—a—2)2(d—a—2)
s%(a+2)(1 —a)2(1 —b)a(l —c)2(1 — d)2
(—a—n),3+n+a—-b—c—d)2T(a)
(n—1)(b+c+d—2a—4—n)y
{(al)n(abc+3)n(abd+3)n(acd+3)n
(a=b+1pla—c+1)pla—d+1)(a—b—c—d+5),

na(b —2)(c —2)(d — 2)(2a — b—c+n +3)

+(a—b+1)(a—c+1)(a—d+1)(b+c+d—a—n—4)(n+a—1) _1}'

(1) The results (69), (72) and (75) are recorded in [8] and also in [19].

(m) In Theorem 2.12, if we take m = 1, we get a known result obtained recently
by Kim et al. [9].

(n) In Theorem 2.15, if we take m = 1, we get a known result obtained recently
by Kim et al. [9].

(0) In Theorem 2.18, if we take m = 1, we get a known result obtained recently
by Kim et al. [9].

Similarly other results can be obtained.
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Remark. For evaluation of Eulerian’s type integrals involving generalized hyperge-
ometric functions by employing the summation theorems, (16) to (26), we refer an
interesting paper by Jun et al. [6].

Conclusion Remark

In this paper, several Laplace transforms involving generalized hypergeometric
functions have been evaluated in terms of gamma function by employing very re-
cently obtained summation theorems by Masjed-Jamei and Koepf. A few new,
interesting and elementary Laplace transforms have also been given as special cases
of our main findings.
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