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Abstract. In 1992, Koepf proposed a symbolic approach to compute power series. This
algorithm was extended for a larger family of expressions thanks to Petkovsek’s and van
Hoeij’s algorithms (1993 and 1998) which compute hypergeometric term solutions of any
given holonomic recurrence equation (RE). Mark van Hoeij’s algorithm whose outputs are
bases is available in Maple through the command LREtools[hypergeomsols], and
Koepf’s algorithm through convert and the built-in module FormalPowerSeries.
LREtools[hypergeomsols] is internally used by convert/FormalPower-
Series.
However, using van Hoeij’s algorithm one cannot compute m-fold hypergeometric term
solutions of holonomic REs, for integers m > 1. Given a field K of characteristic zero, a
term a(n) is said to be m-fold hypergeometric if the term ratio a(n+m)/a(n) is rational
over K. Note that the hypergeometric term case corresponds to m = 1. If one adds for
example an odd hypergeometric function, like arcsin(z), and an even hypergeometric
function, like cos(z) (which both are two-fold hypergeometric), then van Hoeij’s algorithm
cannot find those by solving the resulting recurrence equation. Due to this limitation, the
computation of many power series are missed by Maple, in particular, linear combinations
of power series having m-fold hypergeometric term coefficients are generally not detected.
We overcome these issues by using a new algorithm called mfoldHyper, proposed in the
first author’s Ph.D. thesis to compute bases of the subspace of m-fold hypergeometric
term solutions of holonomic REs. It turns out that mfoldHyper linearizes the computation
of hypergeometric type power series, i.e. every linear combination of hypergeometric type
power series is detected. This paper describes our Maple implementation of an algorithm
that conclusively extends Maple capabilities regarding the computation of hypergeometric
type power series.

Keywords: Hypergeometric type power series · m-fold hypergeometric term · Holonomic
recurrence equation

1 Introduction

By connection to the generalized hypergeometric series, the term “hypergeometric type”
had been introduced in [5] to denote expressions whose power series coefficients lead to
a two-term recurrence relation with polynomial coefficients. The type of such series is
defined as the positive difference of the indeterminate sequence indices in the equation.
However, despite the fact that we keep this terminology, we are considering a much
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larger family of expressions, mostly linear combinations of holonomic meromorphic
functions. Indeed, the original definition does not consider arbitrary holonomic recur-
rence equations1, and therefore neglects the possibility to have finitely many different
types for the same power series. Specifically, we have the following definition.

Definition 1 (Hypergeometric type power series). Let K be a field of characteristic
zero. For an expansion around z0 ∈ K, a series s(z) is said to be of hypergeometric type
if it can be written as

s(z) := T (z) +

J∑
j=1

sj(z), sj =

∞∑
n=nj,0

aj,n(z − z0)n/pj (1)

where n is the summation variable, T (z) ∈ K[z, 1/z, ln(z)], nj,0 ∈ Z, J, pj ∈ N, and
aj,n is such that there exists a positive integer mj so that aj,n+mj/aj,n ∈ K(n).

Thus a hypergeometric type power series is a linear combination of Laurent-Puiseux
series whose coefficients are m-fold hypergeometric terms2. A hypergeometric function
is a function that can be expanded as a hypergeometric type power series. T is called
the Laurent polynomial part of the expansion, and the pj’s are its Puiseux numbers.

The presence of ln(z) in a hypergeometric type expansion is justified by the solution of
the underlying holonomic differential equation (see [4]). The definition in [5] reduces
to the case T = 0 and J 6 m, where m is the unique type (m1 = · · · = mJ = m)
encountered in Definition 1.

Algorithmic attempts were proposed [1] to determine the Puiseux numbers in ex-
pression (1), but this was limited and could not be taken into account in the general case.
This is why commonly used approaches to Puiseux number calculation are based on
heuristic tests on the input function. But this generally only works in the case where
one deals with a single Puiseux number (all the pj’s are identical in (1)). Based on a
symbolic approach, our algorithm offers a clear procedure to determine all different
Puiseux numbers involved in a power series expansion. Note that the scope here is more
general than what could be done using the Frobenius method (see [7]) which rather forces
Puiseux numbers to appear additively (zn+r, r ∈ Q) in the power of the indeterminate.

Likewise, instead of checking expressions, our algorithm also proposes a symbolic
approach to determine the Laurent polynomial part in (1).

Remark 1.
– An m-fold hypergeometric term an encodes m linearly independent hypergeo-

metric terms. These can be enumerated by the m different representations of the
corresponding ratios as

an+m+l

an+l
∈ K(n), 0 6 l 6 m− 1. (2)

1 We recall that a recurrence equation is said to be holonomic if it is linear and homogeneous
having polynomial coefficients.

2 An m-fold hypergeometric term is implicitly defined in Definition 1 by the property of hyper-
geometric type series coefficients. This is admitted in the remaining part of the paper.
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– Without loss of generality, we assume z0 = 0 since the non-zero case easily reduces
to it. This is also implemented.

A generic representation of hypergeometric type functions for which we compute power
series is

f(z) = T0(z) +

I∑
i=1

Ti(z) · fi(z), (3)

where T0(z), Ti(z) ∈ K[z, 1/z, ln(z)], and the fi’s are of hypergeometric type. The
linear combination of hypergeometric type power series found by our algorithm is what
stops the recursive aspect3 of representation (3). Therefore having an expression f(z) of
the form (3) does not guarantee that its power series representation has I hypergeometric
type power series, and T0(z) is not necessarily equal to T (z) in (1). For a better view of
this fact, let us first recall the steps (with ramifications in the last step) of the method
described in [5]. Given an expression f(z), the algorithm proceeds as follows.

(Step 1) Compute a holonomic differential equation satisfied by f(z).
(Step 2) Convert the obtained differential equation into a recurrence equation for the power

series coefficients of f(z).
(Step 3) Find all m-fold hypergeometric term solutions of the resulting recurrence equation,

and use some initial values to find a linear combination corresponding to the power
series of f(z).

Although we have implementations that can be used to improve the efficiency (the
function HolonomicDE in our Maple package FPS is generally faster than Maple’s
DEtools[FindODE] for expressions of the form (3)) for (Step 1), this article puts
emphasis on (Step 3), given that (Step 2) is straightforward.

Let f(z) be as in (3). One may think of using Koepf’s algorithm on every summand
of f(z), but this will not always work as some fi in (3) could lead to a recurrence
equation with more than two terms in (Step 2). In such a situation, the current Maple
implementation internally uses van Hoeij’s algorithm. The issue with the latter algorithm
is the fact that it only looks for hypergeometric term solutions (m = 1) which is just a
particular case of what should be considered; also, it may find hypergeometric terms that
are equivalent to all the needed m-fold hypergeometric terms but by using unnecessary
extension fields. Usually when this happens, the current Maple implementation fails to
find a linear combination for the power series representation sought.

We give some details explaining why Maple fails to find the power series of
z2 sin (z) + z4 ln

(
1 + z + z2 + z3

)
.

Example 1.
> f:=z^2*sin(z)+z^4*ln(1+z+z^2+z^3):

> convert(f,FormalPowerSeries,z,n)

z2 sin (z) + z4 ln
(
z3 + z2 + z + 1

)
3 Recursive because hypergeometric type functions are used in (3).
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Hence no representation is found. Sometimes this could happen if the holonomic dif-
ferential equation to be used has an order larger than 4, but this is not the case since a
holonomic recurrence equation can be found without such a specification.

Example 2. The resulting differential equation is converted into the following recur-
rence equation:

> RE:=FormalPowerSeries[SimpleRE](f,z,a(n))
RE := 12 (n− 5) (n− 4) (n− 3) (n− 2) a (n) + 3 (n− 21)2 a (n− 17)

+ (n− 20) (11n− 221) a (n− 16) + (n− 19)
(
3n3 − 174n2 + 3364n− 21685

)
a (n− 15) + (n− 18)

(
11n3 − 606n2 + 11080n− 67263

)
a (n− 14)

+ (n− 17)
(
19n3 − 1006n2 + 17597n− 101774

)
a (n− 13)

+ (n− 16)
(
23n3 − 1190n2 + 20137n− 111758

)
a (n− 12)

+ 2 (n− 15)
(
11n3 − 550n2 + 8904n− 46849

)
a (n− 11)

+ 2 (n− 14)
(
7n3 − 334n2 + 5120n− 25155

)
a (n− 10)

+ (n− 13)
(
54n3 − 1900n2 + 22141n− 84715

)
a (n− 9)

+ (n− 12)
(
170n3 − 5316n2 + 54793n− 185801

)
a (n− 8)

+ (n− 11)
(
359n3 − 10198n2 + 95556n− 295473

)
a (n− 7)

+ (n− 10)
(
567n3 − 14774n2 + 127704n− 366363

)
a (n− 6)

+ (n− 9)
(
703n3 − 16454n2 + 128059n− 331272

)
a (n− 5)

+ (n− 8)
(
643n3 − 13694n2 + 96543n− 225156

)
a (n− 4)

+ 8 (n− 5) (n− 7)
(
58n2 − 816n+ 2811

)
a (n− 3)

+ 16 (n− 5) (n− 6) (16n− 123) (n− 4) a (n− 2)

+ 24 (n− 3) (n− 4) (n− 5) (3n− 19) a (n− 1) = 0 (4)

Since (4) has more than two terms, LREtools[hypergeomsols] is internally used.
Example 3.

> LREtools[hypergeomsols](RE,a(n),{},output=basis)[
(−1)n

n− 4
,
(−i)n

n− 4
,
in

n− 4
,

in

Γ (n− 1)
,

(−i)n

Γ (n− 1)

]

It is not difficult to prove that the above basis of hypergeometric terms can be used to rep-
resent the power series sought, but this is missed by convert/FormalPowerSeries.
Moreover, using this built-in command on individual summands does not give much
improvement on the result because the same issue occurs for z4 · ln(1 + z + z2 + z3)
whose recurrence equation also has more than two terms. Example 7 shows by using
our implementation that ‘simpler’ (no extension field used) coefficients exist over the
rationals.

It may happen, moreover, that the power series coefficients of two distinct hyper-
geometric type functions reduce to a single m-fold hypergeometric term computed in
(Step 3). This is another reason why calling convert/FormalPowerSeries for
individual summands does not always give the best possible representation.
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Example 4. Applying convert/FormalPowerSeries to each summand of sin(z)3−
cos(z)3 yields

> F:=sin(z)^3-cos(z)^3:

> map(f->convert(f,FormalPowerSeries,z,n),F)
∞∑
n=0

(
−1/4 3n sin (1/2nπ)

n!
+ 3/4

sin (1/2nπ)

n!

)
zn

+

∞∑
n=0

(−1/8 (3 i)
n − 1/8 (−3 i)n − 3/8 in − 3/8 (−i)n) zn

n!
(5)

which is much more simplified with avoidance of algebraic extensions using our
implementation as follows:

> FPS[FPS](F,z,n)( ∞∑
n=0

− (−1)n (9n + 3) z2 n

4 (2 n)!

)
+

( ∞∑
n=0

3 (−1)n
(
32 n+2 − 1

)
z2 n+3

4 (2 n+ 3)!

)

Note that the latter output is not the same as what is obtained using the internal
command directly.

> convert(F,FormalPowerSeries,z,n)

∞∑
n=0

((−3/8 + 3/8 i) (−i)n − (3/8 + 3/8 i) in − (1/8 + i/8) (−3 i)n − (1/8− i/8) (3 i)n) zn

n!

Many more examples of this kind can be provided.

As one can see, our algorithm is implemented in our Maple package FPS under the
name FPS, presented as the main function of the package4.

The main ingredient of our approach is algorithm mfoldHyper from [8, Chapter
7] that we implemented with the same name. This algorithm computes a basis of the
subspace of allm-fold hypergeometric term solutions of any given holonomic recurrence
equation.

Example 5. We come back to the power series sought in Example 1. A basis of m-fold
hypergeometric term solutions of (4) can be represented as

> FPS[mfoldHyper](RE,a(n))[[
1,

{
(−1)n

27 (n− 4)

}]
,

[
2,

{
(−1)n

9 (n− 2)
,
(2n− 1)n (−1)n

72 (2n)!

}]]

Note that each 2-fold solution above corresponds to two hypergeometric terms. By
default, the algorithm computes terms corresponding to l = 0 in (2). Once we know that

4 FPS contains some other results that will not be discussed in this paper.
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2-fold hypergeometric term solutions exist, we can call the algorithm again to get the
other representations.

Example 6.
> FPS[mfoldHyper](RE,a(n),ml=[2,1]){

(−1)n

27 (2n− 3)
,
n (−1)n

(2n)!

}

Finally with all these m-fold hypergeometric terms we look for a linear combination
using appropriate initial values and get the representation

Example 7.
> FPS[FPS](f,z,n)

∞∑
n=0

(−1)n zn+5

n+ 1
+

∞∑
n=0

(−1)n z2n+6

n+ 1
+

∞∑
n=0

(−1)n z2n+3

(2n+ 1)!

Observe that some shifts may be applied to the coefficients according to the starting
point obtained from the Laurent polynomial part of the series. This is always used even
when the corresponding Laurent polynomial part is zero, because it leads to appropriate
starting points.

Note that (Step 3) can be divided into two important sub-steps. Indeed, finding
a linear combination after obtaining m-fold hypergeometric terms requires a certain
number of initial values and evaluations that can be determined from the obtained basis
of m-fold hypergeometric terms. If a precise matching between evaluations and initial
values is not correctly made then the representation sought might be missed. Therefore
the algorithm (see [10], [8]) behind our method could work as a decision procedure to
decide whether a given holonomic meromorphic function is of hypergeometric type.

On the other hand, it is proved in [8, Theorem 7.2, 7.3] that the exp-like and the ra-
tional function series types considered in [5] are both of hypergeometric type. Therefore
it is not necessary to split our development into these particular cases.

In the following sections we give an overview of algorithm mfoldHyper and some
details about the steps of our algorithm. Many examples where the current Maple
convert/FormalPowerSeries misses results will be presented.

2 An overview of algorithm mfoldHyper

m-fold hypergeometric terms have sometimes been referred to as m-hypergeometric
sequences in [6], m-interlacings of hypergeometric sequences (see the conclusion of
[11]) that are also considered as a particular case of Liouvillian sequences in [2]. We use
the phrase m-fold hypergeometric term from the most recent paper about this notion in
[3]. However, none of the approaches described in these previous works corresponds
to the method used by mfoldHyper. Indeed, most of the effort on finding m-fold
hypergeometric term solutions of holonomic recurrence equations has been focused
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on extending Petkovšek’s or van Hoeij’s algorithm. Specifically, the aim is usually to
compute right factors of the form τm−r(n), where τ denotes the shift operator, and r(n)
is a rational function over a field of characteristic zero, of the given recurrence equation
operator, and adapt the steps of Petkovšek’s or van Hoeij’s algorithm to the m-fold case.
As mentioned in [6], these approaches usually increase the complexity dramatically,
which may explain the lack of implementations. mfoldHyper uses a completely different
strategy, the algorithm in [9], Petkovšek’s or van Hoeij’s algorithm, can be used as a black
box. The method results from a study of holonomic recurrence equations. In the sequel,
we give the theorem upon which mfoldHyper is based and present its steps towards
computing m-fold hypergeometric term solutions of holonomic recurrence equations.

Definition 2 (m-fold holonomic recurrence equation). Let m be a positive integer. A
holonomic recurrence equation is said to be m-fold holonomic if it has at least two
non-zero terms, and the difference between every pair of indices in the equation is a
multiple of m.

Example 8.
– Hypergeometric type power series considered in [5] lead to an m-fold holonomic

recurrence equation with two terms.
– One can always write an m-fold holonomic recurrence equation as

Pmd(n)an+md + Pm(d−1)an+m(d−1) + · · ·+ P0(n)an = 0 (6)

An important point to notice is that representation (6) is just a particular notation. We
may have many different representations of m-fold holonomic recurrence equations
in the equation of study, and these have to be considered separately. The following
definition is used to identify these differences.

Definition 3 (m-fold distinct holonomic recurrence equations). Let m be a positive
integer. Two m-fold holonomic recurrence equations are said to be m-fold distinct, if the
difference between any index taken from one and another taken from the second is not a
multiple of m.

Example 9.

RE1 : P1,3 · an+7 + P1,2 · an+4 + P1,1 · an+1 = 0,

RE2 : P2,4 · an+11 + P2,3 · an+8 + P2,2 · an+5 + P2,1 · an+2 = 0. (7)

RE1 and RE2 are 3-fold holonomic distinct.

We can now state the fundamental theorem behind algorithm mfoldHyper (see [8,
Theorem 7.1]).

Theorem 1 (Structure of holonomic recurrence equations having m-fold hyperge-
ometric term solutions). Let m ∈ N, K a field of characteristic zero, and hn be an
m-fold hypergeometric term which is not u-fold hypergeometric over K for all positive
integers u < m. Then hn is a solution of a given holonomic recurrence equation, if
that equation can be written as a linear combination of m-fold holonomic recurrence
equations; such that hn is solution of each of the m-fold distinct holonomic recurrence
equations of that linear combination.
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Remark 2. In Theorem 1 the aim of the assumption that the recurrence equation should
be written as a linear combination of m-fold holonomic recurrences is to eliminate those
with only one (non-zero) term which are not taken into account by Definition 2.

Combined with the fact that the given recurrence equation order plays the role of
a bound for the value of m (see [2,8]), Theorem 1 leads to the following main steps to
determine a basis of the subspace of all m-fold hypergeometric term solutions.

Algorithm 1 Compute a basis of m-fold hypergeometric term solutions of a given
holonomic recurrence equation (RE)

– Set m = 1.
– Repeat

1. If the given RE is a linear combination of m-fold holonomic REs then go to item 2.
Otherwise go to item 4.

2. Compute bases of m-fold hypergeometric term solutions of each m-fold distinct holo-
nomic RE in the linear combination found in item 1. These latter are computed after
applying the substitution that transforms m-fold holonomic REs to 1-fold holonomic
REs and allows computations of m-fold hypergeometric terms as hypergeometric
term. Petkovšek’s or van Hoeij’s algorithm can then be used. However, we recommend
the algorithm in [9] for the purpose of computing power series.

3. Collect all m-fold hypergeometric terms that are linearly dependent to an element of
each basis of m-fold hypergeometric term solutions computed in item 2.

4. Increment m and go back to item 1.
– Until m = d.
– Return the collected m-fold hypergeometric terms.

Example 10. Consider the recurrence equation

(2 + n)·(4 + n)·(6 + n)·an+6−2·(2 + n)·(4 + n)·an+4+4·(2 + n)·an+2−8·an = 0.
(8)

– For m = 2, we find that (8) is 2-fold, we then apply the substitution{
2 · k = n

sk = a2·k
, (9)

that transforms (8) into the recurrence equation

(2 + 2 · k) · (4 + 2 · k) · (6 + 2 · k) · sk+3 − 2 · (2 + 2 · k) · (4 + 2 · k) · sk+2

+ 4 · (2 + 2 · k) · sk+1 − 8 · sk = 0. (10)

We solve (10) using the algorithm in [9] and substitute the initial variable back to
get the following basis of 2-fold hypergeometric terms solutions{

1

n!

}
. (11)
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– For m = 4, we find a combination of two 4-fold holonomic REs, namely,

−2 · (2 + n) · (4 + n) · an+4 − 8 · an = 0,

and
(2 + n) · (4 + n) · (6 + n) · an+6 + 4 · (2 + n) · an+2 = 0.

These lead to the same basis of 4-fold hypergeometric term solutions, which is{
(−1)n

(2 · n)!

}
. (12)

– No more linear combination is found. Therefore the final output is[[
2,

{
1

n!

}]
,

[
4,

{
(−1)n

(2 · n)!

}]]
. (13)

Our Maple package has an implementation of Algorithm 1 under the name mfoldHyper.

Example 11. (8) is obtained by computing the recurrence equation for the power series
of exp(z2) + cos(z2). Let us recover the solution as in (13).

> RE:=FPS[FindRE](exp(z^2)+cos(z^2),z,a(n)):

FindRE is our variant of FormalPowerSeries[SimpleRE].
> FPS[mfoldHyper](RE,a(n))[[

2,
{
(n!)

−1
}]

,

[
4,

{
(−1)n

(2n)!

}]]
Of course, such a solution cannot be detected by van Hoeij’s algorithm.
> LREtools[hypergeomsols](RE,a(n),{},output=basis)

0

3 Computing hypergeometric type power series

Having presented how mfoldHyper works, we can now give some details about how
our procedure builds a hypergeometric type power series from a given expression.
Remember, as mentioned in the introduction, we consider a much larger family of
expressions than what is described in [5] or currently internally used by Maple. The
decision property of the algorithm in [10] could not be reached by previous approaches
since m-fold hypergeometric terms were barely accessible. However, we highlight a
possible gap between the algorithm and its implementation since limitations can be
encountered due to unavailability of computer algebra tools to deal with hypergeometric
terms over larger algebraic extension fields; an example will be presented. Nevertheless,
as our Maxima implementation (see [8])5, our Maple implementation demonstrates an

5 Currently being discussed for integration into the system.
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important improvement that covers a very large family of hypergeometric type functions
given as in (3), which can also be used to show equivalences between them.

Once a holonomic recurrence equation satisfied by the power series coefficients of a
given expression is computed, determining the following items is the essential focus of
our procedure.

– Puiseux numbers.
– Laurent polynomial part and starting points.
– A basis (in its complete form6) of m-fold hypergeometric term solutions of the

obtained holonomic recurrence equation.
– A linear combination of hypergeometric type power series.

We use our Maple implementation to describe these steps for some interesting examples.
Consider f(z) = arctan(z) + ln(1 + z2) + exp(z3), we want to find the power

series representation of f around z0 = 0. This first example is used to give some details
about the way we get the complete basis of m-fold hypergeometric terms and how to
find the needed linear combination of hypergeometric type power series. The recurrence
equation found is the following.

Example 12.
> f:=arctan(z)+ln(1+z^2)+exp(z^3):

> RE:=FPS[FindRE](f,z,a(n))

RE := 6 (n− 1)n (n− 3) a (n)− 18 (n− 9)2 a (n− 9)− 9 (n− 8) (n− 7)

a (n− 8)− 36 (n− 8) (n− 7) a (n− 7) + 6 (n− 18) (n− 6)2 a (n− 6)

+ 3 (n− 5)
(
n2 − 25n+ 102

)
a (n− 5)

+ 3 (n− 4)
(
4n2 − 71n+ 267

)
a (n− 4) + 6 (n− 3)

(
2n2 − 24n+ 57

)
a (n− 3)

+ 2 (n− 2)
(
5n2 − 51n+ 118

)
a (n− 2) + (n− 1)

(
11n2 − 93n+ 166

)
a (n− 1)

+ 2 (n− 1) (n− 2) (n+ 1) a (n+ 1) + 2 (n+ 2) (n+ 1) (n− 1) a (n+ 2) = 0. (14)

Using mfoldHyper, we find the following basis of hypergeometric terms (incom-
plete form).

Example 13.
> FPS[mfoldHyper](RE,a(n))[[

2,

{
1/2

(−1)n

n

}]
,
[
3,
{
(n!)

−1
}]]

This reveals that we have one more 2-fold hypergeometric term, and two more 3-fold
hypergeometric terms. They can be computed using mfoldHyper as follows.

6 Complete form means all representations of m-fold hypergeometric terms are given. These are
m linearly independent terms.



Power Series Representations of Hypergeometric Type Functions 11

Example 14.
> FPS[mfoldHyper](RE,a(n),ml=[2,1]){

(−1)n

2n+ 1

}
> foldl(‘union‘,{},
> seq(FPS[mfoldHyper](RE,a(n),ml=[3,i]),i=1..2)){

1

(3n+ 1) (1/3)n
,

1

(3n+ 2) (2/3)n

}

Hence we obtain the basis of m-fold hypergeometric term solutions in its complete form.
We emphasize on repeated use of mfoldHyper because thanks to [9], it represents all
its outputs in appropriate normal forms. We recall that (1/3)n denotes the Pochhammer
symbol or rising factorial.

We have 2-fold and 3-fold hypergeometric terms, therefore we expect series expan-
sions with the following powers

z2n, z2n+1, z3n, z3n+1, z3n+2. (15)
We need to know the number of evaluations to make with the obtained m-fold

hypergeometric terms, and the number of initial coefficients of the Taylor expansion
of f(z) that should be used. This way we will get a linear system of 5 unknowns
representing the coefficients of the linear combination sought. Note that integer roots of
the recurrence equation leading coefficient are automatically taken into account when
computing the coefficients thanks to the appropriate integer shifts applied in [9]. We
establish (see [8, Chapter 8]) that the number of initial coefficients to be used from the
Taylor expansion of f(z) can be taken as ∑

m∈{m1,...,mµ}

lm − 1

 · lcm(m1, . . . , ·mµ) +mµ − 1 (16)

where the mi, i = 1, . . . , µ, µ ∈ N are the types involved in the hypergeometric type
power series; lmi is the number of coefficient of type mi; and mµ is the maximum of
these types. This number corresponds to the number of linear equations which might
be reduced sometimes, but in general taking a lower number of equations may result in
missing of the representation sought. Applied to our example one gets (2 + 1− 1) · (2 ·
3) + (3− 1) = 14. We finally obtain the following power series representation.

Example 15.
> FPS[FPS](f,z,n)

∞∑
n=0

(−1)n z2n+2

n+ 1
+

∞∑
n=0

(−1)n z2n+1

2n+ 1
+

∞∑
n=0

z3n

n!
Remark 3.

– Sometimes the linear system has many solutions leading to different (but equivalent)
representations of the same power series. We have observed that in certain cases
our Maxima implementation yields a different representation than our Maple imple-
mentation. This could be explained by the way both CASes represent solutions of
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linear systems. Our Maple implementation uses Solve[Linear] and sometimes
solve.

– Although the number of initial coefficients can be computed using limit compu-
tations, in our implementation we rather use Maple’s series command. Note,
however, that this command does not always give expansions of the required orders
due to internal cancellations, therefore it is always important to check the degree
of the obtained Taylor polynomial. That is one difference we encountered between
Maple and Maxima which mostly handles Taylor polynomials as desired.

Our next example is f(z) := −1+(1+ z2) · exp(z)+arcsech(
√
z). In the previous

case, we could neither expect shifted starting points nor Puiseux numbers. With this
new example one may expect the hypergeometric type part of the expansion starting
summations at 1 (or with z1 instead of z0) since a constant term appears in f . One also
observes that a possible Puiseux number is 2 as

√
z appears. However, our procedure

does not make any checking on its inputs, everything is deduced from the holonomic
recurrence equations which encode all this information.

Example 16. The computed recurrence equation is
> f:=(1+z^2)*exp(z)+arcsech(sqrt(z))-1:

> FPS[FindRE](f,z,a(n))

− 9 (n− 1)n (2n+ 1) a (n)− 2 (2n− 7) (n− 4) a (n− 4) + (n− 3)(
4n2 − 52n+ 103

)
a (n− 3)

+ (n− 2)
(
14n2 − 67n+ 49

)
a (n− 2)− (n− 1)

(
14n2 − 112n+ 95

)
a (n− 1)

+ 2 (5n− 12) (n+ 1)2 a (n+ 1) + 4 (n+ 1) (n+ 2)2 a (n+ 2) = 0. (17)

Observe that 7/2 (or 1/2 after normalizing the equation) is a root of the trailing polyno-
mial coefficient of (17). What we have established is that for hypergeometric type power
series, the least common multiple of the leading and trailing polynomial coefficient root
denominators should be taken as the Puiseux number of the representation sought. Thus
by computing the power series of f(zp), where p denotes that Puiseux number, and
replacing z by z1/p in the final representation will automatically generate all the Puiseux
numbers of the representation. Hence next we compute a holonomic recurrence equation
for f(z2).

Example 17.
> FPS[FindRE](subs(z=z^2,f),z,a(n))

− 4 (n− 10) (n− 11) a (n− 11) + 2 (n− 9)
(
n2 − 32n+ 190

)
a (n− 9)

+ (n− 7)
(
7n2 − 109n+ 362

)
a (n− 7)− (n− 5)

(
7n2 − 154n+ 589

)
a (n− 5)

− 9 (n− 5) (n− 2) (n− 3) a (n− 3) + (5n− 39) (n− 1)2 a (n− 1)

+ 2 (n− 1) (n+ 1)2 a (n+ 1) = 0 (18)

Remark that all the rational roots of the leading and trailing polynomial coefficient are
now integers. This is even more advantageous since it allows mfoldHyper to get nicer
formulas for m-fold hypergeometric terms.
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For computing starting points, by developing a procedure to find finite sequence
(coefficients of the Laurent polynomial part) solutions of holonomic recurrence equations,
we established that the algorithm behind the following Maple code could generally give
the starting point and the Laurent polynomial part of a hypergeometric type power series.

L P o l y P a r t := proc (CRE, f , z , n )
l o c a l d ,M, N, P0 ;
d e s c r i p t i o n " Compute t h e L a u r e n t p o l y n o m i a l p a r t "
" o f a h y p e r g e o m e t r i c t y p e power s e r i e s "
" from n o r m a l i z e d p o l y n o m i a l c o e f f i c i e n t s " ;
d := numelems (CRE) −1 ;
M:= f o l d l ( ‘ un ion ‘ , { } , i s o l v e ( subs ( n=n−d , CRE [ − 1 ] ) ) ) ;
M:=map ( rhs ,M) ;
N:= f o l d l ( ‘ un ion ‘ , { } , i s o l v e (CRE [ 1 ] ) ) ;
N:=map ( rhs ,N ) ;
i f numelems (N) <1 then

P0 : = 0 ;
N:= min (M)

e l s e
N:=max (N) + 1 ;
P0 := conver t ( s e r i e s ( f , z =0 ,N) , polynom )

end i f ;
re turn P0 , N

end proc :

Normalized polynomial coefficients means that the coefficients are collected with the
recurrence equation written with an (index n) as trailing term. For the present example
we find the following Laurent polynomial part and starting point

ln (2)− 1/2 ln (z) , 1. (19)

We mention that mis-consideration of starting points may lead to wrong power series
representations. This could explain why in some examples the built-in Maple approach
gives an incorrect representation for exp(z) + ln(1 + z). Some other similar examples
can be found.

Finally using the other steps described in the first example, we get the representation
below.

Example 18.
> FPS[FPS](f,z,n)

ln (2)− 1/2 ln (z)

+

∞∑
n=0

−
(
− (n+ 1)!n2 + 2−2n−2 (2n+ 1)!− (n+ 1)!n− (n+ 1)!

)
zn+1

((n+ 1)!)
2

Our implementation groups coefficients with same z-powers together.

Remark 4. As we said earlier, rational functions are all of hypergeometric type. However
some of their power series representations need extension fields where computations
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cannot easily be handled. The main issue with such cases relies on the linear system to
be solved to find the corresponding linear combination of hypergeometric type power
series.

Example 19. Consider for example f(z) = 1/(1 + z + z4). We find the recurrence
equation

> f:=1/(1+z+z^4):
> RE:=FPS[FindRE](f,z,a(n))

RE := (n+ 1) a (n) + (n+ 1) a (n− 3) + (n+ 1) a (n+ 1) = 0,

and the following hypergeometric term (m = 1 only) solutions
> FPS[mfoldHyper](RE,a(n),C)[[
1,
{(

RootOf
(
_Z 4 + _Z 3 + 1, index = 1

))n
,(

RootOf
(
_Z 4 + _Z 3 + 1, index = 2

))n
,
(
RootOf

(
_Z 4 + _Z 3 + 1, index = 3

))n
,(

RootOf
(
_Z 4 + _Z 3 + 1, index = 4

))n }]]
. (20)

The argument C in mfoldHyper is used to allow computations over extension fields.
This happens in the algorithm whenever no solution exists over the rationals. When
looking for a linear combination by solving the underlying linear system, we get the
following error message.

Error, (in evala/Normal/preproc0) numeric exception: division by zero
This is a particular issue that we should try to overcome while finalizing our imple-

mentation.

Let us now present more examples describing our algorithm.

Example 20.
> FPS[FPS](sin(2*arcsin(z))+cos(3*arccos(z)),z,n)

4 z3 − 3 z +

( ∞∑
n=0

−2 (2 n)! 4−n z2 n+1

(2 n− 1) n!2

)
> FPS[FPS](cosh(z)+z*cos(z)+sin(z^3),z,n)

∞∑
n=0

z2n

(2n)!
+

∞∑
n=0

(−1)n z2n+1

(2n)!
+

∞∑
n=0

(−1)n z6n+3

(2n+ 1)!

> FPS[FPS](exp(z)+hypergeom([a, b], [c],
> z^2),z,n,fpstype=SpecialFunctions)

∞∑
n=0

zn

n!
+

∞∑
n=0

(b)n(a)nz
2n

n! (c)n

For special functions like the generalized hypergeometric function, the approach used to
compute holonomic differential equations must slightly be modified. That is why in this
previous example the option fpstype=SpecialFunctions is used.
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Example 21.
> FPS[FPS](1/((p-z^2)*(q-z^3)),z,n)
∞∑
n=0

−
(
qp−1−n/2 − pq−1/3−n/3

)
zn

p3 − q2
+

∞∑
n=0

−
(
p3/2 − q

)
p−n−3/2z2n+1

p3 − q2

+

∞∑
n=0

−
q−1−np

(
q2/3 − p

)
z3n

p3 − q2
+

∞∑
n=0

(
q2/3 − p

)
q−n−2/3z3n+1

p3 − q2

> FPS[FPS](arctan(sqrt(z))+arcsinh(z^(1/3)),z,n)
∞∑
n=0

(−1)n (2n)! 4−nz2/3n+1/3

(2n+ 1) (n!)
2 +

∞∑
n=0

(−1)n zn+1/2

2n+ 1

As one can observe, our implementation linearizes the computation of hypergeometric
type power series. None of the above examples can directly be computed using the
built-in Maple convert/FormalPowerSeries.

4 Conclusion

We have presented an algorithm and its Maple implementation to compute hypergeo-
metric type power series as defined in Definition 1. We have shown that this extends
Maple’s capabilities to consider more expressions for which power series could not be
directly computed before. We believe that this is an important advancement that should
be integrated into computer algebra systems.

Besides other important steps like computing Puiseux numbers, the Laurent polyno-
mial part, or finding a linear combination of hypergeometric type power series, the main
ingredient of the algorithm is mfoldHyper which computesm-fold hypergeometric term
solutions of holonomic recurrence equations. The latter was the main deficiency of the
algorithm in [5] on which Maple’s original implementation is based.

There are further types of series considered in [8]. The question is, what to do when it
turns out that a given expression is not of hypergeometric type, or is even non-holonomic.
We mention for example the case where the given expression is not of hypergeometric
type but holonomic. That means a recurrence equation can be computed. Some trivial
cases like exp(z+z2)·cos(z) are well handled as we could find a recursive representation
that could be used for fast computations of larger order Taylor expansions.

Example 22.
> f:=exp(z+z^2)*cos(z):
> FPS[FPS](f,z,n,fpstype=Holonomic)
∞∑
n=0

A (n) zn,

A (n+ 4) = −4A (n) + 4A (n+ 1) + (−4n− 8)A (n+ 2) + (−2n− 6)A (n+ 3)

(n+ 3) (n+ 4)

, 0 ≤ n, [A (0) = 1, A (1) = 1, A (2) = 1, A (3) = 2/3] (21)
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> FPS[Taylor](f,z,0,6)

1 + z + z2 + 2/3 z3 + 1/3 z4 + 2/15 z5

> T:=Time():FPS[Taylor](f,z,0,1000):Time()-T

250ms

> T:=Time():series(f,z=0,1000):Time()-T

9332ms

On the other hand, we also look for techniques to consider more special functions.
We mention Mathieu functions (see this Maple link7) for which we are able to recover
differential equations that they satisfy using our code FPS[LinearDE] which does
not necessarily look for polynomial coefficients inside the differential equation sought.

Example 23.
> FPS[LinearDE](MathieuC(a, q, x),F(x))

(−2 q cos (2x) + a)F (x) +
d2

dx2
F (x) = 0

> FPS[LinearDE](MathieuFloquet(a, q, x^2),F(x))

−4x3
(
2 q cos

(
2x2

)
− a
)
F (x)− d

dx
F (x) + x

d2

dx2
F (x) = 0

Further steps to consider rely on change of variables transformations (when possible)
of such types of equations to holonomic equations. We are grateful to have gotten
a question regarding Mathieu functions during our presentation at the 2020 Maple
conference.
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