TWO FINITE HYPERGEOMETRIC SEQUENCES OF DISCRETE
ORTHOGONAL POLYNOMIALS

MOHAMMAD MASJED-JAMEI AND WOLFRAM KOEPF

ABSTRACT. Two finite hypergeometric sequences of symmetric orthogonal poly-
nomials of a discrete variable are introduced and their standard properties,
such as second order difference equations, explicit forms of the polynomials
and three term recurrence relations are obtained. As a consequence of two spe-
cific Sturm-Liouville problems, it is proved that these polynomials are finitely
orthogonal with respect to two symmetric weight functions.

1. INTRODUCTION

Orthogonal functions of a discrete variable may be solutions of a Sturm-Liouville
problem in the form [2]

(1) AE(@)Vyn(z)) + (Anp(z) — q(x)) yn(x) =0 (K(z) > 0,p(z) > 0),
where

Af(z) =Vf(z+1) = flz+1) - f(2),
and satisfies a set of boundary conditions as

(2) a1yn(a) + B1Vyn(a) =0,  azyn(b) + B2Vyn(b) =0,

in which ay, s and 31, B2, are given constants. This means that if y,, (z) and y,, (x)
are two eigenfunctions of difference equation , they are orthogonal with respect
to the weight function p(x) on a discrete set [12] as

(3)
b b
z_: () Yn (@) Y () = (Z p(z) yi(x))énm where 4§, ,, = { (1) (n #m),

(n=m).
The following theorem has been recently presented in [6] by which one can extend
ordinary Sturm-Liouville problems with symmetric solutions in discrete spaces.

Theorem 1. Let ¢, (—x) = (—1)"¢,(x) be a sequence of symmetric functions that
satisfies the difference equation

(4) A(2)AVe,(2) + (A(—z) — A(x)) Adn(z)
+ (A C(x) + D(x) + 0 E(x)) don(z) =0,
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2 M. MASJED-JAMEI AND W. KOEPF
where o, = 1_(51)” and as usual, AV = A—V. If A(z) is a free real function and
(C(x) > 0), D(z) and E(x) are even functions, then

6 0
3" W (@)dn(@)bm(e) = (Z W*(w)qbi(m)) Sums

r=—0

z=—0
in which
(5) W*(z) = C(x)W (x),
and W (x) satisfies the Pearson difference equation
A(A(x)W(x)) = (A(fx) — A(:E))W(:E),
which is equivalent to
(6) Wx+1)  A(—x)
W)  Ax+1)

Moreover, the weight function defined in (@ must be even over one of the four
following symmetric counter sets

i) Ss={-a—n,—a—n+1,...,—a—1,—a,a,a+1,...,a+n}, a € R,
ii) So = 51U{0} (as any odd function is equal to zero at x =0),
iii) Ss=4{...,—a—-n,—a—n+1,...,—a—1,—a,a,a+1,...,a+n,...} (an

infinite set)
iV) S4 = Sg U {O},

and the function A(x)W (z) must vanish at x = £0, where [—0,0] € {S1, Sa, S5, S4}.

Note that many special functions having valuable applications in physics and
engineering are orthogonal solutions of a symmetric Sturm-Liouville problem, see
e.g. [5, 8, @1 10].

As a special case of equation , the following difference equation is defined in
[7:

(7) (22 4+ 1)(az® + bz + cx + d) AV, (z) — 2z (2% (a + 2b) + ¢ + 2d) Ady(z)

+ <2n(cm —2(a+b)) (i - ac2> + o, (% b+ 2+ 4d)> () = 0,

with a general polynomial solution as

® onte)—a 3 (-0 (V2)

i=0 J

n/2-1 . 3 , ) ,
a(i+op)? =b(i+o0,)+cli+o,) —d ‘ .
: ol /2] — oner) b (on = @) (on +2)s,

i=j
n—1
in which [z] denotes the integer part of z, (A), = [[ (A+j) =T(A+n)/T(A) for
§=0

-1
n>1with (A)g =1and [] (.)=1.
i=0
The monic type of polynomial satisfies a three term recurrence relation as

9) Gnt1(®) = 20 () — Yndbn-1(z) with ¢o(z) =1, ¢1(x) =z,
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where [7]
1K i
(10 "= 50 = a(n —2()a)([;i Z)(Z —T)y
and
Ky(a,b,c,d) = —2a?,
Ks(a,b,c,d) = 4a(3a + 2b),
Ks(a,b,c,d) = —8 (3a2 + 4ab 4+ ac + b2) ,
Ki(a,b,c,d) = 2(3a + 2b)(3a + 4b + 4¢) — 2a(—1)"(a + 2b + 4c + 8d),

Ko(a,b,e,d) = ((-1)" — 1) (3a + 2b)(a + 2b + 4c + 84d).

Since the recurrence relation @ is explicitly known, according to the Favard
theorem [3],[12], the complete form of the orthogonality relation of monic polynomial

is as

(11)
Er(e by (2w (2 ]))e
in which

w(e o] e)=(G-=)we,

is the original weight function and W (z) satisfies the difference equation

(12) Wk+1) (1/2) -z —ax3 +bx? —cx+d
W(z) — B/2)+zalz+ 1P +bz+ 1) +clc+1)+d

By noting that A(z) = (2z + 1)(az® + bz? + cz + d) for |a| + |b] # 0 in (7)),
two cases can generally happen for the parameter a in , i.e. when a # 0 and b
arbitrary or a = 0 and b # 0.

In the first case, since any arbitrary polynomial of degree 3 has at least one real
root, say © = p € R, the aforesaid A(z) can be decomposed in three different forms,
ie.

(13) A(z)= 2z+1)(z—p) (az® +uz+v)
2z +1) (z—p) (a2 +uz+v), (u®<4av),
= @2z+a(z—p)(z—q)(z—r), (u*>4aw),
(22 + 1) a(z — p)(z — q)?, (u? = dav).
Similarly, in the second case when a = 0 and b # 0, A(x) can be decomposed as
(14) A(z)= 2z +1) (ba®+cz+d)
2z +1) (ba® +cx+d), (< 4bd),
= (e 4+ 1) bz —p)(x—q), (2> 4bd),
(22 + 1) b(x — p)?, (2 = 4bd).
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But there are two sub-cases in and that have not been considered in
[7, ie. for A(z) = 22+ 1) (z — p) (az? +uz +v) in and A(z) = (2z +
1) (b 22 +cx+ d) in , whose difference equations corresponding to are
respectively as

W+1) (1/2)—z p+zx ar® —ux+v

(15) W(z) - 3/2)+xp—z—la(z+1)24+u(z+1)+v (u? < 4av),
and
(16) W(z+1) _ (1/2) —z ba? — cxtd TP

W (x) 3/2)+xb(xz+1)24c(x+1)+d
In this paper, by using an interesting property of the gamma function, we obtain
all real solutions of difference equations and and show that they can be
considered as the weight functions of two symmetric finite sequences of orthogonal
polynomials of a discrete variable. For this purpose, we first note that the limit
definition of the gamma function

|
I(z) = lim ",
k=0
implies that [I1]
‘ ‘ 7 (p+k)?
17 L'(p+iq)T\(p —iq) =I'? G E—
(17) (p+iq) D(p — iq) (p)]g)(p+k)2+q2

is always a real positive value for any p > 0 and ¢ € R. This result is frequently
used throughout the paper. One of the consequences of is that

n—1

(18) (p+igh (p—ighh = [[+ @+  (pgeR),
k=0

is also a real positive value. Moreover, when p = m € N, relation (17 is simplified
as

m—1
. ey 4m 2 Y
(19) L(m+iq)T(m —iq) = i kl;[l ¢+ (m—k)*.

The question is now how to determine the parameter 6 in orthogonality relation
? To answer this question, we should reconsider the main equation and
write it in a self-adjoint form to eventually obtain

0
(20) 3 A(A@W (@) (0 (@) Vou(@) = 60 (@) Vom(@)) )

x=—0
6
+ (A — Am) Z (i - 12) W(x)dn(z)pm ()

m n o
(GO Gt O (5 +0+2044d) 3 W(a)pn(@)om(x) = 0.

r=—0

On the other side, the identity
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simplifies the first sum of as

6
@) Y A(A@W (@) (6n(@)Von(w) = 6n(2)Vom(x)) )
x=—0

r=0+1

= AW ) (60— 1)~ on@one )

= A(9 + 1)W(9 + 1) (¢n(0 + 1)¢m(9) - ¢m(0 + 1)¢n(0))
— A(=O)W(=0) (¢n(=0) (=0 — 1) — pm(—0)Pn(—0 — 1))

By taking into account that all weight functions are even, i.e. W(—z) = W(z),
the polynomials are symmetric, i.e. ¢,(z) = (=1)"¢n(—2z), and the Pearson dif-
ference equation () is also valid for « = 6, i.e. A6+ 1)W (0 + 1) = A(—9)W(0),
relation is simplified as

2
(22) 32 A(A@W (@) (6 (@) Vn(2) = 00 () V() )

r=—0

= A(=OW ) (1+ (1)) (6 (0)60 (0 + 1) — 60 (0)$m (0 + 1))..

Since G (0)dn (0 + 1) — ¢ (0)drn (0 + 1) # 0, two cases can in general happen for
the right hand side of :

i) If n+ m is odd then 1+ (—1)"*™ = 0 and is automatically zero.
However, this case is clear as the sum of any odd summand on a symmetric
counter set is equal to zero.

i) If 01320 A(—0)W (0)0™+t™ = 0, then again 1) is equal to zero. This is a key

condition for proving the finite orthogonality relations of the polynomials
introduced in the next section.

2. TWO FINITE HYPERGEOMETRIC SEQUENCES OF DISCRETE ORTHOGONAL
POLYNOMIALS

In this section, we introduce two new hypergeometric sequences of finite sym-
metric orthogonal polynomials of a discrete variable and obtain all basic properties
corresponding to them. To define such real polynomials, relations and
will be used, see polynomial definitions and in this regard.

2.1. First sequence. For p,q,r € R, consider the equation
2z +1)(z — p)(@® — 2qz + ¢* +7°) AV, (z)
— 2z (1 —2p — 4q)2* + 2pg + (¢° + r°)(1 — 2p)) A¢n ()
1
+ (2n(n +2(p+2¢—1)) (4 — a:Q)

On

2 (2p = 1) (417 + (20— 1)?) ) du(a) = 0,
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having a monic polynomial solution, which can be represented as

- (P + o) ny2) (@ + 07 + ) ny2) (@ — iT + On) )2
23 D q,T) =
(23)  dn(x5p5q,7) ([n/2] +p+2¢—1 +0_n)[n/2]

_[n/2]7 [’I’L/2]+p+2q—]_—|—0'n, Op — T, Un+x 1
p+on, q+ir+o,, q—1ir+o, ’

x xon 4F3 <

where 4 F3 is a special case of the generalized hypergeometric series [3] 4] [12]

a, agz, ... a
F ’ P
PR\ by by, ol by

oo

) = (al)k(@)k“'(ap)ki
> a kZ:O (bl)k(b2)k~'(bq)k kU

in which z may be a complex variable. According to the ratio test [1], this type of
series converges in |z| < 1 for p = ¢ + 1, converges everywhere for p < ¢+ 1 and
converges nowhere (z # 0) for p > ¢ + 1. Moreover, for p = ¢ + 1 it absolutely
converges for |z| = 1 if the condition

q+1

q
(24) A*=Re | Y b= a; | >0,
j=1 j=1

holds and is conditionally convergent for |z| =1 and z # 1 if —1 < A* <0 and is
finally divergent for |z] =1 and z # 1 if A* < —1.
The polynomial satisfies the recurrence relation
(25) Gn1(230,6,7) = 200 (29,4, 7) = VP, 4. 7) b1 (25D, 1),
in which
(26)
32(n+p+2¢-2)(n+p+2¢—)wmp.qr) =
—2n* 4+ 4(3 — 2p — 4q)n® — 8(p* + 5¢* + r? + 6pq — 4p — 8¢ + 3)n?
+ 2((3 —2p —4q) (3 —4p — 8¢(1 — p) +4¢° + 4r?) + (=1)"(2p — 1) (4r* + (2¢ — 1)2))71
— (1= (=1)")(2p - 1)(2p +4q — 3) (4° + (2¢ - 1)?),
and can be decomposed as

1
7). m(p,a7) T 16t pr2q—2)(ntpt2g—1)
X (n+@2p—1)o,)(n+2¢+2ri—1+(2p—1)(1—0,))
x (n+20—2ri— 1+ (2p—1)(1 = 0,)) (n+4g — 2+ (2p — 1)o,).

By noting (23)-(27). the orthogonality relation of the first sequence now takes
the general form

0
> W( L —(p2+2q%
e 2pg+q +r° —plg +717)

n 6
_ 1 —(p+2q)
- k[[l%(p’q’r) ( 2 W( Wq+q*+r* —pld+r?) | brm

z=—0

z > On (@5, 4,7) dm (230, q,7)
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in which
1 —(p+2q) _ (1_ 2)
W( g +q®+r: —pl+r?) | T )T\ W(z),
denotes the original weight function and W (x) satisfies the difference equation

W(z)  (3/2)4+zax+l—-pr+l—qg—irz+1—q+ir

There are 16 symmetric solutions for equation , which are listed below

Wi(z) = (F(l —p+ax)f(1l—-p—a)T(1—qg—ir+2)L'(1—qg—ir—x)
xFﬂ—q+w+mﬁﬂ—q+W—xW@ﬂ+xW6ﬂ—xD4,
Wg(.’lﬁ) =

I'(p+2)l'(p—x)
rl—qg—ir+2)l(1—q—ir—z)L'(1 —q+ir+2)0(1 — q+ir —2)['(3/2 + 2)['(3/2 — z)’

Ws(z) =
I'(g+ir+z)l'(qg+ir —x)
Frl—p+2) 1l —p—2) Il —q+ir+2)L'(1 —q+ir—2)0'(3/2+2)1'(3/2 —x)’

W4<.’L‘) =
I'(g—ir+z)'(qg—ir—x)
rl-p+a2)fl-p—a)f(1—q—ir+2) (1 —q—ir—2)I'(3/2+ 2)I'(3/2 — z)’

Pip+a)(p—a)T(q+ir+z)(qg+ir—2a)

Ws(z) = Fl—gq+ir+z)L(1—q+ir—2)I'(3/24+ 2)I'(3/2 — z)’
We(x) = I'(p+z)l'(p—2)T(q —ir + z)['(q — ir — )
6 L(1—q—ir+a)0(1—q—ir—2)0(3/24z)(3/2—z)
W) = T(g+ir+z)T'(qg+ir —z)I'(qg — ir + 2)I'(q¢ — ir — x)
7 F1—p+a)f(1—p—2)L(3/2+2)L(3/2—z)
Wi(z) = F'p+2)I'(p—2)I'(-1/2 + 2)I'(-1/2 — x)
s 'l—g—ir+a)l(1—qg—ir—a)I’'(1—qg+ir+z)'l—q+ir—x)’
Wol(z) = I(g+ir+x)l(qg+ir — )I'(-1/2 + 2)I'(—-1/2 — x)
M T T —p+ra)fQ—p—a)T(Q—q+ir+a)T(1—q+ir—x)’
Wio () = I(g—ir+z)l(qg—ir—z)I'(-1/24+ 2)T'(-1/2 — x)

FrM—p+2)fl—-p—-2)Fl—qg—ir+2)(1—q—ir—=x)’
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Flp+a2)l'(p—a)(qg+ir+z)(q+ir—z)I'(-1/2+2)I'(-1/2 — z)

Wi () = Nl—qg+ir+az)l(1—q+ir—x) 7
Wia(x) I'lp+2z)I(p—x)T(qg—ir+z)I'(qg—ir —z)I'(-1/2 + 2)I'(-1/2 — x)

1 Frl—gq—ir+a)l'(l —q—ir—=x) ’
W13(.73) =

I(g+ir+x)'(g+ir —2)I'(qg —ir + 2)I'(¢ — ir — 2)T'(—-1/2 4+ 2)['(-1/2 — x)
Frl—p+a2)l'(l—p—ua) ’

W14($) =
r(-1/2+z)I(-1/2 —z)
rl—p+2)fQ-p—a)f(l—q—ir+2) 1 —qg—ir—a)I(1—q+ir+z)l'(1—q+ir—x)’

L(p+2)T(p—2)T(q+ir+z)T(q+ir —x)'(qg—ir+2)I'(qg—ir—x)

Wis(z) = I'(3/2+2)I'(3/2 - z) ,

Wis(z) =T(p+2)T'(p — 2)I'(q + ir + z)['(q + ir — x)

x T(q —ir+z)I'(q —ir — 2)['(-1/2 + 2)T'(—-1/2 — z).

Note although {Wj(x)}15 , are all symmetric, only three weight functions Wy, W
and W14 are eligible to apply, as they are real-valued functions according to relation
. On the other hand, an important part that one has to compute in norm square
value of the orthogonality is 22279 (% —oc?)W(x). This sum can be simplified
by using the two identities

L(p+2)=C(p)(p)e and T(p—z)= F((f )—p;iz’
and this fact that
0 1 o 1 1
D (G-I =23 (G- #)W )~ W)
— x=0

Hence, the following sums can now be explicitly computed. For this purpose, if
for simplicity we assume that

_ q+Z‘T',(J7Z‘T,p7]. _
B(p7q7r)_24F3( l—q—l-ZT,l—q—ZT,l—p 1) 17

then after some computations we obtain
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1 _ B(p,q,7)
w;oo R (v e G
= (1, B T2(p)
I:Z_OO (Z -z )WQ(J?) - 7{.]_"2(1 —q- ’LT) F2(1 — q+zr) B(p,q’r),
(L _ 7 B(p,q,7)
2 GO = e ma G g

The latter computations show that there exists a unique representation for the
original weight function as

(p)w (q + iT‘)w (q — ir)w

(29) Wi@par) = G T =g ir, =g =)’

and by noting the identity
(=1*
30 D)y = ——
it is symmetric on the support (—oo, 00), i.e. using one can prove that
W(=x;p,q,r) = W(z;p,q,7).

)

Now, to prove finite orthogonality, since in the first sequence

A(z) = (22 + 1)(z = p)(=® — 2qz + ¢° +17),

and
W(x) = W(x;p,q,7) _ K Tp+x)T(g+ir+2)T(q—ir+x)
(1/4) — 22 1-422T(1—p+2)T(1—q+ir+2)I(1—qg—ir+z)’
where
K4 'l—p) 'l —q+ir)I'(1 —q —ir)
T(p) (g +ir) T(q —ir) ’
the key condition
(31) lim A(—-0)W(0)0"t™ =0,
06— 00
implies that we have
(32)
i (20— 10 +p)(0° +290 + ¢° + r)0(p+ O)U(g + ir + OT (g —ir +0) 0y,

0—+o00 (1-402Tr1—p+O)I'(1—qg+ir+0)I'(1—q—ir+0)
On the other side, since

f 2= DE+p) 1
60— o0 1—492 2
and
1 L(p+0)(q+ir+0)L(q—ir+6)
1 =2 +4¢—3
P 8 T —p+ 0T —q+ir O —q—ir+g)  PT4=3

relation is equivalent to

(33) lim §>F7m2rHda=s — g,
0— 00

=0.
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If in relation we take max{m,n} = N, then it yields
1
2N +2p+4¢—1<0 or N §—p—2q.

Corollary 1. If

7[”/2]7 [n/2]+p+2q*1+0n7 Op — %, Op +X 1
p+on, q+ir+o,, q—ir+o, ’

n(x;p,q,r) = 27 4 F3 (

then the polynomial set {¢,, (z;p, q,7)}N_o where N < %fprq is finitely orthogonal
with respect to the weight function on the support (—oo,00) so that we have

e}

(P)z (g + i)z (g —ir)a
(5 Z 1=p)a(l—g+ir)e (1 —qg—ir)s

én(x;p,q,7) dm(z;p,9,7) =

T=—00

2
[n/2]M(p +2q — 1+ on)p, 9 ((p+2q —1+on+ [n/2])[n/2]> D o P+ a+ir), o0+ a—ir), g

A= (p+ 0n) 2 (P/2+ @+ 0n) o) (P = 1)/2+ Dy 2 (/2 + Do) (P + 1) /24 @)1 ) (@ + on + i)y 91 (@ 4 Tn = iT) 1, /)

q+ir q—ir p 1 _
X(24F3( l—qg+ir 1l—qgq—ir 1—p ‘1) l)én’m'

Moreover, by noting , orthogonality is valid on (—oo, 00) only if 2q, p+2q ¢
Z7,p+2¢<1,pe (0,1) andr € R.

For instance, the finite set {¢,(z;1/3,—31/3,2)}N=20 is orthogonal with respect
to the weight function

(1/3)2((—=31/3) + 2i)x ((=31/3) — 2i)s
(2/3)30((34/3) + Qi)m((34/3) - 2i)w ’

on the support (—oo, 00).

2.2. Second sequence. For p,q € R, consider the equation
(22 + 1)(2? — 2pz + p* + ¢*) AV (2) — 4z (27 + p* + ¢* — p) Ag},(x)
1
+ <4n<4 - xz) +o,((2p—1)* + 4q2)> ¢r(x) =0,

having a monic polynomial solution, which can be represented as

(35) én(w5p,q) = (P+iq+ 0n)iny2) (P — i+ Tn)ny2)

oy (B ou—m owte |
p+zq+0—nap72q4’0n

The polynomial satisfies a recurrence relation of type (9) with
N 1
7a(p.0) = =7 (n? + 2n(2p = 1) + 00 (4¢> + (2p - 1)?))

—i(n—l— (2p—1 —qu)an) (n+3p+qi— ; + (—1)"(p— % —qi)).
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Hence, the orthogonality relation corresponding to second sequence takes the
general form

)
0 1
1%
2 <—2p P+q

r=—0
n 6 0 1
H ,Yk(p7 q) ( Z W< _2p p2 + q2 x )) 6n,ma

k=1 r=—0

0 1 _ 1 2 *

is the original weight function and W (x) satisfies the difference equation

T ) or (x;p,q) ¢5 (250, q)

where

(36) WH(x+1) (1/2)—2 —x—p—iq —x—p+iq
W= (z) B3/2)+xzx+1—p—igx+1—p+iq

There are 8 symmetric solutions for equation , which are respectively as follows:

W17(13) =
1
rl-p—ig+x)(1—p—ig— )1 —p+ig+2)L'(1 —p+iqg—2)[(3/2+ 2)['(3/2 —x)’

L'(p+ig+2)l'(p+ig— )

W) = Sy T ig )T~ p tig — 2)0(3/2 + 2T (G2 —7)’
Who(z) = L(p —ig+2)I'(p — ig — @)
1 T(1—p—ig+a)L(1—p—iqg—2)L(3/2+2)L(3/2—1z)
Wao () = L+ ia+ o)lp+iq = o)l(p —ig +2)0(p —ig = z)
20 [(3/2+x)[(3/2 — x) ’
War () = L(-1/2+2)I'(-1/2 — x)
P T A —p—iq+a)(1—p—iq—a)(1—p+ig+a)(1—p+iqg—x)’
Won(z) = L@ F 0+ D)0 +ig = )T(-1/2+ 2)l(—1/2 — 2)
> 'l—p+4+ig+x)I'(1 —p+iqg—x) ’
Ws(z) = D(p —ig+z)l(p—iqg—2)['(—1/2+2)[(-1/2 — 2) 7

'l—p—ig+2)I'(1—p—iqg—x)
Wou(z) =T(p+ig+2)T(p+ig—2)I'(p—ig+z)I'(p—ig — z)T'(-1/2 4+ 2)['(-1/2 — z).

Again, note although {W;}?% . are all symmetric, only two weight functions
W17 and Woy are real-valued functions according to relation . Hence, similar
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to the previous case, if for simplicity we assume that

p+iq, p—iq, 1
C(p,Q)23F2< 1—p+iq, 1—p—iq 1>17

then we obtain

oo

1 _ C(p,q)
w;oo G- = )Wial@) = mI2(1—p—ig)T2(1 - p+iq)’
and
— (L _ 7 C(p,q)
I;OO (3= Wal@) = T2(1—p—iq)T>(1 —p+iq)

These computations show that there exists a unique representation for the orig-
inal weight function as

(p+1q)z (p —1q)
(1 =p+ig). (1 —p—ig),

which can be summed by the Dougall’s bilateral sum [3] as

(37) W(x;p,q) =

o0

B (p+1i9)e (p = iq)x
Clpa)= Y (L—p+iq), (1—p—iq),

(1 —p+ig)T*(1 — p —iq) L(1 - 4p)
I'(1—2p+2iq) T(1 — 2p — 2iq) T2(1 — 2p)’

T=—00

where p < i and g € R.
Here we can apply once again the key condition for
A(x) = 2z +1)(2® = 2pr +p* + ¢°),
and

W*(I):W(x;p&): K L(p+ig+2)T(p —ig+x)
(1/4) —2? 1-422T(1—p+ig+a)T(1—p—ig+z)’

where
(1 —p+ig)T'(1 —p—iq)
L(p+iq)T(p —iq)

K* =4

So, by noting that

. L(p+iqg+6)I'(p —ig+6)
lim — In - -
9—ocolnf T(1—p—+ig+0)(1—p—ig+0)

= 4p - 27
the key condition finally leads to the following corollary.
Corollary 2. If

¢:L(x7p7q) :xan 3F2< _[n/2]7 Tn =T o-n+x 1 >7

D+iq+on, p—iqg+ oy
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then the polynomial set {¢% (z;p,q)}N_y where N < % — 2p is finitely orthogonal
with respect to the weight function on the support (—oo,00) so that we have

o

(p+ig)s (p —iQ)a . .
38 : n ) —
(38) > A= ptig)s(l—p—id. ér (5, q) O (25D, Q)
[n/2]4(2p) 1, 2 (1 —p+ig)I*(1 —p—ig) T(1 - 4p)
(p+ 00+ i) )01 (P + 00 — i), o) T'(1 = 2p + 2iq) I'(1 — 2p — 2ig) I'*(1 — 2p

According to , orthogonality is valid only if p ¢ Z—, p < i and q € R.

T=—00

Snm -
)

For instance, the finite set {¢7 (x; —11/2,1)}N=4 is orthogonal with respect to

the weight function
((_11/2) + i)x((_ll/z) B ’L)m
((13/2) +1)2((13/2) — i)z

on the support (—oo,00).

We finally point out that to compute the moments of a discrete orthogonal
polynomial, usually different bases are used. For example, to compute the moments
of Hahn discrete polynomials [3] [12], it is more convenient to use the Pochhammer
basis {(—)n }n>0, instead of the canonical basis {z"},>0, to get

Ni I(N)T(a+B8+2)T(a+N—z)T(B+z+1)

FNa+DI'B+ 1) (a+ 8+ N+ 1IN —z)I'(x + 1)

(—2)n

(a+B+2),
Following this approach, for the weight functions corresponding to two intro-

duced hypergeometric sequences, we can explicitly compute the moments of the
form

=0

= 3 tala) (=0 Wito),

T=—00

where the symmetric basis ¥,,(x) is defined as

(39) Un(z) = (=D)I"H27 (0, = @) 2y (00 + )2y
[n/2]-1
— (_1)[n/2]xo’n H ((]C+ O_n)2 _ .Z'Q) — (_l)n,ﬂn(_m)
k=0

Since Yo,+1(z) is an odd polynomial, all odd moments are clearly equal to zero.
Moreover, from hypergeometric definitions and and using the orthogo-
nality property of them, it can be proved by induction that the even moments
corresponding to the first and second sequences respectively satisfy the following
first order recurrence relations

(p+n—1)(r*+(g+n—1)3?)

p+2q+n— 1 (Qk:)2n727

(Qk)2n = -

and
(0))2n = —(¢® + (P + 1 — 1)) (0)2n—2-
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Hence, if the corresponding weight functions are normalized with the moment of
order zero equal to one, then we eventually obtain

for

for

(1]
2]
(3]

(4]

(5]

[10]
(11]

(12]

S 1 2 _ (_1)m(p)m(q + iT)m(q - ir)m
S (57 Wae)dam (@) = T ,

T=—00

the weight functions of the first sequence, and

> (5 ) Wion(@) = ()™ 0+ ig)n(p — i),

T=—00

the weight functions of the second sequence.
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