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Holonomic functions play an essential role in Computer Algebra since they allow the application of many
symbolic algorithms. Among all algorithmic attempts to find formulas for power series, the holonomic property
remains the most important requirement to be satisfied by the function under consideration. The targeted
functions mainly summarize that of meromorphic functions. However, expressions like tan(𝑧), 𝑧/(exp(𝑧) − 1),
sec(𝑧), etc., particularly, reciprocals, quotients and compositions of holonomic functions, are generally not
holonomic. Therefore their power series are inaccessible by the holonomic framework, including Maple’s
convert/FormalPowerSeries command up to Maple 2021. From the mathematical dictionaries, one can
observe that most of the known closed-form formulas of non-holonomic power series involve another sequence
whose evaluation depends on some finite summations. In the case of tan(𝑧) and sec(𝑧) the corresponding
sequences are the Bernoulli and Euler numbers, respectively. Thus providing a symbolic approach that yields
complete representations when linear summations for power series coefficients of non-holonomic functions
appear, might be seen as a step forward towards the representation of non-holonomic power series.
By adapting the method of ansatz with undetermined coefficients, we build an algorithm that computes least-
order quadratic differential equations with polynomial coefficients for a large class of non-holonomic functions.
A differential equation resulting from this procedure is converted into a recurrence equation by applying the
Cauchy product formula and rewriting powers into polynomials and derivatives into shifts. Finally, using enough
initial values we are able to give normal form representations (Geddes et al. 1992) to characterize several
non-holonomic power series. As a consequence of the defined normal transformation, it turns out that our
algorithm is able to detect identities between non-holonomic functions that were not accessible in the past. We
discuss this algorithm and its implementation for Maple 2022.
Our Maple and Maxima implementations are available under the FPS software which can be downloaded at
http://www.mathematik.uni-kassel.de/~bteguia/FPS_webpage/FPS.htm.
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1 Introduction
Let K be a field of characteristic zero; mostly K denotes a finite extension field of the rationals.
A function 𝑓 (𝑧) is holonomic (or 𝐷-finite) over K, if it satisfies a homogeneous linear differential
equation with polynomial coefficients in K[𝑧]. Similarly, a sequence (𝑎𝑛)𝑛⩾0 of numbers in K
is holonomic (or 𝑃-recursive) over K, if it satisfies a homogeneous linear recurrence equation
with polynomial coefficients in K[𝑛]. Since analytic functions can be represented by power series,
holonomic power series connect analytic holonomic functions to holonomic sequences (see [20]).
However, in this paper, we deal with “formal” power series, i.e., our computations are independent of

Author’s address: Bertrand Teguia Tabuguia, Wolfram Koepf, bteguia,koepf@mathematik.uni-kassel.com, Department of
Mathematics and Natural Sciences, University of Kassel, Heinrich-Plett-Str. 40, Kassel, Hessen, Germany, 34132.

Permission to make digital or hard copies of all or part of this work for any use is granted without fee, provided that copies
bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to Maple Transactions, under Creative Commons
CC-BY 4.0 License.
https://doi.org/10.5206/mt.v2i1.14315

Maple Trans., Vol. 2, No. 1, Article 14315. Publication date: August 2022.

http://www.mathematik.uni-kassel.de/~bteguia/FPS_webpage/FPS.htm
https://doi.org/10.5206/mt.v2i1.14315
https://doi.org/10.5206/mt.v2i1.14315


14315:2 Teguia Tabuguia and Koepf

any notion of convergence, and are valid for a given function at a point of expansion 𝑧0 ∈ K∪{−∞,∞},
whenever the analytic requirement at 𝑧0 is guaranteed. For implementation purposes, the Maple
series command enables us to authenticate the existence of a series expansion before we proceed
to search for a representation for it.
The exponential generating function of the Bernoulli numbers 𝐵𝑛, 𝑛 = 0, 1, . . . , has the series formula

𝑧

exp(𝑧) − 1
=

∞∑
𝑛=0

𝐵𝑛

𝑛!
𝑧𝑛 . (1)

Numerous recurrence equations are known for the Bernoulli numbers (see [2]). The most basic
among them is

𝑛−1∑
𝑘=0

(
𝑛

𝑘

)
𝐵𝑘 = 0, 𝑛 ⩾ 2 (2)

from which one can compute the series coefficients in (1) from the initial value 𝐵0 = 1. All explicit
recurrence formulas of the Bernoulli numbers present the appearance of finite summation(s) that
we can see as an indicator of its non-holonomic property. A proof that the sequence of Bernoulli
numbers is not holonomic can be found in [3]. This fact implies that their generating functions as
well as functions whose power series are defined by means of the sequence of Bernoulli numbers are
non-holonomic (see [10], [16]). An important reference for the non-holonomicity of tan(𝑧), csc(𝑧),
and sec(𝑧), is [20]. We call the series of such functions non-holonomic power series. Note that the
same conclusions also arise for power series whose coefficients depend on the Euler numbers since
they are connected to the Bernoulli numbers. Furthermore, note that the non-holonomic character is
not limited to the presence of the Bernoulli and Euler numbers. It is well known that quotients and
compositions of holonomic functions are generally not holonomic. Other non-holonomic sequences
of numbers can be at the core definition of several other non-holonomic power series.
We recall that the “form” level abstraction considers functions as they are represented in terms of
“chosen” elementary functions. It recognizes that a particular function can have many different valid
representations in terms of these elementary functions. This is why we often differentiate between
an expression which refers to the form, and a function which refers to the the mathematical object
with its range and its domain of definition. Many expression classes allow simplification from one
expression to another using a “normal transformation1” which can prove the zero-equivalence of
their difference. What we call a normal form in a given class of expressions is a representation that
is invariant under any application of the normal transformation used in that class. Unlike a normal
transformation, a canonical transformation always gives the same representation for equivalent
expressions. For more details on normal forms and algebraic representations, see [9, Chapter 3].
This paper is concerned with a general-purpose symbolic algorithm that defines a normal transfor-
mation for a class above holonomic functions by computing normal forms of their power series.
Moreover, in several cases our algorithm is able to find the same representation for equivalent non-
holonomic expressions, making it behaves like a canonical transformation. The non-holonomic power
series represented by our algorithm have finite summations in quadratic recurrence equations satis-
fied by their coefficients. These sum-recursive recurrence equations (that we will often call quadratic
recurrence equations) are similar to those considered in [1] for finding convolution identities for
Bernoulli numbers. With this approach we are able to recover some Ramanujan identities mentioned
in [5]. We deduce quadratic recurrence equations from homogeneous quadratic differential equations
(QDE) with polynomial coefficients. These can be seen as higher-order differential equations than
the ones considered in [4] with some linear differential monomial appearing (see also [7, Section 6]).

1In the cited reference, the authors use “normal function”. We do not use this designation to avoid confusion with the objects
we manipulate.
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Nevertheless, the differential equation sought is of least order possible. Our computational method for
finding QDEs proceeds like that used in [19], but in a less direct and more efficient way (avoidance
of nested loops) which also allows us to define more precisely the type of functions we expect as
inputs. Remark that this differs our development from recent computations of non-linear differential
equations for Bernoulli numbers; as for instance [6] and [12].
As we use quadratic recurrence equations (QRE) to give power series formulas, the targeted repre-
sentations are given in a recursive form. This allows us to obtain the following representations using
our Maple implementation.

EXAMPLE 1.
> FPS(z/(exp(z)-1),z,n)

(3)

Series

©«

∞∑
𝑛=0

𝐴(𝑛) 𝑧𝑛, 𝐴(𝑛 + 3) = −

(
𝑛+2∑
_k=1

𝐴(_k)𝐴(𝑛 + 3 − _k)

)
+𝐴(𝑛 + 2)

𝑛 + 4


,

{𝐴(𝑛)} ,
{
𝐴(0) = 1, 𝐴(1) = −1

2
, 𝐴(2) =

1
12

}
, INFO

ª®®®®®¬
> FPS(1/log(1+z),z,n)

(4)

Series

©«

∞∑
𝑛=0

𝐴(𝑛) 𝑧𝑛−1, 𝐴(𝑛 + 3) = −
(𝑛 + 1)𝐴(𝑛 + 2) +

(
𝑛+2∑
_k=1

𝐴(_k)𝐴(𝑛 + 3 − _k)

)
𝑛 + 4


,

{𝐴(𝑛)} ,
{
𝐴(0) = 1, 𝐴(1) =

1
2
, 𝐴(2) = − 1

12

}
, INFO

ª®®®®®¬
.

As given above, all series expansions will be computed in the neighborhood of zero since the
general case can easily be deduced from this. The result of this paper is an improved version of one
contribution from first author’s Ph.D. thesis (see [21, Section 8.7]) which is concerned with symbolic
computation of formal power series, hence the acronym FPS used above. The thesis deals with the
holonomic, hypergeometric type, and non-holonomic functions. For holonomic and hypergeometric
type functions, see the references [23], [22], and [24]. Our software is available for download
for Maple 2021 and Maxima 5.44 users at its dedicated web page http://www.mathematik.uni-
kassel.de/~bteguia/FPS_webpage/FPS.htm.
In Section 2, we specify the class of functions that are eligible to our method. Then in Section 3,
we describe our algorithm for finding QDEs. This will be followed by explanations on how we find
QREs and deduce series representations with appropriate numbers of initial values. We will also see
how the whole algorithm is able to prove identities (see [9, Section 3.3], [15, Exercise 9.8]) like

log
(
tan

(𝑧
2

)
+ sec

(𝑧
2

))
= arcsinh

(
sin(𝑧)

1 + cos(𝑧)

)
, −𝜋 < 𝑧 < 𝜋. (5)
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2 The class of 𝛿2-finite functions
It is not precise to say that we consider non-holonomic functions given that we intend to describe an
algorithm to compute their power series. Since algorithms only operate on finite data structures, we
must define a suitable class of functions, which naturally contains holonomic functions, and extends
to functions like sec(𝑧), cot(𝑧), csc(𝑧), tan(𝑧), etc. An analogous development is presented in [11].
Starting from the observation that differentiating 𝑦(𝑧) = tan(𝑧) yields 𝑦 ′(𝑧) = 1 + (tan(𝑧))2 = 1 +𝑦(𝑧)2,
one can see the targeted class of functions as solutions of a certain type of algebraic ordinary
differential equations.
Throughout the paper, we denote by K a field of characteristic zero (generally K is a finite extension
field of Q), and we consider differential equations with rational coefficients over K. We assume that

𝑑−1

𝑑𝑧
𝑓 = 𝑓 (−1) = 1, and

𝑑0

𝑑𝑧
𝑓 = 𝑓 (0) = 𝑓 , (6)

for a differentiable function 𝑓 .

DEFINITION 2 (HOMOGENEOUS QUADRATIC DIFFERENTIAL EQUATION). Let 𝑑 be a non-negative
integer. A differential equation of order 𝑑 in the dependent variable 𝑦 is said to be homogeneous
quadratic over K, if there exist polynomials 𝑃0, 𝑃1,. . ., 𝑃𝑟 , 𝑟 = 1 + 𝑑(𝑑 + 5)/2 (see Proposition 14),
such that

𝑃𝑟𝑦
(𝑑)2 + 𝑃𝑟−1𝑦

(𝑑)𝑦(𝑑−1) + · · · + 𝑃𝑟−𝑑−1𝑦
(𝑑) + · · · + 𝑃4𝑦

′2 + 𝑃3𝑦
′𝑦 + 𝑃2𝑦

′ + 𝑃1𝑦
2 + 𝑃0𝑦 = 0, (7)

and 𝑃𝑟 , . . . , 𝑃𝑟−𝑑 are not all zero.

In this definition, it is required that at least one of the polynomial coefficients of quadratic differential
monomials2 of order 𝑑 is non-zero. Thus the other coefficients might equal zero. This is equivalent
to say that (7) is a homogeneous quadratic differential equation of order 𝑑 if “the polynomial
coefficients of quadratic differential monomials of order at most 𝑑 are not all zero, and at least one
of 𝑃𝑟 , . . . , 𝑃𝑟−𝑑 is non-zero”. To admit holonomic functions, it suffices to change this condition to
“𝑃𝑟 , . . . , 𝑃0 are not all zero, and at least one of 𝑃𝑟 , . . . , 𝑃𝑟−𝑑−1 is non-zero”, and this defines our class
of functions. However, as holonomic functions are also called 𝐷-finite functions: where 𝐷 stands for
“differentiability”, and finite refers to the requirement that the order should be finite, we would like to
similarly define our class of functions so that the algorithmic approach of Section 3 differs from that
of holonomic functions only by the differential operator used.
Let 𝑓 (𝑧) be a differentiable function. Consider the following scheme

(1) 1,
(2) 𝑓 , (3) 𝑓 2,
(4) 𝑓 ′, (5) 𝑓 ′𝑓 , (6) (𝑓 ′)2,
(7) 𝑓 ′′, (8) 𝑓 ′′𝑓 , (9) 𝑓 ′′𝑓 ′, (10) (𝑓 ′′)2,
(11) 𝑓 ′′′, (12) 𝑓 ′′′𝑓 , (13) 𝑓 ′′′𝑓 ′, (14) 𝑓 ′′′𝑓 ′′, (15) (𝑓 ′′′)2,

. . .

(8)

and assume that the positive integers in parentheses represent the derivative orders of the derivative
operator that we are looking for. This operator, say 𝛿2,𝑧 , computes the product of two derivatives of 𝑓
according to the ordering given in (8).
Looking at (8) as an infinite lower triangular matrix reduces the definition of 𝛿2,𝑧 to that of a one-to-
one map 𝜈 between positive integers and the corresponding subset of N × N: (𝑖, 𝑗 )𝑖, 𝑗 ∈N, 𝑖 ⩾ 𝑗 . This

2Quadratic differential monomial: terms with product of two derivatives (including the square of a derivative).
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can be done by counting the couple3 (𝑖, 𝑗 ) in (8) from up to down, from the left to the right. We obtain

𝜈(𝑘) = (𝑖, 𝑗 ) =

{
(𝑙, 𝑙 ) if 𝑁 = 𝑘

(𝑙 + 1, 𝑘 − 𝑁 ) otherwise
, where 𝑙 =

⌊√
2𝑘 +

1
4
− 1
2

⌋
, and 𝑁 =

𝑙 (𝑙 + 1)
2

. (9)

It remains to define a correspondence between the couple (𝑖, 𝑗 ) = 𝜈(𝑘), 𝑘 ∈ N and the differential
monomials in (8). This is straightforward by considering the assumption of (6). We get

𝛿𝑘2,𝑧(𝑓 ) =
𝑑𝑖−2

𝑑𝑧𝑖−2
𝑓 · 𝑑 𝑗−2

𝑑𝑧 𝑗−2
𝑓 , where (𝑖, 𝑗 ) = 𝜈(𝑘). (10)

We implemented this operator in our Maxima package as delta2diff(f,z,k). One can use it
to recover some products of derivatives in (6).

EXAMPLE 3.

(%i1) delta2diff(f(z),z,3);
(%o1) f (𝑧)2

(%i2) delta2diff(f(z),z,4);

(%o2)
𝑑

𝑑 𝑧
· f (𝑧)

(%i3) delta2diff(f(z),z,5);

(%o3) f (𝑧) ·
(
𝑑

𝑑 𝑧
· f (𝑧)

)
(%i4) delta2diff(f(z),z,6);

(%o4)
(
𝑑

𝑑 𝑧
· f (𝑧)

)2
(%i5) delta2diff(f(z),z,14);

(%o5)
(
𝑑2

𝑑 𝑧2
· f (𝑧)

)
·
(
𝑑3

𝑑 𝑧3
· f (𝑧)

)
DEFINITION 4 (𝛿2-FINITE FUNCTIONS). A function 𝑓 (𝑧) is called 𝛿2-finite if there exist polynomials
𝑃0(𝑧), · · · , 𝑃𝑑 (𝑧), not all zero, such that

𝑃𝑑 (𝑧)𝛿𝑑+22,𝑧 (𝑓 (𝑧)) + · · · + 𝑃2(𝑧)𝛿42,𝑧 (𝑓 (𝑧)) + 𝑃1(𝑧)𝛿32,𝑧 (𝑓 (𝑧)) + 𝑃0(𝑧)𝑓 (𝑧) = 0. (11)

REMARK 5. From the definition of a 𝛿2-finite function one sees that it does not necessarily require
the first 𝛿2 derivative to be 1 as given in (8). Indeed, Definition 4 extends to the non-homogeneous
case since by the Leibniz product rule, we can differentiate a non-homogeneous QDE finitely many
times and get a homogeneous one. However, we mention that our Maxima implementation can
compute non-homogeneous QDEs, although we avoid non-homogeneity for formal power series
representations to escape dealing with constant terms.

Although the differential equation (11) can be linear (holonomic case), we often say that a 𝛿2-finite
function is a function that satisfies a homogeneous QDE with polynomial coefficients, or simply a
homogeneous QDE.

THEOREM 6. The class of holonomic functions is strictly contained in the class of 𝛿2-finite functions.

3Tuple of two elements.
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PROOF. The holonomic case is deduced from (11) by observing that having 𝑃 𝑗 (𝑧) = 0, for 𝑗 ∈
{1, . . . , 𝑑} \ (𝑖 · (𝑖 + 3)/2)𝑖≥0, yields a holonomic differential equation since 𝛿2+𝑖 ·(𝑖+3)/22,𝑧 (𝑓 (𝑧)) is a linear
differential monomial for all non-negative integer 𝑖 (see (8)). ♮

It is well-known that reciprocals of holonomic functions are generally not holonomic. Although the
aim of this paper is not to study the closure properties of 𝛿2-finite functions, in the following theorem,
we show that an important family of reciprocals of holonomic functions is included in the class of
𝛿2-finite functions.

THEOREM 7. The reciprocal of a function that satisfies a second-order holonomic differential
equation is 𝛿2-finite.

PROOF. Let 𝑦(𝑧) be a function that satisfies a second-order holonomic differential equation.
Therefore there exist two rational functions 𝑅1(𝑧) and 𝑅2(𝑧) over K such that

𝑑2

𝑑𝑧2
𝑦(𝑧) = 𝑅1(𝑧) ·

𝑑

𝑑𝑧
𝑦(𝑧) + 𝑅2(𝑧) · 𝑦(𝑧). (12)

Let 𝑢(𝑧) = 1/𝑦(𝑧). Without loss of generality, we look for a second-order QDE satisfied by 𝑢. This
implies that the maximum order of the 𝛿2 differentiation needed is 10. We are looking for rational
coefficients 𝑐 𝑗 = 𝑐 𝑗 (𝑧), 1 ≤ 𝑗 ≤ 9 so that

10∑
𝑗=2

𝑐 𝑗−1(𝑧) · 𝛿 𝑗

2,𝑧 (𝑢(𝑧)) = 0; (13)

the polynomial coefficients will be deduced by multiplication by the common denominator. Substi-
tuting (12) into the left-hand side of (13) and collecting the coefficients yields

4𝑐9
(
𝑑
𝑑𝑧

y(𝑧)
)4

y(𝑧)6
−
2 (2𝑅1 𝑐9 + 𝑐8)

(
𝑑
𝑑𝑧

y(𝑧)
)3

y(𝑧)5
+
2𝑐6

(
𝑑
𝑑𝑧

y(𝑧)
)2

y(𝑧)3

+

(
−4𝑅2 𝑐9 + 𝑅2

1 𝑐9 + 𝑅1 𝑐8 + 2𝑐7 + 𝑐5
) (

𝑑
𝑑𝑧

y(𝑧)
)2

y(𝑧)4
+
(−𝑅1 𝑐6 − 𝑐3)

(
𝑑
𝑑𝑧

y(𝑧)
)

y(𝑧)2

+
(𝑅2 (2𝑅1 𝑐9 + 𝑐8) − 𝑅1 𝑐7 − 𝑐4)

(
𝑑
𝑑𝑧

y(𝑧)
)

y(𝑧)3
+
𝑐1 − 𝑅2 𝑐6

y(𝑧)
+
𝑅2 (𝑅2 𝑐9 − 𝑐7) + 𝑐2

y(𝑧)2
. (14)

Finally, we solve the linear system obtained by equating the rational coefficients in (14) to zero. We
obtain the solution

{𝑐1 = 0 , 𝑐2 = 𝑅2 C , 𝑐3 = 0 , 𝑐4 = −𝑅1 C , 𝑐5 = −2C , 𝑐6 = 0 , 𝑐7 = C , 𝑐8 = 0 , 𝑐9 = 0} , (15)

where C := 𝐶(𝑧) is an arbitrary rational function in K(𝑧). Therefore, the reciprocal 𝑢(𝑧) of 𝑦(𝑧) satisfies
a differential equation of the form

C(𝑧)

(
u(𝑧)

(
𝑑2

𝑑𝑧2
u(𝑧)

)
− 2

(
𝑑

𝑑𝑧
u(𝑧)

)2
− 𝑅1(𝑧) u(𝑧)

(
𝑑

𝑑𝑧
u(𝑧)

)
+ 𝑅2(𝑧) u(𝑧)2

)
= 0 (16)

Let 𝑝(𝑧) be the common denominator of 𝑅1(𝑧) and 𝑅2(𝑧). Then there exist 𝑞(𝑧) and 𝑟 (𝑧) in K(𝑧) such
that 𝑅1(𝑧) = −𝑞(𝑧)/𝑝(𝑧) and 𝑅2(𝑧) = −𝑟 (𝑧)/𝑝(𝑧). Equation (16) is equivalent to

𝑝(𝑧)𝛿82,𝑧 (u(𝑧)) − 2𝑝(𝑧)𝛿62,𝑧 (u(𝑧)) + 𝑞(𝑧)𝛿52,𝑧 (u(𝑧)) − 𝑟 (𝑧)𝛿32,𝑧 (u(𝑧)) = 0, (17)

which concludes the proof. ♮
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COROLLARY 8. Let 𝑓 (𝑧) be a holonomic function that satisfies the differential equation

p(𝑧)
(
𝑑2

𝑑𝑧2
y(𝑧)

)
+ q(𝑧)

(
𝑑

𝑑𝑧
y(𝑧)

)
+ r(𝑧) y(𝑧) = 0, (18)

with 𝑝(𝑧) ̸= 0. Then 1/𝑓 (𝑧) is 𝛿2-finite and satisfies the differential equation

p(𝑧) y(𝑧)
(
𝑑2

𝑑𝑧2
y(𝑧)

)
− 2 p(𝑧)

(
𝑑

𝑑𝑧
y(𝑧)

)2
+ q(𝑧) y(𝑧)

(
𝑑

𝑑𝑧
y(𝑧)

)
− r(𝑧)y(𝑧)2 = 0. (19)

PROOF. Immediate from the proof of Theorem 7. ♮

EXAMPLE 9. Using Corollary 8, we can already give QDEs satisfied by sec(𝑧) = 1/cos(𝑧) and
csc(𝑧) = 1/sin(𝑧). Since cos(𝑧) and sin(𝑧) satisfy the differential equation

𝑑2

𝑑𝑧2
y(𝑧) + y(𝑧) = 0, (20)

we have 𝑝(𝑧) = 1, 𝑞(𝑧) = 0 and 𝑟 (𝑧) = 1, where 𝑝, 𝑞, 𝑟 are defined as in (18). Therefore sec(𝑧) and
csc(𝑧) satisfy the following differential equation

y(𝑧)
(
𝑑2

𝑑𝑧2
y(𝑧)

)
− 2

(
𝑑

𝑑𝑧
y(𝑧)

)2
− y(𝑧)2 = 0. (21)

In the next section, we present a general strategy to search for a QDE of least order satisfied by a
given 𝛿2-finite function.

3 Computing quadratic differential equations
Given a 𝛿2-finite function 𝑓 , we propose an algorithm to compute the least-order QDE satisfied by 𝑓 .
This can be done by standard approaches after replacing the usual derivative operator by 𝛿2,𝑧 . We
consider the method of ansatz with undetermined coefficients as described in [13].

EXAMPLE 10 (𝑓 (𝑧) := 1/log(1 + 𝑧)).
(1) 𝛿32,𝑧(𝑓 (𝑧)) = 1/(log(1 + 𝑧))2, and we look for a rational function 𝐶0 := 𝐶0(𝑧) ∈ Q(𝑧) such that

𝛿32,𝑧(𝑓 (𝑧)) +𝐶0(𝑧)𝑓 (𝑧) =
1

(log(1 + 𝑧))2
+𝐶0

1
log(1 + 𝑧)

= 0. (22)

Such a 𝐶0 does not exist since −𝛿32,𝑧(𝑓 (𝑧))/𝑓 (𝑧) = −1/log(1 + 𝑧) /∈ Q(𝑧)4. In such a case the QDE
sought might be of higher order.

(2) 𝛿42,𝑧(𝑓 (𝑧)) = −1/
(
(1 + 𝑧) (log(1 + 𝑧))2

)
, and we look for rational functions 𝐶0,𝐶1 ∈ Q(𝑧) such that

𝛿42,𝑧(𝑓 (𝑧)) +𝐶1𝛿
3
2,𝑧(𝑓 (𝑧)) +𝐶0 𝑓 (𝑧) =

−1(
(1 + 𝑧) (log(1 + 𝑧))2

) + 𝐶1

(log(1 + 𝑧))2
+

𝐶0

log(1 + 𝑧)
= 0, (23)

which is equivalent to

𝐶0 (1 + 𝑧) log(1 + 𝑧) +𝐶1(1 + 𝑧) − 1
(log(1 + 𝑧))2 (1 + 𝑧)

= 0. (24)

We force the numerator to vanish by equating the coefficient in Q(𝑧)[log(1 + 𝑧)] to zero. The
obtained linear system is trivial and we get the solution{(

𝐶0 = 0,𝐶1 =
1

1 + 𝑧

)}
. (25)

4The aim is to collect rational factors that may appear while differentiating 𝑓 (𝑧).
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Thus 𝑓 (𝑧) satisfies the QDE

𝛿42,𝑧(𝑦(𝑧)) +
1

(1 + 𝑧)
𝛿32,𝑧(𝑦(𝑧)) =

𝑑

𝑑𝑧
𝑦(𝑧) +

1
(1 + 𝑧)

𝑦(𝑧)2 = 0. (26)

After clearing the denominators we finally get

(1 + 𝑧)
𝑑

𝑑𝑧
𝑦(𝑧) + 𝑦(𝑧)2 = 0, (27)

with polynomial coefficients.

EXAMPLE 11 (𝑓 (𝑧) := tan(𝑧)).
(1) 𝛿32,𝑧(𝑓 (𝑧)) = (tan(𝑧))2, and we seek 𝐶0 ∈ Q(𝑧) such that

𝛿32,𝑧(𝑓 (𝑧)) +𝐶0(𝑧)𝑓 (𝑧) = (tan(𝑧))2 +𝐶0 tan(𝑧) = 0. (28)

Since −𝛿32,𝑧(𝑓 (𝑧))/𝑓 (𝑧) = − tan(𝑧) /∈ Q(𝑧), we proceed to the next step.
(2) 𝛿42,𝑧(𝑓 (𝑧)) = 1 + (tan(𝑧))2, and we seek 𝐶0,𝐶1 ∈ Q(𝑧) such that

𝛿42,𝑧(𝑓 (𝑧)) +𝐶1𝛿
3
2,𝑧(𝑓 (𝑧)) +𝐶0 𝑓 (𝑧) = 1 + (tan(𝑧))2 +𝐶1 (tan(𝑧))2 +𝐶0 tan(𝑧) = 0. (29)

The linear system obtained after equating the coefficients in Q(𝑧)[tan(𝑧)] to zero has no solution.
We proceed to the next 𝛿2-derivative.

(3) This will continue until 𝛿72,𝑧(𝑓 (𝑧)) = 2 tan(𝑧)(1 + (tan(𝑧))2). We then look for the rational functions
𝐶0,. . .,𝐶4 such that

𝛿72,𝑧(𝑓 (𝑧)) +𝐶4𝛿
6
2,𝑧(𝑓 (𝑧)) + · · · +𝐶0 𝑓 (𝑧) = 2 tan(𝑧) + 2 (tan(𝑧))3 +𝐶4

(
1 + 2 (tan(𝑧))2 + (tan(𝑧))4

)
+𝐶3(tan(𝑧) + (tan(𝑧))3) +𝐶2

(
1 + (tan(𝑧))2

)
+𝐶1 (tan(𝑧))2 +𝐶0 tan(𝑧) = 0. (30)

This is equivalent to

𝐶4 tan (𝑧)4 + (𝐶3 + 2) tan (𝑧)3 + (2𝐶4 +𝐶2 +𝐶1) tan (𝑧)2 + (𝐶3 +𝐶0 + 2) tan (𝑧) +𝐶4 +𝐶2 = 0. (31)

After equating the coefficients in Q(𝑧)[tan(𝑧)] to zero we find the solution

{(𝐶0 = 0,𝐶1 = 0,𝐶2 = 0,𝐶3 = −2,𝐶4 = 0)} . (32)

Therefore we get the QDE

𝛿72,𝑧(𝑦(𝑧)) − 2𝛿52,𝑧(𝑦(𝑧)) =
𝑑2

𝑑𝑧2
y(𝑧) − 2 y(𝑧)

(
𝑑

𝑑𝑧
y(𝑧)

)
= 0. (33)

The above examples show how our algorithm proceeds: the coefficients in K(𝑧)[𝛼1(𝑧), . . . , 𝛼𝑘 (𝑧)],
where the 𝛼 𝑗 (𝑧)’s, 1 ≤ 𝑗 ≤ 𝑘 are transcendental functions verifying 𝛼𝑖 (𝑧)/𝛼 𝑗 (𝑧) /∈ K(𝑧), 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑘 ,
are collected by computing ratios of terms in the expansion of the ansatz; if the ratio is rational,
then the corresponding terms are grouped together, otherwise they correspond to two distinct linear
equations for the unknown coefficients of the differential equation sought. For instance, to get the
factorization (𝐶3 + 2) tan (𝑧)3 in (31), the algorithm computes the ratio (𝐶3(tan(𝑧))3)/(2(tan(𝑧))3) =
𝐶3/2 ∈ Q(𝑧). Since there are no other rational ratios with (2(tan(𝑧))3), the factor (𝐶3 + 2) is an
equation of the linear system in this case.
Our algorithm iterates on the 𝛿2 order of the QDE sought, and stops once it finds a QDE or reaches a
certain maximal order 𝑁𝑚𝑎𝑥 ∈ N.

DEFINITION 12 (M𝛿2 (𝑑)). We denote by M𝛿2 (𝑑), the maximum integer 𝑛 such that the 𝛿2 derivative
of 𝛿2 order 𝑛 is a differential monomial of order 𝑑 .

EXAMPLE 13. M𝛿2 (1) = 6, since 𝛿72,𝑧(𝑓 (𝑧)) = 𝑑2

𝑑𝑧2
𝑓 (𝑧) and 𝛿62,𝑧(𝑓 (𝑧)) =

(
𝑑
𝑑𝑧
𝑓 (𝑧)

)2
is the last 𝛿2

derivative of 𝑓 (𝑧) of order 1. M𝛿2 (2) = 10.
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PROPOSITION 14. For all positive integers 𝑑 , M𝛿2 (𝑑) = 3 + 𝑑(𝑑 + 5)/2.

We observed that the order 4 is enough for finding QDEs satisfied by common non-holonomic
functions. Therefore a suitable default value for the maximum number of iteration in our algorithm
is 𝑁𝑚𝑎𝑥 = M𝛿2 (4) = 21. Algorithm 1 gives the possibility to increase this value from the input.
We mention that the method of ansatz with undetermined coefficients does not require to fix a
maximum degree for the polynomial coefficients. The survey paper [14] on the computation of
holonomic differential equations present the advantage of this method over others for finding least-
order differential equations.
Our algorithm for finding homogeneous quadratic differential equations can be summarized as
follows.

Algorithm 1 Searching for a QDE satisfied by a 𝛿2-finite function 𝑓

Input: A 𝛿2-finite function 𝑓 (𝑧), and optionally, a maximum order 𝑑 (default value 4).
Output: FAIL or a QDE of 𝛿2 order at most 𝑁𝑚𝑎𝑥 = M𝛿2 (𝑑) over K.
(1) If 𝑓 = 05then the QDE is found and we stop.
(2) 𝑓 ̸= 0, compute 𝐶0 = 𝛿32,𝑧 𝑓 (𝑧)/𝑓 (𝑧),
(1-a) if 𝐶0 ∈ K(𝑧) i.e 𝐶0(𝑧) = 𝑃 (𝑧)/𝑄(𝑧) where 𝑃 and 𝑄 are polynomials, then we have found a QDE

satisfied by 𝑓 :
𝑄(𝑧)𝑦(𝑧)2 − 𝑃 (𝑧)𝑦(𝑧) = 0.

(1-b) If 𝐶0 /∈ K(𝑧), then go to 3.
(3) 𝑁𝑚𝑎𝑥 := M𝛿2 (𝑑);
(3-a) set 𝑁 := 2;
(3-b) compute 𝛿𝑁+2

2,𝑧 𝑓 ;
(3-c) expand the ansatz

𝛿𝑁+2
2,𝑧 (𝑓 (𝑧)) +𝐶𝑁−1𝛿

𝑁+1
2,𝑧 (𝑓 (𝑧)) + · · · +𝐶0 𝑓 (𝑧) =

𝐸∑
𝑖=0

𝑆𝑖 , (34)

in elementary summands with 𝐶𝑁−1, . . . ,𝐶0 as unknowns. 𝐸 ≥ 𝑁 is the total number of
summands 𝑆𝑖 obtained after expansion.

(3-d) For each pair of summands 𝑆𝑖 and 𝑆 𝑗 (0 ⩽ 𝑖 ̸= 𝑗 ⩽ 𝐸), group them additively together if
𝑅(𝑧) = 𝑆𝑖 (𝑧)/𝑆 𝑗 (𝑧) ∈ K(𝑧). These groups represent the linearly independent expressions whose
rational coefficients are linear in the unknowns 𝐶0,𝐶1, . . . ,𝐶𝑁−1. Equating these coefficients
to zero yields a linear system to solve in K(𝑧). If the system has a non-empty set of solutions,
then select a non-zero solution if it exists. If such a solution exists, then the step is successful.
The algorithm returns (and stop) the QDE obtained by substituting the values found for
𝐶0,𝐶1, . . . ,𝐶𝑁−1 in (34) and multiplying the result by their common denominator. In the other
cases, the step is not successful and we move to the next step.

(3-e) Increment 𝑁 (𝑁 := 𝑁 + 1), and go back to (3-b), unless 𝑁 = 𝑁𝑚𝑎𝑥 .
(4) Return FAIL (𝑁 = 𝑁𝑚𝑎𝑥 , no QDE of order at most 𝑑 was found).

REMARK 15. Algorithm 1 should not be seen as a decision algorithm for 𝛿2-finiteness since such
an algorithm is impossible to describe (see [17]). This can be justified by similar arguments from
[11] discussed in the case of holonomic functions. The capacity of the method also depends on
how functions are encoded in the computer algebra system (CAS) used. For instance, our Maple
implementation of Algorithm 1 finds a QDE of order 2 for exp(2 arctanh(sin(2𝑧)/(1 + cos(2𝑧)))),
whereas our Maxima implementation finds another one of order 3. This is because Maple allows
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some automatic simplifications for compositions of exp and arctanh (see Subsection 4.3). Thus,
although Algorithm 1 is meant to find lowest-order QDEs, its capacity to detect 𝛿2-finite functions is
partly defined by the CAS used. Nevertheless, this happens only in rare cases because both Maple
and Maxima implementations usually have identical results with lowest order possible.

Let us now present some results using our Maple implementation FPS:-QDE (or simply QDE if
the FPS package is already loaded). Maple’s dsolve command is used to solve the corresponding
QDEs.

EXAMPLE 16.

> FPS:-QDE(sec(z),y(z))

(35)−𝑦(𝑧)2 − 2
(
𝑑

𝑑𝑧
𝑦(𝑧)

)2
+

(
𝑑2

𝑑𝑧2
𝑦(𝑧)

)
𝑦(𝑧) = 0

> dsolve(%,y(z))

(36)𝑦(𝑧) =
1

_C1 sin(𝑧) − _C2 cos(𝑧)
> FPS:-QDE(z/log(1+z),y(z))

(37)(−1 − 𝑧)𝑦(𝑧) + 𝑦(𝑧)2 + 𝑧 (1 + 𝑧)
(
𝑑

𝑑𝑧
𝑦(𝑧)

)
= 0

> dsolve(%,y(z))

(38)𝑦(𝑧) =
𝑧

ln(1 + 𝑧) + _C1

Next we compute a QDE for the generating function of Bernoulli polynomials of arbitrary order 𝑘
(see [6]).

> FPS:-QDE((t/(exp(t)-1))^k*exp(x*t),y(t))(
𝑡𝑘𝑥 −𝑡 𝑥2 +𝑘2−2𝑘𝑥

)
𝑦(𝑡 )2 +(−𝑡𝑘 +2𝑥𝑡 +2𝑘)

(
𝑑

𝑑𝑡
𝑦(𝑡 )

)
𝑦(𝑡 )−𝑡 (1+𝑘)

(
𝑑

𝑑𝑡
𝑦(𝑡 )

)2
+𝑡𝑘

(
𝑑2

𝑑𝑡2
𝑦(𝑡 )

)
𝑦(𝑡 ) = 0

(39)

> dsolve(%,y(t))

(40)𝑦(𝑡 ) =
e𝑥𝑡(

e𝑡_C1−_C2
𝑡𝑘

)𝑘
> FPS:-QDE(sec(z)^k,y(z))

(41)−𝑘2𝑦(𝑧)2 + (−𝑘 − 1)
(
𝑑

𝑑𝑧
𝑦(𝑧)

)2
+ 𝑘

(
𝑑2

𝑑𝑧2
𝑦(𝑧)

)
𝑦(𝑧) = 0

> dsolve(%,y(z))

(42)𝑦(𝑧) =
1(

_C1 sin(𝑧)−_C2 cos(𝑧)
𝑘

)𝑘
> FPS:-QDE(tan(z)^k,y(z))

5Only for trivial zero equivalences. A QDE of order zero 𝑦 = 0 would be the output.
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(43)

(
20𝑘2 − 24

) (
𝑑

𝑑𝑧
𝑦(𝑧)

)2
+ 4𝑘2

(
𝑑2

𝑑𝑧2
𝑦(𝑧)

)
𝑦(𝑧) + 3 (𝑘 − 2) (𝑘 + 2)

(
𝑑2

𝑑𝑧2
𝑦(𝑧)

)2
+

(
−4𝑘2 + 6

) (
𝑑3

𝑑𝑧3
𝑦(𝑧)

) (
𝑑

𝑑𝑧
𝑦(𝑧)

)
+ 𝑘2

(
𝑑4

𝑑𝑧4
𝑦(𝑧)

)
𝑦(𝑧) = 0

The dsolve command does not find an explicit solution for the latter QDE. However, we can verify
that tan(𝑧)𝑘 is solution in the following way.

> simplify(eval(subs(y(z)=tan(z)^k,lhs(%))))

(44)0

Our implementation is now available in Maple 2022 as a feature of the FindODE command.

4 Power series representations of 𝛿2-finite functions
4.1 QDE to QRE
In this section, we assume that the power series of 𝑓 (𝑧) is represented as

∑∞
𝑛=0 𝑎𝑛𝑧

𝑛. Note that the
Laurent series case easily follows since the appropriate shift of initial values can be deduced from
the coefficients of the computed differential equation (see [21], [24]). For any constant 𝑥 and a
non-negative integer 𝑘 , (𝑧)0 = 1 and (𝑧)𝑘 = 𝑥 · (𝑥 + 1) · · · (𝑥 + 𝑘 − 1) denotes the Pochhammer symbol
or shifted factorial.
We need a rewrite rule similar to that of holonomic equations to convert differential equations into
recurrence equations. It is important to remind what the algorithm looks like in the linear case.
Therefore we recall how it works below (see [13] and [18]).

𝑧𝑝 · 𝑓 (𝑗 ) −→ (𝑛 + 1 − 𝑝)𝑗 · 𝑎𝑛+𝑗−𝑝 . (45)

In the present case, we also need to convert every differential monomial

𝑧𝑝 · 𝑓 (𝑧)(𝑖) · 𝑓 (𝑧)(𝑗 ), for non-negative integers 𝑖, 𝑗, 𝑝. (46)

into a term of the QRE sought.
For all non-negative integers 𝑖, we have

𝑓 (𝑧)(𝑖) =
∞∑
𝑛=0

(𝑛 + 1)𝑖 · 𝑎𝑛+𝑖 · 𝑧𝑛, (47)

therefore

𝑓 (𝑧)(𝑖) · 𝑓 (𝑧)(𝑗 ) =
( ∞∑
𝑛=0

(𝑛 + 1)𝑖 · 𝑎𝑛+𝑖 · 𝑧𝑛
)
·
( ∞∑
𝑛=0

(𝑛 + 1)𝑗 · 𝑎𝑛+𝑗 · 𝑧𝑛
)

=
∞∑
𝑛=0

(
𝑛∑

𝑘=0
(𝑘 + 1)𝑖 · 𝑎𝑘+𝑖 · (𝑛 − 𝑘 + 1)𝑗 · 𝑎𝑛−𝑘+𝑗

)
· 𝑧𝑛 . (48)

by application of the Cauchy product formula which introduces the dummy variable 𝑘. Finally
multiplying (48) by 𝑧𝑝 yields

𝑧𝑝 · 𝑓 (𝑧)(𝑖) · 𝑓 (𝑧)(𝑗 ) =
∞∑
𝑛=0

(
𝑛−𝑝∑
𝑘=0

(𝑘 + 1)𝑖 · (𝑛 − 𝑝 − 𝑘 + 1)𝑗 · 𝑎𝑘+𝑖 · 𝑎𝑛−𝑝−𝑘+𝑗

)
· 𝑧𝑛, (49)

from which we deduce the rewrite rule
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𝑧𝑝 · 𝑓 (𝑧)(𝑖) · 𝑓 (𝑧)(𝑗 ) −→
(
𝑛−𝑝∑
𝑘=0

(𝑘 + 1)𝑖 · (𝑛 − 𝑝 − 𝑘 + 1)𝑗 · 𝑎𝑘+𝑖 · 𝑎𝑛−𝑝−𝑘+𝑗

)
. (50)

Thus a procedure to convert QDE into QRE follows immediately, i.e. use (45) for linear differential
monomials, and (50) for quadratic ones. Our packages contain the procedure FindQRE to compute a
QRE satisfied by the power series coefficients of a given 𝛿2-finite function. We give a few examples
computed by our Maxima implementation.

EXAMPLE 17.
(%i1) FindQRE(tan(z),z,a[n]);

(%o1) (1 + 𝑛) · (2 + 𝑛) · 𝑎𝑛+2 − 2 ·
𝑛∑

𝑘=0
(𝑘 + 1) · 𝑎𝑘+1 · 𝑎𝑛−𝑘 = 0

(%i2) FindQRE(z/(exp(z)-1),z,a[n]);

(%o2)

(
𝑛∑

𝑘=0
𝑎𝑘 · 𝑎𝑛−𝑘

)
+ (𝑛 − 1) · 𝑎𝑛 + 𝑎𝑛−1 = 0

(%i3) FindQRE(log(1+sin(z)),z,a[n]);

(%o3)

(
𝑛∑

𝑘=0
(𝑘 + 1) · (𝑘 + 2) · 𝑎𝑘+2 · (𝑛 − 𝑘 + 1) · 𝑎𝑛−𝑘+1

)
+ (1 + 𝑛) · (2 + 𝑛) · (3 + 𝑛) · 𝑎𝑛+3 = 0

4.2 Normal forms for 𝛿2-finite power series
The last step of our computations consists of using the obtained QRE to write the highest order
indexed variable in terms of the others. Evaluating the recurrence equation at some integers allows
to reveal the initial values to be computed from evaluation of the input function and its derivatives.
Usually, the summations coming from Cauchy products have to be evaluated at their lower and upper
bounds in order to extract all occurrences of the highest order indexed variable. Let us consider the
QRE obtained for 𝑧/(exp(𝑧) − 1).(

𝑛∑
𝑘=0

𝑎𝑘 · 𝑎𝑛−𝑘

)
+ (𝑛 − 1) · 𝑎𝑛 + 𝑎𝑛−1 = 0. (51)

There is only one summation and we need to extract 𝑎𝑛 from it. This corresponds to the indices 𝑘 = 0,
𝑘 = 𝑛, and the extra second summand. We get(

𝑛−1∑
𝑘=1

𝑎𝑘 · 𝑎𝑛−𝑘

)
+ 2 · 𝑎0 · 𝑎𝑛 + (𝑛 − 1) · 𝑎𝑛 + 𝑎𝑛−1 = 0. (52)

We then substitute the value of 𝑎0 and deduce the recursive formula sought. Together with the
necessary initial values, the obtained representation defines a unique sequence (see (3)) of coefficients
which characterizes the power series expansion of 𝑧/(exp(𝑧) − 1). The obtained recursive formula is

𝑎𝑛+3 = −
𝑎𝑛+2 +

∑𝑛+2
𝑘=1 𝑎𝑘 · 𝑎𝑛+3−𝑘
𝑛 + 4

, 𝑛 ⩾ 0, 𝑎0 = 1, 𝑎1 = −1/2, 𝑎2 = −1/12, (53)

which can be used to recover a well-known Ramanujan identity for the Bernoulli numbers (see [5]).
Indeed, substituting 𝑎𝑛 by 𝐵𝑛/𝑛!, where 𝐵𝑛 denotes the 𝑛th Bernoulli number, and multiplying both
sides of (53) by (𝑛 + 3)!, gives

𝐵𝑛+3 = −
(𝑛 + 3)𝐵𝑛+2 +

∑𝑛+2
𝑘=1

(
𝑛+3
𝑘

)
𝐵𝑘 · 𝐵𝑛+3−𝑘

𝑛 + 4
. (54)
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Then using the known fact (which can also be deduced) that except 𝐵1, all Bernoulli numbers of odd
subscripts are zero, it follows that 𝐵𝑛+3 and 𝐵𝑛+2 cannot be both non-zero at the same time. Finally
substituting 𝑛 by 2𝑛 − 1 leads to the identity

𝐵2𝑛+2 = − 1
2𝑛 + 3

𝑛∑
𝑘=1

(
2𝑛 + 2
2𝑘

)
𝐵2𝑘 · 𝐵2(𝑛+1−𝑘)

= − 1
2𝑛 + 3

(
2 ·

⌈𝑛/2⌉∑
𝑘=1

(
2𝑛 + 2
2𝑘

)
𝐵2𝑘 · 𝐵2(𝑛+1−𝑘) −

(
2𝑛 + 2
𝑛 + 1

)
𝐵2
𝑛+1

)
(𝑛 ⩾ 1) (55)

This shows how our algorithm can be of good help for manipulating Bernoulli numbers and similar
sequences.
It is worth to ask what is the number of initial values required to have a valid formula for the
coefficients of a formal power series. The case of the exponential generating function of Bernoulli
numbers may seem obvious in this regard. To show that this is always possible, let us consider the
representations for (cos(𝑧))2 and (sin(𝑧))2 which satisfy the same QDE and therefore the same QRE,
but lead to two different recursive formulas for their power series. The differential equation found by
Algorithm 1 is given by (

𝑑

𝑑𝑧
y(𝑧)

)2
+ 4y(𝑧)2 − 4 y(𝑧) = 0, (56)

which lead to the following recurrence equation after application of the rewrite rules (45) and (50).
𝑛∑

𝑘=0
(𝑘 + 1) (𝑛 − 𝑘 + 1) 𝑎𝑘+1 𝑎𝑛−𝑘+1 + 4

𝑛∑
𝑘=0

𝑎𝑘 𝑎𝑛−𝑘 − 4𝑎𝑛 = 0. (57)

Note that these two functions satisfy a third-order holonomic differential equation. Algorithm 1 finds
(56) because it is of lower order.
Now we extract the highest order indexed variable 𝑎𝑛+1 and 𝑎𝑛 . Equation (57) is equivalent to

2𝑎1 (𝑛 + 1)𝑎𝑛+1 +4𝑎2 𝑛 𝑎𝑛 +4 (2𝑎0 − 1) 𝑎𝑛 +
𝑛−2∑
𝑘=2

(𝑘 + 1) (𝑛 − 𝑘 + 1) 𝑎𝑘+1 𝑎𝑛−𝑘+1 +4
𝑛−1∑
𝑘=1

𝑎𝑘 𝑎𝑛−𝑘 = 0.

(58)
Using the initial coefficients 𝑎0 = (cos(0))2 = 1, 𝑎1 =

(
(cos(𝑧))2

) ′ (0) = 0 and 𝑎2 =
(
(cos(𝑧))2

) ′′ (0)/2! =
−1, one easily deduce a formula for 𝑎𝑛 which uniquely identifies the coefficients of the power series
of (cos(𝑧))2. For (sin(𝑧))2, we have 𝑎0 = 𝑎1 = 0 and 𝑎2 = 1, which also yields a formula for 𝑎𝑛 from
(58) and therefore uniquely defines the power series coefficients of (sin(𝑧))2.
As one can notice, the identification of a 𝛿2-finite function to its representation relies on the uniqueness
of its power series, which is guaranteed by the analytic property of that function in the neighborhood
considered.
Regarding the required initial values, observe that these are always deduced from extractions of
highest order indexed variables from the summations appearing in the computed QRE. Therefore we
should define a bound for the number of extractions required to make sure that these extractions do
not continue indefinitely when several initial values are zero. Such a bound can be easily determined
from the coefficients of terms with summations in the QRE. Indeed, the rewrite rule (50) leaves the
constant factors out of the summation. Moreover, in this particular case we may write the power series
as 𝑓 (𝑧) = 𝑧𝑝

∑∞
𝑛=0 𝑎𝑛 · 𝑧𝑛, 𝑝 > 0, 𝑎0 ̸= 0. By differentiation, we see that 𝑝 appear as a multiplicative

factor starting from the first derivative. Algorithmically, the integer part of the maximum absolute
value of constant factors appearing in front of summations in the QRE constitute a bound for the
number of required initial values. However, this upper bound may seem crude for some examples;
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one could also determine a bound for 𝑝 by using known methods to calculate Laurent series solutions
of algebraic differential equations (see [25]).
We are now all set to give the following theorem, which summarizes our results.

THEOREM 18. Given a 𝛿2-finite function 𝑓 (𝑧), the following steps

(1) Use Algorithm 1 to compute a QDE satisfied by 𝑓 (𝑧);
(2) Expand the left-hand side of the obtained differential equation and convert it into a QRE using

the rewrite rules (45) and (50);
(3) Use the obtained QRE to write its highest-order indexed variable in terms of the preceding ones

with the required initial values;

define a normal form6 of the power series representation of 𝑓 (𝑧).

PROOF. First, we need to show that these three steps define a normal transformation (or normal
function) for the class of 𝛿2-finite functions. For that purpose we must prove that the output repre-
sentation and the input function define the same mathematical object, and that 𝛿2-finite functions
equivalent to zero have the same representation (see [9, Def 3.1 & Def 3.3]). These follow from the
arguments developed in the previous paragraphs of this section. By fixing the bound for the number
of necessary initial values, the mathematical object is uniquely determined and zero-equivalences are
automatically detected.
The second part of the proof consists of showing that the representation given by the normal
transformation used is unchanged under the application of that transformation to it. That is, of
course, the case since the differential equation and the recurrence equation associated with the
recursive formulas obtained from the three steps in Theorem 18 characterize it. Thus, one can see
the transformation as the one that applies these three steps if the given function is not in the desired
output form, and returns the input if it already has the desired form. ♮

Normal forms are often used in computer algebra to represent mathematical objects. Our method is
an extension of common techniques used to prove identities between holonomic functions (see [26]).
The most interesting point of Theorem 18 is that zero-equivalences between 𝛿2-finite functions can be
detected with our algorithm. This is an important fact for it is well-noticeable that identities between
non-holonomic functions are not easily detected from an algorithmic perspective. Before proving
some identities, let us give examples of representations obtained with our Maple implementation.

EXAMPLE 19. The argument fpstype=quadratic is specified to apply the method to non-
holonomic functions directly.

> FPS(tan(z),z,n,fpstype=quadratic)

(59)

Series
©«

∞∑
𝑛=0

𝐴(𝑛) 𝑧𝑛, 𝐴(𝑛 + 3) = −
−2𝐴(𝑛 + 1) +

𝑛∑
_k=1

(−2 (_k + 1)𝐴(_k + 1)𝐴(𝑛 − _k + 1))

(𝑛 + 2) (𝑛 + 3)


,

{𝐴(𝑛)} , {𝐴(0) = 0, 𝐴(1) = 1, 𝐴(2) = 0} , INFO
ª®®®®¬

> FPS(1/(1+sin(z)),z,n,fpstype=quadratic)

6The used algorithm is then called a normal function (see [9, Chapter 3].)
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(60)Series
©«

∞∑
𝑛=0

𝐴(𝑛)𝑧𝑛, 𝐴(𝑛 + 2) = −
−5𝐴(𝑛) +

𝑛−1∑
_k=1

(−3𝐴(_k)𝐴(𝑛 − _k))

(𝑛 + 1) (𝑛 + 2)


, {𝐴(𝑛)} , {𝐴(0) = 1, 𝐴(1) = −1} , INFO

ª®®®®¬
In particular, these obtained representations can be used to deduce truncated series. Our Maxima
package contains the procedure QTaylor, implemented for that purpose. Below we compare the
results with the built-in Maxima taylor command.

EXAMPLE 20.

(%i1) taylor(sec(z),z,0,7);

(%o1) 1 +
𝑧2

2
+
5𝑧4

24
+
61𝑧6

720
+ . . .

(%i2) QTaylor(sec(z),z,0,7);

(%o2)
61𝑧6

720
+
5𝑧4

24
+
𝑧2

2
+ 1

(%i3) taylor(tan(z),z,0,7);

(%o3) 𝑧 +
𝑧3

3
+
2𝑧5

15
+
17𝑧7

315
+ . . .

(%i4) QTaylor(tan(z),z,0,7);

(%o4)
17𝑧7

315
+
2𝑧5

15
+
𝑧3

3
+ 𝑧

The ability to do such calculations further sustains our algorithm.

4.3 Proving identities
As a consequence of Theorem 18, we present automatic proofs of two non-holonomic identities. Of
course, we do not ignore Richardson’s theorem (see [17]). However, it is clear that bringing the zero-
equivalence problem to the class of power series solves this issue for the class under consideration.
Therefore for 𝛿2-finite functions our approach is a decision procedure for zero-equivalence. Two
expressions 𝐴 and 𝐵 define the same 𝛿2-finite function (at least in the neighborhood of the point of
expansion), if our algorithm finds the same power series representation for both of them, or if the
one of 𝐴 − 𝐵 is zero. The latter comes as a conclusion when all the necessary initial values of the
representation sought are zero. It should be noted that our algorithm does not check in which disk
the identity is valid. However for analytic functions, if they have the same power series, then they
are identical in the largest possible disk. Regarding power series representations, we focus on the
neighborhood of the origin.
As first identity, consider

log
(
tan

(𝑧
2

)
+ sec

(𝑧
2

))
= arcsinh

(
sin(𝑧)

1 + cos(𝑧)

)
, −𝜋 < 𝑧 < 𝜋 (61)

from [9, Section 3.3] (see also [15, Exercise 9.8]). Let 𝑓 be the left-hand side of (61) and 𝑔 its
right-hand side. Algorithm 1 finds the same differential equation for 𝑓 , 𝑔, and 𝑓 − 𝑔, which is

> f:=log(tan(z/2)+sec(z/2)):
> g:=arcsinh(sin(z)/(cos(z)+1)):
> FPS:-QDE(f,y(z))
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(62)−
(
𝑑

𝑑𝑧
𝑦(𝑧)

)2
− 8

(
𝑑2

𝑑𝑧2
𝑦(𝑧)

)2
+ 4

(
𝑑3

𝑑𝑧3
𝑦(𝑧)

) (
𝑑

𝑑𝑧
𝑦(𝑧)

)
= 0.

We get the following power series representation for 𝑓
> FPS(f,z,n,fpstype=quadratic)

(63)

Series©«

∞∑
𝑛=0

𝐴(𝑛) 𝑧𝑛, 𝐴(𝑛 + 4) = − 1
2 (𝑛 + 2) (𝑛 + 3) (𝑛 + 4)

©«− (𝑛 + 2)𝐴 (𝑛 + 2)
2

+

©«
𝑛∑

_k=1
4 (_k + 1) (_k + 2) (_k + 3)𝐴(_k + 3) (𝑛 − _k + 2)𝐴(𝑛 − _k + 2)ª®¬

+
𝑛∑

_k=1
(− (_k + 1)𝐴(_k + 1) (𝑛 − _k + 2)𝐴(𝑛 − _k + 2)) +

𝑛∑
_k=1

(−8 (_k + 1) (_k + 2)𝐴(_k + 2) (𝑛 − _k + 2) (𝑛 + 3 − _k)𝐴(𝑛 + 3 − _k))ª®¬
 ,

{𝐴(𝑛)} ,
{
𝐴(0) = 0, 𝐴(1) =

1
2
, 𝐴(2) = 0, 𝐴(3) =

1
48

}
, INFOª®¬ .

Thus the series representation of 𝑓 should differ from that of 𝑔 only by the initial values (like for
sin(𝑧) and cos(𝑧)). However, since the four necessary initial values are identical as shown by the
following truncated series expansion, we deduce that 𝑓 = 𝑔. The series representation of 𝑓 is obtained
by substituting 𝑓 by 𝑔 in (63).

> series(f-g,z,3)
(64)O

(
𝑧4

)
Furthermore, our algorithm detects this identity directly by finding zero as the power series represen-
tation of 𝑓 − 𝑔.

> FPS(f-g,z,n,fpstype=quadratic)
(65)0

One should note that the current Maple simplify command seems to be unable to recognize this
zero-equivalence.
Our second identity is a similar one given by (see [15, Section 9.1])

log
(
1 + tan(𝑧)
1 − tan(𝑧)

)
= 2 arctanh

(
sin(2𝑧)

1 + cos(2𝑧)

)
, −𝜋

4
< 𝑧 <

𝜋

4
. (66)

As previously we denote by 𝑓 and 𝑔 the left-hand side and the right-hand side of (66), respectively.
This identity can be recognized in Maple as follows.

> f:=log((1+tan(z))/(1-tan(z))):
> g:=2*arctanh(sin(2*z)/(1+cos(2*z))):
> simplify(exp(f)-exp(g))

(67)0

Indeed, the composition between exp and arctanh applies “non-trivial” simplifications that ease the
work for the simplify command.
Let us nevertheless prove (66) using our algorithm. Both sides satisfy the same differential equation,
and have the same initial values for their power series representations.

> series(f-g,z,3)
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(68)O
(
𝑧4

)
> FPS:-QDE(g,y(z))

(69)−4
(
𝑑

𝑑𝑧
𝑦(𝑧)

)2
− 2

(
𝑑2

𝑑𝑧2
𝑦(𝑧)

)2
+

(
𝑑3

𝑑𝑧3
𝑦(𝑧)

) (
𝑑

𝑑𝑧
𝑦(𝑧)

)
= 0

This is enough to deduce that 𝑓 and 𝑔 coincide. We compute the power series representation from 𝑔

below.

> FPS(g,z,n,fpstype=quadratic)

(70)

Series©«

∞∑
𝑛=0

𝐴(𝑛) 𝑧𝑛, 𝐴(𝑛 + 4) = − 1
2 (𝑛 + 2) (𝑛 + 3) (𝑛 + 4)

©«−8 (𝑛 + 2)𝐴(𝑛 + 2) +

©«
𝑛∑

_k=1
(_k + 1) (_k + 2) (_k + 3)𝐴(_k + 3) (𝑛 − _k + 2)𝐴(𝑛 − _k + 2)ª®¬ +

𝑛∑
_k=1

(−4 (_k + 1)𝐴(_k + 1) (𝑛 − _k + 2)𝐴(𝑛 − _k + 2))

+
𝑛∑

_k=1
(−2 (_k + 1) (_k + 2)𝐴(_k + 2) (𝑛 − _k + 2) (𝑛 + 3 − _k)𝐴(𝑛 + 3 − _k))ª®¬

 ,
{𝐴(𝑛)} ,

{
𝐴(0) = 0, 𝐴(1) = 2, 𝐴(2) = 0, 𝐴(3) =

4
3

}
, INFOª®¬ .

For this zero-equivalence, our Maple implementation detects that 𝑓 − 𝑔 is a constant earlier in the
computations.

> FPS:-QDE(f-g,y(z))

(71)
𝑑

𝑑𝑧
𝑦(𝑧) = 0

Thus, unlike the previous identity which takes about a minute to be proven from 𝑓 −𝑔, here the proof
is almost instantaneous.

> FPS(f-g,z,n,fpstype=quadratic)

(72)0

5 Conclusion
We have proposed a general-purpose method to compute normal forms for representing the power
series of a large class of non-holonomic functions, including that of holonomic functions. The
computations were mainly presented for Laurent series and we believe that the method easily adapts
to Puiseux series. One could incorporate ideas from [8] in this regard. Often the representations
found may look “big”. However, these are likely what one will find when calculating the series
directly by hand if one wants to get complete formulas. Moreover, an important advantage of the
proposed method is that it can simplify non-trivial identities. Previous Maple releases did not include
formal power series computation for non-holonomic functions. We are delighted and grateful that our
implementation available at http://www.mathematik.uni-kassel.de/~bteguia/FPS_webpage/FPS.htm
is now incorporated into Maple 2022 in the FormalPowerSeries (renewed by the FPS package)
and DEtools packages.
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